EP1630823B1 - Halbleitende Polymerzusammensetzungen - Google Patents

Halbleitende Polymerzusammensetzungen Download PDF

Info

Publication number
EP1630823B1
EP1630823B1 EP04017391A EP04017391A EP1630823B1 EP 1630823 B1 EP1630823 B1 EP 1630823B1 EP 04017391 A EP04017391 A EP 04017391A EP 04017391 A EP04017391 A EP 04017391A EP 1630823 B1 EP1630823 B1 EP 1630823B1
Authority
EP
European Patent Office
Prior art keywords
polymer composition
composition according
semiconducting
carbon black
semiconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04017391A
Other languages
English (en)
French (fr)
Other versions
EP1630823A1 (de
Inventor
Perry Nylander
Alfred Campus
Annika Smedberg
Karl-Michael Jäger
Ulf Nilsson
Hans Eklind
Claes Broman
Wilfried Kalkner
Marc Brüggemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Borealis Technology Oy
Original Assignee
Borealis Technology Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT04017391T priority Critical patent/ATE517421T1/de
Application filed by Borealis Technology Oy filed Critical Borealis Technology Oy
Priority to EP04017391A priority patent/EP1630823B1/de
Priority to CN2005800233195A priority patent/CN1985332B/zh
Priority to PCT/EP2005/006709 priority patent/WO2006007927A1/en
Priority to KR1020077004209A priority patent/KR100889212B1/ko
Priority to CA2574425A priority patent/CA2574425C/en
Priority to US11/572,475 priority patent/US7767741B2/en
Publication of EP1630823A1 publication Critical patent/EP1630823A1/de
Application granted granted Critical
Publication of EP1630823B1 publication Critical patent/EP1630823B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the present invention relates to a semiconductive polymer, in particular polyolefin, composition with an improved Stress Induced Electrochemical Degradation (SIED) behaviour. Furthermore, the invention relates to an electric power cable comprising the semiconductive composition and to the use of the semiconductive composition for the production of a semiconductive layer of an electric power cable.
  • SIED Stress Induced Electrochemical Degradation
  • Electric power cables in particular for medium voltage ( ⁇ 6 kV to ⁇ 36 kV) and high voltage ( ⁇ 36 kV), usually comprise a conductive cable core surrounded by an inner semiconductive layer, an insulation layer, an outer semiconductive layer and, optionally, further barrier layers and a cable jacket.
  • the insulation and semiconductive layers usually are made from polymers, in particular polyolefins.
  • Predominantly, ethylene and/or copolymers are used which usually are crosslinked, e.g. by adding peroxide to the composition before extrusion.
  • Power cables comprising polymeric insulation and/or semiconducting layers are known to suffer from a reduced service life span when installed in an environment where the cable is exposed to water, as e.g. in underground or high humidity locations, when compared to cables installed in dry environment.
  • the reduced service life span has been attributed to the formation of dendritically branched defects, so called water trees, which occur when an organic polymer material is subjected to an electric field over a longer period of time in the presence of water.
  • Water trees i.e. bow-tie and vented trees
  • bow-tie trees can develop in the presence of water and an electric field.
  • vented trees are initiated at contaminants present within the insulation layer while vented trees are initiated at particles or protrusions at the interface between the semiconductive and the insulation layer.
  • the growth of vented trees is additionally promoted by the presence of sulphur in the semicon.
  • the increased field strength or a weakened insulation at the tip of the water tree may initiate electrical treeing leading to an electrical breakdown of the insulation system.
  • the extensive work on the water tree phenomenon has resulted in improvements in design, manufacture, materials, testing and qualification; these have reduced the impact of water treeing in modern cable systems.
  • vented trees can initiate from an apparently undisturbed semicon/insulation interface. This has been explained as resulting from the presence of porous-like structures in the semicon layer which can initiate relatively large vented trees.
