EP1651586A1 - Verfahren zur hydrierenden zersetzung von ammoniumformiaten in polyolhaltigen reaktionsgemischen - Google Patents

Verfahren zur hydrierenden zersetzung von ammoniumformiaten in polyolhaltigen reaktionsgemischen

Info

Publication number
EP1651586A1
EP1651586A1 EP04740714A EP04740714A EP1651586A1 EP 1651586 A1 EP1651586 A1 EP 1651586A1 EP 04740714 A EP04740714 A EP 04740714A EP 04740714 A EP04740714 A EP 04740714A EP 1651586 A1 EP1651586 A1 EP 1651586A1
Authority
EP
European Patent Office
Prior art keywords
titanium dioxide
catalyst
weight
formate
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04740714A
Other languages
English (en)
French (fr)
Inventor
Michael Koch
Alexander Wartini
Steffen Maas
Tilman Sirch
Matthias Dernbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1651586A1 publication Critical patent/EP1651586A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/88Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/34Mechanical properties
    • B01J35/36Mechanical strength
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen

Definitions

  • the invention relates to the field of industrial organic chemistry. More specifically, the present invention relates to a process for the effective hydrogenative decomposition of trialkylammonium formate contained in methylolalkanes, which is formed from the trialkylamine used as catalyst in the preparation of methylolalkanal and the formic acid formed as a by-product.
  • the polyols mentioned can be prepared by various processes.
  • One method is the so-called Cannizzaro process, which is still subdivided into the inorganic and organic Cannizzaro processes.
  • an excess of formaldehyde is reacted with the corresponding alkanal in the presence of stoichiometric amounts of an inorganic base such as NaOH or Ca (OH) 2 .
  • the methylolalkanal formed in the first stage reacts in the second stage with the excess formaldehyde in a disproportionation reaction to give the corresponding polyol and the formate of the corresponding base, that is to say about sodium or calcium formate.
  • a teritary amine generally a trialkylamine
  • the reaction proceeds as set out above, forming one equivalent of ammonium formate of the corresponding amine.
  • This can be worked up further by appropriate measures, whereby at least the amine can be recovered and returned to the reaction.
  • the crude polyol obtained can be worked up into pure polyol in various ways.
  • a further development is the hydrogenation process, in which a corresponding alkanal and formaldehyde are reacted with one another, not in the presence of at least stoichiometric amounts, but rather in the catalytic amounts of a tertiary amine, generally about 5 to 10 mol%.
  • the reaction remains at the 2,2-dimethylolalkanal stage, which is subsequently converted into trimethylolalkane by hydrogenation.
  • the description of the effective method can be found in WO 98/28253 by the applicant.
  • trialkylammonium formate is nevertheless formed as a product of a crossed Cannizzaro reaction which occurs to a very small extent as a side reaction.
  • Trialkylammonium formates react under certain conditions, for example the dewatering or heating of trimethylolalkane solutions containing them, to give trialkylamine and trimethylolpropane formates. These reduce the yield of trimethylolalkane and can only be split with difficulty without an undesirable degradation reaction. There was therefore interest in the separation of the trialkylammonium formates.
  • DE 19848 569 discloses a process for the decomposition of formates of tertiary amines which are contained as by-products in trimethylolalkane solutions prepared by the organic Cannizzaro process. These formates, preferably in the presence of modified noble metal catalysts and elevated pressure, are decomposed by heating in hydrogen and carbon dioxide and / or water and carbon monoxide and the tertiary amine. The formate sales in this process are unsatisfactory, and the formation of further by-products is observed.
  • DE 101 52 525 discloses the decomposition of trialkylammonium formates over heterogeneous catalysts which contain at least one metal from the 8th to 12th group of the periodic table, with supported copper-nickel and / or cobalt-containing catalysts being particularly preferred.
  • the above-mentioned process is also only suitable to a limited extent for the effective workup of a trimethylolalkane mixture which is contained by the so-called hydrogenation process and in which only catalytic amounts of trialkylamine are used and which therefore also only contains small amounts of trialkylammonium formate. It is therefore the object of the present invention to provide a process which is suitable both for working up mixtures obtained by the hydrogenation process and by the organic Cannizzaro process. This process should also make it possible to decompose trialkylammonium formates with higher conversions than the processes known from the prior art can. Furthermore, this decomposition should lead to decomposition products which are easy to handle on an industrial scale and which do not trigger any side reactions in order to provide a more economical process for the preparation of high-purity trimethylolpropane.
  • This object is achieved by a process for removing trialkylammonium formate from methylolalkanes which has been obtained by condensation of formaldehyde with a higher aldehyde, this process being characterized in that trialkylammonium formate at elevated temperature on a ruthenium-containing catalyst in the presence of hydrogen-containing catalyst Gas is decomposed.
  • Methylolalkanes suitable for purification by the process according to the invention are, for example, neopentyl glycol, pentaerythritol, trimethylolpropane, trimethylolbutane, trimethylolethane, 2-ethyl-1, 3-propanediol, 2-methyl-1, 3-propanediol, glycerol, dimethylolpropane, dipentaerythritol and 1,1-, 1,2-, 1,3- and 1,4-cyclohexanedimethanol.
  • trimethylolalkanes which are prepared by the organic Cannizzarro or the hydrogenation process are preferably purified from trialkylammonium formates under hydrogenation conditions.
  • Trimethylolalkanes prepared by the hydrogenation process particularly preferably trimethylolpropane, hereinafter abbreviated to TMP, are preferably purified.
  • trialkylammonium formate-containing raw TMP by the Cannizzaro process is disclosed, for example, in DE 19848 569.
  • the TMP is obtained by the hydrogenation process by condensation of n-butyraldehyde with formaldehyde in the presence of catalytic amounts of a tertiary amine and subsequent catalytic hydrogenation of the resulting dimethylolbutanal mixture.
  • This raw TMP contains no alkali or alkaline earth formates or other impurities that arise from the inorganic Cannizzaro process.
  • the raw TMP also contains only small amounts, approx. 5 to 10 mol% of trialkylammonium formates or free trialkylamine, unlike in the organic Cannizzaro process.
  • the crude TMP originating from the hydrogenation and to be subjected to the purification process according to the invention also contains methanol, trialkylamine, trialkylammonium formate, longer-chain linear and branched alcohols and diols, for example methylbutanol or ethylpropane diol, addition products of formaldehyde and methanol with trimethylalpropylolethane, acetaldehole-dimethylolpropane, dehyd-TMP acetal and the so-called Di-TMP.
  • the present invention furthermore relates to a catalyst comprising ruthenium supported on titanium dioxide moldings, the titanium dioxide moldings being difficult to dissolve in the titanium dioxide by treating commercially available titanium dioxide before or after molding with 0.1 to 30% by weight of an acid is obtained, which is used in the method according to the invention.
  • Ruthenium can be used both in the form of the pure metal and as its compound, for example oxide or sulfide.
  • the catalytically active ruthenium is applied by methods known per se, preferably onto prefabricated TiO 2 as the carrier material.
