EP1445761B1 - Einrichtung und Verfahren zum Betrieb von sprachunterstützten Systemen in Kraftfahrzeugen - Google Patents

Einrichtung und Verfahren zum Betrieb von sprachunterstützten Systemen in Kraftfahrzeugen Download PDF

Info

Publication number
EP1445761B1
EP1445761B1 EP04000822.9A EP04000822A EP1445761B1 EP 1445761 B1 EP1445761 B1 EP 1445761B1 EP 04000822 A EP04000822 A EP 04000822A EP 1445761 B1 EP1445761 B1 EP 1445761B1
Authority
EP
European Patent Office
Prior art keywords
microphone
power
frequency
signal
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04000822.9A
Other languages
English (en)
French (fr)
Other versions
EP1445761A1 (de
Inventor
Brian Michael Finn
Shawn K. Steenhagen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1445761A1 publication Critical patent/EP1445761A1/de
Application granted granted Critical
Publication of EP1445761B1 publication Critical patent/EP1445761B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones

Definitions

  • the invention relates to a method and a device for operating voice-assisted systems, such as communication and / or voice / intercom devices in motor vehicles, in which recorded via a microphone arrangement speech signals and transmitted to at least one speaker.
  • Methods of this type are used in motor vehicles for voice-assisted intercom operation or to support voice input controlled electronic or electrical assemblies.
  • the fundamental problem here is that in the motor vehicle depending on the operating condition, a corresponding background noise is present. This covers the voice commands.
  • Speech and intercom systems in motor vehicles are mainly advantageous for large vehicles, minibuses and the like. However, they can also be used in normal passenger cars.
  • voice-controlled input units for electrical components in the vehicle the suppression of the noise or the filtering of the voice command is still of particular importance.
  • a method and system for eliminating acoustic feedback is known wherein a current value taken by a microphone at a particular examination frequency is compared to a previously acquired value of the same examination frequency. The result of this comparison determines the parameters of a bandpass filter.
  • the invention is therefore the object of developing a method and a device of the generic type such that the verbal communication of the occupants of a vehicle is improved.
  • a voice-assisted system such as a communication and / or voice / intercom in a motor vehicle
  • at least one microphone and at least one speaker for reproducing a signal generated by the microphone and a arranged between the microphone and the speaker
  • Bandpass- Filter the bandpass filter as a function of a comparison of the power of the signal generated by the microphone at an examination frequency with the power of the signal generated by the microphone at least a substantially integer multiples, ie a substantially harmonious, set the examination frequency.
  • examination frequency one or more frequencies of the signal generated by means of the microphone come into question.
  • the frequency is selected as examination frequency at which the power of the signal generated by the microphone is substantially maximum.
  • several frequency components with high powers are selected as examination frequencies.
  • the bandpass filter is both in response to a comparison of the power of the signal generated by the microphone at the examination frequency with the power of the signal generated by the microphone at least a substantially integer multiples of the examination frequency and in dependence Comparing the power of the signal generated by the microphone at the examination frequency with the power of the signal generated by the microphone at the examination frequency set at least one earlier time.
  • the bandpass filter is set such that it blocks the proportion of the signal generated by the microphone with a blocking frequency (only) if the power of the signal generated by the microphone at the examination frequency by more than an upper Limit is greater than the power of the signal generated by the microphone at the first harmonic of the examination frequency.
  • Notch frequency in the sense of the invention may also be a frequency range and not just a single frequency.
  • the upper limit is between 20 and 40 dB.
  • the upper limit is substantially 30dB.
  • the bandpass filter is set so that it determines the proportion of the signal generated by the microphone with the Not inhibiting the blocking frequency if the power of the signal generated by the microphone at the examination frequency is greater than the power of the signal generated by the microphone at the first harmonic of the examination frequency by less than a lower limit.
  • the lower limit is between 5 and 20dB.
  • the lower limit is substantially 12dB.
  • the invention is determined by comparing the power of the signal generated by the microphone at the examination frequency with the power of the signal generated by the microphone at the examination frequency at least earlier times, whether the power of the signal generated by the microphone in the Examination frequency increases exponentially.
  • the bandpass filter is set such that it blocks the proportion of the signal generated by the microphone at the blocking frequency when it is decided that the power of the signal generated by the microphone at the examination frequency increases exponentially.
  • the bandpass filter is set such that it blocks the proportion of the signal generated by the microphone with the blocking frequency (only) if the power of the signal generated by the microphone at the examination frequency longer than a first response time is greater than a threshold, the first response time advantageously being greater than substantially 750ms.
  • the power is determined at more than one examination frequency and the bandpass filter is set such that it blocks the proportion of the signal generated by the microphone with the blocking frequency only when the power of the signal generated by the microphone at a Examination frequency longer than a second response time is greater than the power of the signal generated by the microphone at any other examination frequency, the second response time is advantageously greater than substantially 750ms.
  • the setting of the bandpass filter is repeated with respect to the examination frequency earliest after a minimum dead time.
  • the minimum dead time is advantageously 200ms to 300ms.
  • the bandpass filter is set so that it blocks the proportion of the signal generated by the microphone at a frequency range around the cutoff frequency, if after a repetition time, which is greater than the minimum dead time, the performance of is generated by the microphone at the examination frequency by more than the upper limit than the power of the signal generated by the microphone at the substantially first harmonic of the examination frequency and / or if it is decided that the power of the signal generated by the microphone at the examination frequency increases exponentially.
  • the bandpass filter is set so that it blocks the proportion of the signal generated by the microphone at an increased frequency range around the cutoff frequency, if after a repetition time, which is greater than the minimum dead time, the power the signal generated by the microphone at the examination frequency is greater than the upper limit of the power of the signal generated by the microphone at the substantially first harmonic of the examination frequency and / or if the power of the signal generated by the microphone is decided at the examination frequency increases exponentially.
  • the examination frequency may be at which the power of the signal generated by means of the microphone is maximum.
  • the rejection frequency is the examination frequency added at a correction frequency at which the power of the signal generated by the microphone is maximum, ie to the examination frequency at which the power of the signal generated by the microphone is maximum becomes a correction frequency added.
  • This correction frequency is advantageously in
  • the examination frequency at which the power of the signal generated by the microphone is maximum is thus 3840 Hz and the blocking frequency 3832 Hz.
  • the examination frequency at which the power of the signal generated by the microphone is maximum is thus 3840 Hz and the blocking frequency 3835.56 Hz.
  • the distances between at least part of the examination frequencies or all examination frequencies are equidistant.
  • a presence of feedback is detected only if the power of the signal generated by the microphone at the examination frequency at which the power of the signal generated by the microphone is maximum by more than an upper limit is greater than the power of the signal generated by the microphone at the first harmonic of this examination frequency, wherein the upper limit is advantageously between 20 and 40 dB, in particular at substantially 30 dB.
  • the absence of feedback is determined when the power of the signal generated by the microphone at the examination frequency at which the power of the signal generated by the microphone is maximum by less than a lower limit is greater than the power of signal generated by the microphone at the first harmonic this examination frequency, wherein the lower limit is advantageously between 5 and 20 dB, in particular at substantially 12 dB.
  • a presence of feedback is (only) determined when the power of the signal generated by the microphone at the examination frequency at which the power of the signal generated by the microphone is maximum, at least approximately, increases exponentially.
  • a presence of feedback is (only) determined when the power of the signal generated by the microphone at at least one examination frequency is longer than a first response time greater than a threshold.
  • the first response time is advantageously greater than substantially 750ms.
  • the threshold can be selected depending on the power of the signal S or the sum of the power of all examination frequencies.
  • a presence of feedback is determined if the power of the signal generated by the microphone at at least one examination frequency is longer than a first response time greater than the power of the signal generated by the microphone at any other examination frequency ,
  • the second response time is advantageously greater than substantially 750ms.
  • the adjustment of the bandpass filter is repeated at the earliest after a minimum dead time has expired, which is advantageously between 100 ms to 300 ms.
  • the power of the signal generated by means of the microphone is determined at at least 50, in particular at 150 to 300, examination frequencies.
  • the bandpass filter is a notch filter or a filter bank with at least one notch filter.
  • the filter bank may include, for example, 10 notch filters.
  • Fig. 1 shows the interior view of a motor vehicle 1 from above.
  • reference numerals 2 and 3 the front seats and reference numerals 4, 5 and 6, the rear seats of the motor vehicle.
  • Reference numerals 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 denote speakers.
  • Reference numerals 21, 22, 23 and 24 denote microphones.
  • the loudspeakers 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 are partly associated with a music system and partly with a communication / intercom device. They can also be used by both systems.