  • defect structures are believed to be generated via an electrochemical reaction between aluminium and the semiconductive material under the influence of mechanical stress in the presence of an electrolyte. This involves the inner semiconductive layer in contact with an aluminium conductor or the outer semiconductive layer in contact with e.g. aluminium wires leading fault currents.
  • SIED Stress Induced Electrochemical Degradation
  • the present invention provides a semiconductive polymer composition with a direct current volume resistivity of less than 1000 Ohm ⁇ cm at 90 °C, with an elongation at break which after aging for 240 hours at 135 °C does not change by more than 25 %, and which composition has a total number of structures of 20 or less in the SIED test.
  • the semiconductive composition according to the invention shows a reduced number of defect structures when extruded as a semiconductive layer of a power cable in the Stress Induced Electrochemical Degradation (SIED) test. This test is described in detail in the examples section below.
  • SIED Stress Induced Electrochemical Degradation
  • the inventive composition allows for the production of power cables with an enhanced reliability as to electrical failure.
  • the composition allows the cable to withstand higher stresses and/or allows for the production of cables with a reduced insulation layer thickness and/or with an increased operating voltage.
  • the composition comprises a carbon black.
  • the amount of carbon black to be added is determined by the volume resistivity to be reached and also depends on the selected type of carbon black.
  • the composition comprises carbon black in an amount of from 10 to 40 wt.-%, more preferably from 10 to 30 wt.-%.
  • the composition comprises carbon black with an L c in the range of from 1.8 to 2.4 nm. It has surprisingly been found that an enhanced SIED performance can be achieved using carbon black having an L c value within the above stated range also when using a carbon black with a low surface area.
  • the spherical Carbon black primary particle is composed of small crystallites which are made up of parallel layers with the same atomic positions as graphite within the layers.
  • the carbon black microstructure can be defined by its crystallite dimensions as measured by X-ray diffraction. Accordingly, L c represents a measure of the average stacking heights of the layers and L a is indicative of their average diameter.
  • crystallite dimensions are largely depended on the manufacturing process.
  • furnace blacks generally range between 1.1 to 1.7 nm.
  • Acetylene blacks exhibit notably higher L c values relative to all other carbons.
  • Carbon black having L c in the range of from 1.8 to 2.4 nm may be obtained e.g. by the MMM-process, which is described, for example, in N. Probst, E. Grivei, C. van Belling "Acetylene Black or other conductive carbon blacks in HV cable compounds. A historical fact or a technological requirement?" in Proceedings of the 6 th International Conference on Insulated Power Cables, pages 777, entirely/France, June 22 to 26, 2003, and L. Fulcheri, N. Probst, G. Flamant, F. Fabry and E. Grivei "Plasma Processing: A step towards the production of new grades of carbon black" in Proceedings of the Third International Conference on Carbon Black, page 11, Mulhouse/France, October 25 to 26, 2000.
  • the composition preferably comprises carbon black with a iodine number of 75 mg/g or higher, if carbon black with an L c of from 1.8 to 2.4 nm is used, and preferably of 100 mg/g or higher, more preferably 140 mg/g or higher, still more preferably 200 mg/g or higher, and most preferably of 300 mg/g or higher if carbon black with other L c is used.
  • the carbon black used contains less than 1000 ppm sulphur, more preferably contains less than 500 ppm sulphur.
  • the number of defect structures can be reduced by reducing the amount of antioxidant in the composition.
  • An antioxidant commonly used is, for example, poly-2,2,4-trimethyl-1,2-dihydroquinoline (TMQ).
  • the antioxidant is present in an amount of from 0.1 to 2 wt.-%, preferably from 0.2 to 1.2 wt.-%.
  • the antioxidant is selected from the group of diphenyl amines and diphenyl sulfides.
  • the phenyl substituents of these compounds may be substituted with further groups such as alkyl, alkylaryl, arylalkyl or hydroxy groups.