  • a titanium dioxide carrier which is preferably suitable for use in the ruthenium-containing catalyst can be prepared according to DE 197 38464 by treating commercially available titanium dioxide before or after molding with 0.1 to 30% by weight of an acid, based on titanium dioxide, in which the titanium dioxide is sparingly soluble. Titanium dioxide is preferably used in the anatase modification. Examples of suitable acids are formic acid, phosphoric acid, nitric acid, acetic acid or stearic acid.
  • the active component ruthenium can be applied in the form of a ruthenium salt solution to the titanium dioxide support thus obtained in one or more impregnation stages.
  • the impregnated carrier is then dried and optionally calcined.
  • volatile ruthenium compounds such as, for example, ruthenium acetylacetonate or ruthenium carbonyl, can be converted into the gas phase and applied to the support in a manner known per se (chemical vapor deposition).
  • the supported catalysts obtained in this way can be present in all known forms of assembly. Examples are strands, tablets or granules.
  • the ruthenium catalyst precursors are reduced by treatment with hydrogen-containing gas, preferably at temperatures above 100 ° C. Before they are used in the process according to the invention, the catalysts are preferably passivated at temperatures from 0 to 50 ° C., preferably at room temperature, with oxygen-containing gas mixtures, preferably with air-nitrogen mixtures. It is also possible to install the catalyst in oxidic form in the hydrogenation reactor and to reduce it under reaction conditions.
  • the catalyst according to the invention has a ruthenium content of 0.1 to 10% by weight, preferably 2 to 6, based on the total weight of the catalyst composed of catalytically active metal and support.
  • the catalyst according to the invention can have a sulfur content of 0.01 to 1% by weight, based on the total weight of the catalyst, the sulfur being determined coulometrically.
  • the ruthenium surface is from 1 to 20 m 2 / g, preferably from 5 to 15 and the BET surface area (determined according to DIN 66 131) from 5 to 500 m 2 / g, preferably from 50 to 200 m z / g.
  • the catalysts of the invention have a pore volume of 0.1 to 1 ml / g. Furthermore, the catalysts are characterized by a cutting hardness of 1 to 100 N.
  • the ruthenium-containing supported catalyst on titanium dioxide used according to the invention for the decomposition of the trialkylammonium formate contained in the crude TMP is also suitable for the hydrogenation of the precursor of the TMP (2,2-dimethylolbutanal).
  • the use of the same catalyst for the hydrogenation of the dimethylol butanal and for the decomposition of the trialkylammonium formate is particularly economical since the In this case, the trialkylammonium formate can be decomposed in the hydrogenation reactor of the hydrogenation process according to WO 98/28253 and no additional reactor is required.
  • the decomposition of the trialkylammonium formates by the process according to the invention can also be carried out in a separate reactor.
  • the decomposition of the trialkylammonium formates is generally carried out at a temperature of 100 to 250 ° C., preferably 120 to 180 ° C.
  • the pressures used are generally above 1 10 6 Pa, preferably 210 6 to 1510 6 Pa.
  • the process according to the invention can be carried out either continuously or batchwise, with continuous process execution being preferred.
  • the amount of the crude trimethylol alkane from the hydrogenation process or the organic Cannizzaro process is preferably about 0.05 to about 3 kg per liter of catalyst per hour, more preferably about 0.1 to about 1 kg per liter Catalyst per hour.
  • the process according to the invention is carried out under hydrogenation conditions, i.e. with an added hydrogenation gas from an external source.
  • reformer exhaust gases can be used. Pure hydrogen is preferably used.
  • An apparatus consisting of two heatable stirred tanks connected by overflow pipes with a total capacity of 72 l was mixed with fresh, aqueous formaldehyde solution (4300 g / l in the form of the 40% aqueous solution and n-butyraldehyde (1800 g / h)) fresh trimethylamine as a catalyst (130 g / h) in the form of the 45% strength aqueous solution, the reactors being heated to 40 ° C.
  • the discharge was passed directly into the upper part of a falling film evaporator with a column attached (11 bar heating steam) and there at normal pressure by distillation into a low-boiling overhead product, essentially comprising n-butyraldehyde, ethyl acetaldehyde, formaldehyde, water and trimethylamine, and a high-boiling product Bottom product separated.
  • a low-boiling overhead product essentially comprising n-butyraldehyde, ethyl acetaldehyde, formaldehyde, water and trimethylamine
  • the top product was continuously condensed and returned to the reactors described above.
  • the high-boiling bottom product from the evaporator (approx. 33.5 kg / h) was continuously mixed with fresh trimethylamine catalyst (50 g / h, in the form of the 45% strength aqueous solution) and into a heatable tubular reactor provided with fillers with an empty volume led by 12 I.
  • the reactor was tempered to 40 ° C.
  • the discharge from the post-reactor was continuously fed into the upper part of a further distillation device, the formaldehyde removal (11 bar heating steam), where it was separated by distillation into a low-boiling top product, essentially comprising ethyl acrolein, formaldehyde, water and trimethylamine, and a high-boiling bottom product.
  • the low-boiling top product (27 kg / h) was continuously condensed and returned to the first stirred tank, whereas the high-boiling bottom product was collected.
  • the bottom product thus obtained essentially contained dimethylol butyraldehyde, formaldehyde and traces of monomethylol butyraldehyde. It was then subjected to continuous hydrogenation.
  • the reaction solution was hydrogenated at 90 bar and 115 ° C. in a main reactor in a cycle / trickle mode and a downstream post-reactor in a cycle mode.
  • the catalyst was prepared in accordance with J of DE 198 09418. It contained 40% CuO, 20% Cu and 40% TiO 2 .
  • the apparatus used consisted of a 10 m long heated main reactor (inside diameter: 27 mm) and a 5.3 m long heated post reactor (inside diameter: 25 mm).
  • the circulation throughput was 25 l / h of liquid, the reactor feed was set to 4 kg / h. Accordingly, 4 kg / h of hydrogenation discharge were obtained.
  • the hydrogenation had the following composition 22.6% by weight of TMP, 1.93% by weight of dimethylolbutanal, 1.4% by weight of methanol, 1.1% by weight of methylbutanol, 0.7% by weight.
  • the porosity of the catalysts was determined using the HG intrusion method in accordance with DIN 66 133.
  • the BET surface area of the catalysts was determined in accordance with DIN 66 131.
  • the formate content is determined by means of ion chromatography in accordance with DEV ISO 10304-2.
  • Example 1 Catalyst production Ru / TiO 2
  • the finished catalyst strands had an Ru content of 4.2% by weight, a BET surface area of 103 m 2 / g, a pore volume of 0.26 ml / g, a ruthenium surface area of 12 m / g and a cutting hardness of 21 , 2 N.
  • Examples 1 to 4
  • the TMP used has the composition 22.6% by weight of TMP, 1.93% by weight of dimethylol butanal, 1.4% by weight of methanol, 1.1% by weight of methyl butanol, 0.7 % By weight of ethyl propanediol, 1.2% by weight of adducts of TMP with formaldehyde and methanol, ⁇ 0.1% by weight of TMP formate, 1.2% by weight of TMP-dimethylbutanal acetals, 2.9% by weight % High boilers, 0.57% by weight trimethylammonium formate and 66.2% by weight water. 180 ml of this crude solution were treated with hydrogen at 180 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Verfahren zum Entfernen von Trialkylammoniumformiat aus Methylolalkanen, die durch Kondensation von Formaldehyd mit einem höheren Aldehyd erhalten wurden, dadurch gekennzeichnet, dass Trialkylammoniumformiat bei erhöhter Temperatur an einem auf Titandioxid geträgerten Ruthenium enthaltenden Katalysator in Gegenwart von wasserstoffenthaltendem Gas zersetzt wird. Das Verfahren ermöglicht die Abtrennung des Trialkylammoniumformiates von nach dem organischen Cannizzaro-Verfahren als auch nach dem Hydrierverfahren hergestellten Methylolalkanen.

