EP1629577B1 - Eclateur, et notamment eclateur a haute tension - Google Patents

Eclateur, et notamment eclateur a haute tension Download PDF

Info

Publication number
EP1629577B1
EP1629577B1 EP04742741A EP04742741A EP1629577B1 EP 1629577 B1 EP1629577 B1 EP 1629577B1 EP 04742741 A EP04742741 A EP 04742741A EP 04742741 A EP04742741 A EP 04742741A EP 1629577 B1 EP1629577 B1 EP 1629577B1
Authority
EP
European Patent Office
Prior art keywords
spark
active
gap device
electrode
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04742741A
Other languages
German (de)
English (en)
Other versions
EP1629577A1 (fr
Inventor
Laurent Frescaline
Gilles Avrillaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITHPP
Original Assignee
ITHPP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITHPP filed Critical ITHPP
Publication of EP1629577A1 publication Critical patent/EP1629577A1/fr
Application granted granted Critical
Publication of EP1629577B1 publication Critical patent/EP1629577B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/02Means for extinguishing arc
    • H01T1/04Means for extinguishing arc using magnetic blow-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means
    • H01T2/02Spark gaps comprising auxiliary triggering means comprising a trigger electrode or an auxiliary spark gap

Definitions

  • the invention relates to a spark gap and is particularly advantageous in the case of a high voltage spark gap for transferring a large quantity of electric charges.
  • a spark gap is a device of the closing switch type comprising two remote electrodes, called discharge electrodes, separated by a dielectric (gas, vapor, vacuum, etc.), between which an electric arc is formed when the potential difference between the electrodes is greater than a threshold value.
  • this threshold value is greater than a few kV, and the operating voltage of the spark gap (voltage applied to the spark gap, that is to say the potential difference between its electrodes) can go up to 1 MV.
  • Such a spark gap makes it possible to transfer a quantity of electrical charges ranging from a few hundred milli-Coulombs to several hundred Coulombs, corresponding to an electric current flowing through the spark gap between 1 kA and 1 MA.
  • a high-voltage spark gap is used in particular to power sequentially a test bench of materials under high pressure or any other device, says charge.
  • a shot Each operation of discharging the capacitor and transferring the charge, by the spark gap, of the electrical charges initially accumulated in the capacitor, is called a shot.
  • spark gap which comprises two hollow cylindrical discharge electrodes, symmetrical of revolution, each having an inner radius of about 8 cm, an outer radius of the order 10 cm and a length of the order of 20 cm.
  • the two cylindrical electrodes are aligned "end to end", that is to say arranged so that their axes of symmetry coincide and they have axial ends, called closure ends, 8 mm apart and opposite in the axial direction (direction of the axes of symmetry). It is between these axial ends of closure, whose facing annular end faces are substantially flat (in transverse planes), that forms the electric arc.
  • the opposite axial ends of the electrodes, called connection ends are each connected to a connector for integrating the spark gap into an electrical circuit.
  • one of the connectors can be used to connect a current generator (capacitor) and the other to connect a load.
  • a shot is triggered by a third electrode, called trigger electrode, which initiates the formation of an electric arc between the two discharge electrodes.
  • trigger electrode a third electrode, called trigger electrode, which initiates the formation of an electric arc between the two discharge electrodes.
  • the electrical charges, which the current generator transmits to the discharge electrode to which it is connected propagate from the connection end of the electrode towards its closure end in the axial direction, then are deflected, by means of inclined slots in the closing end of the electrode, so as to move in a direction comprising a tangential component (following the circular periphery of the electrode in a transverse plane).
  • the electrical charges then pass through the space between the electrodes in the axial direction, forming an axial electric arc, and are then again deflected tangentially in the closing end of the other discharge electrode, by means of inclined slits (in the opposite direction). contrary), to then find a substantially axial propagation to the connection end of the electrode.
  • the invention aims to overcome these disadvantages by providing a simple and inexpensive spark gap, having similar performance or greater than known spark gaps.
  • the invention aims to provide a high-voltage spark gap, which can operate at voltages similar to or greater than the usual operating voltages of the aforementioned spark gap, which can switch currents of similar or greater intensity to the switched currents.
  • the aforementioned known spark gap having a similar or greater service life than the known spark gap mentioned above, for a negligible undesirable failure and trip rate, and a lower cost price than the known spark gaps (and in particular to the known spark gap mentioned above).
  • the term “elongated”, used to describe the active portion of the discharge electrodes according to the invention, means that said active portion extends mainly along a line, called the guideline. In other words, it has a dimension along this guideline, called length, much higher than its other dimensions. Said guideline may be straight or curved.
  • the terms "transverse direction" of the active portion at a point designate a direction orthogonal, at this point, to the guideline (that is, orthogonal to a direction tangent to said line) of the active portion. ; and "transverse plane” at a point means a plane orthogonal at this point to the guideline of the active portion.
  • the cross section of the active portion at a point is the section of said portion in the transverse plane passing through this point.
  • each discharge electrode of the spark gap therefore comprises an elongated active portion.
  • the active portions of the two electrodes are adapted to, when a current is established, channel the current and induce between them a magnetic field that moves the electric arc along said portions.
