EP1651861B1 - Schaltventil mit druckausgleich für einen kraftstoffinjektor mit druckverstärker - Google Patents

Schaltventil mit druckausgleich für einen kraftstoffinjektor mit druckverstärker Download PDF

Info

Publication number
EP1651861B1
EP1651861B1 EP04738705A EP04738705A EP1651861B1 EP 1651861 B1 EP1651861 B1 EP 1651861B1 EP 04738705 A EP04738705 A EP 04738705A EP 04738705 A EP04738705 A EP 04738705A EP 1651861 B1 EP1651861 B1 EP 1651861B1
Authority
EP
European Patent Office
Prior art keywords
pressure
valve
pressure chamber
chamber
valve needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04738705A
Other languages
English (en)
French (fr)
Other versions
EP1651861A1 (de
Inventor
Hans-Christoph Magel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1651861A1 publication Critical patent/EP1651861A1/de
Application granted granted Critical
Publication of EP1651861B1 publication Critical patent/EP1651861B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0045Three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0073Pressure balanced valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member

Definitions

  • stroke-controlled injection systems with high-pressure reservoir (common rail) are used.
  • high-pressure reservoir common rail
  • the advantage of these injection systems is that the injection pressure in the combustion chamber can be adapted to the load and speed of the internal combustion engine in a wide range.
  • high injection pressure is required.
  • the achievable pressure level of high-pressure fuel pumps is limited for reasons of strength, so that pressure amplifiers in the fuel injectors are used to further increase the pressure in fuel injection systems.
  • the DE 101 23 917 A has the subject of a fuel injection device for internal combustion engines with a fuel injector which can be supplied by a high-pressure fuel source. Between the fuel injector and the high-pressure fuel source is connected to a movable pressure booster piston having pressure-transmitting device.
  • the pressure booster piston separates a connectable to the high-pressure fuel source space from a high-pressure chamber connected to the fuel injector. By filling a rear space of the pressure booster device with fuel or by emptying the rear space of fuel, the fuel pressure in the high-pressure chamber can be varied.
  • the fuel injector has a movable closing piston for opening and closing injection openings.
  • the closing piston protrudes into a closing pressure chamber, so that the closing piston can be acted upon by fuel pressure in order to achieve a force acting on the closing piston in the closing direction.
  • the closing pressure chamber and the rear space are formed by a common closing pressure-back space, wherein all portions of the closing pressure-return space permanently to exchange fuel with each other are connected.
  • a high-pressure chamber is so in communication with the high-pressure fuel source, that in the high-pressure chamber, apart from pressure oscillations, constantly at least the fuel pressure of the high-pressure fuel source may be present, the pressure chamber and the high-pressure chamber by a common injection space are formed. All sections of the injection space are permanently connected to each other for the exchange of fuel.
  • Another fuel injection device with an injection valve member, a pressure booster device and a switching valve designed as a 3/2-way valve for controlling the injection valve member and the pressure booster device is off DE 102 18 635 A1 known.
  • the pressure booster device has a pressure booster piston, which is exposed to a working space, a differential pressure chamber and a high-pressure chamber.
  • the injection valve member is in communication with a closing space.
  • By means of the 3/2-way valve is a pressure relief and pressurization of the differential pressure chamber. To achieve a closing force for the injection valve member of the working space of the pressure booster device and the closing space of the injection valve member are permanently hydraulically coupled together.
  • a switching valve with four connections and three switching positions for controlling a pressure-controlled fuel injector is off DE 100 31574 A1
  • the valve needle of the control valve comprises three control edges, wherein by means of two control edges a nozzle needle of the injection valve member via the connection with a high-pressure connection aufbwz. is taxable.
  • the further control edge belongs to a slide system, which connects the nozzle needle with a leak relief system for pressure relief.
  • DE 102 294 15.1 refers to a device for Nadelhubdämpfung pressure-controlled fuel injectors.
  • a device for injecting fuel into a combustion chamber of an internal combustion engine which comprises a fuel injector which can be acted upon by a high-pressure source with high-pressure fuel.
  • the fuel injector is actuated via a metering valve, wherein an injection valve member is enclosed by a pressure chamber and the injection valve member in the closing direction by a closing force can be acted upon.
  • the injection valve member is associated with a independently movable damping element, which defines a damping chamber and at least one overflow channel for connecting the damping chamber with a further hydraulic space.
  • the control of the fuel injector with a 3/2-way valve which can indeed represent a cost-effective and space-saving injector, but this valve has to control a relatively large amount of return of the push translator.
  • a direct switching designed as a 3/2-way valve switching valve is proposed, which is completely pressure balanced.
  • a sealing seat and a slide seal is formed at the valve needle of the switching valve.
  • a first first pressure chamber and a second pressure chamber formed at the switching valve.
  • an extension may be formed on the valve needle at the end facing the low-pressure space.
  • the sealing seat which is located above the low-pressure chamber, can be designed either as a flat seat or as a conical seat.
  • the actuator which actuates the directly switching switching valve can be designed both as a piezoelectric actuator and as a magnetic actuator.
  • a Nadelhubdämpfung be provided, with which the movement of the injection valve member can be limited in the smallest ways.
  • the inventive designed as a 3/2-way valve switching valve fuel injectors containing a pressure booster can be operated to control the large return quantities.
  • the solution according to the invention over than 3/2-servo valves trained switching valves have the advantage that they are much easier and thus cheaper to manufacture in terms of manufacturing effort, since only a one-piece valve needle is necessary and the hydraulic control room with the tolerance critical chokes and the necessary pilot valve is eliminated.
  • the formation in a one-piece valve housing ensures a lower number of parts and a high manufacturing accuracy between the needle guide and needle seat.
  • the valve housing can be advantageously formed in two parts, in conjunction with a sealing seat designed as a flat seat. In this case, the sealing seat of the flat seat lies in a second body part designed as a sealing plate. Due to the improved accessibility for processing of the sealing seat, slide edges and valve chambers, a much more cost-effective production of the valve can be achieved.
  • the representation according to Fig. 1 is to take a fuel injector with pressure booster, which is controllable via a differential pressure chamber and can be actuated by means of a direct-switching 3/2-way valve.
  • a pressure source 1 which may be, for example, a high-pressure accumulator (common rail) of a fuel injection system, is connected via a high pressure supply line to a pressure booster 3 in connection.
  • the high-pressure feed line 2 opens into a working space 4 of the pressure booster 3.
  • the working space 4 is separated from a pressure-relieving and pressurizable differential pressure chamber 6 via a booster piston 5.
  • An end face of the booster piston 5 acts on a compression chamber 8 of the pressure booster 3.
  • the booster piston 5 of the booster 3 is associated with a return spring 7, which supports the return movement of the booster piston 5 in its rest position. From the working space 4 of the pressure booster 3, an overflow line 9 extends to a switching valve 22nd
  • the differential pressure chamber 6 of the pressure booster 3 is also connected via a control line 10 to the switching valve 22, which can be actuated via an actuator 37.
  • the actuator 37 can, as in Fig. 1 indicated as a solenoid 38 comprehensive solenoid valve be designed or executed as a piezoelectric actuator.
  • a pressure chamber inlet 11 extends to a pressure chamber 12 which is formed in the body of a fuel injector.
  • an injection valve member 13 is received in the body of the fuel injector.
  • the injection valve member 13 has a pressure stage 14 in the region of the pressure chamber 12.
  • the injection valve member 13 is acted upon at its upper end side via a closing spring 15 accommodated in a control chamber in the closing direction.
  • Fuel injection ports 17 flows from the pressure chamber 12 from an annular gap 16, via which upon pressurization of the pressure chamber 12th Fuel injection ports 17 flows.
  • the injection openings 17 open into a combustion chamber 18 of a self-igniting internal combustion engine.
