EP1649719A1 - Einrichtung und verfahren zum betrieb von sprachunterstützten systemen in kraftfahrzeugen - Google Patents

Einrichtung und verfahren zum betrieb von sprachunterstützten systemen in kraftfahrzeugen

Info

Publication number
EP1649719A1
EP1649719A1 EP04740501A EP04740501A EP1649719A1 EP 1649719 A1 EP1649719 A1 EP 1649719A1 EP 04740501 A EP04740501 A EP 04740501A EP 04740501 A EP04740501 A EP 04740501A EP 1649719 A1 EP1649719 A1 EP 1649719A1
Authority
EP
European Patent Office
Prior art keywords
signal
microphone
power
generated
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04740501A
Other languages
English (en)
French (fr)
Other versions
EP1649719B1 (de
Inventor
Brian Michael Finn
Shawn K. Steenhagen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1649719A1 publication Critical patent/EP1649719A1/de
Application granted granted Critical
Publication of EP1649719B1 publication Critical patent/EP1649719B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles

Definitions

  • the invention relates to a method and a device for operating voice-assisted systems, such as communication and / or speech / intercom devices in motor vehicles, in which speech signals are recorded via a microphone arrangement and transmitted to at least one loudspeaker.
  • Methods of this type are used in motor vehicles for voice-assisted intercom operation or to support voice-input-controlled electronic or electrical assemblies.
  • the basic problem here is that a corresponding background noise is present in the motor vehicle, depending on the operating state. This covers the voice commands.
  • Intercom and intercom systems in motor vehicles are predominantly advantageous in large vehicles, minibuses and the like. However, they can also be used in normal passenger cars.
  • voice-controlled input units for electrical components in the vehicle suppressing the background noise or filtering out the voice command is of particular importance.
  • EP 0078014 B1 discloses a speech recognition device for a motor vehicle in which the amplifier system of the speech recognition device reports or feeds via sensors whether the engine is in operation and / or the vehicle is moving. Then there is a level control with which an attempt is made to filter the voice command out of the background noise.
  • a filtering is known from WO 97/34290 in which periodic interference signals are filtered out by determining their period and interfering by means of a generator, so that the speech signal remains.
  • DE 39 25 589 A1 discloses the use of a multiple microphone arrangement, one of the microphones being arranged in the engine compartment and another in the passenger compartment when used in a motor vehicle. The two signals are then subtracted.
  • the disadvantage here is that only the engine noise or the actual operating noise of the vehicle itself is subtracted from the overall signal in the passenger compartment. Specific background noises are not taken into account here.
  • the invention is therefore based on the object of developing a method and a device of the generic type in such a way that the verbal communication of the occupants of a vehicle is improved.
  • This object is achieved in that for operating a voice-assisted system, such as a communication and / or speech / intercom device in a motor vehicle, with at least one microphone and at least one loudspeaker for reproducing a signal generated by the microphone and with one between the microphone and the loudspeaker arranged bandpass filter determines a frequency-dependent power of the signal and the bandpass filter is set as a function of at least one local maximum of the power of the signal over the frequency.
  • a voice-assisted system such as a communication and / or speech / intercom device in a motor vehicle
  • a local maximum of the power of the signal over the frequency can of course also include the global maximum of the power of the signal over the frequency.
  • the local maximum of the power of the signal is determined as a function of a derivative, in particular the first derivative, of the power of the signal according to the frequency.
  • an edge signal is formed by means of the first derivative of the power of the signal according to the frequency, which edge assumes a first binary value if the first derivative of the power of the signal according to the frequency is greater than or equal to zero and which assumes a second binary value , if the first derivative of the power of the signal is less than zero according to the frequency, the local maximum of the power of the signal being determined as a function of the first derivative of the edge signal.
  • the presence of a local maximum of the power of the signal is only assumed if the first derivative of the edge signal is less than zero.
  • the above-mentioned object is also achieved in that for operating a voice-assisted system, such as a communication and / or speaking / intercom device in a motor vehicle, with at least one microphone and at least one loudspeaker for reproducing a signal generated by the microphone and with one between the microphone and the loudspeaker arranged bandpass filter determines a frequency-dependent power of the signal and the bandpass filter is set as a function of a derivative of the power of the signal according to the frequency.
  • a voice-assisted system such as a communication and / or speaking / intercom device in a motor vehicle
  • the bandpass filter is set as a function of at least two local maxima of the power of the signal over the frequency.
  • the bandpass filter is set as a function of the first derivative of the power of the signal according to the frequency.
  • an edge signal is formed by the first derivation of the power of the signal according to the frequency takes the first binary value if the first derivative of the power of the signal after the frequency is greater than or equal to zero, and that takes a second binary value if the first derivative of the power of the signal after the frequency is less than zero, the bandpass filter depending of the edge signal or the first derivative of the edge signal is set.
  • all local maxima are determined in a frequency range.
  • the global maximum is determined in the frequency range.
  • the bandpass filter is set such that it blocks the portion of the signal generated by the microphone at a blocking frequency only when the ratio - at least the power of the signal generated by the microphone at the frequency at which the power of the signal generated by the microphone is at a maximum - the mean value of the power of the signal generated by the microphone at other frequencies of the signal generated by the microphone is greater than a feedback power limit (RatioThreshold, OutGrdRatio- Threshold).
  • the bandpass filter is set such that it blocks the portion of the signal generated by the microphone at a blocking frequency only when the ratio - at least the power of the signal generated by the microphone at the frequency at which the power of the signal generated by the microphone is at a maximum - the mean value of the power of the signal generated by the microphone at other frequencies of the signal generated by the microphone is longer than a time-ratio limit (BinRatioTimeThreshold) greater than a feedback power limit (RatioThreshold, OutGrd RatioThreshold).
  • the bandpass filter is set such that it blocks the portion of the signal generated by the microphone at a blocking frequency only if the ratio - the power of the signal generated by the microphone at the frequency at which the Power of the signal generated by the microphone is maximum, plus / or the power of the signal generated by the microphone at one of the more frequencies of the signal generated by the microphone that is the frequency at which the power of the signal generated by the microphone is maximum, are adjacent to - the mean value of the power of the signal generated by means of the microphone at other frequencies of the signal generated by means of the microphone is greater than a feedback power limit (RatioThreshold, OutGrdRatio- Threshold).
  • the bandpass filter is set such that it blocks the portion of the signal generated by the microphone at a blocking frequency only if the ratio - the power of the signal generated by the microphone at the frequency at which the Power of the signal generated by the microphone is maximum, plus / or the power of the signal generated by the microphone at one of the more frequencies of the signal generated by the microphone that is the frequency at which the power of the signal generated by the microphone is maximum, are adjacent to - the mean value of the power of the signal generated by the microphone at other frequencies of the signal generated by the microphone is longer than a time-ratio limit (BinRatioTimeThreshold) greater than a feedback power limit (RatioThreshold, OutGrdRatioThreshold).
  • the bandpass filter is set such that it blocks the portion of the signal generated by the microphone at a blocking frequency only if the ratio - the power of the signal generated by the microphone at the frequency at which the Power of the signal generated by the microphone is maximum, plus / or the power of the signal generated by the microphone at the frequency of the signal generated by the microphone, - which is immediately adjacent to the frequency at which the power of the signal generated by the microphone is maximum, and - at which the power is greater is greater than at a frequency which is also directly adjacent to the frequency at which the power of the signal generated by the microphone is at a maximum to the mean value of the power of the signal generated by the microphone at other frequencies of the signal generated by the microphone is a feedback performance limit (RatioThreshold, OutGrdRatio- Threshold).
  • the bandpass filter is set such that it blocks the portion of the signal generated by the microphone at a blocking frequency only if the ratio - the power of the signal generated by the microphone at the frequency at which the Power of the signal generated by the microphone is maximum, plus / or the power of the signal generated by the microphone at the frequency of the signal generated by the microphone, - the frequency at which the power of the signal generated by the microphone is maximum, immediately is adjacent, and - at which the power is greater than at a frequency which is also directly adjacent to the frequency at which the power of the signal generated by the microphone is maximally adjacent - to the mean value of the power of the signal generated by the microphone at other frequencies of the signal generated by the microphone longer than a time V gain limit (BinRatioTimeThreshold) is greater than a feedback power limit (RatioThreshold, OutGrdRatioThreshold).
  • the bandpass filter is set such that it blocks the portion of the signal generated by the microphone at a blocking frequency only if the ratio the power of the signal generated by the microphone at the frequency at which the power of the signal generated by the microphone is maximum, plus the power of the signal generated by the microphone at the frequency of the signal generated by the microphone, at which the power of the signal generated by the microphone is maximum, is immediately adjacent, and - at which the power is greater than at a frequency which is also directly adjacent to the frequency at which the power of the signal generated by the microphone is maximum is to - the average of the power of the signal generated by the microphone of all, at least significant, further (examined) frequencies of the signal generated by the microphone is greater than a feedback power limit (RatioThreshold, OutGrdRatio- Threshold).
  • the bandpass filter is set such that it blocks the portion of the signal generated by the microphone at a blocking frequency only if the ratio - the power of the signal generated by the microphone at the frequency at which the Power of the signal generated by the microphone is maximum, plus the power of the signal generated by the microphone at the frequency of the signal generated by the microphone, - which is directly adjacent to the frequency at which the power of the signal generated by the microphone is maximum , and - at which the power is greater than at a frequency which is also directly adjacent to the frequency at which the power of the signal generated by the microphone is at a maximum, - the mean value of the power of the signal generated by the microphone of all, at least essential, further (examined) frequencies of the ore using the microphone signal is longer than a time-ratio limit (BinRatioTimeThreshold) is greater than a feedback power limit (RatioThreshold, OutGrdRatioThreshold).
  • the feedback power is longer than a time-ratio limit (BinRatio
  • the feedback power limit (RatioThreshold, OutGrdRatioThreshold) is between 20 and 50.
  • the bandpass filter is set such that it blocks the portion of the signal generated by the microphone at a blocking frequency only if the ratio - the power of the signal generated by the microphone at the frequency at which the The power of the signal generated by the microphone is at a maximum - the mean value of the power of the signal generated by the microphone at other frequencies at which the power of the signal generated by the microphone has a local maximum is greater than an additional power limit (RichContentThreshold ).
  • the bandpass filter is set such that it blocks the portion of the signal generated by the microphone at a blocking frequency only if the ratio - the power of the signal generated by the microphone at the frequency at which the The power of the signal generated by the microphone is at a maximum - the average of the power of the signal generated by the microphone at all other (examined) frequencies at which the power of the signal generated by the microphone has a local maximum is greater than an addition - Performance limit (RichContentThreshold).
  • the maximum should alternatively or additionally also include the power that the signal has a closely adjacent frequency of the aforementioned frequency and (still) has a power similar to that of the respective maximum.
  • the additional power limit (RichContentThreshold) is between 20 and 50, in a particularly advantageous embodiment of the invention between 30 and 40.
  • the bandpass filter is set as a function of its output signal.
  • the bandpass filter is a notch filter or a filter bank with at least one notch filter.
  • the filter bank can e.g. Include 10 notch filters.
  • FIG. 5 shows an exemplary embodiment of a flowchart implemented in a decision logic
  • Fig. 8 is a power-frequency diagram
  • Fig. 9 is a power-frequency diagram.
  • Reference numerals 2 and 3 denote the front seats and reference numerals 4, 5 and 6 the rear seats of the motor vehicle.
  • Reference numerals 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 denote loudspeakers.
