EP3555324B1 - Method and section for quick cooling of a continuous line for treating metal belts - Google Patents

Method and section for quick cooling of a continuous line for treating metal belts Download PDF

Info

Publication number
EP3555324B1
EP3555324B1 EP17829617.4A EP17829617A EP3555324B1 EP 3555324 B1 EP3555324 B1 EP 3555324B1 EP 17829617 A EP17829617 A EP 17829617A EP 3555324 B1 EP3555324 B1 EP 3555324B1
Authority
EP
European Patent Office
Prior art keywords
strip
nozzles
jets
row
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17829617.4A
Other languages
German (de)
French (fr)
Other versions
EP3555324A1 (en
Inventor
Florent CODE
Eric MAGADOUX
Miroslav RAUDENSKI
Jaroslav HORSKI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fives Stein SA
Original Assignee
Fives Stein SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fives Stein SA filed Critical Fives Stein SA
Publication of EP3555324A1 publication Critical patent/EP3555324A1/en
Application granted granted Critical
Publication of EP3555324B1 publication Critical patent/EP3555324B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/04Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/06Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in annular, tubular or hollow conical form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details

Definitions

  • the invention relates to continuous lines for the production of metal strips. It relates more particularly to the rapid cooling sections of lines for annealing or galvanizing a steel strip, in which the strip is cooled at a rate of between 400° C./sec and 1200° C./s.
  • the strip enters at a temperature of around 800° C. and exits at a temperature close to ambient temperature, or at an intermediate temperature.
  • This cooling step is essential to obtain the desired metallurgical and mechanical properties.
  • very rapid cooling rates are necessary, of the order of 1000° C./s. These speeds are in particular necessary at high temperature to form martensite, especially when the band is between 800 and 500°C approximately.
  • Leidenfrost phenomenon Due to the so-called Leidenfrost phenomenon, it is in this temperature range that it is particularly difficult to achieve significant cooling slopes when cooling with water.
  • the principle of the so-called Leidenfrost phenomenon is that a thin film of vapor is created on the surface of the strip, which constitutes a brake on the heat exchange between the cooling fluid and the strip.
  • the difficulty therefore lies in being able to cool relatively thick strips very quickly while ensuring great flexibility and ease of operation of the line, in order to be able to produce on the same installation other types of steel that do not require rapid cooling rates.
  • gas cooling and water cooling such as JP S61 153236 A and or JP S60 184635 A ).
  • Cooling by spraying a water mist using bi-fluid nozzles allows a wide flexibility, but is limited in performance. In fact, the maximum performances peak at around 500°C/s for a strip 2 mm thick with a usual water pressure of around 5 bars. This cooling rate is also less when the strip is above the Leidenfrost temperature.
  • the advantage of this technology is to have a very high flexibility. By adjusting the gas and water pressures, it is in fact possible to cover the entire cooling range, up to the maximum value.
  • Cooling by water spray using mono-fluid nozzles has substantially the same characteristics.
  • the cooling limit is also at 500° C./s in the usual pressure range, that is to say up to approximately 5 bars.
  • This cooling offers less flexibility, especially for low cooling rates. Indeed, for proper operation, the water pressure at the nozzles cannot fall below a certain value, of the order of 0.5 bar. At this pressure, the cooling is already beyond 100°C/s for a strip 2 mm thick. Thus, this technology is not able to offer slow cooling with speeds comparable to cooling by gas.
  • Cooling by quenching in a tank can make it possible, under certain agitation conditions, to achieve cooling performance of the order of 1000°C/s for strips 2 mm thick.
  • the main flaw of this technology is its lack of flexibility. Indeed, the strip entering a water tank, it is very difficult to control the cooling rate and the final temperature of the strip. It is possible to adjust the agitation of the tank, the water temperature, or the length of the submerged strip, but this has a moderate effect on the cooling rate of the strip. It is also not possible to adjust the cooling transversely.
  • this technology requires the use of a rather expensive submerged roller.
  • the tank must then be purged, or bypassed, which requires a fairly cumbersome process.
  • the invention makes it possible to cool a strip of 2 mm thickness in a wide range of cooling rates up to 1000°C/s in the temperature range 800 - 500°C, by making it possible to adjust transversely the cooling efficiency for good homogeneity across the bandwidth.
  • a rapid cooling section of a continuous metal strip processing line arranged to cool the strip by spraying it with a liquid, or a mixture of a gas and a liquid, by means of nozzles arranged on either side of the strip with respect to its running plane, characterized in that, in the running direction of the strip, the cooling section comprises at at least one row of flat jet nozzles, followed by at least one row of conical jet nozzles, the rows of nozzles being arranged transversely to the running plane of the strip.
  • the at least one row of flat jet nozzles can be mono-fluid.
  • the at least one row of nozzles with conical jets can be mono-fluid.
  • the rapid cooling section may further comprise at least one row of bi-fluid jet nozzles and which may follow, in the direction of scrolling of the strip, the at least one row of nozzles with conical jets.
  • the row of nozzles can be arranged transversely to the running plane of the strip.
  • Mono-fluid nozzles can be arranged to project a liquid onto the strip.
  • Bi-fluid nozzles can be arranged to project onto the strip a mist composed of a mixture of gas and liquid.
  • the cooling section according to the invention is arranged so that the strip circulates vertically from bottom to top.
  • the cooling section may comprise, upstream of the row of flat jet nozzles in the direction of travel of the strip, another row of flat jet nozzles whose flat jets are inclined longitudinally with respect to a transverse plane and perpendicular to the strip at an angle B greater than 15°.
  • the rapid cooling section may also comprise, upstream of the other flat jet nozzles, in the direction of travel of the strip, yet another row of flat jet nozzles whose flat jets are inclined longitudinally by a angle C with respect to the plane transverse and perpendicular to the strip, angle C being greater than angle B.
  • the flat jet nozzles and more precisely those of the row and/or the other row and/or the still row, can be inclined transversely with respect to a transverse plane and perpendicular to the strip so that the flat jets are inclined at an angle A relative to the plane greater than 5° and less than 15°.
  • the liquid, or the mixture of a gas and a liquid is non-oxidizing for the strip.
  • the cooling section does not include, in the running direction of the strip, nozzles with conical jets arranged upstream of nozzles with flat jets.
  • each of the conical jet nozzles of the cooling section according to the invention is arranged, in the running direction of the strip, downstream from each of the flat jet nozzles.
  • the cooling section does not include, in the running direction of the strip, flat jet nozzles arranged downstream of conical jet nozzles.
  • each of the flat jet nozzles of the cooling section according to the invention is arranged, in the running direction of the strip, upstream of each of the conical jet nozzles.
  • a method for rapidly cooling a continuous line for processing metal strips arranged to cool the strip by spraying it with a liquid, or a mixture of a gas and a liquid, by means of nozzles arranged on either side of the strip with respect to its running plane, characterized in that, in the running direction of the strip, the cooling method comprises at least one projection originating from a row of flat jet nozzles, followed, in time, by at least one projection originating from a row of conical jet nozzles, the rows of nozzles being arranged transversely to the running plane of the web .
  • a longitudinal part of the strip there is no projection coming from a row of nozzles with conical jets, prior to a projection coming from a row of nozzles with flat jets.
  • the ultra-rapid cooling of a strip 2 mm thick at more than 1000°C/s between 800 and 500°C takes place in two successive stages: First, the strip passes in front of the first rows of mono-fluid nozzles with flat jets, supplied with water at high pressure of the order of 10 bars. These flat jet nozzles allow a strong and narrow impact on the web and therefore a rapid decrease in temperature. The impact of these nozzles on the strip being narrow, that is to say on a small strip surface, this leads to the use of a high water flow to cover the targeted strip surface and therefore large energy consumption at the water pumps.
  • the cooling rate of the strip can be kept constant along the rapid cooling section according to the invention, with an identical cooling slope with the flat jet nozzles and the conical jet nozzles, or it can be different according to the nature of the steel and the mechanical properties concerned.
  • cooling to ambient temperature or to a desired intermediate temperature can then be carried out by spraying a mist of water using bi-fluid nozzles projecting a mixture of gas and water onto the strip.
  • this combination of cooling will allow total flexibility.
  • the cooling zone comprising the mono-fluid nozzles with flat jets and the mono-fluid nozzles with conical jets being short (1 to 2 meters maximum), it is quite possible to turn off this section and carry out all cooling with bi-fluid nozzles projecting a mixture of water and gas.
  • the nozzles according to the invention are point nozzles, that is to say they only cover a portion of the strip width. It is thus possible to have a fine transverse adjustment of the cooling of the band which is not possible when the cooling is carried out by means of nozzles covering the whole width of the strip, or a large strip width, for example half the strip width. For narrow swaths, the use of point nozzles can also stop those that are beyond the swath width, thus limiting the projected flow rate and the electrical consumption of the pump.
  • the nozzles are advantageously staggered transversely so as to increase the uniformity of the cooling.
  • the quincunx between the nozzles is offset on each side of the strip so as not to have two nozzles facing each other.
  • a cross section of a strip 1 can be seen schematically shown being cooled by spraying a liquid by means of nozzles 2 arranged on either side of the strip, according to an embodiment of the 'invention.
  • nozzles 2 arranged on either side of the strip, according to an embodiment of the 'invention.
  • the transverse pitch between the nozzles and the distance between the nozzles and the strip are adjusted according to the opening angle of the jets 3 so as to cover the entire surface of the strip and to obtain uniform transverse cooling.
  • we have a transverse overlap of the jets over the strip width we have a transverse overlap of the jets over the strip width. The extent of this overlap is limited to that necessary to ensure that the entire width of the strip is well covered by the jets while having homogeneous transverse cooling of the strip.
  • FIG. 2 of the accompanying drawings one can see schematically represented, a longitudinal view on one side of a portion of a strip 1 running in a cooling section by spraying a liquid according to an embodiment of the invention.
  • the tape runs from bottom to top.
  • the strip On entering the cooling section, the strip first encounters two rows 4, 5 of nozzles 9, 10 with flat jets 14, 15 of high flow velocity, the function of which is to expel the liquid present on the strip due to the of a runoff. This results from the flow along the strip of part of the liquid projected onto the strip by the nozzles situated above these two rows 4, 5 of flat jets.
  • These two rows of flat jets are inclined longitudinally in the running direction of the strip with respect to a plane transverse and perpendicular to the strip.
  • the inclination of the first row 4 of flat jets 14 is greater than that of the second row 5 so as to promote the detachment of the liquid from the strip.
  • the second row 5 of flat jets is inclined at an angle B of 15° and the first row is inclined at an angle C of 45°.
  • the band then encounters, in the running direction F of the band, four successive rows 6 of flat jets 16 .
  • These jets ensure rapid cooling of the belt. They are perpendicular to the surface of the strip and slightly inclined transversely with respect to the transverse plane and perpendicular to the strip by an angle A so as to limit the interaction between the jets while ensuring that the whole width of the strip is well covered by jets.
  • This inclination remains limited so as not to increase the number of nozzles over the strip width and not to increase the transverse distance between two rows of nozzles necessary to avoid interaction between the jets of the two rows. This inclination is between 5° and 15° and is advantageously 8°.
  • the number of successive rows 6 of nozzles 11 with flat jets 16 depends on the cooling profile of the desired strip, the characteristics of the strip, in particular its maximum thickness, the maximum running speed of the strip and the characteristics of the jets , in particular the flow rate and the velocity of the liquid.
  • the strip then encounters four successive rows 7 of conical jets 17 . These jets are perpendicular to the strip surface. Again, the number of successive rows 7 of nozzles 12 with flat jets 17 depends on the cooling profile of the desired strip, the characteristics of the strip, the maximum running speed of the strip and the characteristics of the jets.
  • the density of the jets on the surface of the strip is determined according to the cooling profile of the desired strip and the heat exchange performance of the jets.
  • the nozzle supply pressure and the coolant temperature are parameters that can be adjusted to obtain the desired cooling slope. These parameters can be kept constant along the cooling section or they can be variable, depending on the desired thermal objective.
  • the supply pressure of the nozzles 9, 10 can be higher so as to facilitate the evacuation of the runoff water.
  • the distance between the belt and the nozzles is defined by taking into account several parameters, in particular the characteristics of the jets, the floating of the belt and the accesses necessary for maintenance. This distance is for example between 150 and 300 mm. It is obviously taken into account to define the pitch between the nozzles and the supply pressure of the nozzles.
  • FIG. 3 there can be seen schematically represented a longitudinal and lateral view of the portion of a strip 1 running in the cooling section represented in figure 2 .
  • This figure shows more clearly the longitudinal inclination of the first two rows of nozzles in the running direction F of the strip, the other nozzles being perpendicular to the strip.
  • the bi-fluid nozzles are punctual and the jets obtained are conical. Since the cooling conditions are less critical for the slower cooling obtained by these bi-fluid nozzles, slotted nozzles covering the whole width of the strip, or part of it, can also be used.
  • This system of water knives is not essential for descending bands. For these, however, it is advantageous to place a system of water knives after the last row of nozzles, at the outlet of the cooling section, in order to stop the cooling in a clear way by avoiding that which would result from the runoff of the water.
  • the longitudinal distance from the first row of nozzles is taken at the level of the median axis of impact of the jet on the web.
  • the distance between the nozzles and the strip is 250 mm for all the nozzles.