  • the loudspeakers 9, 17, 18, 19, 20 give a signal generated by the microphone 21, the loudspeakers 7, 17, 18, 19, 20 a signal generated by the microphone 22, the loudspeakers 7, 9, 19, 20 a signal generated by the microphone 23 and the speakers 7, 9, 17, 18 a signal generated by the microphone 24 from.
  • the communication is in principle the better the stronger a signal between one of the microphones 21, 22, 23, 24 and one of the speakers 7, 9, 17, 18, 19, 20 is amplified.
  • Limited is the possibility of one However, such gain due to possible feedback effects due to sound emitted by a loudspeaker 7, 9, 17, 18, 19, 20 received by a microphone 21, 22, 23, 24 and then amplified and through the speaker 7, 9, 17, 18, 19, 20 is broadcast.
  • a bandpass filter 32 is provided. This filters a signal S generated by the microphone 30 and provides a filtered signal S 'in which certain frequency ranges are filtered out, for which a decision logic 33 has recognized the risk of feedback.
  • the decision logic 33 determines filter parameters f c and Q by means of which the bandpass filter 32 is set.
  • the amplifier function can also be taken over by the bandpass filter.
  • Fig. 3 shows the characteristic of a designed as a notch filter bandpass filter, the gain V of the bandpass filter is plotted against the frequency f.
  • f c denotes the center frequency of the bandpass filter and Q its quality.
  • the bandpass filter 32 is advantageously a filter bank, as in FIG Fig. 4 shown executed.
  • the filter bank advantageously comprises up to 10 notch filters.
  • Fig. 5 shows an exemplary embodiment of an implemented in a decision logic 33 subwaypan.
  • an examination frequency is first determined in a step 40.
  • the frequency f of the signal S is analyzed and, as exemplified in FIG Fig. 6 shown, the power P of the signal S an, for example 192, different examination frequencies f n , f n + 1 , f n + 2 , f n + 3 , f n + 4 , f n + 5 , f n + 6 , f n +7 , f n + 8 determined, which are eg 40Hz apart.
  • the examination frequency f n + 5 at which the power is maximum, the subsequent sequence is run through. However, it is also possible to go through the following procedure for more than one examination frequency.
  • the term of the power according to the invention may include the amplitude or its time average. Also included in the sense of the invention are other modifications of the power, the amplitude or their time averages, such as normalized quantities.
  • the value of the power of the signal S at this examination frequency f n can be divided by the sum of the power of the signal S at all examination frequencies f n , f n + 1 , f n + 2 , f n + 3 , f n + 4 , f n + 5 , f n + 6 , f n + 7 , f n + 8 .
  • the step 40 is followed by a query 41, if there is a risk of feedback. Details of this query are with respect to Fig. 7 and 10 executed. If there is a risk of feedback, query 41 is followed by a query 42 as to whether the signal S generated by the microphone 30 has already been reduced by signal components around the examination frequency by means of the bandpass filter.
  • the query 42 is followed by a step 43 in which the filter parameters, ie the center frequency f c and the quality Q of the bandpass filter Filters are generated.
  • the center frequency f c is an example of the blocking frequency in the sense of the claims.
  • the blocking frequency in the sense of the claims can also be, in particular, the frequency range around the center frequency f c , which the bandpass filter actually filters out of the signal S generated by the microphone 30.
  • the quality Q is set to a predetermined value of e.g. 1 / 40Hz set.
  • Step 43 is followed by inquiry 45 as to whether the program should be terminated. If the program is not terminated, the query 45 follows step 40. Otherwise, the program is terminated.
  • the query 43 is followed by a step 44, in which the quality Q is reduced.
  • the bandpass filter is adjusted so that it blocks the proportion of the signal generated by the microphone at an increased frequency range around the center frequency f c around.
  • Step 44 is followed by step 40.
  • query 41 is followed by query 45, or optionally a step 46, in which the filtering of the signal S generated by the microphone 30 is terminated by the examination frequency.
  • the query 41 is repeated at the earliest after the expiration of a minimum dead time, wherein the minimum dead time in the present embodiment is 200 ms to 300 ms.
  • Fig. 7 shows an embodiment of the query 41.
  • a query 50 is provided, whether the power of the signal generated by the microphone 30 S at the examination frequency by not less than a lower limit is greater than the power of the signal generated by the microphone 30 S. at the first harmonic (ie twice) of the examination frequency.
  • the lower limit ⁇ 1 is for example between 5 and 20 dB.
  • the lower limit ⁇ 1 is substantially 12dB.
  • This query illustrates by way of example Fig. 8 , where f H0 denotes the examination frequency , f H1 , f H2 , f H3 and f H4 the first, second, third and fourth harmonics of the examination frequency and f H1 ⁇ 2 the first subharmonic of the examination frequency .
  • P denotes the power at a frequency f.
  • query 50 may be provided for one or more of the queries P f H 0 - P f H 1 / 2 ⁇ ⁇ 1 P f H 0 - P f H 2 ⁇ ⁇ 1 P f H 0 - P f H 3 ⁇ ⁇ 1 P f H 0 - P f H 4 ⁇ ⁇ 1 to supplement, where appropriate, other limits can be selected.
  • the examination frequencies f n , f n + 1 , f n + 2 , f n + 3 , f n + 4 , f n + 5 , f n + 6 , f n + 7 , f n + 8 in Fig. 6 are of the subharmonic / harmonics f H1 ⁇ 2 , f H1 , f H2 , f H3 and f H4 in Fig. 8 respectively.
  • the query 50 is followed by a query 51.
  • the query 51 queries whether the power of the signal S generated by means of the microphone 30 at the examination frequency is greater than the power of the microphone 30 generated by not less than an upper limit ⁇ 2 Signal S at the first harmonic of the examination frequency.
  • the upper limit ⁇ 2 is for example between 20 and 40 dB.
  • the upper limit ⁇ 2 is substantially 30 dB. This query illustrates by way of example Fig.
  • query 51 may be provided for one or more of the queries P f H 0 - P f H 1 / 2 ⁇ ⁇ 2 P f H 0 - P f H 2 ⁇ ⁇ 2 P f H 0 - P f H 3 ⁇ ⁇ 2 P f H 0 - P f H 4 ⁇ ⁇ 2 to supplement, where appropriate, other limits can be selected.
  • the query 51 is followed by a query 52, by means of the signal S produced at the examination frequency by comparing the power of the signal S generated by means of the microphone 30 with the power of the signal S generated by the microphone 30 at the examination frequency at least at an earlier point in time, whether the power of the signal generated by means of the microphone is determined by the Examination frequency increases exponentially.
  • Fig. 10 shows a further embodiment of the query 41.
  • a query 60 is first provided, whether the power of the signal generated by the microphone 30 S at the examination frequency is greater than a predetermined limit.
  • a query 61 follows, which corresponds to the query 50.
  • the queries 62 and 63 correspond to the queries 51 and 52.
  • Fig. 11 shows a preferred embodiment for a process implemented in the decision logic 33 radiationpan.
  • the process starts with a step 81, which is the step 40 in Fig. 5 equivalent.
  • Step 81 is followed by a query 41 in FIG Fig. 5 corresponding query 82, if there is a risk of feedback.
  • Embodiments for the query 82 show Fig. 7 and Fig. 10 ,
  • a feedback detection query 82
  • Fig. 12 is explained in more detail, found to be advantageous.
  • the query 82 follows a query 45 corresponding query 83, whether the program should be terminated. If the program is not terminated, the query 93 follows the step 81. Otherwise, the program is terminated.
  • the query 82 is followed by a query 83 corresponding to the query 42 as to whether the signal S generated by the microphone 30 has already been reduced by signal components around the examination frequency by means of the bandpass filter. If the signal S generated by the microphone 30 is already reduced by signal components around the examination frequency by means of the bandpass filter, the query 83 is followed by a query 85, otherwise a query 84.
  • Query 84 queries whether a notch filter is available. If a notch filter is available, query 84 is followed by a step 88 corresponding to step 43, in which the filter parameters, ie the center frequency f c and the quality Q of the bandpass filter for the specific embodiment, are generated. If query 84 indicates that no notch filter is available, query 84 is followed by a step 86 in which the power of signal S is reduced by a reduction factor which is advantageously between 2 dB and 5 dB, in particular at substantially 3dB , Step 86 is followed by a step 87 in which the entire run is stopped for a stop time of substantially 3 seconds. However, this step should only be executed once per run.
  • step 91 which corresponds to step 44, the quality Q is reduced.
  • Steps 87, 88 and 91 are followed by a step 92, in which the process is stopped for a minimum dead time, the minimum dead time in the present embodiment being 100 ms.
  • step 89 the power of the signal S is reduced by a reduction factor which is advantageously between 2dB and 5dB, in particular at substantially 3dB.
  • step 89 is followed by a step 90 in which the entire run is stopped for a stop time of substantially 3 seconds.
  • Fig. 7 shows an embodiment for the query 82, according to which also query 41 can be implemented.
  • a query 95 is initially provided as to whether the power of the signal S generated by means of the microphone 30 at the examination frequency is greater than 750 ms greater than the power of the signal S produced by the microphone 30 of every other examination frequency. If the power of the signal S generated by means of the microphone 30 at the examination frequency is greater than 750 ms greater than the power of the signal S generated by the microphone 30 of every other examination frequency, the query 95 is followed by a query 96. Otherwise, the query 95 follows the query 93rd
  • the query 96 queries whether the power of the signal S generated by means of the microphone 30 at the examination frequency is not greater than 12 dB greater than the power of the signal S generated by the microphone 30 at the first harmonic (ie twice) of the examination frequency is. If the power of the signal S generated by means of the microphone 30 at the examination frequency is not greater than 12 dB greater than the power of the signal S generated by the microphone 30 at the first harmonic of the examination frequency, the query 96 is followed by a query 97. Otherwise, it follows the query 96 the query 93.
  • the query 97 queries whether the power of the signal S generated by the microphone 30 at the examination frequency is greater than 750 ms greater than a response threshold. If the power of the signal S generated by means of the microphone 30 at the examination frequency is greater than a response threshold for more than 750 ms, the query 97 follows the query 83. Otherwise, the query 95 is followed by the query 93.
  • the feedback detection according to the invention is not based on the embodiments Fig. 7 . Fig. 10 and Fig. 12 limited. It can be provided, for example, that the queries 52 and 63 follow the no outputs of the queries 50 and 61, respectively. In addition, it can be provided, the embodiments according to Fig. 7 . Fig. 10 and Fig. 12 with their binary decision logic by a fuzzy decision logic, so to replace fuzzy logic or neural networks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Description