  • the active portions provide an elongated range of displacement of the arc, which is advantageously free of slits.
  • At least one discharge electrode according to the invention also comprises at least one passive portion, specifically designed to prevent any closure of the spark gap by spontaneous and inadvertent breakdown under normal conditions of use of the spark gap, and the shape and arrangement are adapted to fulfill this function.
  • Each passive portion is especially designed and arranged to reduce the intensity of the electric field between the two discharge electrodes.
  • the presence of the passive portion (s) according to the invention makes it possible to choose and adjust the shape of the active portions so as to increase the performance of the spark gap.
  • it allows to choose and adjust the shape of the active portions so as to limit the risk of erosion of said portions by the arc.
  • This shape is chosen in particular so as to obtain (when an arc is formed) a high current density along said active portions, which induces a stronger magnetic field giving the arc a greater speed of displacement. A rapid displacement of the arc limits the risk of erosion of the active portions.
  • use conditions of the spark gap designate all the external parameters of use having an influence on the proper operation of the spark gap.
  • these parameters of use mention may be made of the voltage applied to the spark gap and the pressure of the gas (or vapor) contained in the spark gap, which gas electrically isolates the electrodes from each other in the absence of 'electric arc.
  • These conditions are said to be “normal” when the values taken by these parameters fall within the usual predefined ranges of use of the spark gap, for which the spark gap has been specifically designed.
  • the voltage applied to the spark gap must be within a given operating range, and must in particular, be less than a maximum operating value, which can be from 1 kV to 1 MV depending on the spark gap and according to its use.
  • a maximum operating value which can be from 1 kV to 1 MV depending on the spark gap and according to its use.
  • breakdown of the spark gap is not excluded despite the presence of the passive portion (s) according to the invention. Note that, if such a breakdown occurs, the formed arc will also appear between the active portions of the electrodes.
  • the two discharge electrodes or only one of them has (s) a passive portion.
  • upstream and downstream are used, for each of the discharge electrodes, with reference to the guideline of the active portion of the electrode and to the direction of movement of the electric arc along of this active portion.
  • the active and passive portions of at least one of the discharge electrodes are separated at least for a fraction of the length of the active portion downstream of the electric arc trip zone. This feature facilitates the channeling of electrical charges into the active portion when a current is established.
  • the active and passive portions are distant on this fraction of length and only separated by the gas present inside the spark gap.
  • an insulating solid element (of synthetic material for example) extends between said active and passive portions over this fraction of length.
  • the spark gap comprises a trigger device, such as a trip electrode, capable of initiating the formation of an electric arc in the electric arc trip zone.
  • a trigger device such as a trip electrode
  • the voluntary formation of an electric arc is triggered either by applying to the spark gap a voltage greater than a minimum self-priming voltage, or by modifying the pressure of the gas contained in the spark gap, in order to cause a self-priming of the spark gap.
  • the shape and arrangement of the active portions of the discharge electrodes are adapted so that the self-priming electric arc is formed in the electric arc trip zone.
  • the active portion of at least one of the discharge electrodes has a guideline, said longitudinal direction, substantially straight at least downstream of the electric arc trip zone.
  • the active portion of at least one of the discharge electrodes has a curved guideline.
  • the active portions of the discharge electrodes extend substantially facing each other, at least downstream of the electric arc release zone, it being specified that one This means that any transverse plane (downstream of the tripping zone) of the active portion of at least one of the electrodes intersects the active portion of the other electrode.
  • the transverse direction in which the active portions are facing is said unloading direction, given that the electric arc that is formed between the active portions extends substantially in this direction.
  • the active portions of the discharge electrodes have longitudinal connection ends located on the same side of the spark gap, and preferably arranged substantially facing one another.
  • the active portions of the discharge electrodes have similar overall shapes.
  • the active portions of the discharge electrodes both have substantially straight elongated shapes and substantially straight lines (longitudinal directions).
  • they both have curved guidelines substantially following the (the) same (s) curvature (s).
  • the active portions may have substantially circular guidelines and open crown shapes.
  • the guidelines of the active portions are preferably substantially parallel, at least downstream of the electric arc trip zone.
  • the active portions are then facing each other at least downstream of the trigger zone, and the spacing of said portions is substantially constant over the entire length of the active portions.
  • the electric arc moving along these active portions therefore also has a substantially constant length.
  • This preferred version of the invention does not exclude the possibility of providing unloading electrodes whose active portions have guide lines forming, at a point or at any point, a non-zero angle and / or active portions of which the spacing is not constant.
  • the spacing of the active portions may increase downstream (in the direction of movement of the arc).
  • the active portion of each discharge electrode has a shape adapted for the induced magnetic field to move the electric arc at a speed sufficient to avoid erosion of said active portions by melting and / or local vaporization (s). ) (at the point of impact of the electric arc).