Description

L'invention est relative aux lignes continues de production de bandes métalliques. Elle concerne plus particulièrement les sections de refroidissement rapide des lignes de recuit ou de galvanisation d'une bande d'acier, dans lesquelles la bande est refroidie à une vitesse comprise entre 400 °C/sec et 1200 °C/s.The invention relates to continuous lines for the production of metal strips. It relates more particularly to the rapid cooling sections of lines for annealing or galvanizing a steel strip, in which the strip is cooled at a rate of between 400° C./sec and 1200° C./s.

Dans ces sections de refroidissement, la bande entre à une température aux alentours de 800°C et ressort à une température proche de la température ambiante, ou à une température intermédiaire. Cette étape de refroidissement est primordiale pour obtenir les propriétés métallurgiques et mécaniques voulues. Pour obtenir des aciers ayant des propriétés mécaniques élevées tout en réduisant les quantités d'éléments d'addition, notamment pour réduire le coût des aciers, des vitesses de refroidissement très rapides sont nécessaires, de l'ordre de 1000 °C/s. Ces vitesses sont en particulier nécessaires à haute température pour former de la martensite, notamment quand la bande est entre 800 et 500 °C environ. En raison du phénomène dit de Leidenfrost, c'est dans cette plage de température qu'il est particulièrement difficile d'atteindre des pentes de refroidissement importantes lors d'un refroidissement à l'eau. Le principe du phénomène dit de Leidenfrost est qu'une fine pellicule de vapeur se crée à la surface de la bande, ce qui constitue un frein à l'échange thermique entre le fluide de refroidissement et la bande.In these cooling sections, the strip enters at a temperature of around 800° C. and exits at a temperature close to ambient temperature, or at an intermediate temperature. This cooling step is essential to obtain the desired metallurgical and mechanical properties. To obtain steels having high mechanical properties while reducing the quantities of addition elements, in particular to reduce the cost of the steels, very rapid cooling rates are necessary, of the order of 1000° C./s. These speeds are in particular necessary at high temperature to form martensite, especially when the band is between 800 and 500°C approximately. Due to the so-called Leidenfrost phenomenon, it is in this temperature range that it is particularly difficult to achieve significant cooling slopes when cooling with water. The principle of the so-called Leidenfrost phenomenon is that a thin film of vapor is created on the surface of the strip, which constitutes a brake on the heat exchange between the cooling fluid and the strip.

Ces aciers à très hautes propriétés mécaniques étant utilisés le plus souvent pour réaliser des pièces de structures, les bandes concernées sont souvent épaisses et peuvent atteindre jusqu'à 2 mm d'épaisseur, voire plus.Since these steels with very high mechanical properties are most often used to make structural parts, the strips concerned are often thick and can reach up to 2 mm in thickness, or even more.

La difficulté réside donc dans le fait de pouvoir refroidir très rapidement des bandes relativement épaisses tout en assurant une grande flexibilité et une facilité d'opération de la ligne, afin de pouvoir produire sur la même installation d'autres types d'acier ne nécessitant pas des vitesses rapides de refroidissement. En plus des critères de flexibilité, il est aussi important que le refroidissement soit homogène afin de garantir des propriétés mécaniques et métallurgiques homogènes sur la largeur de la bande.The difficulty therefore lies in being able to cool relatively thick strips very quickly while ensuring great flexibility and ease of operation of the line, in order to be able to produce on the same installation other types of steel that do not require rapid cooling rates. In addition to the flexibility criteria, it is also important that the cooling is homogeneous in order to guarantee homogeneous mechanical and metallurgical properties over the width of the strip.

Il existe deux grands types de technologies pour refroidir les bandes d'acier dans une ligne continue : le refroidissement par gaz et le refroidissement par eau (comme par exemple JP S61 153236 A et/ou JP S60 184635 A ).There are two main types of technologies for cooling steel strips in a continuous line: gas cooling and water cooling (such as JP S61 153236 A and or JP S60 184635 A ).

Le refroidissement par gaz ne permet pas d'atteindre de telles pentes de refroidissement. En effet, même à très haute teneur en hydrogène et même avec des vitesses de soufflage très élevées, la limitation de cette technologie se situe aux environs de 100 °C/s pour une bande d'épaisseur 2mm.Gas cooling does not make it possible to achieve such cooling slopes. Indeed, even at a very high hydrogen content and even with very high blowing speeds, the limitation of this technology is around 100°C/s for a 2 mm thick strip.