Description

Verfahren zur hydrierenden Zersetzung von Ammoniumformiaten in polyolhaltigen Reaktionsgemischen
Beschreibung
Die Erfindung bezieht sich auf das Gebiet der industriellen organischen Chemie. Genauer gesagt betrifft die vorliegende Erfindung ein Verfahren zur effektiven hydrierenden Zersetzung von in Methylolalkanen enthaltenem Trialkylammoniumformiat, das aus dem bei der Methylolalkanal-Herstellung als Katalysator benutzten Trialkylamin und der als Nebenprodukt gebildeten Ameisensäure entsteht.
Die Kondensation von Formaldehyd mit CH-aciden höheren Alkanalen zu Methylolal- kanalen, im allgemeinen Dimethylol- und Trimethylolalkanalen und Überführung der erhaltenen Verbindungen in Polyole ist ein weit verbreitetes Verfahren in der Chemie. Beispiele für derart erhaltene, wichtige Triole sind Trimethylolpropan, Trimethylolethan und Trimethylolbutan, die zu Herstellung von Lacken, U ethanen und Polyestern ein breites Verwendungsgebiet gefunden haben. Weitere wichtige Verbindungen sind Pen- taerythrit, erhältlich durch Kondensation von Formaldehyd und Acetaldehyd, sowie Neopentylglykol aus iso-Butyraldehyd und Formaldehyd. Der vierwertige Alkohol Pen- taerythrit wird ebenfalls häufig in der Lackindustrie eingesetzt, hat aber auch eine große Wichtigkeit bei der Herstellung von Sprengstoffen erlangt.
Die erwähnten Polyole können nach verschiedenen Verfahren hergestellt werden. Eine Methode ist das sogenannte Cannizzaro-Verfahren, das noch weiterhin unterteilt wird in das anorganische und das organische Cannizzaro-Verfahren. Bei der anorganischen Variante setzt man einen Überschuß Formaldehyd mit dem entsprechenden Alkanal in Gegenwart von stöchiometrischen Mengen einer anorganischen Base wie NaOH oder Ca(OH)2 um. Das in der ersten Stufe gebildete Methylolalkanal reagiert in der zweiten Stufe mit dem überschüssigen Formaldehyd in einer Disproportionierungsreaktion zu dem entsprechenden Polyol und dem Formiat der entsprechenden Base, also etwa Natrium- oder Calciumformiat.
Beim organischen Cannizzaro-Verfahren wird anstelle der anorganischen Base ein teritäres Amin, generell ein Trialkylamin, eingesetzt. Die Reaktion verläuft wie oben dargelegt, wobei ein Äquivalent Ammoniumformiat des entsprechenden Amins gebildet wird. Dies kann durch entsprechende Maßnahmen weiter aufgearbeitet werden, wodurch zumindest das Amin wiedergewonnen und in die Reaktion zurückgeführt werden kann. Das erhaltene Roh-Polyol kann auf verschiedene Weise zu reinem Polyol aufgearbeitet werden. Eine Weiterentwicklung ist das Hydrierverfahren, in dem ein entsprechendes Alkanal und Formaldehyd nicht in Gegenwart von mindestens stöchiometrischen Mengen, sondern von katalytischen Mengen eines teritären Amins, im allgemeinen ca. 5 bis 10 Mol-%, miteinander zur Reaktion gebracht werden. Dabei bleibt die Reaktion auf der Stufe von 2,2-Dimethylolalkanal stehen, das anschließend durch Hydrierung in Trimethylolalkan überführt wird. Die Beschreibung des effektiven Verfahrens findet sich in der WO 98/28253 der Anmelderin.
Verschiedene Varianten dieses Hydrierverfahrens sind unter anderem beschrieben in den Anmeldungen DE-A-25 07461, DE-A- 2702 582, DE-A-28 13201 und DE-A-3340791.
Beim Hydrierverfahren fallen zwar vorteilhafterweise keine stöchiometrischen Mengen des Formiates an wie beim organischen Cannizzaro-Verfahren, dennoch wird Trialkylammoniumformiat als Produkt einer in sehr geringem Umfang als Nebenreaktion ablaufenden gekreuzten Cannizzaro-Reaktion gebildet.
Trialkylammoniumformiate reagieren unter bestimmten Bedingungen, beispielsweise den Entwässern oder Erhitzen von enthaltenden Trimethylolalkan-Lösungen, zu Trialkylamin und Trimethylolpropanformiaten. Diese schmälern die Ausbeute an Trimethylolalkan und können nur schwer ohne unerwünschte Abbaureaktion gespalten werden. Es bestand daher Interesse an der Abtrennung der Trialkylammoniumformiate.
DE 19848 569 offenbart ein Verfahren zur Zersetzung von Formiaten tertiärer Amine, die als Nebenprodukte in durch das organische Cannizzaro-Verfahren hergestellten Trimethylolalkan-Lösungen enthalten sind. Diese Formiate werden, vorzugsweise in Gegenwart von modifizierten Edelmetallkatalysatoren und erhöhtem Druck, durch Erhitzen in Wasserstoff und Kohlendioxid und/oder Wasser und Kohlenmonoxid und das tertiäre Amin zersetzt. Die Formiatumsätze bei diesem Verfahren sind unbefriedigend, zudem wird die Bildung weiterer Nebenprodukte beobachtet.
Aus DE 101 52 525 ist die Zersetzung von Trialkylammoniumformiaten an heterogenen Katalysatoren bekannt, die mindestens ein Metall der 8. bis 12. Gruppe des Periodensystems enthalten, wobei geträgerte Kupfer- Nickel und/oder Kobalt enthaltende Katalysatoren besonders bevorzugt sind.