  • Die Erfindung betrifft ein Verfahren sowie eine Einrichtung zum Betrieb von sprachunterstützten Systemen, wie Kommunikations- und/oder Sprech-/Gegensprecheinrichtungen in Kraftfahrzeugen, bei welchen über eine Mikrofonanordnung Sprachsignale aufgenommen und an mindestens einen Lautsprecher weitergegeben werden.
  • Verfahren dieser Art werden in Kraftfahrzeugen zum sprachunterstützten Gegensprechbetrieb oder zur Unterstützung von spracheingabegesteuerten elektronischen oder elektrischen Baugruppen eingesetzt. Die grundsätzliche Problematik hierbei ist, dass im Kraftfahrzeug je nach Betriebszustand eine entsprechende Geräuschkulisse vorhanden ist. Diese überdeckt die Sprachbefehle. Sprech- und Gegensprechanlagen in Kraftfahrzeugen sind überwiegend bei großen Fahrzeugen, Minibussen und dergleichen vorteilhaft. Sie können jedoch auch bei normalen Personenkraftwagen eingesetzt werden. Bei der Verwendung von sprachgesteuerten Eingabeeinheiten für elektrische Komponenten im Fahrzeug ist die Unterdrückung der Geräuschkulisse bzw. das Herausfiltern des Sprachbefehles noch von besonderer Bedeutung.
  • So ist aus der EP 0078014 B1 eine Spracherkennungseinrichtung für ein Kraftfahrzeug bekannt, bei welchem in das Verstärkersystem der Spracherkennungseinrichtung über Sensoren gemeldet bzw. eingespeist wird, ob der Motor in Betrieb ist und/oder sich das Fahrzeug bewegt. Danach richtet sich sodann eine Pegelbeeinflussung mit der versucht wird, den Sprachbefehl aus der Geräuschkulisse herauszufiltern.
  • Aus der WO 97/34290 ist eine Filterung bekannt, bei der periodische Störsignale ausgefiltert werden, indem deren Periode ermittelt und mittels Generator herausinterferiert wird, so dass das Sprachsignal übrig bleibt.
  • Aus der DE 197 05 471 A1 ist bekannt, eine Spracherkennung mit Hilfe einer Transversalfilterung zu unterstützen.
  • Aus der DE 41 06 405 C2 ist ein Verfahren bekannt, bei dem eine Geräuschsubtraktion vom Sprachsignal erfolgt, wobei eine Mehrzahl von Mikrofonen verwendet wird. Eine Gegensprecheinrichtung mit mehreren Mikrofonen offenbart ebenfalls die DE 199 58 836 A1 .
  • Aus der DE 39 25 589 A1 ist die Verwendung einer Mehrfachmikrofonanordnung bekannt, wobei bei Anwendung im Kraftfahrzeug eines der Mikrofone im Motorraum und ein weiteres im Fahrgastraum angeordnet ist. Sodann erfolgt eine Subtraktion beider Signale. Nachteilig ist hierbei, dass lediglich das Motorgeräusch bzw. das eigentliche Betriebsgeräusch des Fahrzeuges selbst vom Gesamtsignal im Fahrgastraum abgezogen wird. Spezifische Nebengeräusche werden hierbei unberücksichtigt gelassen. Ebenso fehlt eine Rückkopplungsunterdrückung. Überall dort, wo Mikrofone und Lautsprecher in akustisch ankoppelbarer Nähe angeordnet sind, kommt es vor, dass das am Lautsprecher ausgekoppelte akustische Signal wiederum in das Mikrofon rückeinspeist. Es kommt zu einer sogenannten Rückkopplung und einer darauf folgenden Übersteuerung. Lösungen zur Vermeidung einer solchen Übersteuerung sind aus der EP 1 077 013 B1 , der WO 02/069487 A1 sowie der WO 02/21817 A2 bekannt.
  • Aus der EP 0 903 726 A2 ist ein aktives Störgeräusch- und Echounterdrückungssystem bekannt, wobei aus einem Mikrofonsignal eine Sinuswelle oder eine mehrfache Sinuswelle erzeugt wird, mittels derer die Filterfrequenzen eines Filters eingestellt unmittelbar eingestellt werden.
  • Aus der WO 02/21817 A2 ist eine Methode und ein System zur Eliminierung einer akustischen Rückkopplung bekannt, wobei ein von einem Mikrofon aufgenommener aktueller Wert bei einer bestimmten Untersuchungsfrequenz mit einem vorhergehend aufgenomenen Wert derselben Untersuchtungsfrequenz verglichen wird. Das Ergebnis dieses Vergleichs bestimmt die Parameter eines Band-Passfilters.
  • Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren sowie eine Einrichtung der gattungsgemässen Art dahingehend weiterzubilden, dass die verbale Kommunikation der Insassen eines Fahrzeug verbessert wird.
  • Diese Aufgabe wird durch ein Verfahren gemäß Patentanspruch 1 und eine Einrichtung gemäß Patentanspruch 28 gelöst. Dabei wird zum Betrieb eines sprachunterstützten Systems, wie eine Kommunikations- und/oder Sprech-/Gegensprecheinrichtung in einem Kraftfahrzeug, mit zumindest einem Mikrofon und zumindest einem Lautsprecher zur Wiedergabe eines mittels des Mikrofons erzeugten Signals sowie einem zwischen dem Mikrofon und dem Lautsprecher angeordneten Bandpass-Filter das Bandpass-Filter in Abhängigkeit eines Vergleichs der Leistung des mittels des Mikrofons erzeugten Signals bei einer Untersuchungsfrequenz mit der Leistung des mittels des Mikrofons erzeugten Signals bei zumindest einer im wesentlichen ganzzahligen Vielfachen, also einer im wesentlichen Harmonischen, der Untersuchungsfrequenz eingestellt. Als Untersuchungsfrequenz kommen eine oder mehrere Frequenzen des mittels des Mikrofons erzeugten Signals in Frage. In vorteilhafter Ausgestaltung der Erfindung wird dabei die Frequenz als Untersuchungsfrequenz ausgewählt, bei der die Leistung des mittels des Mikrofons erzeugten Signals im wesentlichen maximal ist. Alternativ werden mehrere Frequenzanteile mit großen Leistungen als Untersuchungsfrequenzen ausgewählt.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter sowohl in Abhängigkeit eines Vergleichs der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz mit der Leistung des mittels des Mikrofons erzeugten Signals bei zumindest einer im wesentlichen ganzzahligen Vielfachen der Untersuchungsfrequenz als auch in Abhängigkeit eines Vergleichs der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz mit der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz zu zumindest einem früheren Zeitpunkt eingestellt.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals mit einer Sperrfrequenz (nur dann) sperrt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz um mehr als einen oberen Grenzwert größer ist als die Leistung des mittels des Mikrofons erzeugten Signals bei der ersten Harmonischen der Untersuchungsfrequenz. Sperrfrequenz im Sinne der Erfindung kann auch ein Frequenzbereich und nicht nur eine einzelne Frequenz sein.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung liegt der obere Grenzwert zwischen 20 und 40dB. Verteilhafterweise beträgt der obere Grenzwert im wesentlichen 30dB.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals mit der Sperrfrequenz nicht sperrt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz um weniger als einen unteren Grenzwert größer ist als die Leistung des mittels des Mikrofons erzeugten Signals bei der ersten Harmonischen der Untersuchungsfrequenz.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung liegt der untere Grenzwert zwischen 5 und 20dB. Vorteilhafterweise beträgt der untere Grenzwert im wesentlichen 12dB.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird mittels eines Vergleichs der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz mit der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz zu zumindest früheren Zeitpunkten entschieden, ob die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz exponentiell ansteigt.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei der Sperrfrequenz sperrt, wenn entschieden wird, dass die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz exponentiell ansteigt.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals mit der Sperrfrequenz (nur dann) sperrt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz länger als eine erste Ansprechzeit größer als eine Ansprechschwelle ist, wobei die erste Ansprechzeit vorteilhaftereise größer als im wesentlichen 750ms ist.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird die Leistung bei mehr als einer Untersuchungsfrequenz ermittelt und das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals mit der Sperrfrequenz nur sperrt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei einer Untersuchungsfrequenz länger als eine zweite Ansprechzeit größer ist als die Leistung des mittels des Mikrofons erzeugten Signals bei jeder anderen Untersuchungsfrequenz, wobei die zweite Ansprechzeit vorteilhaftereise größer als im wesentlichen 750ms ist.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird die Einstellung des Bandpass-Filters bezüglich der Untersuchungsfrequenz frühestens nach Ablauf einer Mindest-Totzeit wiederholt. Die Mindest-Totzeit beträgt vorteilhafterweise 200ms bis 300ms.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einem Frequenzbereich um die Sperrfrequenz sperrt, wenn nach Ablauf einer Wiederholungszeit, die größer als die Mindest-Totzeit ist, die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz um mehr als den oberen Grenzwert größer ist als die Leistung des mittels des Mikrofons erzeugten Signals bei der im wesentlichen ersten Harmonischen der Untersuchungsfrequenz und/oder wenn entschieden wird, dass die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz exponentiell ansteigt.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einem vergrößerten Frequenzbereich um die Sperrfrequenz sperrt, wenn nach Ablauf einer Wiederholungszeit, die größer als die Mindest-Totzeit ist, die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz um mehr als den oberen Grenzwert größer ist als die Leistung des mittels des Mikrofons erzeugten Signals bei der im wesentlichen ersten Harmonischen der Untersuchungsfrequenz und/oder wenn entschieden wird, dass die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz exponentiell ansteigt.