Pour le refroidissement par eau, il y a trois types de technologies :

  • le refroidissement par pulvérisation d'un brouillard d'eau à l'aide de buses bi-fluides projetant un mélange de gaz et d'eau sur la bande,
  • le refroidissement par pulvérisation d'eau à l'aide de buses mono-fluides projetant uniquement de l'eau sur la bande.
  • la trempe par immersion dans de l'eau contenue dans un bac, avec agitation ou non de celle-ci.
For water cooling, there are three types of technologies:
  • cooling by spraying a mist of water using bi-fluid nozzles projecting a mixture of gas and water onto the strip,
  • water spray cooling using mono-fluid nozzles projecting only water onto the strip.
  • quenching by immersion in water contained in a tank, with or without agitation thereof.

Le refroidissement par pulvérisation d'un brouillard d'eau à l'aide de buses bi-fluides permet une large flexibilité, mais est limité en performance. En effet, les performances maximales plafonnent à environ 500 °C/s pour une bande d'épaisseur 2 mm avec une pression d'eau usuelle de l'ordre de 5 bars. Cette vitesse de refroidissement est également moindre quand la bande se trouve au-dessus de la température de Leidenfrost. L'avantage de cette technologie est d'avoir une très grande flexibilité. En ajustant les pressions de gaz et d'eau, il est en effet possible de couvrir toute la plage de refroidissement, jusqu'à la valeur maximale.Cooling by spraying a water mist using bi-fluid nozzles allows a wide flexibility, but is limited in performance. In fact, the maximum performances peak at around 500°C/s for a strip 2 mm thick with a usual water pressure of around 5 bars. This cooling rate is also less when the strip is above the Leidenfrost temperature. The advantage of this technology is to have a very high flexibility. By adjusting the gas and water pressures, it is in fact possible to cover the entire cooling range, up to the maximum value.

Le refroidissement par pulvérisation d'eau à l'aide de buses mono-fluide a sensiblement les mêmes caractéristiques. La limite de refroidissement se situe aussi à 500 °C/s dans la gamme de pression usuelle, c'est-à-dire jusqu'à environ 5 bars. La différence majeure vient du fait que ce refroidissement offre moins de flexibilité, notamment pour les faibles vitesses de refroidissement. En effet, pour un bon fonctionnement, la pression d'eau aux buses ne peut pas descendre en dessous d'une certaine valeur, de l'ordre de 0,5 bar. A cette pression, le refroidissement est déjà au-delà de 100 °C/s pour une bande d'épaisseur 2 mm. Ainsi, cette technologie n'est pas capable d'offrir des refroidissements lents avec des vitesses comparables au refroidissement par gaz.Cooling by water spray using mono-fluid nozzles has substantially the same characteristics. The cooling limit is also at 500° C./s in the usual pressure range, that is to say up to approximately 5 bars. The major difference is that this cooling offers less flexibility, especially for low cooling rates. Indeed, for proper operation, the water pressure at the nozzles cannot fall below a certain value, of the order of 0.5 bar. At this pressure, the cooling is already beyond 100°C/s for a strip 2 mm thick. Thus, this technology is not able to offer slow cooling with speeds comparable to cooling by gas.

Le refroidissement par trempe dans un bac peut permettre, sous certaines conditions d'agitation, d'atteindre des performances de refroidissement de l'ordre de 1000 °C/s pour des bandes de 2 mm d'épaisseur. Cependant, le défaut principal de cette technologie est son manque de flexibilité. En effet, la bande entrant dans un bac d'eau, il est très difficile de contrôler la vitesse de refroidissement et la température finale de la bande. Il est possible d'ajuster l'agitation du bac, la température de l'eau, ou la longueur de la bande immergée, mais cela a un effet modéré sur la vitesse de refroidissement de la bande. Il n'est par ailleurs pas possible de régler transversalement le refroidissement. De plus, cette technologie nécessite l'utilisation d'un rouleau immergé assez coûteux. Enfin, pour des bandes nécessitant des refroidissements lents, il faut alors purger le bac, ou le bipasser, ce qui nécessite un processus assez lourd.Cooling by quenching in a tank can make it possible, under certain agitation conditions, to achieve cooling performance of the order of 1000°C/s for strips 2 mm thick. However, the main flaw of this technology is its lack of flexibility. Indeed, the strip entering a water tank, it is very difficult to control the cooling rate and the final temperature of the strip. It is possible to adjust the agitation of the tank, the water temperature, or the length of the submerged strip, but this has a moderate effect on the cooling rate of the strip. It is also not possible to adjust the cooling transversely. In addition, this technology requires the use of a rather expensive submerged roller. Finally, for strips requiring slow cooling, the tank must then be purged, or bypassed, which requires a fairly cumbersome process.

L'invention permet de refroidir une bande de 2 mm d'épaisseur dans une grande gamme de vitesses de refroidissement allant jusqu'à 1000 °C/s dans la plage de température 800 - 500 °C, en permettant d'ajuster transversalement l'efficacité du refroidissement pour une bonne homogénéité sur la largeur de bande.The invention makes it possible to cool a strip of 2 mm thickness in a wide range of cooling rates up to 1000°C/s in the temperature range 800 - 500°C, by making it possible to adjust transversely the cooling efficiency for good homogeneity across the bandwidth.

L'invention est définie dans les revendications ci-jointes. Selon un aspect de l'invention, il est proposé une section de refroidissement rapide d'une ligne continue de traitement de bandes métalliques, agencée pour refroidir la bande par projection sur celle-ci d'un liquide, ou d'un mélange d'un gaz et d'un liquide, au moyen de buses disposées de part et d'autre de la bande par rapport à son plan de défilement, caractérisée en ce que, dans le sens de défilement de la bande, la section de refroidissement comprend au moins une rangée de buses à jet plat, suivie d'au moins une rangée de buses à jets coniques, les rangées de buses étant disposées transversalement au plan de défilement de la bande.The invention is defined in the appended claims. According to one aspect of the invention, there is proposed a rapid cooling section of a continuous metal strip processing line, arranged to cool the strip by spraying it with a liquid, or a mixture of a gas and a liquid, by means of nozzles arranged on either side of the strip with respect to its running plane, characterized in that, in the running direction of the strip, the cooling section comprises at at least one row of flat jet nozzles, followed by at least one row of conical jet nozzles, the rows of nozzles being arranged transversely to the running plane of the strip.

Avantageusement, dans le sens de défilement de la bande, l'au moins une rangée de buses à jet plat peut être mono-fluide.Advantageously, in the running direction of the strip, the at least one row of flat jet nozzles can be mono-fluid.

L'au moins une rangée de buses à jets coniques peut être mono-fluide.The at least one row of nozzles with conical jets can be mono-fluid.

La section de refroidissement rapide peut en outre comprendre au moins une rangée de buses à jets bi-fluides et qui peut suivre, dans le sens de défilement de la bande, l'au moins une rangée de buses à jets coniques. La rangée de buses peut être disposée transversalement au plan de défilement de la bande.The rapid cooling section may further comprise at least one row of bi-fluid jet nozzles and which may follow, in the direction of scrolling of the strip, the at least one row of nozzles with conical jets. The row of nozzles can be arranged transversely to the running plane of the strip.

Les buses mono-fluide peuvent être agencées pour projeter un liquide sur la bande.Mono-fluid nozzles can be arranged to project a liquid onto the strip.

Les buses bi-fluide peuvent être agencées pour projeter sur la bande un brouillard composé d'un mélange de gaz et de liquide.Bi-fluid nozzles can be arranged to project onto the strip a mist composed of a mixture of gas and liquid.

Selon un mode de réalisation, la section de refroidissement selon l'invention est agencée pour que la bande circule verticalement de bas en haut.According to one embodiment, the cooling section according to the invention is arranged so that the strip circulates vertically from bottom to top.

La section de refroidissement peut comprendre, en amont de la rangée de buses à jets plats dans le sens de défilement de la bande, une autre rangée de buses à jets plats dont les jets plats sont inclinés longitudinalement par rapport à un plan transversal et perpendiculaire à la bande d'un angle B supérieur à 15°.The cooling section may comprise, upstream of the row of flat jet nozzles in the direction of travel of the strip, another row of flat jet nozzles whose flat jets are inclined longitudinally with respect to a transverse plane and perpendicular to the strip at an angle B greater than 15°.

Avantageusement, la section de refroidissement rapide peut comprendre, en outre, en amont des autres buses à jets plats, dans le sens de défilement de la bande, une encore autre rangée de buses à jets plats dont les jets plats sont inclinés longitudinalement d'un angle C par rapport au plan transversal et perpendiculaire à la bande, l'angle C étant supérieur à l'angle B.Advantageously, the rapid cooling section may also comprise, upstream of the other flat jet nozzles, in the direction of travel of the strip, yet another row of flat jet nozzles whose flat jets are inclined longitudinally by a angle C with respect to the plane transverse and perpendicular to the strip, angle C being greater than angle B.