  • Reference numerals 21, 22, 23 and 24 denote microphones.
  • the loudspeakers 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 partly belong to a music system and partly to a communication or speaking / intercom system. They can also be used by both systems.
  • the loudspeakers 9, 17, 18, 19, 20 give a signal generated by the microphone 21, the loudspeakers 7, 17, 18, 19, 20 give a signal generated by the microphone 22, the loudspeakers 7, 9, 19, 20 a signal generated by the microphone 23 and the speakers 7, 9, 17, 18 a signal generated by the microphone 24.
  • the communication is better, the stronger a signal between one of the microphones 21, 22, 23, 24 and one of the loudspeakers 7, 9, 17, 18, 19, 20 is amplified.
  • a microphone 30, which can be one of the microphones 21, 22, 23, 24, and a loudspeaker 31, which is one of the loudspeakers 7, 9, 17, 18, 19, 20, is shown in FIG. 2 .
  • a bandpass filter 32 is provided. This filters a signal S generated by the microphone 30 and delivers a filtered signal S ' in which certain frequency ranges are filtered out, for which a decision logic 33 has recognized the risk of feedback.
  • the decision logic 33 determines filter parameters f c and Q by means of which the bandpass filter 32 is set.
  • Amplifiers can be provided to amplify the signal S and / or the signal S '. However, the amplifier function can also be taken over by the bandpass filter.
  • the bandpass filter 32 is advantageously designed as a filter bank, as shown in FIG. 4.
  • the filter bank advantageously comprises up to 10 notch filters.
  • a step 40 the frequency f of the Signal S analyzed and, as exemplified in Fig. 6, the power P of the signal S on, for example, 192 different test frequencies f n, f n + 1, f n + 2l f n + 3, f n + 4, f n +5 , f n + 6 ,. fn + s determined, for example, 40Hz apart.
  • Step 40 is followed by a query 41 as to whether for an examination frequency f n , f n + 1 , f n + 2 , fn + 3. f ⁇ +4 > f n +5 > f n +8 there is a risk of feedback. Details of this query are given with respect to FIG. 7. Unless f n , fn + ⁇ , f n +2 for no examination frequency. f n +3, f n +4, fn + 5, f n + 8 there is a risk of feedback, query 41 is followed by step 40.
  • query 41 is followed by query 42 as to whether signal S generated by microphone 30 has already been reduced by the bandpass filter by signal components around this examination frequency.
  • the query 42 is followed by a query 43 as to whether a bandpass filter is available. If a bandpass filter is available, query 43 is followed by step 47, in which a bandpass filter is selected and the filter parameters, ie the center frequency f c and the quality Q of the bandpass filter, are generated.
  • the center frequency f c is an example of the blocking frequency in the sense of the claims. The blocking frequency in the sense of However, the frequency range around the center frequency f c , which the bandpass filter actually filters out of the signal S generated by the microphone 30, can also be particularly demanding.
  • the center frequency f c can, for example, be set equal to the examination frequency for which feedback has been determined. In an alternative embodiment of the invention, however, the center frequency f c can also be the examination frequency added with a correction frequency.
  • This correction frequency is formed, for example, as a function of the power of the signal generated by means of the microphone at the examination frequency at which the power of the signal generated by means of the microphone is at a maximum, and the power of the signal generated by means of the microphone at at least one examination frequency lying next to this examination frequency.
  • test frequencies fi, f 2 , .... f 192 are assumed, fi is 40Hz.
  • fdist is 40Hz for all examination frequencies. The following also applies to the power of the signal generated by the microphone at the examination frequencies fi, f 2 , .... f ⁇ 92 :
  • the examination frequency at which the power of the signal generated by the microphone is maximum is thus 3840 Hz and the blocking frequency is 3832 Hz.
  • fkorr 40Hz * (2-4) / (16+
  • ) -4.44Hz
  • the maximum signal is 3840Hz and the blocking frequency is 3835.56Hz.
  • the quality Q is set to a predetermined value of e.g. 1 / 40Hz set.
  • query 43 is followed by a step 48 in which the power of signal S is reduced by a reduction factor which is advantageously between 2 dB and 5 dB, in particular essentially 3dB becomes.
  • query 42 reveals that signal S generated by microphone 30 is already reduced by the bandpass filter by signal components around the examination frequency
  • query 42 is followed by query 44.
  • Query 44 queries whether further expansion is required of the frequency range in which the bandpass filter blocks, that is, by further reducing its quality Q, a predetermined minimum quality would be undershot.
  • step 45 which corresponds to step 48, the power of the signal S is reduced by a reduction factor, which advantageously between 2dB and 5dB, in particular essentially 3dB, is reduced.
  • step 46 the quality Q is reduced, i.e. the bandpass filter expanded.
  • Steps 45, 46, 47 and 48 are followed by a step 49, in which a time between 0.1s and 3s is waited for.
  • a query 61 is initially provided as to whether the power of the output signal S 'of the bandpass filter 32 exceeds an output limit value. If the power of the output signal S 'of the bandpass filter 32 exceeds the output limit value, query 61 is followed by query 62, for example whether the ratio PowerRatio3 the power MaxBinPwrPlusNeighbor of the signal S generated by means of the microphone 30 at the examination frequency at which the power of the signal S generated by means of the microphone 30 is at a maximum, plus the power of the signal S generated by means of the microphone 30 at the examination frequency of the means of the microphone 30 generated signal S, - which is directly adjacent to the examination frequency at which the power of the signal S generated by the microphone 30 is at a maximum, and - at which the power is greater than at an examination frequency, that of the examination frequency at which the power of the signal S generated by the microphone 30 is maximum, is also directly adjacent to the mean value MeanBinPwrRemainder of the power
  • the query 62 it is advantageously queried - as provided in this exemplary embodiment - whether the ratio PowerRatio3 - the power MaxBinPwrPlusNeighbor of the signal S generated by the microphone 30 at the frequency at which the power of the signal S generated by the microphone 30 is maximum, plus the power of the signal S generated by the microphone 30 at the examination frequency of the signal S generated by the microphone 30, - which is directly adjacent to the examination frequency at which the power of the signal S generated by the microphone 30 is maximum, and - at which is greater than at an examination frequency which is also directly adjacent to the examination frequency at which the power of the signal S generated by the microphone 30 is at a maximum -
  • the mean MeanBinPwrRemainder of the power of the signal S generated by means of the microphone 30 of all further examination frequencies of the signal S generated by means of the microphone 30 is longer than a time-ratio limit value OutBinRatioTimeThreshold
  • the performance limit OutGrdRatioThreshold is between 30 and 40.
  • query 62 is only answered positively if the global maximum is longer than a time limit OutGrdMaxBinTimeThreshold at an examination frequency.
  • the local maxima are first determined.
  • the first derivative of the power of the signal S according to the frequency f is first determined (for the examination frequencies).
  • An edge signal is then formed from the first derivative of the power of the signal S according to the frequency f, which takes a first binary value if the first derivative of the power of the signal S according to the frequency f is greater than or equal to zero and which takes a second binary value, if the first derivative of the power of the signal S after the frequency f is less than zero.
  • the first derivative of the edge signal is then determined.
  • the presence of a local maximum of the power of the signal S over the frequency f is only assumed if the first derivative of the edge signal is less than a limit value.
  • idx_vec FinfInfletions (x, flec_thresh)
  • dtdx diff (x);
  • dtdx dtdx> 0;
  • dt2dx diff (dtdx);
  • idx_vec find (dt2dx ⁇ flec_thres_ ⁇ );
  • idx_vec idx__vec + 1;
  • Table 1 shows an embodiment of a program programmed in the Matlab TM language, which the indices idx_vec of the examination frequencies determined, where there are local maxima according to the aforementioned criteria.
  • X denotes a vector with the performance at the individual examination frequencies and flecjhresh a value between 0 and -1.
  • the local maximum with the greatest performance is considered the global maximum.
  • query 62 is answered in the affirmative, query 62 is followed by query 63, otherwise step 64.
  • Query 63 queries whether signal S has a strong harmonic component. To this end, an exemplary advantageous embodiment asks whether the ratio - the power of the signal S generated by the microphone 30 at the examination frequency at which the power of the signal S generated by the microphone 30 is at a maximum - to the average value of the power of the signal Microphones 30 generated signal S at all other examination frequencies at which the power of signal S generated by microphone 30 has a local maximum is less than or equal to an additional power limit value RichContentThreshold.
  • Query 63 shows that the ratio - the power of the signal S generated by the microphone 30 at the examination frequency at which the power of the signal S generated by the microphone 30 is at a maximum - to the mean value of the power of the signal S generated by the microphone 30 If signal S is at all other examination frequencies, at which the power of signal S generated by microphone 30 has a local maximum, is less than or equal to an additional power limit value RichContentThreshold, query 63 is followed by step 64. Otherwise, feedback is assumed.
  • step 64 the process is stopped for a predetermined holding time, for example 3 seconds. After the holding time has elapsed, feedback is denied. If query 61 shows that the power of the output signal S 'of the bandpass filter 32 does not exceed the output limit value, query 61 is followed by a query 65 which essentially corresponds to query 62. However, a different feedback power limit value RatioThreshold and not OutGrdRatioThreshold is used , However, the feedback power limit RatioThreshold is also advantageously between 30 and 40.
  • query 65 is followed by query 66 corresponding to query 63. Otherwise, the presence of feedback is denied.
  • Query 66 reveals that the ratio - the power of the signal S generated by means of the microphone 30 at the examination frequency at which the power of the signal S generated by means of the microphone 30 is at a maximum - to the mean value of the power of the signal generated by means of the microphone 30 Signal S at all other examination frequencies, at which the power of the signal S generated by the microphone 30 has a local maximum, is less than or equal to an additional power limit value RichContentThreshold, then the presence of a feedback is denied. Otherwise feedback is assumed.
  • the feedback detection according to the invention is not limited to the embodiment described above.
  • the feedback detection can e.g. are designed such that only query 65 is provided.
  • the feedback detection can also be designed in such a way that the embodiment according to FIG. 7 with its binary decision logic is replaced by an unsharp decision logic, that is to say fuzzy logic or neural networks.
  • the query 63 according to FIG. 7 is explained below using two signals 80 and 90 shown in FIGS. 8 and 9 in a power-frequency diagram.
  • the power P of the signals 80 and 90 is plotted in dB above the index idx_vec of the examination frequencies.
  • the query 61 for both signals 80 and 90 shows that the power of the output signal S 'of the bandpass filter 32 exceeds the output limit value and that therefore the Query 61 follows query 62. It is also assumed that query 62 is answered in the affirmative.
  • the + signs in FIG. 8 and FIG. 9 designate all examination frequencies which have been recognized as local / global maxima by means of the program according to Table 1.
  • reference numeral 81 denotes the global maximum of the signal 80.
  • reference numeral 91 denotes the global maximum of the signal 90.
  • the examination frequencies are 40 Hz apart.
  • the additional performance limit RichContentThreshold is 37.
  • the ratio - the power of the signal 80 at the examination frequency, at which the power of the signal 80 is maximum, to - the mean value of the power of the signal 80 at all other examination frequencies, at which the power of the signal 80 has a local maximum, is in about 16 and is thus significantly smaller than 37.
  • the query 63 would thus be answered in the affirmative and thus the presence of feedback would be denied.
  • the ratio - the power of the signal 90 at the examination frequency, at which the power of the signal 90 is maximum, to - the mean value of the power of the signal 90 at all other examination frequencies, at which the power of the signal 90 has a local maximum, is in about 73 and is therefore significantly larger than 37.
  • the query 63 would therefore be answered in the negative and therefore feedback.
  • BinRatioTimeThreshold Time-ratio limit f Frequency fn> fn + 1> fn + 2> fn + 3 ⁇ fn + 4j fn + 5.
  • fn + 6 ⁇ fn + 7> fn + 8 ⁇ U, f ⁇ 7, f 98, fi22, i92 frequency points f c center frequency fdist is the distance between the examination frequency at which the power of the signal generated by the microphone is at a maximum and an examination frequency having the greatest power immediately next to the examination frequency at which the power of the by means of the Microphone generated signal is fkorr correction frequency MaxBinPwrPlusNeighbor Power of the signal generated by the microphone at the frequency at which the power of the signal generated by the microphone is maximum, plus the power of the signal generated by the microphone at the frequency of the signal generated by the microphone, that of the frequency at the power of the signal generated by the microphone is maximum, is immediately adjacent, and at which the power is greater than at a frequency that is also
  • Pneighleft Power of the signal generated by the microphone at the examination frequency immediately below the examination frequency at which the power of the signal generated by the microphone is maximum Pneighright Power of the signal generated by the microphone at the examination frequency immediately above the examination frequency at which the power of the signal generated by the microphone is maximum