  • the control line 10 leading from the differential pressure chamber 6 to the switching valve 22 opens into a second pressure chamber 29 in the valve housing 35 of the switching valve 22.
  • the switching valve 22 comprises a valve needle 23.
  • the valve needle 23 has a diameter 27 in its guide region within the integrally formed valve housing 35, the a diameter 26 corresponds to a sealing seat 24 on the valve needle 23.
  • the integrally formed valve needle 23 of the switching valve 22 designed as a direct-switching 3/2 way valve is pressure balanced.
  • the one-piece valve needle 23 of the switching valve 22 has a slide seal 25.
  • the opening into the first pressure chamber 28 of the switching valve 22 from the working chamber 4 from overflow 9 can be closed against the second pressure chamber 29.
  • the sealing seat 24 is closed, the second pressure chamber 29 is closed against a low-pressure space 30.
  • From the low pressure chamber 30 branches off a low-pressure side return 32.2, which leads to a in Fig. 1 Not shown fuel supplies leads.
  • the slide seal 25 of the integrally formed valve needle 23 is formed by a housing side formed control edge 33 and a valve needle side formed control edge 34 and is the sealing seat 24 at the low pressure end of the integrally formed valve needle 23 opposite.
  • valve needle 23 is integrally formed and embedded in a likewise integrally formed valve housing 35.
  • the valve needle 23 is acted upon by a closing spring 36 in the closing direction, so that the sealing seat 24 always closes the second pressure chamber 29 to the low-pressure side return 32.2 when the actuator 37 is not actuated.
  • the sealing seat 24 may be formed as a sealing edge or as a sealing surface.
  • the actuator 37 is formed as a magnetic actuator, containing a coil 38.
  • the lower annular surface of the coil 38 of the magnetic actuator opposite, the integrally formed valve needle 23 has a plate 39.
  • the switching valve 22 is due to acting on the valve needle 23 closing spring 36 in a closed position.
  • the integrally formed valve needle 23 is the differential pressure chamber 6 via the open slide seal 25 of the switching valve 22 and the control line 10, the overflow 9 with the working space 4 in connection.
  • the sealing seat 24 is closed to the low-pressure chamber 30, so that the differential pressure chamber 6 is disconnected from the low-pressure side return and the pressure booster 3 is in is in its pressure balanced state and no pressure boost occurs.
  • the differential pressure chamber 6 is depressurized. This is done by a drive, i. an opening of the switching valve 22, which can be done for example by energizing the solenoid 38, so that the plate 39 is pulled at the top of the valve needle 23 in the direction of the coil 38. Due to this, the valve needle 23 moves upward. In this case, a covering of the control edges 33, 34 of the slide seal 25, so that it closes, whereas the sealing seat 24 opens at the low pressure end of the integrally formed valve needle 23. This results in a decoupling of the differential pressure chamber 6 from the working space 4, d. H.
  • the pressure source 1 and the differential pressure chamber 6 is depressurized via the control line 10, which opens into the second pressure chamber 29, the open sealing seat 24 in the low-pressure side return 32.2.
  • the booster piston 5 of the pressure booster 3 moves into the compression space 8, so that under extremely high pressure fuel passes from these via the pressure space supply line 11 into the pressure chamber 12.
  • the building up in the pressure chamber 12 hydraulic force engages the hydraulically active surface of the pressure stage 14 and moves the injection valve member 13 against the action of the closing spring 15 in an open position, so that from the pressure chamber 12 through the annular gap 16 the injection ports 17 incoming fuel into the combustion chamber 18 of the internal combustion engine can be injected.
  • the pressure balance of the switching valve 22 designed as a direct-switching 3/2-way valve is determined by matching diameter 26 in the region of the sealing seat 24 and in the region of the valve needle 23, cf. Needle diameter 27 achieved in the one-piece housing 35. As a result, both the fuel pressure present in the first pressure chamber 28 and the fuel pressure present in the second pressure chamber 29 exert no forces on the integrally formed valve needle 23.
  • this spring can also be housed in another room of the booster 3, or it can be generated by hydraulic means, a restoring force.
  • the sealing seat 24 may, for example, as a flat seat or as in Fig. 1 be indicated as a conical seat.
  • a two-part valve housing In connection with a two-part valve housing significant manufacturing advantages can be achieved in training the sealing seat 24 as a flat seat.
  • the sealing seat 24 designed as a flat seat can lie in a second valve housing part designed as a sealing plate 35.2 ( FIG. 3 ). Due to the improved accessibility for processing of the sealing seat 24 and the slide edges and valve chambers can be achieved when using a two-piece valve housing a more cost-effective production of the valve.
  • the actuator 37 as a solenoid 38
  • a piezoelectric actuator for actuating the one-piece valve needle 23 of the direct-switching 3/2-way valve 22 can be used.
  • the injection valve 13 can be assigned a damping piston, which controls the opening speed of the injection valve member 13 when the pressure amplifier 3 and its compression space are activated 8 in the pressure chamber 12 incoming, under increased pressure fuel dampens.
  • Fig. 2 shows a further embodiment of a direct-switching 3/2-way valve, the valve needle has a low-pressure side extension.
  • a second low-pressure side return 32.2 branches off.
  • Analogous to the representation of the one-piece valve needle 23 according to Fig. 1 includes the valve needle 23 according to the embodiment according to Fig. 2 a slide seal 25, which is formed by a valve needle-side control edge 34 and a valve housing-side control edge 33.
  • the guide diameter 27 of the valve needle 23 and the seat diameter 26 of the sealing seat 24 correspond to each other.
  • FIG. 2 illustrated embodiment can be achieved that occurring in the low pressure chamber 30 pressure forces do not act on the valve needle 23.
  • the operation of the embodiment, which in Fig. 2 is shown, corresponds to the operation of the in Fig. 1 shown fuel injector with pressure booster 3, which is actuated via the direct-switching switching valve 22, the valve needle 23 without the in Fig. 2 illustrated extension 31 is provided in the low-pressure chamber 30.
  • the switching valve 22 is a direct-switching 3/2-way Valve formed, and can be made due to the one-piece valve needle 23, be it with or without extension 31, much simpler and manufacturing technology cheaper and ensure the one-piece design of the valve housing 35 formed as a direct switching 3/2-way valve switching valve 22 a sufficient manufacturing accuracy and thus a tolerable tightness in high-pressure injection systems for direct-injection internal combustion engines.
  • a two-part valve housing 35 can be located in a trained as a flat seat sealing seat 24 in a designed as a sealing plate 35.2 valve housing part.
  • This embodiment opens up the possibility of improved accessibility for processing of the sealing seat 24 of the slide seal 25 and the Venteilschn the valve.
  • the variant of a direct switching 3/2-way valve with a multipart valve body is in FIG. 3 shown.
  • the multi-part valve housing 35 includes a first housing part 35.1, in which the valve needle 23 of the direct-switching switching valve 22 is guided. On the valve needle 23, which is formed in a diameter 27, a magnetic coil 38 opposite plate 39 is formed, which in turn is acted upon by the closing spring 36.
  • the housing-side control edge 33 which cooperates with the valve needle-side control edge 34 is formed.
  • the sealing seat 24 is preferably formed as a flat seat. By the sealing seat 24 of the low pressure space 30 is sealed. This can be formed in a particularly simple manner in manufacturing technology as a blind hole, branches off from a second low-pressure side return 32.2.
  • the control line 10 opens into the second pressure chamber 29, which branches off from the working space 4 of the pressure booster 3 overflow 9 opens into the first pressure chamber 28.
  • the second valve body part 35.2 of the multi-part valve housing 35 may be an independent component, which is formed separately from the injector body of a fuel injector. However, the second valve housing part 35.2 designed as a sealing plate can just as well be formed by the injector housing per se.
  • low-pressure side returns 32.1, 32.2 can be merged and connected to a two returns 32.1, 32.2 common return system.
  • the inventively proposed as a direct-switching 3/2-way valve trained switching valve 22 can be used in pressure booster 3, which are controlled by controlling the pressure in the differential pressure chamber 6.
  • pressure booster 3 which are controlled by controlling the pressure in the differential pressure chamber 6.
  • the higher the pressure prevailing there, the higher injection pressure can be achieved at the opening into the combustion chamber 18 of the internal combustion engine injection openings 17.