  • Sperrfrequenz Im Sinne der Erfindung kann die Untersuchungsfrequenz sein, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist. In vorteilhafter Ausgestaltung der Erfindung ist die Sperrfrequenz jedoch die mit einer Korrekturfrequenz addierte Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, d.h. zu der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, wird eine Korrekturfrequenz addiert. Diese Korrekturfrequenz wird vorteilhafterweise in
  • Abhängigkeit der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, sowie der Leistung des mittels des Mikrofons erzeugten Signals bei zumindest einer, insbesondere unmittelbar, neben dieser Untersuchungsfrequenz liegenden Untersuchungsfrequenz gebildet.
  • So kann die Korrekturfrequenz beispielsweise gemäß fkorr = sign * fdist * Pmaxneigh / Pmax + Pmaxneigh
    Figure imgb0001
    gebildet werden, wobei
    • fkorr die Korrekturfrequenz,
    • fdist der Abstand zwischen der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und einer die größte Leistung aufweisenden Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist,
    • Pmax die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist (Pmax ist also die Leistung bei der Untersuchungsfrequenz, die größer ist als die Leistung jeder anderen Untersuchungsfrequenz),
    • Pmaxneigh die Leistung des mittels des Mikrofons erzeugten Signals bei der die größte Leistung aufweisende
      Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und
    • sign ein Vorzeichen
    ist, wobei sign positiv ist, wenn die die größte Leistung aufweisende Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, größer ist als die Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und wobei sign sonst negativ ist.
  • Dies ist anhand von folgendem Beispiel näher erläutert:
    • Es werden 192 Untersuchungsfrequenzen f1, f2, .... f192 angenommen. f1 ist gleich 40Hz. fdist ist für alle Untersuchungsfrequenzen 40Hz. Zudem gilt für die Leistungen des mittels des Mikrofons erzeugten Signals bei den Untersuchungsfrequenzen f1, f2, f192: P f 1 , f 2 , .... f 94 = 1
      Figure imgb0002
      P f 95 = 4
      Figure imgb0003
      P f 96 = 16
      Figure imgb0004
      P f 97 = 2
      Figure imgb0005
      P f 98 , f 99 , .... f 192 = 1
      Figure imgb0006
  • Dann gilt: fkorr = * 40 Hz * 4 / 16 + 2 = 8 Hz
    Figure imgb0007
  • Die Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, ist somit 3840Hz und die Sperrfrequenz 3832Hz.
  • Es hat sich zumindest bei bestimmten Ausführungsformen als vorteilhaft erwiesen, die Korrekturfrequenz gemäß fkorr = Δf * Pneighright Pneighleft / Pmax + Pneighright Pneighleft
    Figure imgb0008
    zu bilden, wobei
    • fkorr die Korrekturfrequenz,
    • Δf der Abstand zwischen zwei Untersuchungsfrequenzen,
    • Pmax die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist,
    • Pneighright die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz unmittelbar oberhalb (also rechts' neben) der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und
    • Pneighleft die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz unmittelbar unterhalb (also links' neben) der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist,
    ist.
  • Unter Zugrundelegung obigen Zahlenbeispiels gilt somit in diesem Fall: fkorr = 40 Hz * 2 4 / 16 + 4 2 = 4 , 44 Hz
    Figure imgb0009
  • Die Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, ist somit 3840Hz und die Sperrfrequenz 3835,56Hz.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung sind die Abstände zwischen zumindest einem Teil der Untersuchungsfrequenzen oder allen Untersuchungsfrequenzen äquidistant.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird ein Vorliegen von Rückkopplung nur dann festgestellt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, um mehr als einen oberen Grenzwert größer ist als die Leistung des mittels des Mikrofons erzeugten Signals bei der ersten Harmonischen dieser Untersuchungsfrequenz, wobei der obere Grenzwert vorteilhafterweise zwischen 20 und 40dB, insbesondere bei im wesentlichen 30dB, liegt.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird Nichtvorliegen von Rückkopplung festgestellt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, um weniger als einen unteren Grenzwert größer ist als die Leistung des mittels des Mikrofons erzeugten Signals bei der ersten Harmonischen dieser Untersuchungsfrequenz, wobei der untere Grenzwert vorteilhafterweise zwischen 5 und 20dB, insbesondere bei im wesentlichen 12dB, liegt.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird ein Vorliegen von Rückkopplung (nur) dann festgestellt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, zumindest näherungsweise, exponentiell ansteigt.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird ein Vorliegen von Rückkopplung (nur) dann festgestellt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei zumindest einer Untersuchungsfrequenz länger als eine erste Ansprechzeit größer als eine Ansprechschwelle ist. Die erste Ansprechzeit ist vorteilhafterweise größer als im wesentlichen 750ms. Die Ansprechschwelle kann abhängig von der Leistung des Signals S bzw. von der Summe der Leistungen aller Untersuchungsfrequenzen gewählt werden.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird ein Vorliegen von Rückkopplung (nur) dann festgestellt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei zumindest einer Untersuchungsfrequenz länger als eine erste Ansprechzeit größer als die Leistung des mittels des Mikrofons erzeugten Signals bei jeder anderen Untersuchungsfrequenz ist. Die zweite Ansprechzeit ist vorteilhafterweise größer als im wesentlichen 750ms.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird die Einstellung des Bandpass-Filters frühestens nach Ablauf einer Mindest-Totzeit wiederholt, die vorteilhafterweise zwischen 100ms bis 300ms beträgt.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung wird die Leistung des mittels des Mikrofons erzeugten Signals bei zumindest 50, insbesondere bei 150 bis 300, Untersuchungsfrequenzen bestimmt.
  • In weiterhin vorteilhafter Ausgestaltung der Erfindung ist das Bandpass-Filter ein Notchfilter oder eine Filterbank mit zumindest einem Notchfilter. Die Filterbank kann z.B. 10 Notchfilter umfassen.
  • Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen. Dabei zeigen:
  • Fig. 1
    ein Kraftfahrzeug,
    Fig. 2
    ein Ausführungsbeispiel für eine erfindungsgemäße Einrichtung,
    Fig. 3
    ein Notchfilter,
    Fig. 4
    eine Filterbank,
    Fig. 5
    ein Ausführungsbeispiel für einen in einer Entscheidungslogik implementierten Ablaufpan,
    Fig. 6
    ein Leistung-Frequenz-Diagramm,
    Fig. 7
    ein Ausführungsbeispiel für Abfrage 41, in Fig. 5,
    Fig. 8
    ein Leistung-Frequenz-Diagramm,
    Fig. 9
    ein Leistung-Frequenz-Diagramm,
    Fig. 10
    ein weiteres Ausführungsbeispiel für Abfrage 41 in Fig. 5,
    Fig. 11
    ein weiteres Ausführungsbeispiel für einen in einer Entscheidungslogik implementierten Ablaufpan,
    Fig. 12
    ein Ausführungsbeispiel für die Abfragen 41 und 82,
  • Fig. 1 zeigt die Innenansicht eines Kraftfahrzeugs 1 von oben. Dabei bezeichnen Bezugszeichen 2 und 3 die Vordersitze und Bezugzeichen 4, 5 und 6 die Rücksitze des Kraftfahrzeugs. Bezugszeichen 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 und 20 bezeichnen Lautsprecher. Bezugszeichen 21, 22, 23 und 24 bezeichnen Mikrofone. Die Lautsprecher 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 und 20 sind gehören teilweise zu einer Musikanlage und teilweise zu einer Kommunikations- bzw. Sprech-/Gegensprecheinrichtung. Sie können auch von beiden Systemen genutzt werden.
  • Im vorliegenden Ausführungsbeispiel geben die Lautsprecher 9, 17, 18, 19, 20 ein von dem Mikrofon 21 erzeugtes Signal, die Lautsprecher 7, 17, 18, 19, 20 ein von dem Mikrofon 22 erzeugtes Signal, die Lautsprecher 7, 9, 19, 20 ein von dem Mikrofon 23 erzeugtes Signal und die Lautsprecher 7, 9, 17, 18 ein von dem Mikrofon 24 erzeugtes Signal aus. Auf diese Weise wird die Möglichkeit verbaler Kommunikation in einem Kraftfahrzeug unterstützt. Dabei ist die Kommunikation prinzipiell umso besser je stärker ein Signal zwischen einem der Mikrofone 21, 22, 23, 24 und einem der Lautsprecher 7, 9, 17, 18, 19, 20 verstärkt wird. Begrenzt wird die Möglichkeit einer solchen Verstärkung jedoch durch mögliche Rückkopplungseffekte bedingt durch mittels eines Lautsprechers 7, 9, 17, 18, 19, 20 ausgestrahlten Schalls, der durch ein Mikrofon 21, 22, 23, 24 empfangen und anschließend verstärkt und durch den Lautsprecher 7, 9, 17, 18, 19, 20 ausgestrahlt wird.