Auch das vorstehend genannte Verfahren eignet sich nur bedingt zur effektiven Aufarbeitung eines nach dem sogenannten Hydrierverfahren enthaltenen Trimethylolalkan- Gemisches, in dem lediglich katalytische Mengen an Trialkylamin verwendet werden und das somit auch nur geringe Mengen an Trialkylammoniumformiat enthält. Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren bereitzustellen, das sowohl zur Aufarbeitung von nach dem Hydrierverfahren als auch nach dem organischen Cannizzaro-Verfahren erhaltener Gemische geeignet ist. Dieses Verfahren sollte es weiterhin ermöglichen, Trialkylammoniumformiate mit höheren Umsätzen, als dies die aus dem Stand der Technik bekannten Verfahren können, zu zersetzen. Weiterhin sollte diese Zersetzung zu großtechnisch gut handhabbaren Zersetzungsprodukten führen, die keine Nebenreaktionen auslösen, um so ein wirtschaftlicheres Verfahren zur Herstellung von hochreinem Trimethylolpropan zur Verfügung zu stellen.
Diese Aufgabe wird gelöst durch ein Verfahren zum Entfernen von Trialkylammoniumformiat aus Methylolalkanen, die durch Kondensation von Formaldehyd mit einem höheren Aldehyd erhalten wurden, wobei dieses Verfahren dadurch gekennzeichnet ist, dass Trialkylammoniumformiat bei erhöhter Temperatur an einem auf Titandioxid geträgerten Ruthenium enthaltenden Katalysator in Gegenwart von wasserstoffenthaltendem Gas zersetzt wird.
Für die Aufreinigung durch das erfindungsgemäße Verfahren geeignete Methylolalkane sind beispielsweise Neopentylglykol, Pentaerythrit, Trimethylolpropan, Trimethylolbu- tan, Trimethylolethan, 2-Ethyl-1 ,3-propandiol, 2-Methyl-1 ,3-propandiol, Glycerin, Di- methylolpropan, Dipentaerythrit und 1,1-, 1,2-, 1,3- und 1 ,4-Cyclohexandimethanol.
Im Rahmen des erfindungsgemäßen Verfahren werden bevorzugt Trimethylolalkane, die nach dem organischen Cannizzarro oder dem Hydrierverfahren hergestellt werden, unter Hydrierbedingungen von Trialkylammoniumformiaten gereinigt. Bevorzugt werden nach dem Hydrierverfahren hergestellte Trimethylolalkane, besonders bevorzugt Trimethylolpropan, nachfolgend TMP abgekürzt, gereinigt.
Die Herstellung von Trialkylammoniumformiat-enthaltendem Roh-TMP nach dem Cannizzaro-Verfahren ist beispielsweise in DE 19848 569 offenbart.
Das TMP wird nach dem Hydrierverfahren erhalten durch Kondensation von n-Butyral- dehyd mit Formaldehyd in Gegenwart von katalytischen Mengen eines tertiären Amins und anschließender katalytischer Hydrierung des entstandenen Dimethylolbutanal- Gemisches. Dieses Roh-TMP enthält keine Alkali- oder Erdalkaliformiate oder sonstige Verunreinigungen, die bei dem anorganischen Cannizzaro-Verfahren entstehen. Ebenfalls enthält das Roh-TMP nur geringe Mengen, ca. 5 bis 10 Mol-% an Trialkylammoniumformiaten bzw. freiem Trialkylamin, anders als beim organischen Cannizzaro- Verfahren. Das der Hydrierung entstammende und dem erfindungsgemäßen Reinigungsverfahren zu unterwerfende Roh-TMP enthält neben Trimethylolpropan und Wasser noch Methanol, Trialkylamin, Trialkylammoniumformiat, längerkettige lineare und verzweigte Alkohole und Diole, beispielsweise Methylbutanol oder Ethylpropandiol, Additionsprodukte von Formaldehyd und Methanol an Trimethylolpropan, Acetale wie Dimethylolbutyral- dehyd-TMP-Acetal sowie das sogenannte Di-TMP.
Gute Ergebnisse wurden erzielt mit Hydrierausträgen, die 10 bis 40 Gew.-% Trimethylolpropan, 0 bis 10 Gew.-% 2,2-Dimethylolbutanal, 0,5 bis 5 Gew.-% Methanol, 0 bis 6 Gew.-% Methylbutanol, 1 bis 10 Gew.-% Trialkylammoniumformiat, 0 bis 5 Gew.-% 2-Ethylpropandiol; 0,1 bis 10 Gew.-% Hochsieder wie Di-TMP oder auch andere Additionsprodukte und 5 bis 80 Gew.-% Wasser aufweisen. Hydrierausträge einer derartigen Zusammensetzung können beispielsweise erhalten werden nach dem in der WO 98/28253 beschriebenen Verfahren. Es ist möglich den so erhaltenen Hydrieraus- trag entsprechend den Beispielen 2 und 3 der DE-A-19963435 vor der erfindungsgemäßen Aufreinigung zur Zersetzung des Trialkylammoniumformiates zunächst durch kontinuierliche Destillation aufzuarbeiten. Bevorzugt ist jedoch die erfindungsgemäße Aufreinigung der Hydrierausträge ohne vorherige destillative Behandlung.
Gegenstand der vorliegenden Erfindung ist weiterhin ein Katalysator, enthaltend auf Titandioxid-Formkörpern geträgertes Ruthenium, wobei die Titandioxid-Formkörper durch Behandeln von marktüblichem Titandioxid vor oder nach dem Formen mit 0,1 bis 30 Gew.-% einer Säure, in der Titandioxid schwer löslich ist, erhalten werden, der in dem erfindungsgemäßen Verfahren verwendet wird. Ruthenium kann dabei sowohl in Form des reinen Metalls als auch als dessen Verbindung, beispielsweise Oxyd oder Sulfid, eingesetzt werden.
Das katalytisch aktive Ruthenium wird nach an sich bekannten Verfahren, bevorzugt auf vorgefertigtes TiO2 als Trägermaterial aufgebracht.
Ein für die Verwendung in dem Ruthenium enthaltenden Katalysator bevorzugt geeigneter Titandioxid-Träger kann entsprechend DE 197 38464 durch Behandeln von marktüblichem Titandioxid vor oder nach dem Formen mit 0,1 bis 30 Gew.-% einer Säure, bezogen auf Titandioxid, in der das Titandioxid schwer löslich ist, erhalten werden. Bevorzugt wird Titandioxid in der Anatas-Modifikation verwendet. Als derartige Säure sind beispielsweise Ameisensäure, Phosphorsäure, Salpetersäure, Essigsäure oder Stearinsäure geeignet.