Les buses à jet plat, et plus précisément celles de la rangée et/ou l'autre rangée et/ou l'encore rangée, peuvent être inclinées transversalement par rapport à un plan transversal et perpendiculaire à la bande de sorte que les jets plats soient inclinés d'un angle A par rapport au plan supérieur à 5° et inférieur à 15°.The flat jet nozzles, and more precisely those of the row and/or the other row and/or the still row, can be inclined transversely with respect to a transverse plane and perpendicular to the strip so that the flat jets are inclined at an angle A relative to the plane greater than 5° and less than 15°.

Selon une caractéristique de l'invention, le liquide, ou le mélange d'un gaz et d'un liquide, sont non oxydants pour la bande.According to one characteristic of the invention, the liquid, or the mixture of a gas and a liquid, is non-oxidizing for the strip.

De préférence, la section de refroidissement ne comporte pas, dans le sens de défilement de la bande, de buses à jets coniques disposées en amont de buses à jets plats.Preferably, the cooling section does not include, in the running direction of the strip, nozzles with conical jets arranged upstream of nozzles with flat jets.

De préférence, chacune des buses à jets coniques de la section de refroidissement selon l'invention est disposée, selon le sens de défilement de la bande, en aval de chacune des buses à jets plats.Preferably, each of the conical jet nozzles of the cooling section according to the invention is arranged, in the running direction of the strip, downstream from each of the flat jet nozzles.

De préférence, la section de refroidissement ne comporte pas, dans le sens de défilement de la bande, de buses à jets plats disposées en aval de buses à jets coniques.Preferably, the cooling section does not include, in the running direction of the strip, flat jet nozzles arranged downstream of conical jet nozzles.

De préférence, chacune des buses à jets plats de la section de refroidissement selon l'invention est disposée, selon le sens de défilement de la bande, en mont de chacune des buses à jets conique.Preferably, each of the flat jet nozzles of the cooling section according to the invention is arranged, in the running direction of the strip, upstream of each of the conical jet nozzles.

Selon un autre aspect de l'invention, il est proposé un procédé de refroidissement rapide d'une ligne continue de traitement de bandes métalliques, agencée pour refroidir la bande par projection sur celle-ci d'un liquide, ou d'un mélange d'un gaz et d'un liquide, au moyen de buses disposées de part et d'autre de la bande par rapport à son plan de défilement, caractérisée en ce que, dans le sens de défilement de la bande, le procédé de refroidissement comprend au moins une projection provenant d'une rangée de buses à jet plat, suivie, temporellement, d'au moins une projection provenant d'une rangée de buses à jets coniques, les rangées de buses étant disposées transversalement au plan de défilement de la bande.According to another aspect of the invention, there is proposed a method for rapidly cooling a continuous line for processing metal strips, arranged to cool the strip by spraying it with a liquid, or a mixture of a gas and a liquid, by means of nozzles arranged on either side of the strip with respect to its running plane, characterized in that, in the running direction of the strip, the cooling method comprises at least one projection originating from a row of flat jet nozzles, followed, in time, by at least one projection originating from a row of conical jet nozzles, the rows of nozzles being arranged transversely to the running plane of the web .

De préférence, il n'y a pas, sur une partie longitudinale de la bande, de projection provenant d'une rangée de buses à jets coniques, préalablement, à une projection provenant d'une rangée de buses à jets plats.Preferably, on a longitudinal part of the strip, there is no projection coming from a row of nozzles with conical jets, prior to a projection coming from a row of nozzles with flat jets.

De préférence, il n'y a pas, sur une partie longitudinale de la bande, de projection provenant d'une rangée de buses à jets plats, postérieurement, à une projection provenant d'une rangée de buses à jets coniques.Preferably, there is no projection, on a longitudinal part of the strip, coming from a row of nozzles with flat jets, posterior to a projection coming from a row of nozzles with conical jets.

Selon l'invention, le refroidissement ultra rapide d'une bande de 2mm d'épaisseur à plus de 1000°C/s entre 800 et 500°C se fait en deux étapes successives : D'abord la bande passe devant des premières rangées de buses mono-fluides à jets plats, alimentées en eau à forte pression de l'ordre de 10 bars. Ces buses à jets plats permettent un fort et étroit impact sur la bande et donc une décroissance rapide de la température. L'impact de ces buses sur la bande étant étroit, c'est-à-dire sur une faible surface de bande, cela entraîne l'utilisation d'un fort débit d'eau pour couvrir la surface de bande visée et donc de grosses consommations énergétiques au niveau des pompes à eau.According to the invention, the ultra-rapid cooling of a strip 2 mm thick at more than 1000°C/s between 800 and 500°C takes place in two successive stages: First, the strip passes in front of the first rows of mono-fluid nozzles with flat jets, supplied with water at high pressure of the order of 10 bars. These flat jet nozzles allow a strong and narrow impact on the web and therefore a rapid decrease in temperature. The impact of these nozzles on the strip being narrow, that is to say on a small strip surface, this leads to the use of a high water flow to cover the targeted strip surface and therefore large energy consumption at the water pumps.

Une fois que la température de Leindenfrost a été dépassée, il est plus facile de refroidir la bande. C'est la raison pour laquelle le refroidissement se poursuit par des buses à jets coniques mono-fluides sensiblement à la même pression. L'utilisation des buses à jets coniques est à privilégier à partir de cette température intermédiaire afin de garantir une meilleure répartition et couverture d'eau sur la bande. De plus, les buses à jets coniques étant plus efficaces en termes de performance/débit injecté d'eau, surtout lorsque la bande est à plus basse température, elles permettent de réduire le débit d'eau et donc les consommations énergétiques au niveau des pompes à eau.Once the Leindenfrost temperature has been exceeded, it is easier to cool the strip. This is the reason why the cooling continues with mono-fluid conical jet nozzles at substantially the same pressure. The use of nozzles with conical jets is to be favored from this intermediate temperature in order to guarantee a better distribution and coverage of water on the belt. In addition, conical jet nozzles being more efficient in terms of performance/injected flow rate of water, especially when the strip is at lower temperature, they make it possible to reduce the flow of water and therefore the energy consumption at the level of the pumps. water.

La vitesse de refroidissement de la bande peut être maintenue constante le long de la section de refroidissement rapide selon l'invention, avec une pente de refroidissement identique avec les buses à jet plat et les buses à jet conique, ou elle peut être différente selon la nature de l'acier et des propriétés mécaniques visées.The cooling rate of the strip can be kept constant along the rapid cooling section according to the invention, with an identical cooling slope with the flat jet nozzles and the conical jet nozzles, or it can be different according to the nature of the steel and the mechanical properties concerned.

Une fois la température de la bande descendue à 500 °C ou moins, le refroidissement jusqu'à la température ambiante ou jusqu'à une température intermédiaire voulue peut alors s'effectuer par pulvérisation d'un brouillard d'eau à l'aide de buses bi-fluides projetant un mélange de gaz et d'eau sur la bande. Ainsi, cette association de refroidissements permettra une totale flexibilité.Once the temperature of the strip has fallen to 500°C or less, cooling to ambient temperature or to a desired intermediate temperature can then be carried out by spraying a mist of water using bi-fluid nozzles projecting a mixture of gas and water onto the strip. Thus, this combination of cooling will allow total flexibility.

Pour des bandes plus fines, mais nécessitant des refroidissements ultra rapides, il suffira d'adapter la vitesse de la ligne et/ou la pression d'eau dans les buses mono-fluides à jets plats et à jets coniques.For thinner strips, but requiring ultra-rapid cooling, it will suffice to adapt the speed of the line and/or the water pressure in the mono-fluid nozzles with flat jets and conical jets.

Pour des bandes nécessitant un refroidissement lent, il sera alors possible d'éteindre les buses mono-fluides à jets plats et les buses mono-fluides à jets coniques et d'utiliser seulement les buses bi-fluides projetant un mélange de gaz et d'eau. En effet, la zone de refroidissement comportant les buses mono-fluides à jets plats et les buses mono-fluides à jets coniques étant courte (1 à 2 mètres maximum), il est tout à fait possible d'éteindre cette section et de réaliser tout le refroidissement avec les buses bi-fluides projetant un mélange d'eau et de gaz.For strips requiring slow cooling, it will then be possible to switch off the mono-fluid nozzles with flat jets and the mono-fluid nozzles with conical jets and to use only the bi-fluid nozzles projecting a mixture of gas and water. Indeed, the cooling zone comprising the mono-fluid nozzles with flat jets and the mono-fluid nozzles with conical jets being short (1 to 2 meters maximum), it is quite possible to turn off this section and carry out all cooling with bi-fluid nozzles projecting a mixture of water and gas.