  • the phenyl groups of diphenyl amines and diphenyl sulfides are substitued with tert.-butyl groups, preferably in meta or para position, which may bear further substituents such as phenyl groups.
  • the antioxidant is selected from the group of 4,4'-bis(1,l'dimethylbenzyl)diphenylamine, para-oriented styrenated diphenylamines, 6,6'-di-tert.-butyl-2,2'-thiodi-p-cresol, and tris(2-tert.-butyl-4-thio-(2'-methyl-4'-hydroxy-5'-tert.-butyl)phenyl-5-methyl)phenylphosphite or derivatives thereof.
  • the number of defect structures in the semiconducting layer may be reduced by adding a compound comprising polypropylene oxy groups, such as polypropylene glycol.
  • Polypropylene oxy groups may also be present in block copolymers with up to 70 wt.-% polyethylene oxy groups.
  • the polyolefin of the composition of the present invention may be an olefin copolymer. It may be made by any process known in the art, preferably by a high pressure process.
  • the polyolefin has a density of less than 935 kg/m 3 .
  • the polyolefin comprises an ethylene polymer, i.e. ethylene copolymer, e.g. including ethylene/propylene rubber.
  • the polyolefin of the composition comprises monomer units with polar groups or the composition further comprises a polymer with monomer units comprising polar groups.
  • the monomer units with polar groups are selected from the group of alkyl acrylates, alkyl metacrylates, acrylic acids, metacrylic acids and vinyl acetates.
  • the monomers units are selected from C 1 - to C 6 -alkyl acrylates, C 1 - to C 6 -alkyl metacrylates, acrylic acids, metacrylic acids and vinyl acetate.
  • the polyolefin of the composition comprises a copolymer of ethylene with C 1 - to C 4 -alkyl, such as methyl, ethyl, propyl or butyl acrylates or vinyl acetate.
  • the polar monomer units may also contain ionomeric structures (as in e.g. Dupont's Surlyn types).
  • the amount of monomer units with polar groups with regard to the total amount of monomers in the polymeric part of the composition is from 1 to 15 mol%, more preferably from 2 to 10 mol% and most preferably from 2 to 5 mol%.
  • the polar monomer units may be incorporated by copolymerization of e.g. olefin monomers with polar comonomers. This may also be achieved by grafting of polar monomers units e.g. onto a polyolefin backbone.
  • the composition has an MFR 21 , measured in accordance with ISO 1133 under a load of 21.6 kg at a temperature of 190 °C of more than 25 g/10 min.
  • composition has an electrical breakdown strength as measured in the model cable test of at least 29 kV/mm, more preferred at least 35 kV/mm, and still more preferred of at least 37 kV/mm.
  • composition is crosslinkable which may, e.g. mean that a crosslinking agent is added to the composition or that crosslinkable groups, e.g. silane groups, are present in the polyolefin of the composition, and, if needed, a crosslinking catalyst is added to the composition.
  • crosslinkable groups e.g. silane groups
  • the composition comprises a peroxide as a crosslinking agent, preferably in an amount of from 0.1 to 2 wt.-%.
  • crosslinkable silane groups are present in the polyolefin of the composition, it is preferred that an hydrocarbyl substituted aromatic sulphonic acid or a precursor thereof is added to the composition as a silanol condensation catalyst.
  • the present invention also pertains to an electric power cable comprising a semiconducting layer formed by the semiconducting composition as described above.
  • semiconducting layers are contained in medium to high voltage cables, in which a conductor core, e.g. copper or aluminum, is surrounded by an inner semiconducting layer, an insulation layer, and an outer semiconducting layer.
  • a conductor core e.g. copper or aluminum
  • an inner semiconducting layer e.g. copper or aluminum
  • an insulation layer e.g. copper or aluminum
  • an outer semiconducting layer e.g. copper or aluminum
  • further shielding layers and/or a cable jacket may be present.
  • At least the innermost semiconductive layer of a power cable is formed by the composition as described above.
  • the present invention relates to the use of a semiconducting polymer composition as described above for the production of a semiconductive layer of an electric power cable, preferably a medium to high voltage electric power cable.