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

Verfahren und Einrichtung zum Betrieb eines sprachunterstützten Systems, wie eine Kommunikations- und/oder Sprech-/Gegensprecheinrichtung in einem Kraftfahrzeug (1), mit zumindest einem Mikrofon (30) und zumindest einem Lautsprecher (31) zur Wiedergabe eines mittels des Mikrofons (30) erzeugten Signals sowie mit einem zwischen dem Mikrofon (30) und dem Lautsprecher (31) angeordneten Bandpass-Filter (32), wobei eine von einer Frequenz abhängige Leistung des Signals (S) ermittelt wird, und wobei das Bandpass-Filter (32) in Abhängigkeit zumindest eines lokalen Maximums der Leistung des Signals (S) über der Frequenz (f) eingestellt wird.

Description

Einrichtung und Verfahren zum Betrieb von sprachunterstützten Systemen in Kraftfahrzeugen
Die Erfindung betrifft ein Verfahren sowie eine Einrichtung zum Betrieb von sprachunterstützten Systemen, wie Kommunikations- und/oder Sprech-/Gegensprech- einrichtungen in Kraftfahrzeugen, bei welchen über eine Mikrofonanordnung Sprachsignale aufgenommen und an mindestens einen Lautsprecher weitergegeben werden.
Verfahren dieser Art werden in Kraftfahrzeugen zum sprachunterstützten Gegensprechbetrieb oder zur Unterstützung von spracheingabegesteuerten elektronischen oder elektrischen Baugruppen eingesetzt. Die grundsätzliche Problematik hierbei ist, dass im Kraftfahrzeug je nach Betriebszustand eine entsprechende Geräuschkulisse vorhanden ist. Diese überdeckt die Sprachbefehle. Sprech- und Gegensprechanlagen in Kraftfahrzeugen sind überwiegend bei großen Fahrzeugen, Minibussen und dergleichen vorteilhaft. Sie können jedoch auch bei normalen Personenkraftwagen eingesetzt werden. Bei der Verwendung von sprachgesteuerten Eingabeeinheiten für elektrische Komponenten im Fahrzeug ist die Unterdrückung der Geräuschkulisse bzw. das Herausfiltern des Sprachbefehles noch von besonderer Bedeutung.
So ist aus der EP 0078014 B1 eine Spracherkennungseinrichtung für ein Kraftfahrzeug bekannt, bei welchem in das Verstärkersystem der Spracherkennungseinrichtung über Sensoren gemeldet bzw. eingespeist wird, ob der Motor in Betrieb ist und/oder sich das Fahrzeug bewegt. Danach richtet sich sodann eine Pegelbeeinflussung mit der versucht wird, den Sprachbefehl aus der Geräuschkulisse herauszufiltem.
Aus der WO 97/34290 ist eine Filterung bekannt, bei der periodische Störsignale ausgefiltert werden, indem deren Periode ermittelt und mittels Generator herausinterferiert wird, so dass das Sprachsignal übrig bleibt.
Aus der DE 197 05 471 A1 ist bekannt, eine Spracherkennung mit Hilfe einer Transversalfilterung zu unterstützen. Aus der DE 41 06 405 C2 ist ein Verfahren bekannt, bei dem eine Geräuschsubtraktion vom Sprachsignal erfolgt, wobei eine Mehrzahl von Mikrofonen verwendet wird. Eine Gegensprecheinrichtung mit mehreren Mikrofonen offenbart ebenfalls die DE 199 58 836 A1.
Aus der DE 39 25 589 A1 ist die Verwendung einer Mehrfachmikrofonanordnung bekannt, wobei bei Anwendung im Kraftfahrzeug eines der Mikrofone im Motorraum und ein weiteres im Fahrgastraum angeordnet ist. Sodann erfolgt eine Subtraktion beider Signale. Nachteilig ist hierbei, dass lediglich das Motorgeräusch bzw. das eigentliche Betriebsgeräusch des Fahrzeuges selbst vom Gesamtsignal im Fahrgastraum abgezogen wird. Spezifische Nebengeräusche werden hierbei unberücksichtigt gelassen. Ebenso fehlt eine Rückkopplungsunterdrückung. Überall dort, wo Mikrofone und Lautsprecher in akustisch ankoppelbarer Nähe angeordnet sind, kommt es vor, dass das am Lautsprecher ausgekoppelte akustische Signal wiederum in das Mikrofon rückeinspeist. Es kommt zu einer sogenannten Rückkopplung und einer darauf folgenden Übersteuerung. Lösungen zur Vermeidung einer solchen Übersteuerung sind aus der EP 1 077 013 B1 , der WO 02/069487 A1 sowie der WO 02/21817 A2 bekannt.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren sowie eine Einrichtung der gattungsgemäßen Art dahingehend weiterzubilden, dass die verbale Kommunikation der Insassen eines Fahrzeug verbessert wird.
Diese Aufgabe wird dadurch gelöst, dass zum Betrieb eines sprachunterstützten Systems, wie eine Kommunikations- und/oder Sprech-/Gegensprecheinrichtung in einem Kraftfahrzeug, mit zumindest einem Mikrofon und zumindest einem Lautsprecher zur Wiedergabe eines mittels des Mikrofons erzeugten Signals sowie mit einem zwischen dem Mikrofon und dem Lautsprecher angeordneten Bandpass-Filter eine von einer Frequenz abhängige Leistung des Signals ermittelt und das Bandpass-Filter in Abhängigkeit zumindest eines lokalen Maximums der Leistung des Signals über der Frequenz eingestellt wird.
Ein lokales Maximum der Leistung des Signals über der Frequenz kann selbstverständlich das globale Maximum der Leistung des Signals über der Frequenz mit umfassen. ln vorteilhafter Ausgestaltung der Erfindung wird das lokale Maximum der Leistung des Signals in Abhängigkeit einer Ableitung, insbesondere der ersten Ableitung, der Leistung des Signals nach der Frequenz ermittelt.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird mittels der ersten Ableitung der Leistung des Signals nach der Frequenz ein Flankensignal gebildet, das einen ersten Binärwert annimmt, wenn die erste Ableitung der Leistung des Signals nach der Frequenz größer gleich Null ist, und das einen zweiten Binärwert annimmt, wenn die erste Ableitung der Leistung des Signals nach der Frequenz kleiner als Null ist, wobei das lokale Maximum der Leistung des Signals in Abhängigkeit der ersten Ableitung des Flankensignals ermittelt wird.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird ein Vorliegen eines lokalen Maximums der Leistung des Signals nur dann angenommen, wenn die erste Ableitung des Flankensignals kleiner als Null ist.
Vorgenannte Aufgabe wird zudem dadurch gelöst, dass zum Betrieb eines sprachunterstützten Systems, wie eine Kommunikations- und/oder Sprech- ZGegensprecheinrichtung in einem Kraftfahrzeug, mit zumindest einem Mikrofon und zumindest einem Lautsprecher zur Wiedergabe eines mittels des Mikrofons erzeugten Signals sowie mit einem zwischen dem Mikrofon und dem Lautsprecher angeordneten Bandpass-Filter eine von einer Frequenz abhängige Leistung des Signals ermittelt und das Bandpass-Filter in Abhängigkeit einer Ableitung der Leistung des Signals nach der Frequenz eingestellt wird.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter in Abhängigkeit zumindest zweier lokaler Maxima der Leistung des Signals über der Frequenz eingestellt.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter in Abhängigkeit der ersten Ableitung der Leistung des Signals nach der Frequenz eingestellt.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird mittels der ersten Ableitung der Leistung des Signals nach der Frequenz ein Flankensignal gebildet, das einen ersten Binärwert annimmt, wenn die erste Ableitung der Leistung des Signals nach der Frequenz größer gleich Null ist, und das einen zweiten Binärwert annimmt, wenn die erste Ableitung der Leistung des Signals nach der Frequenz kleiner als Null ist, wobei das Bandpass-Filter in Abhängigkeit des Flankensignals oder der ersten Ableitung des Flankensignals eingestellt wird.
In weiterhin vorteilhafter Ausgestaltung der Erfindung werden in einem Frequenzbereich alle lokalen Maxima bestimmt. In weiterhin vorteilhafter Ausgestaltung der Erfindung wird in dem Frequenzbereich das globale Maximum bestimmt.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - zumindest der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons erzeugten Signals bei weiteren Frequenzen des mittels des Mikrofons erzeugten Signals größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatio- Threshold).
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - zumindest der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons erzeugten Signals bei weiteren Frequenzen des mittels des Mikrofons erzeugten Signals länger als ein Zeit-Verhältnis-Grenzwert (BinRatioTimeThreshold) größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrd RatioThreshold). ln weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, plus/oder der Leistung des mittels des Mikrofons erzeugten Signals bei einer der mehr Frequenzen des mittels des Mikrofons erzeugten Signals, die der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, benachbart sind, zu - dem Mittelwert der Leistung des mittels des Mikrofons erzeugten Signals bei weiteren Frequenzen des mittels des Mikrofons erzeugten Signals größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatio- Threshold).