Les buses selon l'invention sont des buses ponctuelles, c'est-à-dire qu'elles ne couvrent qu'une portion de la largeur de bande. Il est ainsi possible d'avoir un réglage transversal fin du refroidissement de la bande ce qui n'est pas possible lorsque le refroidissement est réalisé au moyen de buses couvrant toute la largeur de la bande, ou une grande largeur de bande, par exemple la moitié de la largeur de bande. Pour les bandes étroites, l'utilisation de buses ponctuelles permet également d'arrêter celles qui se trouvent au-delà de la largeur de bande, limitant ainsi le débit projeté et la consommation électrique de la pompe.The nozzles according to the invention are point nozzles, that is to say they only cover a portion of the strip width. It is thus possible to have a fine transverse adjustment of the cooling of the band which is not possible when the cooling is carried out by means of nozzles covering the whole width of the strip, or a large strip width, for example half the strip width. For narrow swaths, the use of point nozzles can also stop those that are beyond the swath width, thus limiting the projected flow rate and the electrical consumption of the pump.

Entre deux rangées successives, les buses sont avantageusement placées en quinconce transversalement de sorte d'augmenter l'homogénéité du refroidissement. De même, le quinconce entre les buses est décalé de chaque côté de la bande de sorte de ne pas avoir deux buses en vis-à-vis.Between two successive rows, the nozzles are advantageously staggered transversely so as to increase the uniformity of the cooling. Similarly, the quincunx between the nozzles is offset on each side of the strip so as not to have two nozzles facing each other.

Pour une bande montante, il sera important de rajouter un système de couteaux d'eau en amont des premières buses mono-fluides à jets plats pour que le refroidissement commence de manière nette et ne soit pas perturbé par le ruissellement d'eau provenant des buses situées au-dessus. En effet, s'il y a ruissellement, ce ruissellement entraînera un refroidissement lent et hétérogène avant que la bande soit en vis-à-vis des premières buses. Cela pourrait conduire à des propriétés mécaniques et métallurgiques dégradées de la bande. Pour les bandes descendantes, il est avantageux de placer un système de couteaux d'eau après la dernière rangée de buses, en sortie de la section de refroidissement, afin d'arrêter le refroidissement de manière nette en évitant celui qui résulterait du ruissellement de l'eau.For a rising strip, it will be important to add a system of water knives upstream of the first mono-fluid nozzles with flat jets so that the cooling starts clearly and is not disturbed by the runoff of water from the nozzles located above. Indeed, if there is runoff, this runoff will cause slow and heterogeneous cooling before the strip is facing the first nozzles. This could lead to degraded mechanical and metallurgical properties of the strip. For the descending bands, it is advantageous to place a system of water knives after the last row of nozzles, at the outlet of the cooling section, in order to stop the cooling in a clean way avoiding that which would result from the runoff of the 'water.

L'invention consiste, mises à part les dispositions exposées ci-dessus, en un certain nombre d'autres dispositions dont il sera plus explicitement question ci-après à propos d'un exemple de réalisation décrit avec référence aux dessins annexés, mais qui n'est nullement limitatif. Sur ces dessins :

  • Fig. 1 est une vue schématique en coupe transversale de la bande dans une section de refroidissement selon un exemple de réalisation de l'invention,
  • Fig. 2 est une vue schématique en coupe longitudinale de la bande dans la section de refroidissement selon l'exemple de réalisation de l'invention de la figure 1, et,
  • Fig. 3 est une vue schématique longitudinale de la section de refroidissement selon l'exemple de réalisation de l'invention des figures 1 et 2.
The invention consists, apart from the provisions set out above, of a certain number of other provisions which will be more explicitly discussed below with regard to an exemplary embodiment described with reference to the appended drawings, but which do not is in no way limiting. In these drawings:
  • Fig. 1 is a schematic cross-sectional view of the strip in a cooling section according to an exemplary embodiment of the invention,
  • Fig. 2 is a schematic view in longitudinal section of the strip in the cooling section according to the exemplary embodiment of the invention of the figure 1 , and,
  • Fig. 3 is a schematic longitudinal view of the cooling section according to the exemplary embodiment of the invention of the figure 1 and 2 .

Ce mode de réalisation n'étant nullement limitatif, on pourra notamment réaliser des variantes de l'invention ne comprenant qu'une sélection de caractéristiques décrites par la suite, telles que décrites ou généralisées, isolées des autres caractéristiques décrites, si cette sélection de caractéristiques est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique.This embodiment being in no way limiting, variants of the invention may in particular be made comprising only a selection of features described below, as described or generalized, isolated from the other features described, if this selection of features is sufficient to confer a technical advantage or to differentiate the invention from the state of the art.

En se reportant au schéma de la figure 1 des dessins annexés, on peut voir schématiquement représentée une coupe transversale d'une bande 1 en cours de refroidissement par projection d'un liquide au moyen de buses 2 disposées de part et d'autre de la bande, selon un exemple de réalisation de l'invention. Pour faciliter la lecture des dessins, nous avons représenté un nombre limité de buses sur la largeur de bande. Le pas transversal entre les buses et la distance entre les buses et la bande sont ajustés en fonction de l'angle d'ouverture des jets 3 de sorte de couvrir toute la surface de la bande et d'obtenir un refroidissement transversal homogène. Comme on peut le voir sur cette figure, nous avons un recouvrement transversal des jets sur la largeur de bande. L'importance de ce recouvrement est limitée à celle nécessaire pour assurer que toute la largeur de la bande est bien couverte par les jets tout en ayant un refroidissement transversal homogène de la bande.Referring to the diagram of the figure 1 of the accompanying drawings, a cross section of a strip 1 can be seen schematically shown being cooled by spraying a liquid by means of nozzles 2 arranged on either side of the strip, according to an embodiment of the 'invention. To make the drawings easier to read, we have shown a limited number of nozzles on the strip width. The transverse pitch between the nozzles and the distance between the nozzles and the strip are adjusted according to the opening angle of the jets 3 so as to cover the entire surface of the strip and to obtain uniform transverse cooling. As can be seen in this figure, we have a transverse overlap of the jets over the strip width. The extent of this overlap is limited to that necessary to ensure that the entire width of the strip is well covered by the jets while having homogeneous transverse cooling of the strip.

En se reportant au schéma de la figure 2 des dessins annexés, on peut voir schématiquement représentée, une vue longitudinale sur une face d'une portion d'une bande 1 en défilement dans une section de refroidissement par pulvérisation d'un liquide selon un exemple de réalisation de l'invention. Dans cet exemple, la bande circule de bas en haut. En entrant dans la section de refroidissement, la bande rencontre d'abord deux rangées 4, 5 de buses 9, 10 à jets plats 14, 15 à forte vitesse d'écoulement dont la fonction est de chasser le liquide présent sur la bande du fait d'un ruissellement. Celui-ci résulte de l'écoulement le long de la bande d'une partie du liquide projeté sur la bande par les buses situées au-dessus de ces deux rangées 4, 5 de jets plats. Il est nécessaire de supprimer le liquide présent sur la bande car celui-ci aurait pour effet de limiter l'impact sur la bande de jets de rangées de buses de refroidissement disposées en aval dans le sens F de refroidissement. De plus, le liquide présent sur la bande par ruissellement conduirait à un début de refroidissement de la bande avant qu'elle n'atteigne la première rangée de buses. Il en résulterait un début de refroidissement moins intense alors qu'il est souvent nécessaire que celui-ci soit très rapide, notamment pour éviter la formation de phases métallurgiques à moindres propriétés mécaniques, comme de la perlite, lors du début du refroidissement. Dans les sections de refroidissement dans lesquelles la bande circule de haut en bas, ces rangées de buses ne sont pas nécessaires puisque la bande n'est pas recouverte de liquide lors de son entrée dans la section de refroidissement. Ces deux rangées de jets plats sont inclinées longitudinalement dans la direction de défilement de la bande par rapport à un plan transversal et perpendiculaire à la bande. L'inclinaison de la première rangée 4 de jets plats 14 est plus importante que celle de la seconde rangée 5 de sorte de favoriser le décollement du liquide de la bande. Par exemple, la seconde rangée 5 de jets plats est inclinée d'un angle B de 15° et la première rangée est inclinée d'un angle C de 45°.Referring to the diagram of the figure 2 of the accompanying drawings, one can see schematically represented, a longitudinal view on one side of a portion of a strip 1 running in a cooling section by spraying a liquid according to an embodiment of the invention. In this example, the tape runs from bottom to top. On entering the cooling section, the strip first encounters two rows 4, 5 of nozzles 9, 10 with flat jets 14, 15 of high flow velocity, the function of which is to expel the liquid present on the strip due to the of a runoff. This results from the flow along the strip of part of the liquid projected onto the strip by the nozzles situated above these two rows 4, 5 of flat jets. It is necessary to remove the liquid present on the strip because this would have the effect of limiting the impact on the strip of jets of rows of cooling nozzles arranged downstream in the cooling direction F. In addition, the liquid present on the strip by runoff would lead to the start of cooling of the strip before it reaches the first row of nozzles. This would result in a less intense onset of cooling when it is it is often necessary for this to be very rapid, in particular to avoid the formation of metallurgical phases with lower mechanical properties, such as pearlite, at the start of cooling. In cooling sections where the strip travels from top to bottom, these rows of nozzles are not necessary since the strip is not covered with liquid as it enters the cooling section. These two rows of flat jets are inclined longitudinally in the running direction of the strip with respect to a plane transverse and perpendicular to the strip. The inclination of the first row 4 of flat jets 14 is greater than that of the second row 5 so as to promote the detachment of the liquid from the strip. For example, the second row 5 of flat jets is inclined at an angle B of 15° and the first row is inclined at an angle C of 45°.