  • the SIED is measured in close accordance with the method described in K. Steinfeld et at., "Stress Induced Electrochemical Degradation of the Inner Semicon Layer", IEEE Transactions on Dielectrics and Electrical Insulation, vol. 5 no. 5, 1998 :
  • the samples used are sandwich-type slabs consisting of conductor wires with a radius of 1.5 mm, semiconductive layer and insulation.
  • the samples are produced by means of a heatable laboratory press equipped with appropriate ring-shaped molds.
  • the thickness of the semiconductive layer in the sandwich-type slab is 1 mm, which is to be measured as shortest distance of the wires to the insulation layer.
  • the samples are conditioned at 70 °C for 120 h to remove crosslinking byproducts.
  • the samples are then heated to 130 °C and then quenched with tap water from the insulation side.
  • the samples are mounted into an ageing cell, such as described in Fig. 2 of K. Steinfeld et at., "Stress Induced Electrochemical Degradation of the Inner Semicon Layer", IEEE Transactions on Dielectrics and Electrical Insulation, vol. 5 no. 5, 1998, on page 775 .
  • the sample is permanently deformed from the conductor side resulting in a bend and thus having mechanical strain of semicon and insulation of the sample during ageing.
  • the liquid tank on the insulation side contained demineralized water. On the conductor side a sodium chloride solution containing a small amount of a surfactant is used. Both liquids can be heated and cooled enabling temperature cycling.
  • the ageing conditions to be applied are the following: Test duration: 1000 h Electrical Field Strength: 5 kV / mm (50 Hz, rms) Temperature: isothermal 50 °C Electrolyte: aqueous NaCl solution 0.1 mol/l, surfactant 0.01 % Strain (elongation) 4%
  • the different model samples were cut into two halves, the aluminium wires were removed and one half stained in a methylene blue dye solution. Following the staining procedure, 20 slices of 500 micrometer were microtomed perpendicular to the slab surface and microscopically observed for structures in the semiconductive layer and possible vented trees in the insulation initiated by the structures. The defect structures in the semiconducting layer were then counted in the direction parallel to the semiconducting layer. The results were reported as number of structures with and without vented trees per mm.
  • the elongation at break has been measured in accordance with IEC 60811-1-2 after 0 hours and after ageing for 240 hours at 135 °C.
  • the materials showing a change of 25 % or below are considered to have "passed" this test.
  • the direct current (DC) volume resistivity has been measured at 90 °C in accordance with ISO 3915.
  • L c values are determined by powder X-ray diffraction as e.g. described in W.M. Hess, C.R. Herd, "Microstructure, Morphology and General Physical Properties” in "Carbon Black - Science and Technology” 2nd edition, ed. by J.P. Donnet, R.C. Bansal and M.-J. Wang, Marcel Dekker, N.Y. 1993 .
  • the surface area of carbon black is characterized in the iodine test wherein the iodine number is determined, in accordance with ASTM D-1510. The unit is mg/g.
  • the example compounds have been used as inner semiconductive layer.
  • the AC dielectric strength was measured after ageing for 1000 h at 9 kV/mm in 70 °C water.
  • a voltage ramp of 100 kV/min was used in the breakdown test.
  • the investigated length of the active part of the cable, i.e. with outer semiconductive layer, was 50 cm.
  • compositions have been prepared by using as basic polyolefin the following ethylene copolymers with polar monomer units:
  • Carbon black in samples 7 to 12 and comparative samples C2 to C4 was furnace carbon black.
  • antioxidants/stabiliser the following compounds have been used:
  • DBIB di(tert.-butylperoxy)di-isopropylbenzene
  • DCP dicumylperoxide
  • Table 1 Comp. No. Carbon Black Antioxidant/Stabilizer Peroxide Number of Structures in SIED test [no./mm] Diff. in Elong. at break after 10 days ⁇ 25 % Vol. Resistivity [Ohm cm] at 90°C Elec. brd. strength [kV/mm] wt% L c [nm] Iodine no.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Conductive Materials (AREA)