  • Zur Verminderung einer solchen Rückkopplung ist gemäß Fig. 2 zwischen einem Mikrofon 30, das eines der Mikrofone 21, 22, 23, 24 sein kann, und einem Lautsprecher 31, der einer der Lautsprecher 7, 9, 17, 18, 19, 20 sein kann, ein Bandpass-Filter 32 vorgesehen. Dieses filtert ein von dem Mikrofon 30 erzeugtes Signal S und liefert ein gefiltertes Signal S', bei dem bestimmte Frequenzbereiche herausgefiltert sind, für die eine Entscheidungslogik 33 die Gefahr von Rückkopplungen erkannt hat. Dazu ermittelt die Entscheidungslogik 33 Filterparameter fc und Q mittels derer das Bandpass-Filter 32 eingestellt wird.
  • Zur Verstärkung des Signals S und/oder des Signals S' können nicht dargestellte Verstärker vorgesehen werden. Die Verstärkerfunktion kann jedoch auch durch das Bandpass-Filter übernommen werden.
  • Fig. 3 zeigt die Kennlinie eines als Notchfilter ausgeführten Bandpass-Filters, wobei die Verstärkung V des Bandpass-Filters über die Frequenz f aufgetragen ist. Dabei bezeichnet fc die Mittenfrequenz des Bandpass-Filters und Q dessen Güte. Zum Filtern mehrerer Frequenzbereiche ist das Bandpass-Filter 32 in vorteilhafter Weise als Filterbank, wie in Fig. 4 dargestellt, ausgeführt. Die Filterbank umfasst vorteilhafterweise bis zu 10 Notchfilter.
  • Fig. 5 zeigt ein Ausführungsbeispiel für einen in einer Entscheidungslogik 33 implementierten Ablaufpan. Dabei wird zunächst in einem Schritt 40 eine Untersuchungsfrequenz bestimmt. Dazu wird die Frequenz f des Signals S analysiert und, wie beispielhaft in Fig. 6 dargestellt, die Leistung P des Signals S an, z.B. 192, verschiedenen Untersuchungsfrequenzen fn, fn+1, fn+2, fn+3, fn+4, fn+5, fn+6, fn+7, fn+8 ermittelt, die z.B. 40Hz auseinander liegen. Für die Untersuchungsfrequenz fn+5, bei der die Leistung maximal ist, wird nachfolgender Ablauf durchlaufen. Es ist jedoch auch möglich, den folgenden Ablauf für mehr als eine Untersuchungsfrequenz zu durchlaufen.
  • Es hat sich als vorteilhaft erwiesen, die Leistung bei den Untersuchungsfrequenzen fn, fn+1, fn+2, fn+3, fn+4, fn+5, fn+6, fn+7, fn+8 zeitlich zu mitteln, d.h. einen Mittelwert über die Zeit zu bilden, und diesen zeitlichen Mittelwert der Leistung anstelle der aktuellen Leistung des Signals S an den Untersuchungsfrequenzen fn, fn+1, fn+2, fn+3, fn+4, fn+5, fn+6, fn+7, fn+8 zu untersuchen. Sofern in der Beschreibung und den Ansprüchen die Leistung des Signals S erwähnt ist, kann dieses somit auch den über einen gewissen Zeitraum gebildeten Mittelwert der Leistung umfassen. Ferner kann der Begriff der Leistung im Sinne der Erfindung die Amplitude oder deren zeitlichen Mittelwert umfassen. Umfasst im Sinne der Erfindung sollen auch weitere Abwandlungen der Leistung, der Amplitude oder deren zeitlichen Mittelwerte sein, wie etwa normierte Größen. So kann z.B. unter der Leistung des Signals S bei einer Untersuchungsfrequenz fn im Sinne der Erfindung der Wert der Leistung des Signals S bei dieser Untersuchungsfrequenz fn geteilt durch die Summe der Leistung des Signals S bei allen Untersuchungsfrequenzen fn, fn+1, fn+2, fn+3, fn+4, fn+5, fn+6, fn+7, fn+8 zu verstehen sein.
  • Dem Schritt 40 folgt eine Abfrage 41, ob die Gefahr der Rückkopplung besteht. Einzelheiten dieser Abfrage sind bezüglich Fig. 7 und 10 ausgeführt. Sofern die Gefahr der Rückkopplung besteht, folgt der Abfrage 41 eine Abfrage 42, ob das von dem Mikrofon 30 erzeugte Signal S bereits mittels des Bandpass-Filters um Signalanteile um die Untersuchungsfrequenz herum reduziert worden ist.
  • Wird das von dem Mikrofon 30 erzeugte Signal S nicht bereits mittels des Bandpass-Filters um Signalanteile um die Untersuchungsfrequenz herum reduziert, so folgt der Abfrage 42 ein Schritt 43, in dem die Filterparameter, d.h. die Mittenfrequenz fc und die Güte Q des Bandpass-Filters, erzeugt werden. Die Mittenfrequenz fc ist ein Beispiel für die Sperrfrequenz im Sinne der Ansprüche. Die Sperrfrequenz im Sinne der Ansprüche kann aber auch insbesondere der Frequenzbereich um die Mittenfrequenz fc sein, den das Bandpass-Filter tatsächlich aus dem von dem Mikrofon 30 erzeugten Signal S herausfiltert.
  • Die Mittenfrequenz fc kann z.B. gleich der Untersuchungsfrequenz gesetzt werden. In vorteilhafter Ausgestaltung der Erfindung ist die Mittenfrequenz fc jedoch die mit einer Korrekturfrequenz addierte Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, d.h. zu der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, wird eine Korrekturfrequenz addiert. Diese Korrekturfrequenz wird vorteilhafterweise in Abhängigkeit der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, sowie der Leistung des mittels des Mikrofons erzeugten Signals bei zumindest einer neben dieser Untersuchungsfrequenz liegenden Untersuchungsfrequenz gebildet. So kann die Korrekturfrequenz beispielsweise gemäß fkorr = sign * fdist * Pmaxneigh / Pmax + Pmaxneigh
    Figure imgb0010
    gebildet werden, wobei
    • fkorr die Korrekturfrequenz,
    • fdist der Abstand zwischen der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und einer die größte Leistung aufweisenden Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist,
    • Pmax die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist,
    • Pmaxneigh die Leistung des mittels des Mikrofons erzeugten Signals bei der die größte Leistung aufweisenden Unter-suchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und
    • sign ein Vorzeichen
    ist, wobei sign positiv ist, wenn die die größte Leistung aufweisende Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, größer ist als die Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und wobei sign sonst negativ ist.
  • Im vorliegenden Ausführungsbeispiel wird die Korrekturfrequenz gemäß fkorr = Δf * Pneighright Pneighleft / Pmax + Pneighright Pneighleft
    Figure imgb0011
    gebildet, wobei
    • fkorr die Korrekturfrequenz,
    • Δf der Abstand zwischen zwei Untersuchungsfrequenzen,
    • Pmax die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist,
    • Pneighright die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz unmittelbar oberhalb der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und
    • Pneighleft die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz unmittelbar unterhalb der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist,
    ist.
  • Die Güte Q wird auf einen vorgegebenen Wert von z.B. 1/40Hz eingestellt.
  • Dem Schritt 43 folgt die Abfrage 45, ob das Programm beendet werden soll. Soll das Programm nicht beendet werden, so folgt der Abfrage 45 der Schritt 40. Andernfalls wird das Programm beendet.
  • Wird das von dem Mikrofon 30 erzeugte Signal S bereits mittels des Bandpass-Filters um Signalanteile um die Untersuchungsfrequenz herum reduziert, so folgt der Abfrage 43 ein Schritt 44, in dem die Güte Q verringert wird. Dadurch wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einem vergrößerten Frequenzbereich um die Mittenfrequenz fc herum sperrt. Dem Schritt 44 folgt der Schritt 40.
  • Sofern keine Gefahr der Rückkopplung besteht, folgt der Abfrage 41 die Abfrage 45 oder optional ein Schritt 46, in dem das Filtern des von dem Mikrofon 30 erzeugten Signals S um die Untersuchungsfrequenz herum beendet wird.
  • In besonders vorteilhafter Ausgestaltung ist vorgesehen, dass die Abfrage 41 frühestens nach Ablauf einer Mindest-Totzeit wiederholt wird, wobei die Mindest-Totzeit im vorliegenden Ausführungsbeispiel 200ms bis 300ms beträgt.
  • Fig. 7 zeigt ein Ausführungsbeispiel für die Abfrage 41. Dabei ist zunächst eine Abfrage 50 vorgesehen, ob die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz um nicht weniger als ein unterer Grenzwerts größer ist als die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der ersten Harmonischen (also dem Zweifachen) der Untersuchungsfrequenz. Der untere Grenzwert Δ1 liegt beispielsweise zwischen 5 und 20dB. Vorteilhafterweise beträgt der untere Grenzwert Δ1 im wesentlichen 12dB. Diese Abfrage verdeutlicht beispielhaft Fig. 8, wobei fH0 die Untersuchungsfrequenz, fH1, fH2, fH3 und fH4 die erste, zweite, dritte und vierte Harmonische der Untersuchungsfrequenz und f die erste Subharmonische der Untersuchungsfrequenz bezeichnen. Mit P ist die Leistung bei einer Frequenz f bezeichnet. Mit Abfrage 50 wird somit abgefragt, ob P f H 0 P f H 1 Δ 1
    Figure imgb0012
  • Gegebenenfalls kann vorgesehen werden, Abfrage 50 um eine oder mehrere der Abfragen P f H 0 P f H 1 / 2 Δ 1
    Figure imgb0013
    P f H 0 P f H 2 Δ 1
    Figure imgb0014
    P f H 0 P f H 3 Δ 1
    Figure imgb0015
    P f H 0 P f H 4 Δ 1
    Figure imgb0016
    zu ergänzen, wobei gegebenenfalls auch andere Grenzwerte gewählt werden können.
  • Die Untersuchungsfrequenzen fn, fn+1, fn+2, fn+3, fn+4, fn+5, fn+6, fn+7, fn+8 in Fig. 6 sind von den Subharmonischen/Harmonischen f, fH1, fH2, fH3 und fH4 in Fig. 8 bzw. Fig. 9 zu unterscheiden. Werden z.B. 192 Untersuchungsfrequenzen f1, f2, .... f192 angenommen, die 40Hz auseinanderliegen, wobei f1 gleich 40Hz ist, und ist f44 = fH0, also die Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons 30 erzeugten Signals S maximal ist, so ist fH1 = f88 und fH2 = f122.