La bande rencontre ensuite, dans le sens F de défilement de la bande, quatre rangées 6 successives de jets 16 plats. Ces jets assurent un refroidissement rapide de la bande. Ils sont perpendiculaires à la surface de la bande et légèrement inclinés transversalement par rapport au plan transversal et perpendiculaire à la bande d'un angle A de sorte de limiter l'interaction entre les jets tout en assurant que toute la largeur de la bande est bien couverte par les jets. Cette inclinaison reste limitée pour ne pas augmenter le nombre de buses sur la largeur de bande et ne pas accroître la distance transversale entre deux rangées de buses nécessaire pour éviter l'interaction entre les jets des deux rangées. Cette inclinaison est comprise entre 5° et 15° et est avantageusement de 8°. Le nombre de rangées 6 successives de buses 11 à jets 16 plats est fonction du profil de refroidissement de la bande souhaité, des caractéristiques de la bande, notamment de son épaisseur maximale, de la vitesse maximale de défilement de la bande et des caractéristiques des jets, notamment le débit et la vitesse du liquide.The band then encounters, in the running direction F of the band, four successive rows 6 of flat jets 16 . These jets ensure rapid cooling of the belt. They are perpendicular to the surface of the strip and slightly inclined transversely with respect to the transverse plane and perpendicular to the strip by an angle A so as to limit the interaction between the jets while ensuring that the whole width of the strip is well covered by jets. This inclination remains limited so as not to increase the number of nozzles over the strip width and not to increase the transverse distance between two rows of nozzles necessary to avoid interaction between the jets of the two rows. This inclination is between 5° and 15° and is advantageously 8°. The number of successive rows 6 of nozzles 11 with flat jets 16 depends on the cooling profile of the desired strip, the characteristics of the strip, in particular its maximum thickness, the maximum running speed of the strip and the characteristics of the jets , in particular the flow rate and the velocity of the liquid.

La bande rencontre ensuite quatre rangées 7 successives de jets 17 coniques. Ces jets sont perpendiculaires à la surface de la bande. De nouveau, le nombre de rangées 7 successives de buses 12 à jets 17 plats est fonction du profil de refroidissement de la bande souhaité, des caractéristiques de la bande, de la vitesse maximale de défilement de la bande et des caractéristiques des jets.The strip then encounters four successive rows 7 of conical jets 17 . These jets are perpendicular to the strip surface. Again, the number of successive rows 7 of nozzles 12 with flat jets 17 depends on the cooling profile of the desired strip, the characteristics of the strip, the maximum running speed of the strip and the characteristics of the jets.

De même, la densité des jets sur la surface de la bande, notamment la distance entre les rangées 7 de buses dans le sens longitudinal de la bande, est déterminée selon le profil de refroidissement de la bande souhaité et des performances d'échange thermique des jets.Likewise, the density of the jets on the surface of the strip, in particular the distance between the rows 7 of nozzles in the longitudinal direction of the strip, is determined according to the cooling profile of the desired strip and the heat exchange performance of the jets.

La pression d'alimentation des buses et la température du fluide de refroidissement sont des paramètres qui peuvent être ajustés pour obtenir la pente de refroidissement souhaitée. Ces paramètres peuvent être maintenus constants le long de la section de refroidissement ou ils peuvent être variables, selon l'objectif thermique visé. La pression d'alimentation des buses 9, 10 peut être plus élevée de sorte de faciliter l'évacuation de l'eau de ruissellement.The nozzle supply pressure and the coolant temperature are parameters that can be adjusted to obtain the desired cooling slope. These parameters can be kept constant along the cooling section or they can be variable, depending on the desired thermal objective. The supply pressure of the nozzles 9, 10 can be higher so as to facilitate the evacuation of the runoff water.

La distance entre la bande et les buses est définie en prenant en compte plusieurs paramètres, notamment les caractéristiques des jets, du flottement de la bande et des accès nécessaires pour la maintenance. Cette distance est par exemple comprise entre 150 et 300 mm. Elle est évidemment prise en compte pour définir le pas entre les buses et la pression d'alimentation des buses.The distance between the belt and the nozzles is defined by taking into account several parameters, in particular the characteristics of the jets, the floating of the belt and the accesses necessary for maintenance. This distance is for example between 150 and 300 mm. It is obviously taken into account to define the pitch between the nozzles and the supply pressure of the nozzles.

En se reportant au schéma de la figure 3 des dessins annexés, on peut voir schématiquement représentée une vue longitudinale et latérale de la portion d'une bande 1 en défilement dans la section de refroidissement représentée en figure 2. Cette figure montre plus clairement l'inclinaison longitudinale des deux premières rangées de buses dans le sens F de défilement de la bande, les autres buses étant perpendiculaires à la bande.Referring to the diagram of the picture 3 of the accompanying drawings, there can be seen schematically represented a longitudinal and lateral view of the portion of a strip 1 running in the cooling section represented in figure 2 . This figure shows more clearly the longitudinal inclination of the first two rows of nozzles in the running direction F of the strip, the other nozzles being perpendicular to the strip.

Nous décrivons à présent un exemple de réalisation de l'invention, pour une bande circulant de bas en haut dans une section de refroidissement rapide. Le refroidissement ultra rapide de cette bande à plus de 1000°C/s entre 800 et 500°C se fait en deux étapes successives : D'abord la bande passe devant des rangées 6 de buses mono-fluides 11 à jets plats 16, alimentées en eau 19 à une pression de l'ordre de 10 bars. A partir d'une température d'environ 500 °C, le refroidissement de la bande se poursuit par des buses 12 à jets coniques 17 à la même pression. Une fois la température de la bande descendue à 300 °C, le refroidissement jusqu'à la température ambiante, ou jusqu'à une température intermédiaire voulue, peut alors s'effectuer par pulvérisation d'un brouillard d'eau à l'aide de rangées 8 de buses bi-fluides 13 à jets coniques 18 projetant un mélange 20 de gaz, par exemple de l'azote, et d'eau sur la bande. Ainsi, cette association de refroidissements permet une totale flexibilité.

  • pour des bandes plus fines, mais nécessitant des refroidissements ultra rapides, il suffit d'adapter la vitesse de la ligne et/ou la pression d'eau dans les buses mono-fluides à jets plats et à jets coniques,
  • pour des bandes nécessitant un refroidissement lent, il sera alors possible d'arrêter les buses mono-fluides à jets plats et les buses mono-fluides à jets coniques et d'utiliser uniquement les buses bi-fluides projetant un mélange de gaz et de liquide. En effet, la zone de refroidissement comportant les buses mono-fluides à jets plats et les buses mono-fluides à jets coniques étant courte (1 à 2 mètres maximum), il est tout à fait possible d'arrêter cette section et de réaliser tout le refroidissement avec les buses bi-fluides projetant un mélange de liquide et de gaz.
We now describe an exemplary embodiment of the invention, for a strip circulating from bottom to top in a rapid cooling section. The ultra-rapid cooling of this strip at more than 1000°C/s between 800 and 500°C takes place in two successive stages: First, the strip passes in front of rows 6 of single-fluid nozzles 11 with flat jets 16, supplied in water 19 at a pressure of the order of 10 bars. From a temperature of approximately 500° C., the cooling of the strip continues through nozzles 12 with conical jets 17 at the same pressure. Once the temperature of the strip has dropped to 300°C, cooling to ambient temperature, or to a desired intermediate temperature, can then be carried out by spraying a mist of water using rows 8 of bi-fluid nozzles 13 with conical jets 18 projecting a mixture 20 of gas, for example nitrogen, and water onto the strip. Thereby, this combination of coolers allows total flexibility.
  • for thinner strips, but requiring ultra-rapid cooling, simply adapt the line speed and/or the water pressure in the mono-fluid nozzles with flat jets and conical jets,
  • for strips requiring slow cooling, it will then be possible to stop the mono-fluid nozzles with flat jets and the mono-fluid nozzles with conical jets and to use only the bi-fluid nozzles projecting a mixture of gas and liquid . Indeed, the cooling zone comprising the mono-fluid nozzles with flat jets and the mono-fluid nozzles with conical jets being short (1 to 2 meters maximum), it is quite possible to stop this section and carry out all cooling with bi-fluid nozzles projecting a mixture of liquid and gas.