Die Aktivkomponente Ruthenium kann in Form einer Rutheniumsalzlösung auf den so erhaltenen Titandioxidträger in einer oder mehreren Tränkstufen aufgebracht werden. Anschließend wird der getränkte Träger getrocknet und gegebenenfalls calciniert. Es ist jedoch auch möglich Ruthenium aus einer Rutheniumsalzlösung, bevorzugt mit Nat- riumcarbonat, auf einen als Pulver in wässriger Suspension vorliegendes Titandioxids zu fällen. Die ausgefällten Niederschläge werden gewaschen, getrocknet, gegebenenfalls calciniert und verformt. Weiterhin können flüchtige Rutheniumverbindungen, wie beispielsweise Rutheniumacetylacetonat oder Rutheniumcarbonyl, in die Gasphase überführt werden und in an sich bekannter Weise auf den Träger aufgebracht werden (Chemical vapor deposition).
Die so erhaltenen, geträgerten Katalysatoren können in allen bekannten Konfektionie- rungsformen vorliegen. Beispiele sind Stränge, Tabletten oder Granulate. Vor ihrer Verwendung werden die Rutheniumkatalysatorvorläufer durch Behandlung mit Was- serstoffhaltigem Gas, bevorzugt bei Temperaturen über 100°C reduziert. Bevorzugt werden die Katalysatoren vor ihrem Einsatz im erfindungsgemäßen Verfahren bei Temperaturen von 0 bis 50°C, bevorzugt bei Raumtemperatur, mit sauerstoffhaltigen Gasgemischen, bevorzugt mit Luft-Stickstoffgemischen, passiviert. Es ist auch möglich, den Katalysator in oxidischer Form in den Hydrierreaktor einzubauen und unter Reaktionsbedingungen zu reduzieren.
Der erfindungsgemäße Katalysator weist einen Rutheniumgehalt von 0,1 bis 10 Gew.-%, bevorzugt von 2 bis 6, bezogen auf das Gesamtgewicht des Katalysators aus katalytisch aktivem Metall und Träger, auf. Der erfindungsgemäße Katalysator kann einen Schwefelgehalt von 0,01 bis 1 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, aufweisen, wobei die Schwefel-Bestimmung coulometrisch erfolgte.
Die Rutheniumoberfläche beträgt dabei von 1 bis 20 m2/g, bevorzugt von 5 bis 15 und die BET-Oberfläche (bestimmt nach DIN 66 131) von 5 bis 500 m2/g, bevorzugt von 50 bis 200 mz/g.
Die erfindungsgemäßen Katalysatoren weisen ein Porenvolumen von 0,1 bis 1 ml/g auf. Weiterhin zeichnen sich die Katalysatoren durch einen Schneidhärte von 1 bis 100 N aus.
Der vorstehend beschriebene erfindungsgemäß für die Zersetzung des im Roh-TMP enthaltenen Trialkylammoniumformiates verwendete Ruthenium enthaltende Trägerkatalysator auf Titandioxid ist auch für die Hydrierung der Vorstufe des TMP's (2,2-Di- methylolbutanal) geeignet.
Die Verwendung des gleichen Katalysators für die Hydrierung des Dimethylolbutanals und zur Zersetzung des Trialkylammoniumformiats ist besonders wirtschaftlich, da die Zersetzung des Trialkylammoniumformiats in diesem Fall im Hydrierreaktor des Hydrierverfahrens gemäß WO 98/28253 erfolgen kann und kein zusätzlicher Reaktor benötigt wird. Die Zersetzung der Trialkylammoniumformiate nach dem erfindungsgemäßen Verfahren kann jedoch ebenso in einen gesonderten Reaktor durchgeführt werden.
Im Rahmen des erfindungsgemäßen Verfahrens wird die Zersetzung der Trialkylammoniumformiate im allgemeinen bei einer Temperatur von 100 bis 250°C, vorzugsweise 120 bis 180°C durchgeführt. Die dabei verwendeten Drücke liegen in der Regel bei oberhalb von 1 106 Pa, bevorzugt 2106 bis 15106 Pa.
Das erfindungsgemäße Verfahren kann entweder kontinuierlich oder diskontinuierlich durchgeführt werden, wobei die kontinuierliche Verfahrensdurchführung bevorzugt ist.
Bei der kontinuierlichen Verfahrensführung beträgt die Menge des Roh-Trimethylol- alkans aus dem Hydrierverfahren bzw. dem organischen Cannizzaro-Verfahren vorzugsweise ungefähr 0,05 bis ungefähr 3 kg pro Liter Katalysator pro Stunde, weiter bevorzugt ungefähr 0,1 bis ungefähr 1 kg pro Liter Katalysator pro Stunde.
Das erfindungsgemäße Verfahren wird unter Hydrierbedingungen durchgeführt, d.h. mit einem zugefügten Hydriergas aus einer externen Quelle.
Als Hydriergase können beliebige Gase verwendet werden, die freien Wasserstoff enthalten und keine schädlichen Mengen an Katalysatorgiften, wie beispielsweise CO, aufweisen. Beispielsweise können Reformerabgase verwendet werden. Vorzugsweise wird reiner Wasserstoff verwendet.
Im folgenden soll das erfindungsgemäße Verfahren anhand von Ausführungsbeispielen näher erläutert werden.
Beispiele
I. Herstellung Roh-TMP gemäß WO 98/28253
Eine Apparatur bestehend aus zwei beheizbaren, durch Überlaufrohre miteinander verbundenen Rührkesseln mit einem Fassungsvermögen von insgesamt 72 I wurde mit frischer, wässriger Formaldehydlösung (4300 g/l in Form der 40 %igen wässrigen Lösung und n-Butyraldehyd (1800 g/h) und mit frischem Trimethylamin als Katalysator (130 g/h) in Form der 45 %igen wäßrigen Lösung kontinuierlich beschickt. Die Reaktoren wurden dabei auf 40°C temperiert. Der Austrag wurde direkt in den oberen Teil eines Fallfilmverdampfers mit aufgesetzter Kolonne (11 bar Heizdampf) geleitet und dort bei normalem Druck destillativ in ein leichtsiedendes Kopfprodukt, im wesentlichen enthaltend n-Butyraldehyd, Ethylacro- lein, Formaldehyd, Wasser und Trimethylamin, und ein hochsiedendes Sumpfprodukt aufgetrennt.