  • Ist die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz um nicht weniger als ein unterer Grenzwert Δ1 größer als die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der ersten Harmonischen der Untersuchungsfrequenz, so folgt der Abfrage 50 eine Abfrage 51. Mittels der Abfrage 51 wird abgefragt, ob die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz um nicht weniger als ein oberer Grenzwert Δ2 größer ist als die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der ersten Harmonischen der Untersuchungsfrequenz. Der obere Grenzwert Δ2 liegt beispielsweise zwischen 20 und 40dB. Vorteilhafterweise beträgt der obere Grenzwert Δ2 im wesentlichen 30dB. Diese Abfrage verdeutlicht beispielhaft Fig. 9, wobei wiederum fH0 die Untersuchungsfrequenz, fH1, fH2, fH3 und fH4 die erste, zweite, dritte und vierte Harmonische der Untersuchungsfrequenz und f die erste Subharmonische der Untersuchungsfrequenz bezeichnen. Mit P ist wiederum die Leistung bei einer Frequenz f bezeichnet. Mit Abfrage 51 wird somit abgefragt, ob P f H 0 P f H 1 Δ 2
    Figure imgb0017
  • Gegebenenfalls kann vorgesehen werden, Abfrage 51 um eine oder mehrere der Abfragen P f H 0 P f H 1 / 2 Δ 2
    Figure imgb0018
    P f H 0 P f H 2 Δ 2
    Figure imgb0019
    P f H 0 P f H 3 Δ 2
    Figure imgb0020
    P f H 0 P f H 4 Δ 2
    Figure imgb0021
    zu ergänzen, wobei gegebenenfalls auch andere Grenzwerte gewählt werden können.
  • Ist die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz nicht um mehr als einen oberen Grenzwert Δ2 größer als die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der ersten Harmonischen der Untersuchungsfrequenz, so folgt der Abfrage 51 eine Abfrage 52, mittels der durch Vergleich der Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz mit der Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz zu zumindest einem früheren Zeitpunkt abgefragt wird, ob die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz exponentiell ansteigt.
  • Fig. 10 zeigt ein weiteres Ausführungsbeispiel für die Abfrage 41. Dabei ist zunächst eine Abfrage 60 vorgesehen, ob die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz größer ist als ein vorgegebner Grenzwert. In diesem Fall folgt eine Abfrage 61, die der Abfrage 50 entspricht. Die Abfragen 62 und 63 entsprechen den Abfragen 51 und 52.
  • Fig. 11 zeigt ein bevorzugtes Ausführungsbeispiel für einen in der Entscheidungslogik 33 implementierten Ablaufpan. Der Ablauf beginnt mit einem Schritt 81, der dem Schritt 40 in Fig. 5 entspricht. Dem Schritt 81 folgt eine der Abfrage 41 in Fig. 5 entsprechende Abfrage 82, ob die Gefahr der Rückkopplung besteht. Ausführungsbeispiele für die Abfrage 82 zeigen Fig. 7 und Fig. 10. Im Zusammenhang mit dem Ausführungsbeispiel in Fig. 11 hat sich eine Implementierung einer Rückkopplungs-Erkennung (Abfrage 82), wie in Fig. 12 näher erläutert ist, als vorteilhaft herausgestellt.
  • Sofern nicht die Gefahr der Rückkopplung besteht bzw. festgestellt wird, folgt der Abfrage 82 eine der Abfrage 45 entsprechende Abfrage 83, ob das Programm beendet werden soll. Soll das Programm nicht beendet werden, so folgt der Abfrage 93 der Schritt 81. Andernfalls wird das Programm beendet.
  • Sofern die Gefahr der Rückkopplung besteht, folgt der Abfrage 82 eine der Abfrage 42 entsprechende Abfrage 83, ob das von dem Mikrofon 30 erzeugte Signal S bereits mittels des Bandpass-Filters um Signalanteile um die Untersuchungsfrequenz herum reduziert wird. Wird das von dem Mikrofon 30 erzeugte Signal S bereits mittels des Bandpass-Filters um Signalanteile um die Untersuchungsfrequenz herum reduziert, so folgt der Abfrage 83 eine Abfrage 85 andernfalls eine Abfrage 84.
  • Mittels der Abfrage 84 wird abgefragt, ob ein Notchfilter zur Verfügung steht. Steht ein Notchfilter zur Verfügung, so folgt der Abfrage 84 ein dem Schritt 43 entsprechender Schritt 88, in dem die Filterparameter, d.h. für das konkrete Ausführungsbeispiel die Mittenfrequenz fc und die Güte Q des Bandpass-Filters, erzeugt werden. Ergibt die Abfrage 84 dagegen, dass kein Notchfilter zur Verfügung steht, so folgt der Abfrage 84 ein Schritt 86, in dem die Leistung des Signals S um einen Verringerungsfaktur, der vorteilhafterweise zwischen 2dB und 5dB, insbesondere bei im wesentlichen 3dB, liegt, verringert wird. Dem Schritt 86 folgt ein Schritt 87, in dem der gesamte Durchlauf für eine Anhaltezeit von im wesentlichen 3s gestoppt wird. Dieser Schritt soll jedoch nur einmal pro Durchlauf ausgeführt werden.
  • Mittels der Abfrage 85 wird abgefragt, ob durch eine weitere Aufweitung des Frequenzbereichs, in dem das Bandpass-Filter sperrt, also durch weitere Verringerung von dessen Güte Q, eine vorbestimmte Minimalgüte unterschritten werden würde. Würde durch eine weitere Aufweitung des Frequenzbereichs eine vorbestimmte Minimalgüte unterschritten werden, so folgt der Abfrage 85 ein Schritt 89, andernfalls ein Schritt 91. Im Schritt 91, der dem Schritt 44 entspricht, wird die Güte Q verringert.
  • Den Schritten 87, 88 und 91 folgt ein Schritt 92, in dem der Ablauf eine Mindest-Totzeit lang angehalten wird, wobei die Mindest-Totzeit im vorliegenden Ausführungsbeispiel 100ms beträgt.
  • In dem Schritt 89 wird die Leistung des Signals S um einen Verringerungsfaktur, der vorteilhafterweise zwischen 2dB und 5dB, insbesondere bei im wesentlichen 3dB, liegt, verringert. Dem Schritt 89 folgt ein Schritt 90, in dem der gesamte Durchlauf für eine Anhaltezeit von im wesentlichen 3s gestoppt wird.
  • Fig. 7 zeigt ein Ausführungsbeispiel für die Abfrage 82, gemäß dem auch Abfrage 41 implementiert werden kann. Dabei ist zunächst eine Abfrage 95 vorgesehen, ob die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz länger als 750ms größer ist als die Leistung des mittels des Mikrofons 30 erzeugten Signals S jeder anderen Untersuchungsfrequenz ist. Ist die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz länger als 750ms größer ist als die Leistung des mittels des Mikrofons 30 erzeugten Signals S jeder anderen Untersuchungsfrequenz, so folgt der Abfrage 95 eine Abfrage 96. Andernfalls folgt der Abfrage 95 die Abfrage 93.
  • Mittels der Abfrage 96 wird abgefragt, ob die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz um nicht weniger als 12dB größer ist als die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der ersten Harmonischen (also dem Zweifachen) der Untersuchungsfrequenz ist. Ist die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz um nicht weniger als 12dB größer ist als die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der ersten Harmonischen der Untersuchungsfrequenz, so folgt der Abfrage 96 eine Abfrage 97. Andernfalls folgt der Abfrage 96 die Abfrage 93.
  • Mittels der Abfrage 97 wird abgefragt, ob die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz länger als 750ms größer als eine Ansprechschwelle ist. Ist die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz länger als 750ms größer als eine Ansprechschwelle so folgt der Abfrage 97 die Abfrage 83. Andernfalls folgt der Abfrage 95 die Abfrage 93.
  • Die erfindungsgemäße Rückkopplungserkennung ist nicht auf die Ausführungsformen gemäß Fig. 7, Fig. 10 und Fig. 12 beschränkt. Es kann z.B. vorgesehen werden, dass die Abfragen 52 bzw. 63 den nein-Ausgängen der Abfragen 50 bzw. 61 folgen. Zudem kann vorgesehen werden, die Ausführungsformen gemäß Fig. 7, Fig. 10 und Fig. 12 mit ihrer binären Entscheidungslogik durch eine unscharfe Entscheidungslogik, also Fuzzy-Logik oder neuronale Netze zu ersetzen. BEZUGSZEICHENLISTE
    1 Kraftfahrzeug
    2, 3 Vordersitze
    4, 5, 6 Rücksitze
    7, 8, 9, 10, 11, 12,
    13, 14, 15, 16, 17,
    18, 19, 20, 31 Lautsprecher
    21, 22, 23, 24, 30 Mikrofone
    32 Bandpass-Filter
    33 Entscheidungslogik
    40, 41, 43, 44, 46, 81,
    84, 86, 87, 88, 89, 90
    91, 92 Schritte
    41, 42, 45, 50, 51, 52,
    60, 61, 62, 63, 82, 83,
    84, 85, 93, 95, 96, 97 Abfragen
    f Frequenz
    fH0 Untersuchungsfrequenz
    fH1 erste Harmonische der Untersuchungsfrequenz
    fH2 zweite Harmonische der Untersuchungsfrequenz
    fH3 dritte Harmonische der Untersuchungsfrequenz
    fH4 vierte Harmonische der Untersuchungsfrequenz
    f erste Subharmonische der Untersuchungsfrequenz
    fn, fn+1, fn+2, fn+3, fn+4,
    fn+5, fn+6, fn+7, fn+8, f1,.
    f2,. f44,. f88,. f94,. f95,
    f97,.f f98,. f122,. f192 Frequenzpunkte
    fc Mittenfrequenz
    fdist Abstand zwischen der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und einer die größte Leistung aufweisenden Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist
    fkorr Korrekturfrequenz
    Q Güte
    P Leistung
    Pmax Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist
    Pmaxneigh Leistung des mittels des Mikrofons erzeugten Signals bei der die größte Leistung aufweisende Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist
    Pneighleft Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz unmittelbar unterhalb der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist
    Pneighright Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz unmittelbar oberhalb der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist
    S Signal
    S' gefiltertes Signal
    sign Vorzeichen
    V Verstärkung
    Δ1 unterer Grenzwert
    Δ2 oberer Grenzwert
    Δf Abstand zwischen zwei Untersuchungsfrequenzen