Dans l'exemple de réalisation représenté aux figures 2 et 3, les buses bi-fluides sont ponctuelles et les jets obtenus sont coniques. Les conditions de refroidissement étant moins critiques pour le refroidissement moins rapide obtenu par ces buses bi-fluides, des buses à fente couvrant toute la largeur de la bande, ou une partie de celle-ci, peuvent également être utilisées.In the embodiment shown in figure 2 and 3 , the bi-fluid nozzles are punctual and the jets obtained are conical. Since the cooling conditions are less critical for the slower cooling obtained by these bi-fluid nozzles, slotted nozzles covering the whole width of the strip, or part of it, can also be used.

Dans cet exemple de réalisation avec une bande montante, il est important de rajouter un système de couteaux d'eau en amont des premières buses mono-fluides à jets plats pour que le refroidissement commence de manière nette et ne soit pas perturbé par le ruissellement d'eau provenant des buses situées au-dessus. En effet, s'il y a ruissellement, ce ruissellement entraînera un refroidissant lent et inhomogène avant que la bande soit en vis-à-vis des premières buses. Cela pourrait conduire à des propriétés mécaniques et métallurgiques dégradées de la bande. Les jets plats 14, 15 du système de couteaux d'eau sont légèrement inclinés transversalement de sorte de limiter l'interaction entre les jets tout en assurant que toute la largeur de la bande est bien couverte par les jets.In this embodiment with a rising strip, it is important to add a system of water knives upstream of the first mono-fluid nozzles with flat jets so that the cooling begins clearly and is not disturbed by the runoff of water. water from the nozzles above. Indeed, if there is runoff, this runoff will cause slow and inhomogeneous cooling before the strip is facing the first nozzles. This could lead to degraded mechanical and metallurgical properties of the strip. The flat jets 14, 15 of the water knife system are slightly inclined transversely so as to limit the interaction between the jets while ensuring that the entire width of the strip is well covered by the jets.

Ce système de couteaux d'eau n'est pas indispensable pour des bandes descendantes. Pour celles-ci, il est cependant avantageux de placer un système de couteaux d'eau après la dernière rangée de buses, en sortie de la section de refroidissement, afin d'arrêter le refroidissement de manière nette en évitant celui qui résulterait du ruissellement de l'eau.This system of water knives is not essential for descending bands. For these, however, it is advantageous to place a system of water knives after the last row of nozzles, at the outlet of the cooling section, in order to stop the cooling in a clear way by avoiding that which would result from the runoff of the water.

Pour notre exemple de réalisation de l'invention pour le refroidissement d'une bande circulant de bas en haut. Le système de refroidissement se présente de la manière suivante :

  • deux rangées 4, 5 de buses mono-fluides 9, 10 à jets plats 14, 15 servant de couteaux d'eau,
  • quatre rangées 6 de buses mono-fluides 11 à jets plats 16,
  • quatre rangées 7 de buses mono-fluides 12 à jets coniques 17.
For our exemplary embodiment of the invention for cooling a strip circulating from bottom to top. The cooling system looks like this:
  • two rows 4, 5 of mono-fluid nozzles 9, 10 with flat jets 14, 15 serving as water knives,
  • four rows 6 of mono-fluid nozzles 11 with flat jets 16,
  • four rows 7 of mono-fluid nozzles 12 with conical jets 17.

De manière plus précise, les pas entre chaque rangée, les pas entre chaque buse sur une même rangée et les différents angles sont présentés dans le tableau suivant : Rangées de buses depuis l'entrée de la bande Nature Distance longitudinale depuis la première rangée de buses Inclinaison transversale des jets Inclinaison longitudinale des jets par rapport à un plan perpendiculaire à la bande Distance transversale entre les buses d'une même rangée 1 Couteau d'eau à jets plats mono-fluide 0 mm 50° 100 mm 2 Couteau d'eau à jets plats mono-fluide 75 mm 30° 100 mm 3 Jets plats mono-fluide 130 mm 100 mm 4 Jets plats mono-fluide 180 mm 100 mm 5 Jets plats mono-fluide 230 mm 100 mm 6 Jets plats mono-fluide 280 mm 100 mm 7 Jets coniques mono-fluide 355 mm NA 100 mm 8 Jets coniques mono-fluide 480 mm NA 100 mm 9 Jets coniques mono-fluide 605 mm NA 100mm 10 Jets coniques mono-fluide 730 mm NA 100 mm More precisely, the steps between each row, the steps between each nozzle on the same row and the different angles are presented in the following table: Rows of nozzles from the strip entrance Nature Longitudinal distance from the first row of nozzles Transversal inclination of the jets Longitudinal inclination of the jets with respect to a plane perpendicular to the strip Transverse distance between nozzles in the same row 1 Mono-fluid flat jet water knife 0mm 50° 100mm 2 Mono-fluid flat jet water knife 75mm 30° 100mm 3 Mono-fluid flat jets 130mm 100mm 4 Mono-fluid flat jets 180mm 100mm 5 Mono-fluid flat jets 230mm 100mm 6 Mono-fluid flat jets 280mm 100mm 7 Mono-fluid conical jets 355mm N / A 100mm 8 Mono-fluid conical jets 480mm N / A 100mm 9 Mono-fluid conical jets 605mm N / A 100mm 10 Mono-fluid conical jets 730mm N / A 100mm

Sur ce tableau, la distance longitudinale depuis la première rangée de buses est prise au niveau de l'axe médian d'impact du jet sur la bande. La distance entre les buses et la bande est de 250 mm pour l'ensemble des buses.In this table, the longitudinal distance from the first row of nozzles is taken at the level of the median axis of impact of the jet on the web. The distance between the nozzles and the strip is 250 mm for all the nozzles.

Avec cette configuration, avec de l'eau comme fluide de refroidissement, il est possible d'atteindre les pentes de refroidissement suivantes entre 800 et 500 °C :

  • pour une bande de 2 mm d'épaisseur défilant à une vitesse entre 90 et 130 m/min, avec une pression de 10 bars aux buses : 1400 °C/s.
  • pour une bande de 1 mm d'épaisseur défilant à une vitesse de 240 m/min, avec une pression de 10 bars aux buses : 1500 °C/s.
  • pour une bande de 1 mm d'épaisseur défilant à une vitesse de 240 m/min, avec une pression de 7 bars aux buses : 1300 °C/s.
With this configuration, with water as cooling fluid, it is possible to reach the following cooling gradients between 800 and 500°C:
  • for a strip 2 mm thick running at a speed between 90 and 130 m/min, with a pressure of 10 bars at the nozzles: 1400°C/s.
  • for a strip 1 mm thick running at a speed of 240 m/min, with a pressure of 10 bars at the nozzles: 1500°C/s.
  • for a strip 1 mm thick running at a speed of 240 m/min, with a pressure of 7 bars at the nozzles: 1300°C/s.

Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention. De plus, les différentes caractéristiques, formes, variantes et modes de réalisation de l'invention peuvent être associés les uns avec les autres selon diverses combinaisons dans la mesure où ils ne sont pas incompatibles ou exclusifs les uns des autres.Of course, the invention is not limited to the examples which have just been described and many adjustments can be made to these examples without departing from the scope of the invention. Moreover, the different features, forms, variants and embodiments of the invention may be associated with each other in various combinations insofar as they are not incompatible or exclusive of each other.

Claims (7)