Das Kopfprodukt wurde kontinuierlich kondensiert und in die oben beschriebenen Reaktoren zurückgeführt.
Das hochsiedende Sumpfprodukt aus dem Verdampfer (ca. 33,5 kg/h) wurde kontinuierlich mit frischem Trimethylamin-Katalysator (50 g/h, in Form der45%igen wässrigen Lösung) versetzt und in einen beheizbaren, mit Füllkörpern versehenen Rohrreaktor mit einem Leervolumen von 12 I geführt. Der Reaktor war dabei auf 40°C temperiert.
Der Austrag des Nachreaktors wurde kontinuierlich in den oberen Teil einer weiteren Destillationseinrichtung, der Formaldehydabtrennung (11 bar Heizdampf), gegeben und dort destillativ in ein leichtsiedendes Kopfprodukt, im wesentlichen enthaltend Ethylacrolein, Formaldehyd, Wasser und Trimethylamin, und ein hochsiedendes Sumpfprodukt aufgetrennt. Das leichtsiedende Kopfprodukt (27 kg/h) wurde kontinuierlich kondensiert und in den ersten Rührkessel zurückgeleitet, wohingegen das hochsiedende Sumpfprodukt gesammelt wurde.
Das so erhaltene Sumpfprodukt enthielt neben Wasser im wesentlichen Dimethylolbu- tyraldehyd, Formaldehyd und Spuren Monomethylolbutyraldehyd. Er wurde dann einer kontinuierlichen Hydrierung unterworfen. Dazu wurde die Reaktionslösung bei 90 bar und 115°C in einem Hauptreaktor in Kreislauf/Rieselfahrweise und einem nachgeschalteten Nachreaktor in Kreislauffahrweise hydriert. Der Katalysator wurde analog J der DE 198 09418 hergestellt. Er enthielt 40 % CuO, 20 % Cu und 40% TiO2. Die verwendete Apparatur bestand aus einem 10 m langen beheizten Hauptreaktor (Innendurchmesser: 27 mm) und einem 5,3 m langen beheizten Nachreaktor (Innendurchmesser: 25 mm). Der Kreislaufdurchsatz betrug 25 l/h Flüssigkeit, der Reaktorzulauf wurde auf 4 kg/h eingestellt. Dementsprechend wurden 4 kg/h Hydrieraustrag erhalten. Der Hyd- rieraustrag hatte folgende Zusammensetzung 22,6 Gew.-% TMP, 1 ,93 Gew.-% Di- methylolbutanal, 1,4 Gew.-% Methanol, 1,1 Gew.-% Methylbutanol, 0,7 Gew.-% Ethyl- propandiol, 1,2 Gew.-% Addukten von TMP mit Formaldehyd und Methanol, < 0,1 Gew.-% TMP-Formiat, 1,2 Gew.-% TMP-Dimethylbutanal-Acetale, 2,9 Gew.-% Hochsieder, 0,57 Gew.-% Trimethylammoniumformiat und 66,2 Gew.-% Wasser. II. Messung Porosität
Die Bestimmung der Porosität der Katalysatoren erfolgte mit der HG-Intrusions- methode entsprechend DIN 66 133.
III. Bestimmung BET-Oberfläche
Die Bestimmung der BET-Oberfläche der Katalysatoren erfolgte mit entsprechend DIN 66 131.
IV. Bestimmung der Schneidhärte
Zur Ermittlung der Schneidhärte werden Proben mit einer Schneide zertrennt. Die Kraft, mit der die Schneide belastet werden muß, um eine Durchtrennung der Probe zu erreichen, bezeichnet ist die Schneidhärte in N (Newton).
V. Bestimmung Formiatgehalt mit lonenchromatographie
Die Bestimmung des Formiatgehaltes erfolgt mittels lonenchromatographie gemäß der DEV ISO 10304-2.
Beispiel 1 : Katalysatorherstellung Ru/TiO2
121 ,3 g einer Rutheniumnitrosylnitrat-Lösung (Ru-Gehalt: 10,85 Gew.-%) wurden mit Wasser auf 90 ml verdünnt. 250 g Titandioxid Stränge in Form von 1 ,5 mm Strängen mit einer BET-Oberfläche von 104 m2/g und einer Porosität 0,36 ml/g, die entsprechend DE 197 38463, Beispiel 3, hergestellt worden waren, wurden langsam mit der Rutheniumlösung getränkt. Die feuchten Stränge wurden anschließend 2 h bei 100°C und 16 h bei 120°C getrocknet. Die Aktivierung des Katalysators durch Reduktion erfolgte bei 300°C mit 10 Nl/h Wasserstoff und 10 Nl/h Stickstoff über einen Zeitraum von 4 h. Anschließend wurde der Katalysator bei Raumtemperatur mit Luft/Stickstoff- Gemischen passiviert.
Die fertigen Katalysatorstränge besaßen einen Ru-Gehalt von 4,2 Gew.-%, eine BET- Oberfläche von 103 m2/g, ein Porenvolumen von 0,26 ml/g, eine Rutheniumoberfläche von 12 m /g sowie eine Schneidhärte von 21,2 N. Beispiele 1 bis 4
Das verwendete TMP, hergestellt wie vorstehend beschrieben hat die Zusammensetzung 22,6 Gew.-% TMP, 1,93 Gew.-% Dimethylolbutanal, 1,4 Gew.-% Methanol, 1 ,1 Gew.-% Methylbutanol, 0,7 Gew.-% Ethylpropandiol, 1,2 Gew.-% Addukten von TMP mit Formaldehyd und Methanol, < 0,1 Gew.-% TMP-Formiat, 1,2 Gew.-% TMP- Dimethylbutanal-Acetale, 2,9 Gew.-% Hochsieder, 0,57 Gew.-% Trimethylammonium- formiat und 66,2 Gew.-% Wasser. Von dieser Rohlösung wurden 180 ml in Gegenwart eines bei 180°C und 25 bar vorreduzierten Katalysators gemäß Tabelle 1 mit Wasserstoff bei 180°C und 90 bar behandelt. Nach einer Stunde wurde der Dimethylolbutanal- Gehalt gaschromatographisch ermittelt. Die Formiatkonzentration wurde mit Hilfe der lonenchromatographie ermittelt. Die erzielten Ergebnisse sind in Tabelle 1 zusammengefasst.
1GC-Analytik (Detektion ohne Wasser) 2 Bestimmung mit lonenchromatographie 3DMB = 2,2-Dimethylbutanal
Aus der Tabelle ist ersichtlich, dass die katalytische Zersetzung von Ammoniumformiat bei 150°C an den erfindungsgemäß verwendeten Rutheniumkatalysatoren mit hohen Umsätzen möglich ist und deutlich effektiver ist als an Kupfer-, Nickel- und Cobalt- Katalysatoren. Aus Abgasanalysen geht hervor, dass Methan das Hauptprodukt der Formiatzersetzung darstellt.