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, plus/oder der Leistung des mittels des Mikrofons erzeugten Signals bei einer der mehr Frequenzen des mittels des Mikrofons erzeugten Signals, die der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, benachbart sind, zu - dem Mittelwert der Leistung des mittels des Mikrofons erzeugten Signals bei weiteren Frequenzen des mittels des Mikrofons erzeugten Signals länger als ein Zeit-Verhältnis-Grenzwert (BinRatioTimeThreshold) größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold).
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, plus/oder der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz des mittels des Mikrofons erzeugten Signals, - die der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, unmittelbar benachbart ist, und - bei der die Leistung größer ist als bei einer Frequenz, die der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, ebenfalls unmittelbar benachbart ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons erzeugten Signals bei weiteren Frequenzen des mittels des Mikrofons erzeugten Signals größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatio- Threshold).
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, plus/oder der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz des mittels des Mikrofons erzeugten Signals, - die der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, unmittelbar benachbart ist, und - bei der die Leistung größer ist als bei einer Frequenz, die der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, ebenfalls unmittelbar benachbart ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons erzeugten Signals bei weiteren Frequenzen des mittels des Mikrofons erzeugten Signals länger als ein Zeit-Verhältnis-Grenzwert (BinRatioTimeThreshold) größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold).
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, plus der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz des mittels des Mikrofons erzeugten Signals, - die der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, unmittelbar benachbart ist, und - bei der die Leistung größer ist als bei einer Frequenz, die der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, ebenfalls unmittelbar benachbart ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons erzeugten Signals aller, zumindest wesentlichen, weiteren (untersuchten) Frequenzen des mittels des Mikrofons erzeugten Signals größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatio- Threshold).
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, plus der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz des mittels des Mikrofons erzeugten Signals, - die der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, unmittelbar benachbart ist, und - bei der die Leistung größer ist als bei einer Frequenz, die der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, ebenfalls unmittelbar benachbart ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons erzeugten Signals aller, zumindest wesentlichen, weiteren (untersuchten) Frequenzen des mittels des Mikrofons erzeugten Signals länger als ein Zeit-Verhältnis-Grenzwert (BinRatioTimeThreshold) größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold). In weiterhin vorteilhafter Ausgestaltung der Erfindung wird der Rückopplungs- Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold) in Abhängigkeit eines Ausgangssignals des Bandpass-Filters festgelegt.
In weiterhin vorteilhafter Ausgestaltung der Erfindung liegt der Rückopplungs- Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold) zwischen 20 und 50.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons erzeugten Signals bei weiteren Frequenzen, bei denen die Leistung des mittels des Mikrofons erzeugten Signals ein lokales Maximum aufweist, größer ist als ein Zusatz-Leistungsgrenzwert (RichContentThreshold).
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mitteis des Mikrofons erzeugten Signals bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons erzeugten Signals bei allen weiteren (untersuchten) Frequenzen, bei denen die Leistung des mittels des Mikrofons erzeugten Signals ein lokales Maximum aufweist, größer ist als ein Zusatz-Leistungsgrenzwert (RichContentThreshold).
Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und/oder Leistung des mittels des Mikrofons erzeugten Signals bei einer Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals ein lokales Maximum aufweist, im Sinne vorgenannter Erfindung soll alternativ oder zusätzlich auch die Leistung umfassen, die das Signal bei einer eng benachbarten Frequenz vorgenannter Frequenz aufweist und die (noch) eine ähnlich hohe Leistung aufweist, wie das jeweilige Maximum.
In weiterhin vorteilhafter Ausgestaltung der Erfindung liegt der Zusatz- Leistungsgrenzwert (RichContentThreshold) zwischen 20 und 50, in besonders vorteilhafter Ausgestaltung der Erfindung zwischen 30 und 40.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter in Abhängigkeit seines Ausgangssignals des eingestellt.
In weiterhin vorteilhafter Ausgestaltung der Erfindung ist das Bandpass-Filter ein Notchfilter oder eine Filterbank mit zumindest einem Notchfilter. Die Filterbank kann z.B. 10 Notchfilter umfassen.
Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen. Dabei zeigen:
Fig. 1 ein Kraftfahrzeug,
Fig. 2 ein Ausführungsbeispiel für eine erfindungsgemäße Einrichtung,
Fig. 3 ein Notchfilter,
Fig. 4 eine Filterbank,
Fig. 5 ein Ausführungsbeispiel für einen in einer Entscheidungslogik implementierten Ablaufplan,
Fig. 6 ein Leistung-Frequenz-Diagramm,
Fig. 7 ein Ausführungsbeispiel für Abfrage 41 in Fig. 5,
Fig. 8 ein Leistung-Frequenz-Diagramm und
Fig. 9 ein Leistung-Frequenz-Diagramm.
Fig. 1 zeigt die Innenansicht eines Kraftfahrzeugs 1 von oben. Dabei bezeichnen Bezugszeichen 2 und 3 die Vordersitze und Bezugzeichen 4, 5 und 6 die Rücksitze des Kraftfahrzeugs. Bezugszeichen 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19 und 20 bezeichnen Lautsprecher. Bezugszeichen 21 , 22, 23 und 24 bezeichnen Mikrofone. Die Lautsprecher 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19 und 20 gehören teilweise zu einer Musikanlage und teilweise zu einer Kommunikations- bzw. Sprech- ZGegensprecheinrichtung. Sie können auch von beiden Systemen genutzt werden. Im vorliegenden Ausführungsbeispiel geben die Lautsprecher 9, 17, 18, 19, 20 ein von dem Mikrofon 21 erzeugtes Signal, die Lautsprecher 7, 17, 18, 19, 20 ein von dem Mikrofon 22 erzeugtes Signal, die Lautsprecher 7, 9, 19, 20 ein von dem Mikrofon 23 erzeugtes Signal und die Lautsprecher 7, 9, 17, 18 ein von dem Mikrofon 24 erzeugtes Signal aus. Auf diese Weise wird die Möglichkeit verbaler Kommunikation in einem Kraftfahrzeug unterstützt. Dabei ist die Kommunikation prinzipiell umso besser, je stärker ein Signal zwischen einem der Mikrofone 21, 22, 23, 24 und einem der Lautsprecher 7, 9, 17, 18, 19, 20 verstärkt wird. Begrenzt wird die Möglichkeit einer solchen Verstärkung jedoch durch mögliche Rückkopplungseffekte bedingt durch mittels eines Lautsprechers 7, 9, 17, 18, 19, 20 ausgestrahlten Schalls, der durch ein Mikrofon 21 , 22, 23, 24 empfangen und anschließend verstärkt und durch den Lautsprecher 7, 9, 17, 18, 19, 20 ausgestrahlt wird.
Zur Verminderung einer solchen Rückkopplung ist gemäß Fig. 2 zwischen einem Mikrofon 30, das eines der Mikrofone 21 , 22, 23, 24 sein kann, und einem Lautsprecher 31 , der einer der Lautsprecher 7, 9, 17, 18, 19, 20 sein kann, ein Bandpass-Filter 32 vorgesehen. Dieses filtert ein von dem Mikrofon 30 erzeugtes Signal S und liefert ein gefiltertes Signal S', bei dem bestimmte Frequenzbereiche herausgefillert sind, für die eine Entscheidungslogik 33 die Gefahr von Rückkopplungen erkannt hat. Dazu ermittelt die Entscheidungslogik 33 Filterparameter fc und Q mittels derer das Bandpass-Filter 32 eingestellt wird.
Zur Verstärkung des Signals S und/oder des Signals S' können nicht dargestellte Verstärker vorgesehen werden. Die Verstärkerfunktion kann jedoch auch durch das Bandpass-Filter übernommen werden.
Fig. 3 zeigt die Kennlinie eines als Notchfilter ausgeführten Bandpass-Filters, wobei die Verstärkung V des Bandpass-Filters über die Frequenz f aufgetragen ist. Dabei bezeichnet fc die Mittenfrequenz des Bandpass-Filters und Q dessen Güte. Zum Filtern mehrerer Frequenzbereiche ist das Bandpass-Filter 32 in vorteilhafter Weise als Filterbank, wie in Fig. 4 dargestellt, ausgeführt. Die Filterbank umfasst vorteilhafterweise bis zu 10 Notchfilter.
Fig. 5 zeigt ein Ausführungsbeispiel für einen in einer Entscheidungslogik 33 implementierten Ablaufplan. Dabei wird zunächst in einem Schritt 40 die Frequenz f des Signals S analysiert und, wie beispielhaft in Fig. 6 dargestellt, die Leistung P des Signals S an, z.B. 192, verschiedenen Untersuchungsfrequenzen fn, fn+1, fn+2l fn+3, fn+4, fn+5, fn+6, . fn+s ermittelt, die z.B. 40Hz auseinander liegen.