Claims (29)

  1. Verfahren zum Betrieb eines sprachunterstützten Systems, wie eine Kommunikations- und/oder Sprech-/Gegensprecheinrichtung in einem Kraftfahrzeug (1), mit zumindest einem Mikrofon (30) und zumindest einem Lautsprecher (31) zur Wiedergabe eines mittels des Mikrofons (30) erzeugten Signals (S) sowie einem zwischen dem Mikrofon (30) und dem Lautsprecher (31) angeordneten Bandpass-Filter (32),
    dadurch gekennzeichnet, dass
    das Bandpass-Filter (32) in Abhängigkeit eines Vergleichs der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei einer Untersuchungsfrequenz (fn+5), bei der die Leistung des mittels des Mikrofons erzeugten Signals im Wesentlichen maximal ist, mit der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei zumindest einer im Wesentlichen ganzzahligen Vielfachen der Untersuchungsfrequenz (fn+5) eingestellt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Bandpass-Filter (32) in Abhängigkeit eines Vergleichs der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei, der Untersuchungsfrequenz (fn+5) mit der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5) zu zumindest einem früheren Zeitpunkt eingestellt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) bei einer Sperrfrequenz sperrt, wenn die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5) um mehr als einen oberen Grenzwert (Δ2) größer ist als die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der ersten Harmonischen der Untersuchungsfrequenz (fn+5).
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der obere Grenzwert (Δ2) zwischen 20 und 40dB liegt.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der obere Grenzwert (A2) im wesentlichen 30dB beträgt.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) mit der Sperrfrequenz nicht sperrt, wenn die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5) um weniger als einen unteren Grenzwert (Δ1) größer ist als die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der ersten Harmonischen der Untersuchungsfrequenz (fn+5).
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der untere Grenzwert (Δ1) zwischen 5 und 20dB liegt.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der untere Grenzwert (Δ1) im wesentlichen 12dB beträgt.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mittels eines Vergleichs der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5) mit der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5) zu zumindest früheren Zeitpunkten entschieden wird, ob die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5) exponentiell ansteigt.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) bei der Sperrfrequenz sperrt, wenn entschieden wird, dass die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5) exponentiell ansteigt.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) mit der Sperrfrequenz nur sperrt, wenn die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5) länger als eine erste Ansprechzeit größer als eine Ansprechschwelle ist.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der die erste Ansprechzeit größer als im wesentlichen 750ms ist.
  13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leistung bei mehr als einer Untersuchungsfrequenz (fn, fn+1, fn+2, fn+3, fn+4, fn+5, fn+6, fn+7, fn+8) ermittelt wird und dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) mit der Sperrfrequenz nur sperrt, wenn die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei einer Untersuchungsfrequenz (fn+5) länger als eine zweite Ansprechzeit größer ist als die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei jeder anderen Untersuchungsfrequenz (fn, fn+1, fn+2, fn+3, fn+4, fn+6, fn+7, fn+8).
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der die zweite Ansprechzeit größer als im wesentlichen 750ms ist.
  15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einstellung des Bandpass-Filters (32) bezüglich der Untersuchungsfrequenz (fn+5) frühestens nach Ablauf einer Mindest-Totzeit wiederholt wird.
  16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass die Mindest-Totzeit 100ms bis 300ms beträgt.
  17. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) bei einem Frequenzbereich um die Sperrfrequenz sperrt, wenn nach Ablauf einer Wiederholungszeit, die größer als die Mindest-Totzeit ist, die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5) um mehr als den oberen Grenzwert (Δ2) größer ist als die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der ersten Harmonischen der Untersuchungsfrequenz (fn+5) und/oder wenn entschieden wird, dass die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5) exponentiell ansteigt.
  18. Verfahren nach Anspruch 15, 16 oder 17, dadurch gekennzeichnet, dass das Bandpass-Filter (32) derart eingestellt wird, dass es den Anteil des mittels des Mikrofons (30) erzeugten Signals (S) bei einem vergrößerten Frequenzbereich um die Sperrfrequenz sperrt, wenn nach Ablauf einer Wiederholungszeit, die größer als die Mindest-Totzeit ist, die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5) um mehr als den oberen Grenzwert (Δ2) größer ist als die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der ersten Harmonischen der Untersuchungsfrequenz (fn+5) und/oder wenn entschieden wird, dass die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5) exponentiell ansteigt.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass der Frequenzbereich um die Sperrfrequenz nur bis zu einer Minimalgüte vergrößert wird.
  20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass das mittels des Mikrofons (30) erzeugten Signal (S) für eine Unterbrechungsdauer unterbrochen wird, wenn Frequenzbereich um die Sperrfrequenz bis zu der Minimalgüte vergrößert wird.
  21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass die Unterbrechungsdauer größer als im wesentlichen 1s bis 5s ist.
  22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass die Unterbrechungsdauer größer als im wesentlichen 3s ist.
  23. Verfahren nach einem der Ansprüche 3 bis 22, dadurch gekennzeichnet, dass die Sperrfrequenz die Untersuchungsfrequenz (fn+5) ist, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist.
  24. Verfahren nach einem der Ansprüche 3 bis 22, dadurch gekennzeichnet, dass die Sperrfrequenz die mit einer Korrekturfrequenz addierte Untersuchungsfrequenz (fn+5) ist, bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist.
  25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass die Korrekturfrequenz in Abhängigkeit der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5), bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, sowie der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei zumindest einer neben dieser Untersuchungsfrequenz (fn+5) liegenden Untersuchungsfrequenz (fn+4) gebildet wird.
  26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass die Korrekturfrequenz gemäß fkorr = sign * fdist * Pmaxneigh / Pmax + Pmaxneigh
    Figure imgb0022
    gebildet wird, wobei
    - fkorr die Korrekturfrequenz,
    - fdist der Abstand zwischen der Untersuchungsfrequenz (fn+5), bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, und einer die größte Leistung aufweisenden Untersuchungsfrequenz (fn+4) unmittelbar neben der Untersuchungsfrequenz (fn+5), bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist,
    - Pmax die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5), bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist,
    - Pmaxneigh die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der die größte Leistung aufweisenden Untersuchungsfrequenz (fn+4) unmittelbar neben der Untersuchungsfrequenz (fn-5), bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, und
    - sign ein Vorzeichen
    ist, wobei sign positiv ist, wenn die die größte Leistung aufweisende Untersuchungsfrequenz (fn+4) unmittelbar neben der Untersuchungsfrequenz (fn+5), bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, größer ist als die Untersuchungsfrequenz (fn+5), bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, und wobei sign sonst negativ ist.
  27. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass die Korrekturfrequenz gemäß fkorr = Δf * Pneighright Pneighleft / Pmax + Pneighright Pneighleft
    Figure imgb0023
    bebildet wird, wobei
    - fkorr die Korrekturfrequenz,
    - Δf der Abstand zwischen zwei Untersuchungsfrequenzen (fn, fn+1, fn+2, fn+3, fn+4, fn+5, fn+6, fn+7, fn+8),
    - Pmax die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+5), bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist,
    - Pneighright die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+6) unmittelbar oberhalb der Untersuchungsfrequenz (fn+5), bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist, und
    - Pneighleft die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei der Untersuchungsfrequenz (fn+4) unmittelbar unterhalb der Untersuchungsfrequenz (fn+5), bei der die Leistung des mittels des Mikrofons (30) erzeugten Signals (S) maximal ist,
    ist.
  28. Einrichtung zum Betrieb von sprachunterstützten Systemen gemäß einem Verfahren nach einem der vorhergehenden Ansprüche, wobei die Einrichtung zumindest ein Mikrofon (30) und zumindest einen Lautsprecher (31) zur Wiedergabe eines mittels des Mikrofons (30) erzeugten Signals (S) sowie ein zwischen dem Mikrofon (30) und dem Lautsprecher angeordnetes Bandpass-Filter (32) aufweist und wobei die Einrichtung eine Entscheidungslogik zur Einstellung des Bandpass-Filters (32) in Abhängigkeit eines Vergleichs der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei einer Untersuchungsfrequenz (fn+5), bei der die Leistung des mittels des Mikrofons erzeugten Signals im Wesentlichen maximal ist, mit der Leistung des mittels des Mikrofons (30) erzeugten Signals (S) bei zumindest einer im wesentlichen ganzzahligen Vielfachen der Untersuchungsfrequenz (fn+5) aufweist.
  29. Einrichtung nach Anspruch 28, dadurch gekennzeichnet, dass das Bandpass-Filter (32) eine Filterbank mit zumindest einem Notchfilter ist.
EP04000822.9A 2003-02-07 2004-01-16 Einrichtung und Verfahren zum Betrieb von sprachunterstützten Systemen in Kraftfahrzeugen Expired - Lifetime EP1445761B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US360889 2003-02-07
US10/360,889 US7467084B2 (en) 2003-02-07 2003-02-07 Device and method for operating a voice-enhancement system