Claims

Patentansprüche
1. Verfahren zum Entfernen von Trialkylammoniumformiat aus Methylolalkanen, die durch Kondensation von Formaldehyd mit einem höheren Aldehyd erhalten wurden, dadurch gekennzeichnet, dass Trialkylammoniumformiat bei erhöhter Temperatur an einem auf Titandioxid geträgerten Ruthenium enthaltenden Katalysator in Gegenwart von wasserstoffenthaltendem Gas zersetzt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Katalysator einen Rutheniumgehalt von 0,1 bis 10 Gew.-% aufweist.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass Titandioxid-Formkörper verwendet werden, die durch Behandeln von marktüblichem Titandioxid vor oder nach dem Formen mit 0,1 bis 30 Gew.-% einer Säure, in der Titandioxid schwer löslich ist, erhalten wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Verfahren bei 100 bis 250°C durchgeführt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es bei einem Druck von 1 1O6 bis 15106 Pa durchgeführt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es im Hydrierreaktor des Hydrierverfahrens durchgeführt wird.
7. Katalysator, enthaltend auf Titandioxid-Formkörpern geträgertes Ruthenium, wobei die Titandioxid-Formkörper durch Behandeln von marktüblichem Titandioxid vor oder nach dem Formen mit 0,1 bis 30 Gew.-% einer Säure, in der Titandioxid schwerlöslich ist, erhalten wird.
EP04740714A 2003-07-29 2004-07-07 Verfahren zur hydrierenden zersetzung von ammoniumformiaten in polyolhaltigen reaktionsgemischen Withdrawn EP1651586A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10334489A DE10334489A1 (de) 2003-07-29 2003-07-29 Verfahren zur hydrierenden Zersetzung von Ammoniumformiaten in polyolhaltigen Reaktionsgemischen
PCT/EP2004/007396 WO2005019145A1 (de) 2003-07-29 2004-07-07 Verfahren zur hydrierenden zersetzung von ammoniumformiaten in polyolhaltigen reaktionsgemischen