Abstract

Die Erfindung bezieht sich auf einen Kraftstoffinjektor mit einem Druckverstärker (3), der von einer Druckquelle (1) mit unter hohem Druck stehenden Kraftstoff versorgt wird. Ein Arbeitsraum (4) des Druckverstärkers (3) ist von einem Differenzdruckraum (6) des Druckverstärkers (3) über einen Verstärkerkolben (5) getrennt. Die Druckentlastung und die Druckbeaufschlagung des Differenzdruckraumes (6) des Druckverstärkers (3) erfolgen über ein Schaltventil (22). Dieses ist mit dem Differenzdruckraum (6) über eine Steuerlei­tung (10) verbunden. Ein Druckraum (12) an einem Einspritzventilglied (13) ist über eine Druckraumzuleitung (11) mit einem Kompressionsraum (8) des Druckverstärkers (3) ver­bunden. Das Schaltventil (22) ist als direktschaltendes 3/2-Wege-Ventil ausgeführt, dessen Ventilnadel (23, 31) druckausgeglichen ist und sowohl einen Dichtsitz (24) als auch eine Schieberdichtung (25) aufweist.

Description

    Technisches Gebiet
  • Zum Einbringen von Kraftstoff in die Brennräume direkteinspritzender Verbrennungskraftmaschinen werden hubgesteuerte Einspritzsysteme mit Hochdruckspeicherraum (Common Rail) eingesetzt. Der Vorteil dieser Einspritzsysteme liegt darin, dass der Einspritzdruck in den Brennraum an Last und Drehzahl der Verbrennungskraftmaschine in weiten Bereichen angepasst werden kann. Zur Reduzierung der Emissionen und zum Erzielen einer hohen spezifischen Leistung ist ein hoher Einspritzdruck erforderlich. Das erreichbare Druckniveau von Hochdruckkraftstoffpumpen ist aus Festigkeitsgründen begrenzt, so dass zur weiteren Drucksteigerung bei Kraftstoffeinspritzsystemen Druckverstärker in den Kraftstoffinjektoren zum Einsatz kommen.
  • Stand der Technik
  • Die DE 101 23 917 A hat eine Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit einem von einer Kraftstoffhochdruckquelle versorgbaren Kraftstoffinjektor zum Gegenstand. Zwischen dem Kraftstoffinjektor und der Kraftstoffhochdruckquelle ist eine einen beweglichen Druckübersetzerkolben aufweisende Drückübersetzungseinrichtung geschaltet. Der Druckübersetzerkolben trennt einen an die Kraftstoffhochdruckquelle anschließbaren Raum von einem mit dem Kraftstoffinjektor verbundenen Hochdruckraum. Durch Befüllen eines Rückraumes der Druckübersetzungseinrichtung mit Kraftstoff beziehungsweise durch Entleeren des Rückraumes von Kraftstoff kann der Kraftstoffdruck im Hochdruckraum variiert werden. Der Kraftstoffinjektor weist einen beweglichen Schließkolben zum Öffnen und Verschließen von Einspritzöffnungen auf. Der Schließkolben ragt in einen Schließdruckraum hinein, so dass der Schließkolben mit Kraftstoffdruck beaufschlagbar ist zur Erzielung einer in Schließrichtung auf den Schließkolben wirkenden Kraft. Der Schließdruckraum und der Rückraum werden durch einen gemeinsamen Schließdruck-Rückraum gebildet, wobei sämtliche Teilbereiche des Schließdruck-Rückraumes permanent zum Austausch von Kraftstoff miteinander verbunden sind. Es ist ein Druckraum zum Versorgen der Einspritzöffnungen mit Kraftstoff und zum Beaufschlagen des Schließkolbens mit einer in Öffnungsrichtung wirkenden Kraft vorgesehen. Ein Hochdruckraum steht derart mit der Kraftstoffhochdruckquelle in Verbindung, dass im Hochdruckraum, abgesehen von Druckschwingungen, ständig zumindest der Kraftstoffdruck der Kraftstoffhochdruckquelle anliegen kann, wobei der Druckraum und der Hochdruckraum durch einen gemeinsamen Einspritzraum gebildet werden. Sämtliche Teilbereiche des Einspritzraumes sind permanent zum Austausch von Kraftstoff miteinander verbunden.
  • Eine weitere Kraftstoffeinspritzeinrichtung mit einem Einspritzventilglied, einer Druckübersetzungseinrichtung und einem als 3/2-Wege-Ventil ausgebildeten Schaltventil zur Ansteuerung des Einspritzventilglieds und der Druckübersetzungseinrichtung ist aus DE 102 18 635 A1 bekannt. Die Druckübersetzungseinrichtung weist einen Druckübersetzerkolben auf, der einem Arbeitsraum, einem Differenzdruckraum und einem Hochdruckraum ausgesetzt ist. Das Einspritzventilglied steht mit einem Schließraum in Verbindung. Mittels des 3/2-Wege-Ventils erfolgt eine Druckentlastung und Druckbeaufschlagung des Differenzdruckraums. Zur Erzielung einer Schließkraft für das Einspritzventilglied sind der Arbeitsraum der Druckübersetzungseinrichtung und der Schließraum des Einspritzventilglieds permanent hydraulisch miteinander gekoppelt.
  • Ein Schaltventil mit vier Anschlüssen und drei Schaltstellungen zur Ansteuerung eines druckgesteuerten Kraftstoffinjektors ist aus DE 100 31574 A1 bekannt Die Ventilnadel des Steuerventils umfasst drei Steuerkanten, wobei mittels zwei Steuerkanten eine Düsennadel des Einspritzventilglieds über die Verbindung mit einem Hochdruckanschluss auf- bwz. zusteuerbar ist. Die weitere Steuerkante gehört zu einem Schiebersystem, das zur Druckentlastung die Düsennadel mit einem Lecköseystem verbindet.
  • DE 102 294 15.1 bezieht sich auf eine Einrichtung zur Nadelhubdämpfung an druckgesteuerten Kraftstoffinjektoren. Es wird eine Einrichtung zum Einspritzen von Kraftstoff in einen Brennraum einer Verbrennungskraftmaschine offenbart, die einen Kraftstoffinjektor umfasst, der über eine Hochdruckquelle mit unter hohem Druck stehenden Kraftstoff beaufschlagbar ist. Der Kraftstoffinjektor wird über ein Zumessventil betätigt, wobei ein Einspritzventilglied von einem Druckraum umschlossen ist und das Einspritzventilglied in Schließrichtung durch eine Schließkraft beaufschlagbar ist. Dem Einspritzventilglied ist ein von diesem unabhängig bewegbares Dämpfungselement zugeordnet, welches einen Dämpfungsraum begrenzt und mindestens einen Überströmkanal zur Verbindung des Dämpfungsraumes mit einem weiteren hydraulischen Raum aufweist. Gemäß DE 102 294 15.1 erfolgt die Steuerung des Kraftstoffinjektors mit einem 3/2-Ventil, wodurch sich zwar ein kostengünstiger und bauraumsparender Injektor darstellen lässt, jedoch dieses Ventil eine relativ große Rücklaufmenge des Drückübersetzers zu steuern hat.
  • Anstelle der aus DE 102 294 15.1 bekannten Ausführungsform eines 3/2-Ventiles können auch Servoventile eingesetzt werden, die im Ruhe zustand des Servoventiles am Führungsabschnitt leckagefrei ausgebildet sind, was den Wirkungsgrad eines Kraftstoffinjektors günstig beeinflusst. Nachteilig ist jedoch der Umstand, dass im geöffneten Zustand des Servoventilkolbens des 3/2-Wegeventils keine in dessen Öffnungsrichtung weisende Druckfläche mit Systemdruck beaufschlagt ist. Dadurch wird die Bewegung des Servoventilkolbens in seinem Gehäuse sehr toleranzempfindlich. Ferner lässt sich eine langsame Öffnungsgeschwindigkeit des Servoventilkolbens nicht erreichen, wodurch die Kleinstmengenfähigkeit eines derart konfigurierten Servoventiles eingeschränkt ist. Im geöffneten Zustand des Servoventilkolbens stellt sich an einem an diesem ausgebildeten zweiten Ventilsitz nur eine ungenügende Schließkraft ein, was zu Undichtigkeiten und zu erhöhtem Verschleiß führen kann.