Es hat sich als vorteilhaft erwiesen, die Leistung bei den Untersuchungsfrequenzen fn, fn+ι. . fn+3, fn+4, fn+6. . fn+8 zeitlich zu mittein, d.h. einen Mittelwert über die Zeit zu bilden, und diesen zeitlichen Mittelwert der Leistung anstelle der aktuellen Leistung des Signals S an den Untersuchungsfrequenzen fn, fn+1, fn+2, fn+3, fn+5> fn+e. , n+8 zu untersuchen. Sofern in der Beschreibung und den Ansprüchen die Leistung des Signals S erwähnt ist, kann dieses somit auch den über einen gewissen Zeitraum gebildeten Mittelwert der Leistung umfassen. Ferner kann der Begriff der Leistung im Sinne der Erfindung die Amplitude oder deren zeitlichen Mittelwert umfassen. Umfasst im Sinne der Erfindung sollen auch weitere Abwandlungen der Leistung, der Amplitude oder deren zeitliche Mittelwerte sein, wie etwa normierte Größen. So kann z.B. unter der Leistung des Signals S bei einer Untersuchungsfrequenz fn im Sinne der Erfindung der Wert der Leistung des Signals S bei dieser Untersuchungsfrequenz fn geteilt durch die Summe der Leistung des Signals S bei allen Untersuchungsfrequenzen fn, fπ+ι, fπ+2, fn+3, fπ+4, fn+5. » fn+β zu verstehen sein.
Dem Schritt 40 folgt eine Abfrage 41 , ob für eine Untersuchungsfrequenz fn, fn+1, fn+2, fn+3. fπ+4> fn+5> fn+8 die Gefahr der Rückkopplung besteht. Einzelheiten dieser Abfrage sind bezüglich Fig. 7 ausgeführt. Sofern für keine Untersuchungsfrequenz fn, fn+ι, fn+2. fn+3, fn+4, fn+5, fn+8 Gefahr der Rückkopplung besteht, folgt der Abfrage 41 der Schritt 40. Sofern jedoch für eine Untersuchungsfrequenz fn, fn+1, fπ+2, fn+3, fn+4, fn+5, fn+βi fn+7. fn+8 die Gefahr der Rückkopplung besteht, folgt der Abfrage 41 eine Abfrage 42, ob das von dem Mikrofon 30 erzeugte Signal S bereits mittels des Bandpass-Filters um Signalanteile um diese Untersuchungsfrequenz herum reduziert worden ist.
Wird das von dem Mikrofon 30 erzeugte Signal S nicht bereits mittels des Bandpass- Filters um Signalanteile um die Untersuchungsfrequenz herum reduziert, so folgt der Abfrage 42 eine Abfrage 43, ob ein Bandpass-Filter zur Verfügung steht. Steht ein Bandpass-Filter zur Verfügung, so folgt der Abfrage 43 ein Schritt 47, in dem ein Bandpass-Filter ausgewählt wird und die Filterparameter, d.h. die Mittenfrequenz fc und die Güte Q des Bandpass-Filters, erzeugt werden. Die Mittenfrequenz fc ist ein Beispiel für die Sperrfrequenz im Sinne der Ansprüche. Die Sperrfrequenz im Sinne der Ansprüche kann aber auch insbesondere der Frequenzbereich um die Mittenfrequenz fc sein, den das Bandpass-Filter tatsächlich aus dem von dem Mikrofon 30 erzeugten Signal S herausfiltert.
Die Mittenfrequenz fc kann z.B. gleich der Untersuchungsfrequenz gesetzt werden, für die Rückkopplung festgestellt worden ist. In alternativer Ausgestaltung der Erfindung kann die Mittenfrequenz fc jedoch auch die mit einer Korrekturfrequenz addierte Untersuchungsfrequenz sein. Diese Korrekturfrequenz wird z.B. in Abhängigkeit der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, sowie der Leistung des mittels des Mikrofons erzeugten Signals bei zumindest einer neben dieser Untersuchungsfrequenz liegenden Untersuchungsfrequenz gebildet. So kann die Korrekturfrequenz beispielsweise gemäß fkorr = sign*fdist*Pmaxneigh/(Pmax+ Pmaxneigh) gebildet werden, wobei - fkorr die Korrekturfrequenz, - fdist der Abstand zwischen der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und einer die größte Leistung aufweisenden Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, - Pmax die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, - Pmaxneigh die Leistung des mittels des Mikrofons erzeugten Signals bei der die größte Leistung aufweisenden Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und - sign ein Vorzeichen ist, wobei sign positiv ist, wenn die die größte Leistung aufweisende Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, größer ist als die Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und wobei sign sonst negativ ist.
Dies ist anhand von folgendem Beispiel näher erläutert:
Es werden 192 Untersuchungsfrequenzen fi, f2, .... f192 angenommen, fi ist gleich 40Hz. fdist ist für alle Untersuchungsfrequenzen 40Hz. Zudem gilt für die Leistungen des mittels des Mikrofons erzeugten Signals bei den Untersuchungsfrequenzen fi, f2, .... fι92:
P(f95)=4
P(f96)=16
P(f97)=2
Dann gilt: fkorr = (-)*40Hz*4/(16+2) = -8Hz
Die Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, ist somit 3840Hz und die Sperrfrequenz 3832Hz.
Die Korrekturfrequenz kann auch gemäß fkorr = Δf*(Pneighright- Pneighleft) /(Pmax+ [Pneighright- Pneighleft|) gebildet werden, wobei - fkorr die Korrekturfrequenz, - Δf der Abstand zwischen zwei Untersuchungsfrequenzen, - Pmax die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, Pneighright die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz unmittelbar oberhalb der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und - Pneighleft die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz unmittelbar unterhalb der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, ist. Unter Zugrundelegung obigen Zahlenbeispiels gilt somit in diesem Fall: fkorr = 40Hz * (2-4)/(16+|4-2|) = -4,44Hz
Die Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten
Signals maximal ist, ist somit 3840Hz und die Sperrfrequenz 3835,56Hz.
Die Güte Q wird auf einen vorgegebenen Wert von z.B. 1/40Hz eingestellt.
Ergibt die Abfrage 43, dass kein Bandpass-Filter zur Verfügung steht, so folgt der Abfrage 43 ein Schritt 48, in dem die Leistung des Signals S um einen Verringerungsfaktur, der vorteilhafterweise zwischen 2dB und 5dB, insbesondere bei im wesentlichen 3dB, liegt, verringert wird.
Ergibt die Abfrage 42, dass das von dem Mikrofon 30 erzeugte Signal S bereits mittels des Bandpass-Filters um Signalanteile um die Untersuchungsfrequenz herum reduziert wird, so folgt der Abfrage 42 eine Abfrage 44. Mittels der Abfrage 44 wird abgefragt, ob durch eine weitere Aufweitung des Frequenzbereichs, in dem das Bandpass-Filter sperrt, also durch weitere Verringerung von dessen Güte Q, eine vorbestimmte Minimalgüte unterschritten werden würde.
Würde durch eine weitere Aufweitung des Frequenzbereichs eine vorbestimmte Minimalgüte unterschritten werden, so folgt der Abfrage 44 ein Schritt 45, andernfalls ein Schritt 46. Im Schritt 45, der dem Schritt 48 entspricht, wird die Leistung des Signals S um einen Verringerungsfaktur, der vorteilhafterweise zwischen 2dB und 5dB, insbesondere bei im wesentlichen 3dB, liegt, verringert. Im Schritt 46, wird die Güte Q verringert, d.h. das Bandpass-Filter aufgeweitet.
Den Schritten 45, 46, 47 und 48 folgt ein Schritt 49, in dem eine Zeit zwischen 0,1s und 3s abgewartet wird.
Fig. 7 zeigt ein Ausführungsbeispiel für die Abfrage 41. Dabei ist zunächst eine Abfrage 61 vorgesehen, ob die Leistung des Ausgangssignals S' des Bandpass-Filters 32 einen Ausgangsgrenzwert überschreitet. Überschreitet die Leistung des Ausgangssignals S' des Bandpass-Filters 32 den Ausgangsgrenzwert, so folgt der Abfrage 61 eine Abfrage 62, ob z.B. das Verhältnis PowerRatio3 - der Leistung MaxBinPwrPlusNeighbor des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons 30 erzeugten Signals S maximal ist, plus der Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz des mittels des Mikrofons 30 erzeugten Signals S, - die der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons 30 erzeugten Signals S maximal ist, unmittelbar benachbart ist, und - bei der die Leistung größer ist als bei einer Untersuchungsfrequenz, die der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons 30 erzeugten Signals S maximal ist, ebenfalls unmittelbar benachbart ist, zu - dem Mittelwert MeanBinPwrRemainder der Leistung des mittels des Mikrofons 30 erzeugten Signals S aller weiteren Untersuchungsfrequenzen des mittels des Mikrofons 30 erzeugten Signals S größer ist als ein Rückopplungs-Leistungsgrenzwert OutGrdRatioThreshold.
Mittel der Abfrage 62 wird vorteilhafterweise - wie in diesem Ausführungsbeispiel vorgesehen - abgefragt, ob das Verhältnis PowerRatio3 - der Leistung MaxBinPwrPlusNeighbor des mittels des Mikrofons 30 erzeugten Signals S bei der Frequenz, bei der die Leistung des mittels des Mikrofons 30 erzeugten Signals S maximal ist, plus der Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz des mittels des Mikrofons 30 erzeugten Signals S, - die der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons 30 erzeugten Signals S maximal ist, unmittelbar benachbart ist, und - bei der die Leistung größer ist als bei einer Untersuchungsfrequenz, die der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons 30 erzeugten Signals S maximal ist, ebenfalls unmittelbar benachbart ist, zu - dem Mittelwert MeanBinPwrRemainder der Leistung des mittels des Mikrofons 30 erzeugten Signals S aller weiteren Untersuchungsfrequenzen des mittels des Mikrofons 30 erzeugten Signals S länger als ein Zeit-Verhältnis-Grenzwert OutBinRatioTimeThreshold größer ist als ein