Claims (20)

  1. Halbleitendes Polymerzusammensetzung, die ein Olefincopolymer, Ruß und ein Antioxidans umfaßt, wobei die Zusammensetzung einen Durchgangswiderstand für Gleichstrom bei 90°C von weniger als 1000 Ohm·cm, eine Reißdehnung, die sich nach einer 240stündigen Alterung bei 135°C nicht um mehr als 25 % ändert, und beim SIED-Test eine Gesamtzahl der Strukturen von 20 oder weniger aufweist.
  2. Halbleitende Polymerzusammensetzung nach Anspruch 1, die Ruß mit einem Lc- Wert von 1,8 bis 2,4 nm aufweist.
  3. Halbleitende Polymerzusammensetzung nach Anspruch 2, wobei der Ruß eine als Iodzahl angegebene Oberfläche von 75 mg/g oder mehr aufweist.
  4. Halbleitende Polymerzusammensetzung nach einem der vorstehenden Ansprüche, die ein Antioxidans aufweist, das aus der Gruppe von Diphenylaminen und Diphenylsulfiden ausgewählt ist.
  5. Halbleitende Polymerzusammensetzung nach einem der vorstehenden Ansprüche, wobei die Zusammensetzung ferner eine Verbindung mit Polypropylenoxy-Gruppen umfaßt.
  6. Halbleitende Polymerzusammensetzung nach einem der vorstehenden Ansprüche 4 bis 5, die Ofenruß umfaßt.
  7. Halbleitende Polymerzusammensetzung nach einem der vorstehenden Ansprüche 4 bis 6, die Ruß in einer Menge von 10 bis 40 Gew.-%, stärker bevorzugt von 10 bis 30 Gew.-% umfaßt.
  8. Halbleitende Polymerzusammensetzung nach einem der vorstehenden Ansprüche, die Ruß mit einer als Iodzahl angegebenen Oberfläche von 200 mg/g oder mehr aufweist.
  9. Halbleitende Polymerzusammensetzung nach einem der vorstehenden Ansprüche, die Ruß mit einer als Iodzahl angegebenen Oberfläche von 300 mg/g oder mehr aufweist.
  10. Halbleitende Polymerzusammensetzung nach einem der vorstehenden Ansprüche, wobei die Zusammensetzung ein Ethylenhomo- oder copolymer umfaßt.
  11. Halbleitende Polymerzusammensetzung nach einem der vorstehenden Ansprüche, wobei das Polyolefin Monomereinheiten mit polaren Gruppen aufweist oder wobei die Zusammensetzung ferner ein Polymer mit Monomereinheiten mit polaren Gruppen aufweist.
  12. Halbleitende Polymerzusammensetzung nach Anspruch 11, wobei das Polymer mit polaren Monomereinheiten ein Copolymer eines Olefins, vorzugsweise Ethylen, mit einem oder mehreren polaren Comonomeren umfaßt, die aus der Gruppe von Alkylacrylaten, Alkylmethacrylaten, Acrylsäuren, Methacrylsäuren und Vinylacetaten ausgewählt sind.
  13. Halbleitende Polymerzusammensetzung nach Anspruch 11 oder 12, wobei die Menge der Monomereinheiten mit polaren Gruppen 1 bis 15 Mol-% beträgt, und zwar auf die Gesamtmenge der Monomere im polymeren Teil der Zusammensetzung bezogen.
  14. Halbleitende Polymerzusammensetzung nach Anspruch 10, wobei das Polyethylen eine Dichte von weniger als 935 kg/m3 aufweist.
  15. Halbleitende Polymerzusammensetzung nach einem der vorstehenden Ansprüche, wobei die Zusammensetzung einen MFR21-Wert von mehr als 25 g/10 min aufweist.
  16. Halbleitende Polymerzusammensetzung nach einem der vorstehenden Ansprüche mit einer elektrischen Durchschlagfestigkeit, und zwar beim Modellkabeltest gemessen, von mindestens 29 kV/mm, stärker bevorzugt mindestens 35 kV/mm und noch stärker bevorzugt mindestens 37 kV/mm.
  17. Halbleitende Polymerzusammensetzung nach einem der vorstehenden Ansprüche, wobei die Zusammensetzung vernetzbar ist.
  18. Halbleitende Polymerzusammensetzung nach Anspruch 17, die ein Peroxid als Vernetzungsmittel aufweist.
  19. Stromkabel umfassend einen Leiter, eine halbleitende Schicht und an die halbleitende Schicht angrenzend eine isolierende Schicht, wobei die halbleitende Schicht aus einer Zusammensetzung nach einem der Ansprüche 1 bis 18 gebildet ist.
  20. Verwendung einer halbleitenden Polymerzusammensetzung nach einem der Ansprüche 1 bis 18 für die Herstellung einer halbleitenden Schicht eines Stromkabels.
EP04017391A 2004-07-22 2004-07-22 Halbleitende Polymerzusammensetzungen Active EP1630823B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP04017391A EP1630823B1 (de) 2004-07-22 2004-07-22 Halbleitende Polymerzusammensetzungen
AT04017391T ATE517421T1 (de) 2004-07-22 2004-07-22 Halbleitende polymerzusammensetzungen
PCT/EP2005/006709 WO2006007927A1 (en) 2004-07-22 2005-06-21 Semiconductive polymer composition
KR1020077004209A KR100889212B1 (ko) 2004-07-22 2005-06-21 반도체 폴리머 조성물
CN2005800233195A CN1985332B (zh) 2004-07-22 2005-06-21 半导体聚合物组合物
CA2574425A CA2574425C (en) 2004-07-22 2005-06-21 Semiconductive polymer composition
US11/572,475 US7767741B2 (en) 2004-07-22 2005-06-21 Semiconductive polymer compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04017391A EP1630823B1 (de) 2004-07-22 2004-07-22 Halbleitende Polymerzusammensetzungen