  • Nachteilig bei den aus dem Stande der Technik bekannten Servoventilen sind einerseits der große fertigungstechnische Aufwand sowie andererseits die damit verbunden Kosten.
  • Darstellung der Erfindung
  • Mit der erfindungsgemäß vorgeschlagenen Lösung wird ein direktschaltendes, als 3/2-Wegeventil ausgebildetes Schaltventil vorgeschlagen, welches vollständig druckausgeglichen ist. An der Ventilnadel des Schaltventiles ist sowohl ein Dichtsitz als auch eine Schieberdichtung ausgebildet. Am Schaltventil sind, oberhalb eines Niederdruckraumes ein erster erster Druckraum sowie ein zweiter Druckraum ausgebildet. Zur Erzielung einer Druckausgeglichenheit sind der Durchmesser des Dichtsitzes und der Durchmesser der Ventilnadel nahezu identisch, so dass der Kraftstoffdruck aus einem ersten Druckraum und der Kraftstoffdruck aus einem zweiten Druckraum keine Kräfte auf die Ventilnadel äuszuüben vermögen.
  • Um zu vermeiden, dass aus dem Niederdruckraum Kräfte auf die Ventilnadel wirken, kann an der Ventilnadel an dem dem Niederdruckraum zuweisenden Ende ein Fortsatz ausgebildet sein.
  • Der Dichtsitz, der sich oberhalb des Niederdruckraumes befindet, kann entweder als Flachsitz oder als Kegelsitz ausgebildet werden. Der das direktschaltende Schaltventil betätigende Aktor kann sowohl als Piezosteller als auch als Magnetaktor ausgebildet sein. Zur Verbesserung der Zumessgenauigkeit und zur Dosierung kleiner Kraftstoffmengen kann eine Nadelhubdämpfung vorgesehen werden, mit welcher die Bewegung des Einspritzventilgliedes auf kleinste Wege begrenzt werden kann. Durch das erfindungsgemäße, als 3/2-Wegeventil ausgebildete Schaltventil können Kraftstoffinjektoren, die einen Druckverstärker enthalten betätigt werden, um die großen Rücklaufmengen zu beherrschen. Die erfindungsgemäße Lösung bietet gegenüber als 3/2-Servo-Ventilen ausgebildeten Schaltventilen den Vorteil, dass diese hinsichtlich des fertigungstechnischen Aufwandes wesentlich einfacher und damit kostengünstiger zu fertigen sind, da nur eine einteilige Ventilnadel notwendig ist und der hydraulische Steuerraum mit den toleranzkritischen Drosseln und dem notwendigen Vorsteuerventil entfällt. Die Ausbildung in einem einteiligen Ventilgehäuse gewährleistet eine geringere Teilanzahl und eine hohe Fertigungsgenauigkeit zwischen der Nadelführung und Nadelsitz. Andererseits kann das Ventilgehäuse in vorteilhafter Weise auch zweiteilig ausgebildet werden, in Verbindung mit einem als Flachsitz ausgebildeten Dichtsitz. Dabei liegt der Dichtsitz des Flachsitzes in einem zweiten als Dichtplatte ausgebildeten Körperteil. Durch die verbesserte Zugänglichkeit zur Bearbeitung von Dichtsitz, Schieberkanten und Ventilkammern lässt sich eine wesentlich kostengünstigere Fertigung des Ventiles erreichen.
  • Zeichnung
  • Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.
  • Es zeigt:
  • Figur 1
    einen Kraftstoffinjektor mit Druckverstärker, welcher über den Differenzdruck- raum gesteuert wird und über ein direktschaltendes 3/2-Wegeventil geschaltet wird und
    Figur 2
    eine weitere Ausführungsvariante eines Kraftstoffinjektors, dessen 3/2- Schaltventil eine Ventilnadel aufweist, an welcher im Bereich des Niederdruck- raumes des Schaltventiles ein Fortsatz ausgebildet ist, und
    Figur 3
    ein mehrteiliges Ventilgehäuse eines direkt schaltenden 3/2-Wegeventils.
    Ausführungsvarianten
  • Der Darstellung gemäß Fig. 1 ist ein Kraftstoffinjektor mit Druckverstärker zu entnehmen, der über einen Differenzdruckraum steuerbar ist und mittels eines direktschaltenden 3/2-Wege-Ventiles betätigbar ist.
  • Über eine Druckquelle 1, bei der es sich zum Beispiel um einen Hochdruckspeicher (Common Rail) eines Kraftstoffeinspritzsystems handeln kann, steht über eine Hochdruckzuleitung mit einem Druckverstärker 3 in Verbindung. Die Hochdruckzuleitung 2 mündet in einen Arbeitsraum 4 des Druckverstärkers 3. Der Arbeitsraum 4 ist von einem druckentlastbaren und druckbeaufschlagbaren Differenzdruckraum 6 über einen Verstärkerkolben 5 getrennt. Eine Stirnseite des Verstärkerkolbens 5 beaufschlagt einen Kompressionsraum 8 des Druckverstärkers 3. Dem Verstärkerkolben 5 des Druckverstärkers 3 ist eine Rückstellfeder 7 zugeordnet, welche die Rückstellbewegung des Verstärkerkolbens 5 in seine Ruhelage unterstützt. Vom Arbeitsraum 4 des Druckverstärkers 3 erstreckt sich eine Überströmleitung 9 zu einem Schaltventil 22.
  • Der Differenzdruckraum 6 des Druckverstärkers 3 ist über eine Steuerleitung 10 ebenfalls mit dem Schaltventil 22 verbunden, welches über einen Aktor 37 betätigbar ist. Der Aktor 37 kann, wie in Fig. 1 angedeutet, als ein eine Magnetspule 38 umfassendes Magnetventil ausgestaltet sein oder auch als Piezoaktor ausgeführt werden.
  • Vom Kompressionsraum 8 des Druckverstärkers 3 erstreckt sich eine Druckraumzuleitung 11 zu einem Druckraum 12, der im Körper eines Kraftstoffinjektors ausgebildet ist. Im Körper des Kraftstofinjektors ist ein Einspritzventilglied 13 aufgenommen. Das Einspritzventilglied 13 weist im Bereich des Druckraumes 12 eine Druckstufe 14 auf. Das Einspritzventilglied 13 ist an seiner oberen Stirnseite über eine in einem Steuerraum aufgenommene Schließfeder 15 in Schließrichtung beaufschlagt. Vom Druckraum 12 aus erstreckt sich ein Ringspalt 16, über welchen bei Druckbeaufschlagung des Druckraumes 12 Kraftstoff Einspritzöffnungen 17 zuströmt. Die Einspritzöffnungen 17 münden in einen Brennraum 18 einer selbstzündenden Verbrennungskraftmaschine.
  • Die Druckbeaufschlagung des die Schließfeder 15 aufnehmenden Steuerraumes oberhalb des Einspritzventilgliedes 13 erfolgt über eine den Differenzdruckraum 6 des Druckverstärkers 3 mit dem die Schließfeder aufnehmenden Steuerraum verbindende Verbindungsleitung 19. Von dieser zweigt ein Abzweig 20 ab, in welchem ein Befüllventil 21 aufgenommen ist, welches in den Kompressionsraum 8 des Druckverstärkers 3 mündet und zu dessen Wiederbefüllung bei einer Rückstellbewegung des Übersetzerkolbens 5 dient.
  • Die vom Differenzdruckraum 6 zum Schaltventil 22 führende Steuerleitung 10 mündet in einen zweiten Druckraum 29 im Ventilgehäuse 35 des Schaltventiles 22. Das Schaltventil 22 umfasst eine Ventilnadel 23. Die Ventilnadel 23 weist einen Durchmesser 27 in ihrem Führungsbereich innerhalb des einteilig ausgebildeten Ventilgehäuses 35 auf, der einem Durchmesser 26 an einem Dichtsitz 24 an der Ventilnadel 23 entspricht. Dadurch ist die einteilig ausgebildete Ventilnadel 23 des als direktschaltenden 3/2-Wege-Ventils beschaffenen Schaltventiles 22 druckausgeglichen. Darüber hinaus weist die einteilige Ventilnadel 23 des Schaltventiles 22 eine Schieberdichtung 25 auf.