Rückopplungs-Leistungsgrenzwert OutGrdRatioThreshold. Der Rückopplungs-
Leistungsgrenzwert OutGrdRatioThreshold liegt zwischen 30 und 40.
Es kann vorteilhafterweise weiter vorgesehen sein, dass die Abfrage 62 nur dann positiv beantwortet wird, wenn das globale Maximum länger als ein Zeit-Grenzwert OutGrdMaxBinTimeThreshold bei einer Untersuchungsfrequenz liegt.
Zur Durchführung der Abfrage 62, werden zunächst die lokalen Maxima bestimmt. Dazu wird zunächst (für die Untersuchungsfrequenzen) die erste Ableitung der Leistung des Signals S nach der Frequenz f ermittelt. Aus der ersten Ableitung der Leistung des Signals S nach der Frequenz f wird anschließend ein Flankensignal gebildet, das einen ersten Binärwert annimmt, wenn die erste Ableitung der Leistung des Signals S nach der Frequenz f größer gleich Null ist, und das einen zweiten Binärwert annimmt, wenn die erste Ableitung der Leistung des Signals S nach der Frequenz f kleiner als Null ist. Anschließend wird die erste Ableitung des Flankensignals ermittelt. Dabei wird in vorteilhafter Ausgestaltung der Erfindung ein Vorliegen eines lokales Maximums der Leistung des Signals S über die Frequenz f nur dann angenommen, wenn die erste Ableitung des Flankensignals kleiner ist als ein Grenzwert.
Tabelle 1 fun tion idx_vec = FinfInfletions (x, flec_thresh) dtdx = diff (x) ; dtdx = dtdx > 0; dt2dx = diff (dtdx) ; idx_vec = find(dt2dx< flec_thres_ι) ; idx_vec = idx__vec + 1;
Tabelle 1 zeigt dabei ein Ausführungsbeispiel eines in der Sprache Matlab™ programmierten Programms, das die Indizes idx_vec der Untersuchungsfrequenzen ermittelt, bei denen nach vorgenannten Kriterien lokale Maxima vorliegen. Dabei bezeichnet x einen Vektor mit den Leistungen bei den einzelnen Untersuchungsfrequenzen und flecjhresh einen Wert zwischen 0 und -1.
Das lokale Maximum mit der größten Leistung wird als globales Maximum angesehen.
Wird die Abfrage 62, positiv beantwortet, so folgt der Abfrage 62 eine Abfrage 63 andernfalls ein Schritt 64.
Mittels der Abfrage 63 wird abgefragt, ob das Signal S einen starken harmonischen Anteil aufweist. Dazu wird in beispielhafter vorteilhafter Ausgestaltung abgefragt, ob das Verhältnis - der Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons 30 erzeugten Signals S maximal ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons 30 erzeugten Signals S bei allen weiteren Untersuchungsfrequenzen, bei denen die Leistung des mittels des Mikrofons 30 erzeugten Signals S ein lokales Maximum aufweist, kleiner gleich einem Zusatz-Leistungsgrenzwert RichContentThreshold ist.
Ergibt die Abfrage 63, dass das Verhältnis - der Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons 30 erzeugten Signals S maximal ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons 30 erzeugten Signals S bei allen weiteren Untersuchungsfrequenzen, bei denen die Leistung des mittels des Mikrofons 30 erzeugten Signals S ein lokales Maximum aufweist, kleiner gleich einem Zusatz-Leistungsgrenzwert RichContentThreshold ist, dann folgt der Abfrage 63 der Schritt 64. Andernfalls wird eine Rückkopplung angenommen.
In dem Schritt 64 wird der Ablauf für eine vorbestimmte Haltezeit, z.B. 3s, angehalten. Nach Ablauf der Haltezeit wird eine Rückkopplung verneint. Ergibt die Abfrage 61, dass die Leistung des Ausgangssignals S' des Bandpass-Filters 32 den Ausgangsgrenzwert nicht überschreitet, so folgt der Abfrage 61 eine im wesentlichen der Abfrage 62 entsprechende Abfrage 65. Dabei wird jedoch ein anderer Rückopplungs-Leistungsgrenzwert RatioThreshold und nicht OutGrdRatioThreshold verwendet. Der Rückopplungs-Leistungsgrenzwert RatioThreshold liegt jedoch vorteilhafterweise ebenfalls zwischen 30 und 40.
Wird die Abfrage 65 positiv beantwortet, so folgt der Abfrage 65 eine der Abfrage 63 entsprechende Abfrage 66. Andernfalls wird das Vorliegen von Rückkopplung verneint.
Ergibt die Abfrage 66, dass das Verhältnis - der Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons 30 erzeugten Signals S maximal ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons 30 erzeugten Signals S bei allen weiteren Untersuchungsfrequenzen, bei denen die Leistung des mittels des Mikrofons 30 erzeugten Signals S ein lokales Maximum aufweist, kleiner gleich einem Zusatz-Leistungsgrenzwert RichContentThreshold ist, dann wird das Vorliegen einer Rückkopplung verneint. Andernfalls wird eine Rückkopplung angenommen.
Die erfindungsgemäße Rückkopplungserkennung ist nicht auf die vorbeschriebene Ausführungsform beschränkt. Die Rückkopplungserkennung kann z.B. derart ausgestaltet werden, dass nur die Abfrage 65 vorgesehen ist. Die Rückkopplungserkennung kann auch derart ausgestaltet werden, die Ausführungsform gemäß Fig. 7 mit ihrer binären Entscheidungslogik durch eine unscharfe Entscheidungslogik, also Fuzzy-Logik oder neuronale Netze, zu ersetzen.
Die Abfrage 63 gemäß Fig. 7 wird im Folgenden anhand zweier in Fig. 8 und Fig. 9 in einem Leistung-Frequenz-Diagramm dargestellter Signale 80 und 90 erläutert. Die Leistung P der Signale 80 und 90 ist in dB über dem Index idx_vec der Untersuchungsfrequenzen aufgetragen. Es sei angenommen, dass die Abfrage 61 für beide Signale 80 und 90 ergibt, dass die Leistung des Ausgangssignals S' des Bandpass-Filters 32 den Ausgangsgrenzwert überschreitet und dass deshalb der Abfrage 61 die Abfrage 62 folgt. Es sei ferner angenommen, dass die Abfrage 62 positiv beantwortet wird. Die + - Zeichen in Fig. 8 und Fig. 9 bezeichnen alle Untersuchungsfrequenzen, die mittels des Programms gemäß Tabelle 1 als lokale/globale Maxima erkannt worden sind.
In Fig. 8 bezeichnet Bezugszeichen 81 das globale Maximum des Signals 80. In Fig. 9 bezeichnet Bezugszeichen 91 das globale Maximum des Signals 90. Die Untersuchungsfrequenzen weisen einen Abstand von 40Hz auf. Der Zusatz- Leistungsgrenzwert RichContentThreshold beträgt 37.
Das Verhältnis - der Leistung des Signals 80 bei der Untersuchungsfrequenz, bei der die Leistung des Signals 80 maximal ist, zu - dem Mittelwert der Leistung des Signals 80 bei allen weiteren Untersuchungsfrequenzen, bei denen die Leistung des Signals 80 ein lokales Maximum aufweist, beträgt in etwa 16 und ist damit deutlich kleiner als 37. Die Abfrage 63 würde somit positiv beantwortet und somit das Vorliegen von Rückkopplung verneint.
Das Verhältnis - der Leistung des Signals 90 bei der Untersuchungsfrequenz, bei der die Leistung des Signals 90 maximal ist, zu - dem Mittelwert der Leistung des Signals 90 bei allen weiteren Untersuchungsfrequenzen, bei denen die Leistung des Signals 90 ein lokales Maximum aufweist, beträgt in etwa 73 und ist damit deutlich größer als 37. Die Abfrage 63 würde somit verneint und daher Rückkopplung angenommen. BEZUGSZEICHENLISTE
1 Kraftfahrzeug
2, 3 Vordersitze
4, 5, 6 Rücksitze
7,8,9, 10, 11, 12,
13,14,15, 16,17,
18, 19, 20, 31 Lautsprecher
21,22,23,24,30 Mikrofone
32 Bandpass-Filter
33 Entscheidungslogik 40, 45, 46, 47, 48,
49, 64 Schritte
41,42,43,44,61,
62, 63, 65, 66 Abfragen
80, 90 Signal
81, 91 globales Maximum
BinRatioTimeThreshold Zeit- Verhältnis-Grenzwert f Frequenz fn> fn+1> fn+2> fn+3ι fn+4j fn+5. fn+6ι fn+7> fn+8ι U, fθ7, f 98, fi22, i92 Frequenzpunkte fc Mittenfrequenz fdist Abstand zwischen der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und einer die größte Leistung aufweisenden Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist fkorr Korrekturfrequenz MaxBinPwrPlusNeighbor Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, plus der Leistung des mittels des Mikrofons erzeugten Signals bei der Frequenz des mittels des Mikrofons erzeugten Signals, die der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, unmittelbar benachbart ist, und bei der die Leistung größer ist als bei einer Frequenz die der Frequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, ebenfalls unmittelbar benachbart ist
MeanBinPwrRemainder Mittelwert der Leistung des mittels des Mikrofons erzeugten Signals aller weiteren (untersuchten) Frequenzen
Q Güte
OutGrdRatioThreshold,
RatioThreshold Rückopplungs-Leistungsgrenzwert
P Leistung
Pmax Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist
Pmaxneigh Leistung des mittels des Mikrofons erzeugten Signals bei der die größte Leistung aufweisende Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mitteis des Mikrofons erzeugten Signals maximal ist
Pneighleft Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz unmittelbar unterhalb der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist Pneighright Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz unmittelbar oberhalb der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist
PowerRatio3 Leistungsverhältnis
RichContentThreshold Zusatz-Leistungsgrenzwert
S Signal
S' gefiltertes Signal sign Vorzeichen
V Verstärkung
Δf Abstand zwischen zwei Untersuchungsfrequenzen