Publications (2)

Publication Number Publication Date
EP1630823A1 EP1630823A1 (de) 2006-03-01
EP1630823B1 true EP1630823B1 (de) 2011-07-20

Family

ID=34925883

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04017391A Active EP1630823B1 (de) 2004-07-22 2004-07-22 Halbleitende Polymerzusammensetzungen

Country Status (7)

Country Link
US (1) US7767741B2 (de)
EP (1) EP1630823B1 (de)
KR (1) KR100889212B1 (de)
CN (1) CN1985332B (de)
AT (1) ATE517421T1 (de)
CA (1) CA2574425C (de)
WO (1) WO2006007927A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1916673A1 (de) 2006-10-27 2008-04-30 Borealis Technology Oy Halbleitende Polyolefinzusammensetzung
BRPI1007253A2 (pt) * 2009-03-30 2016-02-10 Borealis Ag cabo, processo para a sua produção e seu uso
CN105207130B (zh) 2009-09-14 2018-11-23 阿雷沃国际公司 地下模块化高压直流电力传输系统
CN102947895B (zh) 2010-03-17 2017-03-08 北欧化工股份公司 具有优良电特性的用于电力电缆应用的聚合物组合物
KR101959473B1 (ko) 2010-03-17 2019-03-18 보레알리스 아게 유리한 전기적 특성을 갖는 와이어 및 케이블 용도의 중합체 조성물
EP2374842B2 (de) * 2010-04-06 2019-09-18 Borealis AG Halbleitende Polyolefinzusammensetzung, die leitenden Füllstoff umfasst
KR101909012B1 (ko) 2010-06-10 2018-10-17 보레알리스 아게 새로운 조성물 및 이의 용도
KR101924084B1 (ko) * 2010-06-10 2018-11-30 보레알리스 아게 새로운 조성물 및 이의 용도
EP2619261B2 (de) 2010-09-22 2018-10-24 Union Carbide Chemicals & Plastics Technology LLC Schwarzes halbleitendes acetylen-abschirmungsmaterial mit verbesserter verarbeitung
PL2628162T3 (pl) 2010-10-15 2020-11-16 Borealis Ag Półprzewodząca kompozycja polimerowa
EP3591670A1 (de) 2010-11-03 2020-01-08 Borealis AG Polymerzusammensetzung und stromkabel mit der polymerzusammensetzung
EP2703445B1 (de) * 2012-08-31 2017-05-17 Borealis AG Leitfähige Jacke
CN107207861B (zh) * 2015-01-09 2021-10-22 迈图高新材料集团 有机硅橡胶组合物在用于制备高压直流绝缘体应用中的用途
KR102010872B1 (ko) * 2017-08-04 2019-08-14 주식회사 디와이엠 솔루션 케이블용 반도전성 수지 조성물
EP3729471A1 (de) * 2017-12-18 2020-10-28 Borealis AG Halbleitende polymerzusammensetzung
US20240153666A1 (en) 2021-03-16 2024-05-09 Borealis Ag Semiconductive polymer composition
EP4308641A1 (de) 2021-03-16 2024-01-24 Borealis AG Halbleitende polymerzusammensetzung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286023A (en) * 1976-10-04 1981-08-25 Union Carbide Corporation Article of manufacture, the cross-linked product of a semi-conductive composition bonded to a crosslinked polyolefin substrate
JPH03263437A (ja) * 1990-03-13 1991-11-22 Mitsui Petrochem Ind Ltd 半導電性ゴム発泡体
US5352289A (en) * 1992-12-18 1994-10-04 Cabot Corporation Low ash carbon blacks
KR19980703168A (ko) * 1995-03-22 1998-10-15 유안차오 전도성 중합체 조성물 및 소자
JPH0952985A (ja) * 1995-08-10 1997-02-25 Yazaki Corp 電力ケーブルの半導電層用組成物
JPH10312717A (ja) * 1997-05-12 1998-11-24 Nippon Unicar Co Ltd 交流電力ケーブル