  • Mittels der Schieberdichtung 25 an der einteilig ausgebildeten Ventilnadel 23 kann die in den ersten Druckraum 28 des Schaltventiles 22 vom Arbeitsraum 4 aus mündende Überströmleitung 9 gegen den zweiten Druckraum 29 verschlossen werden. Bei geschlossenem Dichtsitz 24 ist der zweite Druckraum 29 gegen einen Niederdruckraum 30 verschlossen. Vom Niederdruckraum 30 zweigt ein niederdruckseitiger Rücklauf 32.2 ab, der zu einem in Fig. 1 nicht dargestellten Kraftstoffreservoire führt.
  • Die Schieberdichtung 25 der einteilig ausgebildeten Ventilnadel 23 wird durch eine gehäuseseitig ausgebildete Steuerkante 33 und eine ventilnadelseitig ausgebildete Steuerkante 34 gebildet und liegt dem Dichtsitz 24 am niederdruckseitigen Ende der einteilig ausgebildeten Ventilnadel 23 gegenüber.
  • In vorteilhafter Weise ist die Ventilnadel 23 einteilig ausgebildet und in ein ebenfalls einteilig ausgebildetes Ventilgehäuse 35 eingelassen. Die Ventilnadel 23 wird durch eine Schließfeder 36 in Schließrichtung beaufschlagt, so dass der Dichtsitz 24 bei nicht betätigtem Aktor 37 stets den zweiten Druckraum 29 zum niederdruckseitigen Rücklauf 32.2 verschließt. Der Dichtsitz 24 kann als Dichtkante oder als Dichtfläche ausgebildet werden. In der in Fig. 1 dargestellten Ausführungsvariante ist der Aktor 37 als Magnetaktor ausgebildet, eine Spule 38 enthaltend. Der unteren Ringfläche der Spule 38 des Magnetaktors gegenüberliegend, weist die einteilig ausgebildete Ventilnadel 23 eine Platte 39 auf.
  • Im deaktivierten Ruhezustand des Druckverstärkers 3 befindet sich das Schaltventil 22 aufgrund der auf die Ventilnadel 23 wirkenden Schließfeder 36 in einer geschlossenen Position. In dieser in Fig. 1 dargestellten Position der einteilig ausgebildeten Ventilnadel 23 steht der Differenzdruckraum 6 über die geöffnete Schieberdichtung 25 des Schaltventiles 22 und die Steuerleitung 10, die Überströmleitung 9 mit dem Arbeitsraum 4 in Verbindung. Dadurch herrscht im Differenzdruckraum 6 des Druckverstärkers 3 derselbe Druck wie im Arbeitsraum 4 des Druckverstärkers 3. Demgegenüber ist aufgrund der Schließkraft der Schließfeder 36 der Dichtsitz 24 zum Niederdruckraum 30 geschlossen, so dass der Differenzdruckraum 6 vom niederdruckseitigen Rücklauf abgekoppelt ist und der Druckverstärker 3 sich in seinem druckausgeglichenen Zustand befindet und keine Druckverstärkung auftritt.
  • Zur Aktivierung des Druckverstärkers 3 wird der Differenzdruckraum 6 druckentlastet. Dies erfolgt durch eine Ansteuerung, d.h. ein Öffnen des Schaltventiles 22, welches beispielsweise über eine Bestromung der Magnetspule 38 erfolgen kann, so dass die Platte 39 an der Oberseite der Ventilnadel 23 in Richtung auf die Spule 38 gezogen wird. Aufgrund dessen bewegt sich die Ventilnadel 23 nach oben. Dabei erfolgt ein Überdecken der Steuerkanten 33, 34 der Schieberdichtung 25, so dass diese schließt, wohingegen der Dichtsitz 24 am niederdruckseitigen Ende der einteilig ausgebildeten Ventilnadel 23 öffnet. Dadurch erfolgt eine Abkopplung des Differenzdruckraumes 6 vom Arbeitsraum 4, d. h. der Druckquelle 1 und der Differenzdruckraum 6 wird über die Steuerleitung 10, welche in den zweiten Druckraum 29 mündet, den offen stehenden Dichtsitz 24 in den niederdruckseitigen Rücklauf 32.2 druckentlastet. Dadurch fährt der Verstärkerkolben 5 des Druckverstärkers 3 in den Kompressionsraum 8 ein, so dass unter extrem hohem Druck stehender Kraftstoff von diesen via Druckraumzuleitung 11 in den Druckraum 12 gelangt. Die sich im Druckraum 12 aufbauende hydraulische Kraft greift an der hydraulisch wirksamen Fläche der Druckstufe 14 an und bewegt das Einspritzventilglied 13 entgegen der Wirkung der Schließfeder 15 in eine Öffnungsstellung, so dass vom Druckraum 12 über den Ringspalt 16 den Einspritzöffnungen 17 zuströmender Kraftstoff in den Brennraum 18 der Verbrennungskraftmaschine eingespritzt werden kann.
  • Zum Beenden des Einspritzvorganges wird das als direktschaltendes 3/2-Wege-Ventil ausgebildete Schaltventil 22 aktiviert, d.h. geschlossen. Über die Wirkung der Schließfeder 36 bewegt sich die einteilig ausgebildete Ventilnadel 23 in ihre untere Ausgangsstellung. Bei der vertikalen Abwärtsbewegung der einteilig ausgebildeten Ventilnadel 23 erfolgt ein Schließen des Dichtsitzes 24 und ein Öffnen der Schieberdichtung 25, gebildet durch die Steuerkanten 33 bzw. 34. Über den Arbeitsraum 4, die Überströmleitung 9, den ersten Druckraum 28, dem zweiten Druckraum 29 und die Steuerleitung 10 baut sich im Differenzdruckraum 6 des Druckverstärkers 3 Systemdruck auf, wodurch der Druckverstärker 3 deaktiviert wird, d. h. unterstützt durch die Rückstellfeder 7 wieder in seine Ruhelage zurückkehrt. Das Einspritzventilglied 13 schließt, da der Druck im Druckraum 12 bei Druckentlastung des Kompressionsraumes 8 ebenfalls abnimmt.
  • Bei Wiederbefüllung des Differenzdruckraumes 6 über die Steuerleitung 10 erfolgt gleichzeitig ein Überströmen von Kraftstoff in die Verbindungsleitung 19 zu dem die Schließfeder 15 aufnehmenden Steuerraum des Einspritzventilgliedes 13. Über den von der Verbindungsleitung 19 abzweigenden Abzweig 20 strömt Kraftstoff über ein Befüllventil 21, welches beispielsweise als Rückschlagventil ausgebildet sein kann, dem wieder zu befüllenden Kompressionsraum 8 des Druckverstärkers 3 zu.
  • Die Druckausgeglichenheit des als direktschaltendes 3/2-Wege-Ventil ausgebildeten Schaltventiles 22 wird durch übereinstimmende Durchmesser 26 im Bereich des Dichtsitzes 24 und im Bereich der Ventilnadel 23, vgl. Nadeldurchmesser 27 im einteiligen Gehäuse 35 erreicht. Dadurch üben sowohl der im ersten Druckraum 28 anstehende Kraftstoffdruck als auch der im zweiten Druckraum 29 anstehende Kraftstoffdruck keine Kräfte auf die einteilig ausgebildete Ventilnadel 23 aus.
  • Anstelle der im Differenzdruckraum 6 aufgenommenen Rückstellfeder 7 zur Unterstützung der Rückstellbewegung des Verstärkerkolbens 5 in seine Ruhelage, kann diese Stellfeder auch in einem anderen Raum des Druckverstärkers 3 untergebracht sein, oder es kann auf hydraulischem Wege eine Rückstellkraft erzeugt werden.