Claims

PAT E N TAN S P RÜ C H E
1. Verfahren zum Betrieb eines sprachunterstützten Systems, wie eine Kommunikations- und/oder SprechJGegensprecheinrichtung in einem Kraftfahrzeug (1), mit zumindest einem Mikrofon (30) und zumindest einem Lautsprecher (31 ) zur Wiedergabe eines mittels des Mikrofons (30) erzeugten Signals sowie mit einem zwischen dem Mikrofon (30) und dem Lautsprecher (31) angeordneten Bandpass-Filter (32), wobei eine von einer Frequenz abhängige Leistung des Signals (S) ermittelt wird, dadurch gekennzeichnet, dass das Bandpass-Filter (32) in Abhängigkeit zumindest eines lokalen Maximums der Leistung des Signals (S) über der Frequenz (f) eingestellt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das lokale Maximum der Leistung des Signals (S) in Abhängigkeit einer Ableitung der Leistung des Signals (S) nach der Frequenz (f) ermittelt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das lokale Maximum der Leistung des Signals (S) in Abhängigkeit der ersten Ableitung der Leistung des Signals (S) nach der Frequenz (f) ermitteit wird.
4. Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass mittels der ersten Ableitung der Leistung des Signals (S) nach der Frequenz (f) ein Flankensignal gebildet wird, das einen ersten Binärwert annimmt, wenn die erste Ableitung der Leistung des Signals (S) nach der Frequenz (f) größer gleich Null ist, und das einen zweiten Binärwert annimmt, wenn die erste Ableitung der Leistung des Signals (S) nach der Frequenz (f) kleiner als Null ist, wobei das lokale Maximum der Leistung des Signals (S) in Abhängigkeit der ersten Ableitung des Flankensignals ermittelt wird.
5. Verfahren zum Betrieb eines sprachunterstützten Systems, wie eine Kommunikations- und/oder Sprech-/Gegensprecheinrichtung in einem Kraftfahrzeug (1), mit zumindest einem Mikrofon (30) und zumindest einem Lautsprecher (31) zur Wiedergabe eines mittels des Mikrofons (30) erzeugten Signals (S) sowie mit einem zwischen dem Mikrofon (30) und dem Lautsprecher (31) angeordneten Bandpass-Filter (32), wobei eine von einer Frequenz abhängige Leistung des Signals (S) ermittelt wird, dadurch gekennzeichnet, dass das Bandpass-Filter (32) in Abhängigkeit einer Ableitung der Leistung des Signals (S) nach der Frequenz (f) eingestellt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Bandpass- Filter (32) in Abhängigkeit der ersten Ableitung der Leistung des Signals (S) nach der Frequenz (f) eingestellt wird.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass ein Flankensignal gebildet wird, das einen ersten Binärwert annimmt, wenn die erste Ableitung der Leistung des Signals (S) nach der Frequenz (f) größer gleich Null ist, und das einen zweiten Binärwert annimmt, wenn die erste Ableitung der Leistung des Signals (S) nach der Frequenz (f) kleiner als Null ist, wobei das Bandpass-Filter (32) in Abhängigkeit des Flankensignals eingestellt wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Bandpass- Filter (32) in Abhängigkeit der ersten Ableitung des Flankensignals eingestellt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem Frequenzbereich alle lokalen Maxima bestimmt werden.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass in dem Frequenzbereich das globale Maximum bestimmt wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - zumindest der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei weiteren Frequenzen des mittels des Mikrofons (30) erzeugten Signals (S) größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold).
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - zumindest der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei weiteren Frequenzen des mittels des Mikrofons (30) erzeugten Signals (S) länger als ein Zeit-Verhältnis-Grenzwert (BinRatioTimeThreshold) größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold).
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, plus der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei Frequenzen des mittels des Mikrofons (30) erzeugten Signals (S), die der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, benachbart sind, zu - dem Mittelwert der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei weiteren Frequenzen des mittels des Mikrofons (30) erzeugten Signals (S) größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold).
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, plus der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei Frequenzen des mittels des Mikrofons (30) erzeugten Signals (S), die der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, benachbart sind, zu - dem Mittelwert der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei weiteren Frequenzen des mittels des Mikrofons (30) erzeugten Signals (S) länger als ein Zeit-Verhältnis-Grenzwert (BinRatioTimeThreshold) größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold).
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, plus der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Frequenz des mittels des Mikrofons (30) erzeugten Signals (S), - die der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, unmittelbar benachbart ist, und - bei der die Leistung größer ist als bei einer Frequenz, die der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, ebenfalls unmittelbar benachbart ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei weiteren Frequenzen des mittels des Mikrofons (30) erzeugten Signals (S) größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold).
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, plus der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Frequenz des mittels des Mikrofons (30) erzeugten Signals (S), - die der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, unmittelbar benachbart ist, und - bei der die Leistung größer ist als bei einer Frequenz, die der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, ebenfalls unmittelbar benachbart ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei weiteren Frequenzen des mittels des Mikrofons (30) erzeugten Signals (S) länger als ein Zeit-Verhältnis-Grenzwert (BinRatioTimeThreshold) größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold).
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, plus der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Frequenz des mittels des Mikrofons (30) erzeugten Signals (S), - die der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, unmittelbar benachbart ist, und - bei der die Leistung größer ist als bei einer Frequenz, die der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, ebenfalls unmittelbar benachbart ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) aller weiteren Frequenzen des mittels des Mikrofons (30) erzeugten Signals (S) größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold).
18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, plus der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Frequenz des mittels des Mikrofons (30) erzeugten Signals (S), - die der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, unmittelbar benachbart ist, und - bei der die Leistung größer ist als bei einer Frequenz, die der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, ebenfalls unmittelbar benachbart ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) aller weiteren Frequenzen des mittels des Mikrofons (30) erzeugten Signals (S) länger als ein Zeit-Verhältnis-Grenzwert (BinRatioTimeThreshold) größer ist als ein Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold).
19. Verfahren nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, dass der Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold) in Abhängigkeit eines Ausgangssignals (S') des Bandpass-Filters (32) festgelegt wird.
20. Verfahren nach einem der Ansprüche 12 bis 19, dadurch gekennzeichnet, dass der Rückopplungs-Leistungsgrenzwert (RatioThreshold, OutGrdRatioThreshold) zwischen 20 und 50 beträgt.
21. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei weiteren Frequenzen, bei denen die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) ein lokales Maximum aufweist, größer ist als ein Zusatz-Leistungsgrenzwert (RichContentThreshold).
22. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) bei einer Sperrfrequenz nur dann sperrt, wenn das Verhältnis - der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Frequenz, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, zu - dem Mittelwert der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei allen weiteren Frequenzen, bei denen die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) ein lokales Maximum aufweist, größer ist als ein Zusatz-Leistungsgrenzwert (RichContentThreshold).
23. Verfahren nach einem der Ansprüche 21 bis 22, dadurch gekennzeichnet, dass der Zusatz-Leistungsgrenzwert (RichContentThreshold) zwischen 20 und 50 beträgt.
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass der Zusatz- Leistungsgrenzwert (RichContentThreshold) zwischen 30 und 40 beträgt.
25. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bandpass-Filter (32) in Abhängigkeit seines Ausgangssignals (S') eingestellt wird.
26. Einrichtung zum Betrieb von sprachunterstützten Systemen, wobei die Einrichtung - zumindest ein Mikrofon (30), - zumindest einen Lautsprecher (31) zur Wiedergabe eines mittels des Mikrofons (30) erzeugten Signals (S) und - ein zwischen dem Mikrofon (30) und dem Lautsprecher angeordnetes Bandpass-Filter (32) aufweist, dadurch gekennzeichnet, dass die Einrichtung eine Entscheidungslogik zur Einstellung des Bandpass-Filters (32) gemäß einem Verfahren nach einem der vorhergehenden Ansprüche aufweist.
27. Einrichtung nach Anspruch 26, dadurch gekennzeichnet, dass das Bandpass- Filter (32) eine Filterbank mit zumindest einem Notchfilter ist.
EP04740501.4A 2003-07-18 2004-06-30 Einrichtung und verfahren zum betrieb von sprachunterstützten systemen in kraftfahrzeugen Expired - Lifetime EP1649719B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/623,286 US7912228B2 (en) 2003-07-18 2003-07-18 Device and method for operating voice-supported systems in motor vehicles
PCT/EP2004/007129 WO2005018277A1 (de) 2003-07-18 2004-06-30 Einrichtung und verfahren zum betrieb von sprachunterstützten systemen in kraftfahrzeugen