Publications (1)

Publication Number Publication Date
EP1651586A1 true EP1651586A1 (de) 2006-05-03

Family

ID=34088904

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04740714A Withdrawn EP1651586A1 (de) 2003-07-29 2004-07-07 Verfahren zur hydrierenden zersetzung von ammoniumformiaten in polyolhaltigen reaktionsgemischen

Country Status (8)

Country Link
EP (1) EP1651586A1 (de)
JP (1) JP2007500138A (de)
KR (1) KR20060054364A (de)
CN (1) CN100383097C (de)
BR (1) BRPI0412987A (de)
DE (1) DE10334489A1 (de)
MX (1) MXPA06000481A (de)
WO (1) WO2005019145A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8471042B2 (en) * 2009-04-07 2013-06-25 Basf Se Method for producing 1,6-hexanediol and caprolactone

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1952738A1 (de) * 1968-12-17 1970-07-09 Leuna Werke Veb Verfahren zur Herstellung von Trimethylolpropan
DE3217751A1 (de) * 1982-05-12 1983-11-17 Degussa Ag, 6000 Frankfurt Presslinge aus pyrogen hergestelltem titandioxid, verfahren zu ihrer herstellung sowie ihre verwendung
US4647592A (en) * 1984-01-05 1987-03-03 Exxon Research & Engineering Company Start-up with ruthenium catalysts
DE3715035A1 (de) * 1987-05-06 1988-11-17 Basf Ag Verfahren zur gewinnung von trialkylaminen und methylformiat bei der herstellung von trimethylolalkanen
US5484757A (en) * 1994-06-02 1996-01-16 Norton Chemical Process Products Corp. Titania-based catalyst carriers
EP0821620A1 (de) * 1995-04-17 1998-02-04 Engelhard Corporation Geformte zusammensetzungen
DE19530528C2 (de) * 1995-08-19 1998-12-10 Dornier Gmbh Verwendung eines Ru/TiO¶2¶-Metall-Trägerkatalysators für die Methanisierung von Kohlendioxid
KR20010023544A (ko) * 1997-09-03 2001-03-26 스타르크, 카르크 촉매로 사용될 수 있는 성형 재료
JPH11124348A (ja) * 1997-10-22 1999-05-11 Koei Chem Co Ltd トリメチロールアルカンを製造する方法
US6235797B1 (en) * 1999-09-03 2001-05-22 Battelle Memorial Institute Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations
DE10152525A1 (de) * 2001-10-24 2003-05-08 Basf Ag Verfahren zur Zersetzung von Ammoniumformiaten in polyolhaltigen Reaktionsgemischen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005019145A1 *

Also Published As

Publication number Publication date
JP2007500138A (ja) 2007-01-11
MXPA06000481A (es) 2006-04-05
CN1829674A (zh) 2006-09-06
CN100383097C (zh) 2008-04-23
DE10334489A1 (de) 2005-02-24
KR20060054364A (ko) 2006-05-22
WO2005019145A1 (de) 2005-03-03
BRPI0412987A (pt) 2006-10-03

Similar Documents

Publication Publication Date Title
EP2108009B1 (de) Verfahren zur herstellung von polyalkoholen aus formaldehyd mit geringem ameisensäuregehalt
EP2417089B1 (de) Verfahren zur herstellung von 1,6-hexandiol und caprolacton
EP2417088B1 (de) Verfahren zur herstellung von 1,6-hexandiol
EP1525175A1 (de) Verfahren zur ausbeuteerhöhung bei der herstellung von mehrwertigen alkoholen durch spaltung acetalhaltiger nebenprodukte
WO2001047847A1 (de) Verfahren zur reinigung von durch hydrierung hergestelltem trimethylolpropan durch kontinuierliche destillation
EP1993983B1 (de) Verfahren zur hydrierung von methylolalkanalen
EP1765751B1 (de) Verfahren zur herstellung von 1,6-hexandiol in einer reinheit von über 99,5%
EP1246786B1 (de) Farbzahlverbesserung von mehrwertigen alkoholen durch hydrierung
WO2007141056A1 (de) Verfahren zur hydrierung von methylolalkanalen
DE19848569A1 (de) Verfahren zur Herstellung von Trimethylolalkanen
EP1440049B1 (de) Verfahren zur zersetzung von ammoniumformiaten in polyolhaltigen reaktionsgemischen
EP1335891B1 (de) Verfahren zur hydrierung von poly- oder monomethylolalkanalen
EP1326819B1 (de) Farbzahlverbesserung von mehrwertigen alkoholen durch hydrierung
EP1651586A1 (de) Verfahren zur hydrierenden zersetzung von ammoniumformiaten in polyolhaltigen reaktionsgemischen
EP3116845B1 (de) Verfahren zum abbau von formiaten
EP1250304A1 (de) Verfahren zur destillativen abtrennung von formaldehyd aus polyolhaltigen reaktionsgemischen durch zusatz von wasser vor und/oder während der destillation
WO2007099049A2 (de) Verfahren zur hydrierung von methylolalkanalen zu mehrwertigen alkoholen mit geringem acetalgehalt
US20070197837A1 (en) Method for the hydrodecomposition of ammonium formates in polyolcontaining reaction mixtures
DE19757711A1 (de) Verfahren zur Herstellung von Alkylenglykol mit niedrigem Gehalt an Carbonylverbindungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060906

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090730