  • Der Dichtsitz 24 kann zum Beispiel als Flachsitz oder wie in Fig. 1 angedeutet als Kegelsitz ausgebildet werden. In Verbindung mit einem zweiteilig ausgebildeten Ventilgehäuse können bei Ausbildung des Dichtsitzes 24 als Flachsitz erhebliche fertigungstechnische Vorteile erzielt werden. Bei einem zweiteilig ausgebildeten Ventilgehäuse 35, kann der als Flachsitz ausgeführte Dichtsitz 24 in einem zweiten, als Dichtplatte 35.2 ausgebildeten Ventilgehäuseteil liegen (Figur 3). Durch die verbesserte Zugänglichkeit zur Bearbeitung des Dichtsitzes 24 sowie von Schieberkanten und Ventilkammern lässt sich bei Einsatz eines zweiteilig ausgebildeten Ventilgehäuses eine kostengünstigere Fertigung des Ventiles erreichen. Neben der in Fig. 1 dargestellten Ausführungsvariante des Aktors 37 als Magnetspule 38, kann auch ein Piezosteller zur Betätigung der einteiligen Ventilnadel 23 des direktschaltenden 3/2-Wege-Ventiles 22 eingesetzt werden. Zur Verbesserung der Zumessgenauigkeit und zur Darstellung kleiner Einspritzmengen kann dem Einspritzventil 13 ein Dämpfungskolben zugeordnet werden, welcher die Öffnungsgeschwindigkeit des Einspritzventilgliedes 13 bei aktiviertem Druckverstärker 3 und von dessen Kompressionraum 8 in den Druckraum 12 einströmenden, unter erhöhtem Druck stehenden Kraftstoff dämpft.
  • Fig. 2 ist eine weitere Ausführungsvariante eines direktschaltenden 3/2-Wege-Ventiles zu entnehmen, dessen Ventilnadel einen niederdruckseitigen Fortsatz aufweist.
  • Im Unterschied zur in Fig. 1 dargestellten Ausführungsvariante befindet sich an der Ventilnadel 23 unterhalb des Dichtsitzes 24 ein Fortsatz 31, welcher in den Niederdruckraum 30 eintaucht. Oberhalb des Fortsatzes 31 der einteilig ausgebildeten Ventilnadel 23 verläuft ein erster niederdruckseitiger Rücklauf 32.1, während unterhalb des Fortsatzes 31 ein zweiter niederdruckseitiger Rücklauf 32.2 abzweigt. Analog zur Darstellung der einteiligen Ventilnadel 23 gemäß Fig. 1 umfasst die Ventilnadel 23 gemäß der Ausführungsvariante nach Fig. 2 eine Schieberdichtung 25, welche durch eine ventilnadelseitige Steuerkante 34 und eine ventilgehäuseseitige Steuerkante 33 gebildet wird. Zur Druckausgeglichenheit der Ventilnadel 23 entsprechen der Führungsdurchmesser 27 der Ventilnadel 23 und der Sitzdurchmesser 26 des Dichtsitzes 24 einander. Mit der in Fig. 2 dargestellten Ausführungsvariante kann erreicht werden, dass im Niederdruckraum 30 auftretende Druckkräfte nicht auf die Ventilnadel 23 wirken. Die Funktionsweise der Ausführungsvariante, welche in Fig. 2 dargestellt ist, entspricht der Funktionsweise des in Fig. 1 dargestellten Kraftstoffinjektors mit Druckverstärker 3, der über das direktschaltende Schaltventil 22 betätigt wird, dessen Ventilnadel 23 ohne den in Fig. 2 dargestellten Fortsatz 31 im Niederdruckraum 30 beschaffen ist.
  • Im Vergleich zu den aus dem Stande der Technik bekannten Servoventilen, mit welchen ein Kraftstoffinjektor mit Druckverstärker 3 betätigbar ist, und mit welchen die hohen Absteuermengen bei Druckentlastung des Differenzdruckraumes 6 des Druckverstärkers 3 beherrschbar sind, ist das Schaltventil 22 als direktschaltendes 3/2-Wege-Ventil ausgebildet, und kann aufgrund der einteilig ausgebildeten Ventilnadel 23, sei sie mit oder ohne Fortsatz 31 ausgebildet, wesentlich einfach und fertigungstechnisch günstiger hergestellt werden und die einteilige Ausbildung des Ventilgehäuses 35 des als direktschaltendes 3/2-Wege-Ventils ausgebildeten Schaltventiles 22 gewährleisten eine ausreichende Fertigungsgenauigkeit und damit eine tolerierbare Dichtheit bei Hochdruckeinspritzsystemen für die direkteinspritzende Verbrennungskraftmaschinen.
  • Bei einem zweiteilig ausgebildeten Ventilgehäuse 35 kann unter Einsatz eines als Flachsitz ausgebildeten Dichtsitzes 24 dieser in einem als Dichtplatte 35.2 ausgebildeten Ventilgehäuseteil liegen. Diese Ausführungsvariante eröffnet die Möglichkeit einer verbesserten Zugänglichkeit zur Bearbeitung des Dichtsitzes 24 der Schieberdichtung 25 sowie der Venteilkammern des Ventils. Die Ausführungsvariante eines direkt schaltenden 3/2-Wegeventiles mit einem mehrteiligen Ventilgehäuse ist in Figur 3 dargestellt. Das mehrteilige Ventilgehäuse 35 umfasst einen ersten Gehäuseteil 35.1, in welchem die Ventilnadel 23 des direkt schaltenden Schaltventiles 22 geführt ist. An der Ventilnadel 23, die in einem Durchmesser 27 ausgebildet ist, ist eine einer Magnetspule 38 gegenüberliegende Platte 39 ausgebildet, die ihrerseits von der Schließfeder 36 beaufschlagt ist. Im ersten Gehäuseteil 35.1 ist die gehäuseseitige Steuerkante 33, die mit der ventilnadelseitigen Steuerkante 34 zusammenwirkt, ausgebildet. Der Dichtsitz 24 wird bevorzugt als Flachsitz ausgebildet. Durch den Dichtsitz 24 wird der Niederdruckraum 30 abgedichtet. Dieser kann in fertigungstechnisch besonders einfacher Weise als Sacklochbohrung ausgebildet werden, von der ein zweiter niederdruckseitiger Rücklauf 32.2 abzweigt. Die Steuerleitung 10 mündet in den zweiten Druckraum 29, die vom Arbeitsraum 4 des Druckverstärkers 3 abzweigende Überströmleitung 9 mündet in den ersten Druckraum 28. Der zweite Ventilgehäuseteil 35.2 des mehrteiligen Ventilgehäuses 35 kann ein eigenständiges Bauteil darstellen, welches getrennt vom Injektorkörper eines Kraftstoffinjektors ausgebildet ist. Das als Dichtplatte ausgebildete zweite Ventilgehäuseteil 35.2 kann jedoch ebenso gut durch das Injektorgehäuse an sich gebildet werden.
  • Die in der Ausführungsvariante gemäß Figur 2 dargestellten niederdruckseitigen Rückläufe 32.1, 32.2 können zusammengeführt sein und an ein beiden Rückläufen 32.1, 32.2 gemeinsames Rücklaufsystem angeschlossen werden.
  • Das erfindungsgemäß vorgeschlagene als direktschaltendes 3/2-Wege-Ventil ausgebildete Schaltventil 22 lässt sich bei Druckverstärkern 3 einsetzen, die über eine Steuerung des Druckes im Differenzdruckraum 6 gesteuert werden. Entsprechend des Auslegungsverhältnisses des Druckverstärkers 3 erfolgt eine Druckerhöhung in dessen Kompressionsraum 8, welcher über die Druckraumzuleitung 11 im Druckraum 12 indem das Einspritzventilglied 13 im Bereich einer Druckstufe 14 umgebenden Druckraum 12 ansteht. Je höher der dort herrschende Druck ist, desto höherer Einspritzdruck lässt sich an den in den Brennraum 18 der Verbrennungskraftmaschine mündenden Einspritzöffnungen 17 erreichen. Bezugszeichenliste
    1 Druckquelle (Common Rail) 33 gehäuseseitige Steuerkante
    2 Hochdruckzuleitung 34 ventilnadelseitige Steuerkante
    3 Druckverstärker 35 Ventilgehäuse
    4 Arbeitsraum 35.1 erstes Gehäuseteill
    5 Verstärkerkolben 35.2 zweites Gehäuseteil
    6 Differenzdruckraum 36 Schließfeder 3/2-Ventil
    7 Rückstellfeder 37 Aktor
    8 Kompressionsraum 38 Magnetspule
    9 Überströmleitung 39 Platte
    10 Steuerleitung
    11 Druckraumzuleitung
    12 Druckraum
    13 Einspritzventilglied
    14 Druckstufe
    15 Schließfeder
    16 Ringspalt
    17 Einspritzöffnung
    18 Brennraum
    19 Verbindungsleitung
    20 Abzweig
    21 Befüllventil
    22 Schaltventil (3/2-Wege-Ventil)
    23 Ventilnadel
    24 Dichtsitz
    25 Schieberdichtung
    26 Durchmesser Dichtsitz
    27 Führungsdurchmesser
    28 erster Druckraum
    29 zweiter Druckraum
    30 Niederdruckraum
    31 Ventilnadelfortsatz
    32.1 erster niederdruckseitiger Rücklauf
    32.2 zweiter niederdruckseitiger Rücklauf