Also Published As

Publication number Publication date
EP1630823A1 (de) 2006-03-01
CA2574425A1 (en) 2006-01-26
CA2574425C (en) 2011-07-26
US20080157028A1 (en) 2008-07-03
CN1985332A (zh) 2007-06-20
US7767741B2 (en) 2010-08-03
KR20070041586A (ko) 2007-04-18
ATE517421T1 (de) 2011-08-15
CN1985332B (zh) 2011-01-12
KR100889212B1 (ko) 2009-03-17
WO2006007927A1 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US7767741B2 (en) Semiconductive polymer compositions
EP1373397B1 (de) Eine vernetzbare polyethylenzusammensetzung
KR101414382B1 (ko) 가황성 공중합체 반도체 쉴드 조성물들
EP2410010B1 (de) Verbesserte bleifreie Isolationszusammensetzungen mit Metallocenpolymere
EP0965998B1 (de) Vernetzbare Zusammensetzung aus Hochdruck-Polyethylen mit niedriger Dichte
US6231978B1 (en) Crosslinkable polyethylene composition
US6191230B1 (en) Polyethylene crosslinkable composition
EP1605473B1 (de) Isolationsmischung für elektrisches Stromkabel
KR20180097507A (ko) 반도전성 차폐 조성물
AU760355B2 (en) An electric dc-cable with an insulation system comprising an extruded polyethylene composition and a method for manufacturing such cable
EP0966000B1 (de) Vernetzbare Polyethylene Zusammensetzung
KR20230079443A (ko) 케이블
EP1041582B1 (de) Vernetzbare Polyethylen-Zusammensetzung
EP1036804A1 (de) Eine vernetzbare Polyethylenzusammensetzung
EP1041581A1 (de) Vernetzbare Polyethylen-Zusammensetzung
CN111349282A (zh) 包括容易剥离的半导电层的线缆
KR100291669B1 (ko) 고압 내열 케이블용 반도전 재료
EP4261846A1 (de) Unterwasserkabel
AU2011226808A1 (en) Improved Lead-Free Insulation Compositions containing Metallocene Polymers
EP2430641A2 (de) Verbesserte isolierungszusammensetzungen mit zinkstabilisatoren
AU2002252112A1 (en) A polyethylene crosslinkable composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071121

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004033515

Country of ref document: DE

Effective date: 20110915

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110720

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 517421

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111021

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

26N No opposition filed

Effective date: 20120423

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004033515

Country of ref document: DE

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 20

Ref country code: DE

Payment date: 20230719

Year of fee payment: 20

Ref country code: BE

Payment date: 20230719

Year of fee payment: 20