Publications (2)

Publication Number Publication Date
EP1445761A1 EP1445761A1 (de) 2004-08-11
EP1445761B1 true EP1445761B1 (de) 2016-05-25

Family

ID=32655663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04000822.9A Expired - Lifetime EP1445761B1 (de) 2003-02-07 2004-01-16 Einrichtung und Verfahren zum Betrieb von sprachunterstützten Systemen in Kraftfahrzeugen

Country Status (2)

Country Link
US (1) US7467084B2 (de)
EP (1) EP1445761B1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7912228B2 (en) * 2003-07-18 2011-03-22 Volkswagen Ag Device and method for operating voice-supported systems in motor vehicles
US20050153758A1 (en) * 2004-01-13 2005-07-14 International Business Machines Corporation Apparatus, system and method of integrating wireless telephones in vehicles
DE102006016593A1 (de) * 2006-04-06 2007-10-11 Bury Gmbh & Co. Kg Kommunikationseinrichtung für Fahrzeuge
WO2008061205A2 (en) * 2006-11-16 2008-05-22 Johnson Controls Technology Company Integrated vehicle communication system
US8626516B2 (en) * 2009-02-09 2014-01-07 Broadcom Corporation Method and system for dynamic range control in an audio processing system
GB2471719A (en) * 2009-07-10 2011-01-12 Secomak Ltd A vehicular communications system
US10857909B2 (en) 2019-02-05 2020-12-08 Lear Corporation Electrical assembly
US10418019B1 (en) * 2019-03-22 2019-09-17 GM Global Technology Operations LLC Method and system to mask occupant sounds in a ride sharing environment

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870292A (ja) 1981-10-22 1983-04-26 日産自動車株式会社 車両用音声認識装置
DE3925589C2 (de) 1989-08-02 1994-03-17 Blaupunkt Werke Gmbh Verfahren und Anordnung zur Störbefreiung von Sprachsignalen
DE4106405C2 (de) 1990-03-23 1996-02-29 Ricoh Kk Geräuschunterdrückungseinrichtung für ein Spracherkennungsystem
EP0810599B1 (de) * 1991-05-29 2003-11-26 Pacific Microsonics, Inc. Verbesserungen in Codierung-/Decodierungssystemen
US5214708A (en) * 1991-12-16 1993-05-25 Mceachern Robert H Speech information extractor
US5574824A (en) * 1994-04-11 1996-11-12 The United States Of America As Represented By The Secretary Of The Air Force Analysis/synthesis-based microphone array speech enhancer with variable signal distortion
US5920840A (en) * 1995-02-28 1999-07-06 Motorola, Inc. Communication system and method using a speaker dependent time-scaling technique
US5903819A (en) 1996-03-13 1999-05-11 Ericsson Inc. Noise suppressor circuit and associated method for suppressing periodic interference component portions of a communication signal
DE19705471C2 (de) 1997-02-13 1998-04-09 Sican F & E Gmbh Sibet Verfahren und Schaltungsanordnung zur Spracherkennung und zur Sprachsteuerung von Vorrichtungen
US6535609B1 (en) 1997-06-03 2003-03-18 Lear Automotive Dearborn, Inc. Cabin communication system
US6496581B1 (en) 1997-09-11 2002-12-17 Digisonix, Inc. Coupled acoustic echo cancellation system
US7010129B1 (en) 1998-05-06 2006-03-07 Volkswagen Ag Method and device for operating voice-controlled systems in motor vehicles
DE19958836A1 (de) 1999-11-29 2001-05-31 Deutsche Telekom Ag Verfahren und Anordnung zur Verbesserung der Kommunikation in einem Fahrzeug
US7613529B1 (en) 2000-09-09 2009-11-03 Harman International Industries, Limited System for eliminating acoustic feedback
AU2002224413A1 (en) 2000-10-19 2002-04-29 Lear Corporation Transient processing for communication system
US6674865B1 (en) * 2000-10-19 2004-01-06 Lear Corporation Automatic volume control for communication system
US6665411B2 (en) 2001-02-21 2003-12-16 Digisonix Llc DVE system with instability detection

Also Published As

Publication number Publication date
EP1445761A1 (de) 2004-08-11
US7467084B2 (en) 2008-12-16
US20040158460A1 (en) 2004-08-12

Similar Documents

Publication Publication Date Title
EP0668007B1 (de) Mobilfunkgerät mit freisprecheinrichtung
DE19938171C2 (de) Verfahren zur Verarbeitung von akustischen Signalen und Kommunikationsanlage für Insassen in einem Fahrzeug
DE60031583T2 (de) Sprachverteilungssystem
EP1499160A2 (de) Richthörhilfegerät
EP3337189A1 (de) Verfahren zum bestimmen einer richtung einer nutzsignalquelle
EP3793209B1 (de) Hörgerät mit aktiver geräuschunterdrückung und verfahren zum betrieb desselben
EP1445761B1 (de) Einrichtung und Verfahren zum Betrieb von sprachunterstützten Systemen in Kraftfahrzeugen
DE102006047983A1 (de) Verarbeitung eines Eingangssignals in einem Hörgerät
DE19640132A1 (de) Verfahren zur automatischen Begrenzung von Verzerrungen an Audio-Geräten und Schaltungsanordnung zur Durchführung des Verfahrens
EP3393143B1 (de) Verfahren zum betrieb eines hörgerätes
DE112016004394B4 (de) Heulunterdrückungsvorrichtung
EP3951780B1 (de) Verfahren zum betrieb eines hörgeräts und hörgerät
EP2200341B1 (de) Verfahren zum Betrieb eines Hörhilfegerätes sowie Hörhilfegerät mit einer Quellentrennungseinrichtung
EP1152527A1 (de) Vorrichtung und Verfahren zum geräuschabhängigen Anpassen eines akustischen Nutzsignals
EP1649719B1 (de) Einrichtung und verfahren zum betrieb von sprachunterstützten systemen in kraftfahrzeugen
DE102013011761A1 (de) Kraftfahrzeug mit einer Freisprecheinrichtung und Verfahren zur Erzeugung eines Frequenzganges für Freisprecheinrichtungen
DE10025496C2 (de) Audiosystem, insbesondere für Kraftfahrzeuge
EP1351550B1 (de) Verfahren zur Anpassung einer Signalverstärkung in einem Hörgerät sowie ein Hörgerät
EP0966100B1 (de) Verfahren und Einrichtung zur Beeinflussung der Lautstärke von Audiowiedergabegeräten in Kraftfahrzeugen
EP3340656B1 (de) Verfahren zum betrieb eines hörgerätes
WO2019215200A1 (de) Verfahren zum betrieb eines hörsystems sowie hörsystem
EP3955241A1 (de) Verfahren zum betrieb eines hörgeräts und hörgerät
DE2456468A1 (de) Vorrichtung zur verbesserung der hoerbarkeit und verstaendlichkeit einer elektroakustischen tonwiedergabe
EP1077013A1 (de) Verfahren und einrichtung zum betrieb von sprachunterstützten systemen in kraftfahrzeugen
DE102016005904A1 (de) Unverzögerte Störschallunterdrückung in einem Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RTI1 Title (correction)

Free format text: APPARATUS AND METHOD FOR OPERATING VOICE CONTROLLED SYSTEMS IN VEHICLES

RTI1 Title (correction)

Free format text: APPARATUS AND METHOD FOR OPERATING VOICE CONTROLLED SYSTEMS IN VEHICLES

17P Request for examination filed

Effective date: 20050211

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050427

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502004015202

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G10L0021020000

Ipc: G10L0021020800

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 3/02 20060101ALI20151116BHEP

Ipc: G10L 21/0208 20130101AFI20151116BHEP

INTG Intention to grant announced

Effective date: 20151217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 802905

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160615

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015202

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160826

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160926

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015202

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170116

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170116

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 802905

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200131

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004015202

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803