  1. Rapid cooling portion of a continuous line for processing metal strips, which portion is designed to cool the strip (1) by spraying it with a liquid (19), or a mixture (20) of a gas and a liquid, by means of nozzles (2) arranged on either side of the strip with respect to its travel plane, characterized in that, in the travel direction (F) of the strip, the cooling portion comprises at least one row (6) of nozzles (11) having flat jets (16), followed by at least one row (7) of nozzles (12) having conical jets (17), the rows (6, 7) of nozzles being arranged transversely to the travel plane of the strip.
  2. Rapid cooling portion according to claim 1, wherein, in the travel direction of the strip, the at least one row (6) of nozzles (11) having flat jets (16) is a single-fluid nozzle row and the at least one row (7) of nozzles (12) having conical jets (17) is a single-fluid nozzle row, the rapid cooling portion further comprising at least one row (8) of nozzles (13) having jets (18) which is a two-fluid nozzle row and follows, in the travel direction (F) of the strip, the at least one row (7) of nozzles (12) having conical jets (17), the row (8) of nozzles (13) being arranged transversely to the travel plane of the strip, the single-fluid nozzles (11, 12) being designed to spray a liquid onto the strip and the two-fluid nozzles (13) being designed to spray onto the strip a mist consisting of a mixture of gas and liquid.
  3. Rapid cooling portion according to either claim 1 or claim 2, which is designed so that the strip (1) moves vertically from bottom to top, comprising, upstream of the row (6) of nozzles (11) having flat jets in the travel direction (F) of the strip, a row (5) of nozzles (10) having flat jets (15) of which the flat jets (15) are inclined longitudinally with respect to a transverse plane and are perpendicular to the strip (1) at an angle B greater than 15°.
  4. Rapid cooling portion according to the preceding claim, further comprising, upstream of the nozzles (10) having flat jets, in the travel direction (F) of the strip, a row (4) of nozzles (9) having flat jets (14) of which the flat jets (14) are inclined longitudinally at an angle C with respect to the transverse plane and are perpendicular to the strip (1), the angle C being greater than the angle B.
  5. Rapid cooling portion according to any of the preceding claims, wherein the nozzles (9, 10, 11) having flat jets are inclined transversely with respect to a plane which is transverse and are perpendicular to the strip (1) such that the flat jets (14, 15, 16) are inclined at an angle A with respect to the plane that is greater than 5° and less than 15°.
  6. Rapid cooling portion according to any of the preceding claims, wherein the liquid (19) or the mixture (20) of a gas and a liquid are non-oxidizing to the strip (1).
  7. Method for rapidly cooling a continuous line for processing metal strips, which portion is designed to cool the strip by spraying it with a liquid, or a mixture of a gas and a liquid, by means of nozzles arranged on either side of the strip with respect to its travel plane, characterized in that, in the travel direction of the strip, the cooling method comprises at least one spraying action originating from a row of nozzles having flat jets, followed, temporally, by at least one spraying action originating from a row of nozzles having conical jets, the rows of nozzles being arranged transversely to the travel plane of the strip.
EP17829617.4A 2016-12-14 2017-12-08 Method and section for quick cooling of a continuous line for treating metal belts Active EP3555324B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1662421A FR3060021B1 (en) 2016-12-14 2016-12-14 METHOD AND RAPID COOLING SECTION OF A CONTINUOUS LINE OF TREATMENT OF METAL STRIP
PCT/EP2017/082073 WO2018108747A1 (en) 2016-12-14 2017-12-08 Method and section for quick cooling of a continuous line for treating metal belts

Publications (2)

Publication Number Publication Date
EP3555324A1 EP3555324A1 (en) 2019-10-23
EP3555324B1 true EP3555324B1 (en) 2022-10-05

Family

ID=57909758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17829617.4A Active EP3555324B1 (en) 2016-12-14 2017-12-08 Method and section for quick cooling of a continuous line for treating metal belts

Country Status (11)

Country Link
US (1) US11230748B2 (en)
EP (1) EP3555324B1 (en)
JP (1) JP7021219B2 (en)
KR (1) KR102431023B1 (en)
CN (1) CN110168117A (en)
ES (1) ES2934248T3 (en)
FI (1) FI3555324T3 (en)
FR (1) FR3060021B1 (en)
PL (1) PL3555324T3 (en)
PT (1) PT3555324T (en)
WO (1) WO2018108747A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017127470A1 (en) * 2017-11-21 2019-05-23 Sms Group Gmbh Chilled beams and cooling process with variable cooling rate for steel sheets
SE543963C2 (en) * 2020-02-28 2021-10-12 Baldwin Jimek Ab Spray applicator and spray unit comprising two groups of spray nozzles

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3300198A (en) * 1963-12-27 1967-01-24 Olin Mathieson Apparatus for quenching metal
US3997376A (en) * 1974-06-19 1976-12-14 Midland-Ross Corporation Spray mist cooling method
US4407487A (en) * 1980-01-15 1983-10-04 Heurtey Metallurgie Device for cooling metal articles
JPS60121229A (en) * 1983-12-01 1985-06-28 Nippon Steel Corp Cooling method of steel plate heated at high temperature
JPS60184635A (en) * 1984-02-29 1985-09-20 Ishikawajima Harima Heavy Ind Co Ltd Device for cooling metallic plate
JPS61153236A (en) * 1984-12-26 1986-07-11 Kobe Steel Ltd Equipment for on-line cooling steel of plate
US5640872A (en) * 1994-07-20 1997-06-24 Alusuisse-Lonza Services Ltd. Process and device for cooling heated metal plates and strips
WO2004110662A1 (en) * 2003-06-13 2004-12-23 Jfe Steel Corporation Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
AT414102B (en) * 2004-08-04 2006-09-15 Ebner Ind Ofenbau DEVICE FOR COOLING A TAPE BELT
US7968046B2 (en) * 2005-08-01 2011-06-28 Ebner Industrieofenbau Ges.M.B.H Apparatus for cooling a metal strip
CN101394947B (en) * 2006-09-12 2011-06-08 新日本制铁株式会社 Method for setting arrangement of spray cooling nozzle, and cooling equipment for heated steel strip
JP5573837B2 (en) * 2009-06-30 2014-08-20 新日鐵住金株式会社 Hot rolled steel sheet cooling apparatus, cooling method, manufacturing apparatus, and manufacturing method

Also Published As

Publication number Publication date
PL3555324T3 (en) 2023-01-23
FR3060021B1 (en) 2018-11-16
JP7021219B2 (en) 2022-02-16
EP3555324A1 (en) 2019-10-23
ES2934248T3 (en) 2023-02-20
US11230748B2 (en) 2022-01-25
FR3060021A1 (en) 2018-06-15
CN110168117A (en) 2019-08-23
FI3555324T3 (en) 2023-01-13
US20200071788A1 (en) 2020-03-05
WO2018108747A1 (en) 2018-06-21
PT3555324T (en) 2023-01-02
KR20190094384A (en) 2019-08-13
JP2020513480A (en) 2020-05-14
KR102431023B1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
EP2100673B1 (en) Method and device for blowing a gas onto a moving strip
EP3555324B1 (en) Method and section for quick cooling of a continuous line for treating metal belts
FR2940979A1 (en) METHOD FOR COOLING A THREADED METAL STRIP
FR2566688A1 (en) METHOD AND DEVICE FOR CONTINUOUS CASTING OF METAL FUSION BATH, ESPECIALLY STEEL FUSION BATH
EP1655383B1 (en) Process and device for limiting the vibrations of aluminium or steel sheets during gas cooling
EP0761829B1 (en) Cooling device for rolled products
WO2003104501A2 (en) Method and device for patenting steel wires
FR2833871A1 (en) Trimming the edges of a continuously cast thin metal strip involves cooling edge zones are to make them more brittle directly before cutting the edges away
FR2552448A1 (en) APPARATUS FOR CONTINUOUSLY COOLING A HEATED METAL PLATE
WO2005054524A1 (en) Method and device for cooling a steel strip
FR2460333A1 (en) METHOD AND APPARATUS FOR COOLING STEEL STRIPS DURING CONTINUOUS ANNEALING TREATMENT
FR2479795A1 (en) METHOD FOR SLIMMING GLASS PRODUCED BY FLOATING
BE1014869A3 (en) Cooling and / or flushing son and / or
EP0686209B1 (en) Process and system for the continuous treatment of a galvanized steel strip
EP1029933B1 (en) Device for heat exchanging with a flat product
EP4010503B1 (en) Movable tank for a heat exchange liquid bath and facility comprising such a tank
EP0031772A1 (en) Process and apparatus for making float glass
WO2023285747A1 (en) Liquid cooling of a strip running in a continuous line
FR2675718A1 (en) METHOD AND DEVICE FOR COOLING A PROFILE DURING LAMINATION.
BE898291A (en) Method and device for accelerated cooling of a thin metal strip.
EP2173918B1 (en) Equipment for coating a metal strip
JP5900080B2 (en) Steel strip manufacturing apparatus and steel strip manufacturing method
EP0084335A2 (en) Apparatus for quenching molten metal or an alloy on a belt
BE419364A (en)
BE850801A (en) CONTINUOUS ELEMENT COOLING PROCESS AND DEVICE

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200617

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1522789

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017062447

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3555324

Country of ref document: PT

Date of ref document: 20230102

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20221227

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 40907

Country of ref document: SK

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2934248

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221223

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230105

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230205

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230117

Year of fee payment: 6

Ref country code: IT

Payment date: 20230120

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017062447

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

26N No opposition filed

Effective date: 20230706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221208

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1522789

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231121

Year of fee payment: 7

Ref country code: LU

Payment date: 20231121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231128

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231128

Year of fee payment: 7

Ref country code: SE

Payment date: 20231121

Year of fee payment: 7

Ref country code: RO

Payment date: 20231206

Year of fee payment: 7

Ref country code: PT

Payment date: 20231122

Year of fee payment: 7

Ref country code: FR

Payment date: 20231122

Year of fee payment: 7

Ref country code: FI

Payment date: 20231121

Year of fee payment: 7

Ref country code: DE

Payment date: 20231121

Year of fee payment: 7

Ref country code: CZ

Payment date: 20231124

Year of fee payment: 7

Ref country code: AT

Payment date: 20231123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231127

Year of fee payment: 7

Ref country code: BE

Payment date: 20231121

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 7