Publications (2)

Publication Number Publication Date
EP1649719A1 true EP1649719A1 (de) 2006-04-26
EP1649719B1 EP1649719B1 (de) 2013-05-15

Family

ID=34063343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04740501.4A Expired - Lifetime EP1649719B1 (de) 2003-07-18 2004-06-30 Einrichtung und verfahren zum betrieb von sprachunterstützten systemen in kraftfahrzeugen

Country Status (5)

Country Link
US (1) US7912228B2 (de)
EP (1) EP1649719B1 (de)
JP (1) JP4723491B2 (de)
CN (1) CN1826835B (de)
WO (1) WO2005018277A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110015765A1 (en) * 2009-07-15 2011-01-20 Apple Inc. Controlling an audio and visual experience based on an environment
US9947334B2 (en) * 2014-12-12 2018-04-17 Qualcomm Incorporated Enhanced conversational communications in shared acoustic space
FR3034935B1 (fr) * 2015-04-10 2017-05-05 Thales Sa Procede de reduction du facteur crete d'une emission multicanaux par ecretage/filtrage intelligent et adaptatif
CN107585110A (zh) * 2016-10-21 2018-01-16 南宁可美汽车用品有限公司 一种利用原车方控来控制车载电台开关的方法和系统
WO2019222684A1 (en) * 2018-05-18 2019-11-21 The Charles Stark Draper Laboratory, Inc. Convolved augmented range lidar nominal area
CN109413728B (zh) * 2018-12-29 2022-01-04 维沃移动通信有限公司 一种终端设备及信号处理方法
US10418019B1 (en) * 2019-03-22 2019-09-17 GM Global Technology Operations LLC Method and system to mask occupant sounds in a ride sharing environment

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870292A (ja) 1981-10-22 1983-04-26 日産自動車株式会社 車両用音声認識装置
DE3925589C2 (de) 1989-08-02 1994-03-17 Blaupunkt Werke Gmbh Verfahren und Anordnung zur Störbefreiung von Sprachsignalen
DE4106405C2 (de) 1990-03-23 1996-02-29 Ricoh Kk Geräuschunterdrückungseinrichtung für ein Spracherkennungsystem
CA2066624C (en) 1990-06-13 1999-02-16 Doran M. Oster Method and apparatus for adaptive audio resonant frequency filtering
US5442712A (en) * 1992-11-25 1995-08-15 Matsushita Electric Industrial Co., Ltd. Sound amplifying apparatus with automatic howl-suppressing function
JP3235925B2 (ja) * 1993-11-19 2001-12-04 松下電器産業株式会社 ハウリング抑制装置
US5903819A (en) 1996-03-13 1999-05-11 Ericsson Inc. Noise suppressor circuit and associated method for suppressing periodic interference component portions of a communication signal
JP3152160B2 (ja) * 1996-11-13 2001-04-03 ヤマハ株式会社 ハウリング検出防止回路及びそれを用いた拡声装置
DE19705471C2 (de) 1997-02-13 1998-04-09 Sican F & E Gmbh Sibet Verfahren und Schaltungsanordnung zur Spracherkennung und zur Sprachsteuerung von Vorrichtungen
US6535609B1 (en) 1997-06-03 2003-03-18 Lear Automotive Dearborn, Inc. Cabin communication system
JPH11127496A (ja) * 1997-10-20 1999-05-11 Sony Corp ハウリング除去装置
US7010129B1 (en) 1998-05-06 2006-03-07 Volkswagen Ag Method and device for operating voice-controlled systems in motor vehicles
US6385176B1 (en) 1998-06-04 2002-05-07 Lucent Technologies Inc. Communication system based on echo canceler tap profile
US6353609B1 (en) 1998-06-19 2002-03-05 Marconi Communications, Inc. Digital packet network for the local access loop
DE19958836A1 (de) 1999-11-29 2001-05-31 Deutsche Telekom Ag Verfahren und Anordnung zur Verbesserung der Kommunikation in einem Fahrzeug
US7613529B1 (en) 2000-09-09 2009-11-03 Harman International Industries, Limited System for eliminating acoustic feedback
US6674865B1 (en) * 2000-10-19 2004-01-06 Lear Corporation Automatic volume control for communication system
US6665411B2 (en) 2001-02-21 2003-12-16 Digisonix Llc DVE system with instability detection
GB2402856B (en) 2002-03-13 2006-03-29 Harman Int Ind Audio feedback processing system
US7467084B2 (en) * 2003-02-07 2008-12-16 Volkswagen Ag Device and method for operating a voice-enhancement system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005018277A1 *

Also Published As

Publication number Publication date
JP2007527145A (ja) 2007-09-20
WO2005018277A1 (de) 2005-02-24
CN1826835A (zh) 2006-08-30
CN1826835B (zh) 2012-05-30
JP4723491B2 (ja) 2011-07-13
EP1649719B1 (de) 2013-05-15
US20050013451A1 (en) 2005-01-20
US7912228B2 (en) 2011-03-22

Similar Documents

Publication Publication Date Title
EP1919257B1 (de) Pegelabhängige Geräuschreduktion
EP1366564B1 (de) Vorrichtung zum geräuschabhängigen einstellen der lautstärken
DE3925589C2 (de) Verfahren und Anordnung zur Störbefreiung von Sprachsignalen
DE10018666A1 (de) Vorrichtung und Verfahren zum geräuschabhängigen Anpassen eines akustischen Nutzsignals
DE102006047986B4 (de) Verarbeitung eines Eingangssignals in einem Hörgerät
DE102006047983A1 (de) Verarbeitung eines Eingangssignals in einem Hörgerät
DE10020756B4 (de) Vorrichtung und Verfahren zum geräuschabhängigen Anpassen eines akustischen Nutzsignals
EP3793209B1 (de) Hörgerät mit aktiver geräuschunterdrückung und verfahren zum betrieb desselben
DE112016004394B4 (de) Heulunterdrückungsvorrichtung
EP0623995B1 (de) Anordnung zur geräuschabhängigen Regelung der Lautstärke eines Autoradios
EP1649719B1 (de) Einrichtung und verfahren zum betrieb von sprachunterstützten systemen in kraftfahrzeugen
DE102013011761A1 (de) Kraftfahrzeug mit einer Freisprecheinrichtung und Verfahren zur Erzeugung eines Frequenzganges für Freisprecheinrichtungen
EP1445761B1 (de) Einrichtung und Verfahren zum Betrieb von sprachunterstützten Systemen in Kraftfahrzeugen
DE10025496C2 (de) Audiosystem, insbesondere für Kraftfahrzeuge
EP0966100B1 (de) Verfahren und Einrichtung zur Beeinflussung der Lautstärke von Audiowiedergabegeräten in Kraftfahrzeugen
EP1077013B1 (de) Verfahren und einrichtung zum betrieb von sprachunterstützten systemen in kraftfahrzeugen
DE3602000C2 (de)
DE2456468A1 (de) Vorrichtung zur verbesserung der hoerbarkeit und verstaendlichkeit einer elektroakustischen tonwiedergabe
EP1351550B1 (de) Verfahren zur Anpassung einer Signalverstärkung in einem Hörgerät sowie ein Hörgerät
DE10052104A1 (de) Verfahren und Einrichtung zur automatisch geregelten Beeinflussung der Lautstärke
EP3955241A1 (de) Verfahren zum betrieb eines hörgeräts und hörgerät
DE102016005904A1 (de) Unverzögerte Störschallunterdrückung in einem Kraftfahrzeug
EP3956887B1 (de) Rauschunterdrückung bei audiosignalen in einem fahrzeug
DE19827134A1 (de) Verfahren und Einrichtung zum Betrieb von sprachunterstützten Systemen in Kraftfahrzeugen
EP0309869B1 (de) Verfahren zur Kompensation von mit Störungen behafteten Sprachsignalen für Spracherkennungssysteme

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070705

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 612635

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014172

Country of ref document: DE

Effective date: 20130711

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130916

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130826

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130815

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130722

Year of fee payment: 10

BERE Be: lapsed

Owner name: VOLKSWAGEN A.G.

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004014172

Country of ref document: DE

26N No opposition filed

Effective date: 20140218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014172

Country of ref document: DE

Effective date: 20140218

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 612635

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230630

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 20