Claims (8)

  1. Kraftstoffinjektor mit einem Druckverstärker (3), der von einer Druckquelle (1) über eine Hochdruckzuleitung (2) mit unter hohem Druck stehenden Kraftstoff versorgt wird und dessen Arbeitsraum (4) von einem Differenzdruckraum (6) über einen Verstärkerkolben (5) getrennt ist, wobei die Druckentlastung und die Druckbeaufschlagung des Differenzdruckraumes (6) über ein Schaltventil (22) mit einem ersten Druckraum (28) und einem zweiten Druckraum (29) erfolgen, welches mit dem Differenzdruckraum (6) über eine Steuerleitung (10) verbunden ist und ein Druckraum (12) am Einspritzventilglied (13) über eine Druckraumzuleitung (11) mit einem Kompressionsraum (8) des Druckverstärkers (3) in Verbindung steht, dadurch gekennzeichnet, dass das Schaltventil (22) ein direktschaltendes 3/2-Wege-Ventil ist, dessen Ventilnadel (23, 31) druckausgeglichen ist und sowohl einen Dichtsitz (24) als auch eine Schieberdichtung (25) aufweist, dass die Ventilnadel (23) einen Führungsdurchmesser (27) im Ventilgehäuse (35) aufweist, der im Wesentlichen einem Durchmesser (26) des Dichtsitzes (24) der Ventilnadel (23) entspricht, dass der zweite Druckraum (29) des Schaltventils (22) mittels des Dichtsitzes (24) von einem Niederdruckraum (30) trennbar ist, und dass eine mit der Hochdruckzuleitung (2) verbundene Überströmleitung (9) in den ersten Druckraum (28) des Schaltventils (22) mündet und eine den Differenzdruckraum (6) des Druckverstärkers (3) druckbeaufschlagende oder druckentlastende Steuerleitung (10) in den zweiten Druckraum (29) des Schaltventils (22) mündet, wobei die Druckräume (28, 29) über die Schieberdichtung (25) entsprechend der Hubbewegung der Ventilnadel (23) voneinander trennbar oder miteinander verbindbar sind.
  2. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass der erste Druckraum (28) und der zweite Druckraum (29) durch die Schieberdichtung (25) voneinander trennbar sind.
  3. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass das Schaltventil (22) eine einteilig ausgebildete Ventilnadel (23) aufweist.
  4. Kraftstoffinjektor gemäß Anspruch 1, dass die Ventilnadel (23) einen Ventilnadelfortsatz (31) umfasst, der von einem Niederdruckraum (30) umschlossen ist.
  5. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass der Dichtsitz (24) am niederdruckraumseitigen Ende der Ventilnadel (23) als Kegelsitz oder als Flachsitz ausgebildet ist.
  6. Kraftstoffinjektor gemäß Anspruch 3, dadurch gekennzeichnet, dass die einteilig ausgebildete Ventilnadel (23) in einem einteilig ausgebildeten Ventilgehäuse (35) aufgenommen ist.
  7. Kraftstoffinjektor gemäß Anspruch 3, dadurch gekennzeichnet, dass die einteilig ausgebildete Ventilnadel (23) in einem mehrteilig ausgebildeten Ventilgehäuse (35) geführt ist.
  8. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass der Führungsdurchmesser (27) der Ventilnadel (23) dem Durchmesser der Schieberdichtung (25) entspricht.
EP04738705A 2003-07-30 2004-06-17 Schaltventil mit druckausgleich für einen kraftstoffinjektor mit druckverstärker Expired - Fee Related EP1651861B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10334771A DE10334771A1 (de) 2003-07-30 2003-07-30 Schaltventil mit Druckausgleich für einen Kraftstoffinjektor mit Druckverstärker
PCT/DE2004/001254 WO2005015000A1 (de) 2003-07-30 2004-06-17 Schaltventil mit druckausgleich für einen kraftstoffinjektor mit druckverstärker

Publications (2)

Publication Number Publication Date
EP1651861A1 EP1651861A1 (de) 2006-05-03
EP1651861B1 true EP1651861B1 (de) 2010-09-01

Family

ID=34088947

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04738705A Expired - Fee Related EP1651861B1 (de) 2003-07-30 2004-06-17 Schaltventil mit druckausgleich für einen kraftstoffinjektor mit druckverstärker

Country Status (5)

Country Link
US (1) US7316361B2 (de)
EP (1) EP1651861B1 (de)
JP (1) JP4113223B2 (de)
DE (2) DE10334771A1 (de)
WO (1) WO2005015000A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004061800A1 (de) * 2004-12-22 2006-07-06 Robert Bosch Gmbh Injektor eines Kraftstoffeinspritzsystems einer Brennkraftmaschine
US8100110B2 (en) * 2005-12-22 2012-01-24 Caterpillar Inc. Fuel injector with selectable intensification
JP4415962B2 (ja) * 2006-03-17 2010-02-17 株式会社デンソー インジェクタ
DE102007009167A1 (de) * 2007-02-26 2008-08-28 Robert Bosch Gmbh Mehrwegeventil
JP4245639B2 (ja) * 2007-04-13 2009-03-25 トヨタ自動車株式会社 内燃機関の燃料噴射弁
DE102007018040A1 (de) 2007-04-13 2008-10-16 Robert Bosch Gmbh Kraftstoffinjektor mit integriertem Druckverstärker
JP4734351B2 (ja) * 2008-01-28 2011-07-27 日立オートモティブシステムズ株式会社 燃料噴射弁及び内燃機関
US7980224B2 (en) * 2008-02-05 2011-07-19 Caterpillar Inc. Two wire intensified common rail fuel system
US7832374B2 (en) * 2008-10-21 2010-11-16 Gm Global Technology Operations, Inc. Fuel pressure amplifier
DE102011000872A1 (de) 2011-02-22 2012-08-23 Jochen Mertens Verfahren zur Einspritzung eines Kraftstoffs sowie zugehörige Vorrichtung
KR101349647B1 (ko) * 2012-02-17 2014-01-16 자동차부품연구원 직접분사식 디젤엔진용 인젝터
US8775054B2 (en) 2012-05-04 2014-07-08 GM Global Technology Operations LLC Cold start engine control systems and methods

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2041170B (en) 1979-01-25 1983-02-16 Lucas Industries Ltd Flow control valve
US5163479A (en) * 1991-01-11 1992-11-17 The Boc Group, Inc. Pressure equalizing system and valve
US6029632A (en) * 1998-07-21 2000-02-29 Daimlerchrysler Ag Fuel injector with magnetic valve control for a multicylinder internal combustion engine with direct fuel injection
DE19951554A1 (de) * 1999-10-26 2001-05-10 Bosch Gmbh Robert Kraftstoffinjektor mit integrierter Durchflussbegrenzung
US20030089802A1 (en) 2000-01-20 2003-05-15 Bernd Mahr Injection device and method for injecting a fluid
DE10008268A1 (de) 2000-01-20 2001-08-02 Bosch Gmbh Robert Einspritzeinrichtung und Verfahren zum Einspritzen von Fluid
DE10031580A1 (de) * 2000-06-29 2002-01-17 Bosch Gmbh Robert Druckgesteuertes Steuerteil für Common-Rail-Injektoren
DE10031574B4 (de) 2000-06-29 2008-12-04 Robert Bosch Gmbh Druckgesteuerter doppelschaltender Hochdruckinjektor
DE10218635A1 (de) 2001-05-17 2002-11-28 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE50208012D1 (de) 2001-05-17 2006-10-12 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung

Also Published As

Publication number Publication date
DE10334771A1 (de) 2005-02-24
WO2005015000A1 (de) 2005-02-17
DE502004011616D1 (de) 2010-10-14
US20060202139A1 (en) 2006-09-14
EP1651861A1 (de) 2006-05-03
JP4113223B2 (ja) 2008-07-09
US7316361B2 (en) 2008-01-08
JP2006514217A (ja) 2006-04-27

Similar Documents

Publication Publication Date Title
EP1654455B1 (de) Steuerventil für einen einen drucküberbesetzer enthaltenden kraftstoffinjektor
EP1613856B1 (de) Servoventilangesteuerter kraftstoffinjektor mit druckübersetzer
EP1593839B1 (de) Kraftstoffinjektor für Verbrennungskraftmaschinen mit mehrstufigem Steuerventil
EP1520096B1 (de) Speichereinspritzsystem mit variodüse und druckübersetzungseinrichtung
DE10315015B4 (de) Kraftstoffinjektor mit Druckverstärker und Servoventil mit optimierter Steuermenge
WO2002084106A1 (de) Ventil zum steuern von flüssigkeiten
EP1651861B1 (de) Schaltventil mit druckausgleich für einen kraftstoffinjektor mit druckverstärker
EP1613855B1 (de) Kraftstoffinjektor mit leckagefreiem servoventil
EP1651862B1 (de) Schaltventil für einen kraftstoffinjektor mit druckübersetzer
DE102004005452B4 (de) Düsenhalterkombination mit direktgesteuertem Einspritzventilglied
DE10221384A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1520095B1 (de) Druckübersetzersteuerung durch bewegung eines einspritzventilgliedes
DE102004022267A1 (de) Verfahren und Vorrichtung zur Formung des Einspritzdruckes an einem Kraftstoffinjektor
EP1682769B1 (de) Kraftstoffinjektor mit mehrteiligem, direktgesteuertem einspritzventilglied
DE10033428C2 (de) Druckgesteuerter Injektor zum Einspritzen von Kraftstoff
EP1925812B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1558843A1 (de) Kraftstoff-einspritzeinrichtung für brennkraftmaschinen
DE10205185A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1299639A1 (de) Druckgesteuerter doppelschaltender hochdruckinjektor
DE102008042227A1 (de) Kraftstoff-Injektor
EP1203150A2 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2006058604A1 (de) Kraftstoff-injektor
DE10251932B4 (de) Kraftstoffeinspritzeinrichtung mit integriertem Druckverstärker
DE102007009167A1 (de) Mehrwegeventil
DE10325620A1 (de) Servoventilangesteuerter Kraftstoffinjektor mit Druckübersetzer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20060721

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 63/00 20060101ALI20100315BHEP

Ipc: F02M 57/02 20060101AFI20100315BHEP

Ipc: F02M 59/36 20060101ALI20100315BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004011616

Country of ref document: DE

Date of ref document: 20101014

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004011616

Country of ref document: DE

Effective date: 20110606

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160628

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160621

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170617

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220822

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004011616

Country of ref document: DE