  • a speed makes it possible to dispense with the use of expensive alloys (example: copper and tungsten alloys) for the production of these electrodes.
  • the active portions - as well as the passive portion (s) - of the discharge electrodes are made of a basic conductive material chosen from among steels, stainless steels, brasses, aluminum, copper, some copper-based alloys ... (this list is not exhaustive).
  • each active portion has a surface, called a useful surface, of suitable dimensions for the induced magnetic field to move the electric arc at a speed sufficient to prevent erosion of the active portions by local melting and / or vaporization (s), the effective area of the active portion being defined (geometrically) as the surface portion of the active portion extending opposite the other electrode downstream of the electric arc trip zone.
  • This useful surface of the active portion may have, for at least one of the discharge electrodes, a substantially constant width, the term "width" denoting a dimension in a transverse direction orthogonal to the transverse direction of unloading.
  • the active portion of at least one unloading electrode has a useful surface of increasing width downstream (in the direction of movement of the arc, towards the downstream end of the active portion).
  • This feature is advantageous for the following reasons.
  • the triggering of an electric arc establishes an electric current through the spark gap, the intensity of which is increasing in an initial phase, before reaching a maximum value and to decrease towards zero (aperiodic regime) or to oscillate in s damping (oscillating speed) until the energy initially stored in the capacitor (s) is completely dissipated.
  • This initial phase is critical given the low intensity of the current and the low kinetic energy of the electric arc.
  • the arc is displaced along an upstream fraction of the active portion of the electrode, from its point of formation in the electric arc trip zone.
  • This upstream fraction to move the arc at a high speed, it is therefore necessary to have a strong magnetic field between the electrodes, in particular capable of compensating for the low intensity of the current in the arc.
  • the use, for each electrode, of an active portion having a useful surface of small width on such an upstream fraction makes it possible to increase the density of the current flowing in this fraction and to have a strong magnetic field opposite it.
  • the width of the usable area may be greater on a downstream fraction of the active portion along which the displaced electric arc has a high current intensity and / or a certain kinetic energy. In this downstream fraction, the induced magnetic field is indeed sufficient to move the arc at the desired speeds without it being necessary to increase it using a small width active portion.
  • the surface the active portion of each discharge electrode preferably has a length of between 5 and 200 cm, and a width less than 50 cm over this length and less than 7 cm at least on an upstream fraction of this length.
  • the width of the useful surface may advantageously be less than 2 cm at least on an upstream fraction of this length if the spark gap is intended to transfer quantities of charges lower than 20 C.
  • At least one discharge electrode has a passive portion.
  • Each passive portion preferably extends substantially opposite the active portion of the electrode in the transverse direction of unloading.
  • each passive portion extends along at least an upstream fraction of the active portion of the electrode; said passive portion protrudes from a longitudinal edge of the active portion and so as not to pass through an intermediate space extending between the active portions of the two electrodes.
  • the passive portion must in particular extend along at least an upstream fraction of the active portion in which the shape of said active portion (small width and / or small radius of curvature of the active portion surface which is oriented towards the other electrode ...), thus chosen to induce in this zone a high magnetic field, also generates a strengthening of the electric field capable of triggering the unexpected formation of an electric arc (self-priming) under normal conditions of use of the spark gap.
  • the passive portion may also extend over the entire length of the active portion.
  • each passive portion has a surface, called a useful surface, having a minimum radius of curvature which is greater than a threshold radius below which, under the normal conditions of use of the spark gap, the intensity the electric field between the discharge electrodes is greater than a minimum spark gap self-priming value (defined as the minimum electric field strength causing spontaneous arcing).
  • the useful area of the passive portion is defined as the surface portion of the passive portion extending opposite the other electrode. Note that according to this definition, the useful area of the passive portion may possibly extend upstream of the electric arc trip zone (unlike the useful surface of the active portion as defined above).
  • the passive portion of at least one discharge electrode has a plane useful surface (that is to say of infinite radius of curvature).
  • At least one of the discharge electrodes comprises, on the one hand, an active portion having, at least downstream of the electric arc trip zone, the shape of a cylindrical rod and, on the other hand, a passive portion in the form of a flat plate, said plate and rod being distant from each other and arranged so that the rod extends between the plate and the other unloading electrode, parallel to said plate and close to it.
  • the spark gap comprises a housing inside which are placed the discharge electrodes.
  • Said housing may comprise at least one conductive wall acting as a passive portion (in the form of a flat plate) of an unloading electrode.
  • At least one of the discharge electrodes comprises an elongate flat plate, a longitudinal connection end of which is connected to the connector.
  • the active portion of the electrode consists of a downstream fraction of said plate and at least one rod or rod of length and width respectively lower than those of the plate, fixed on an upstream fraction of said plate.
  • the passive portion of the electrode is essentially constituted by the upstream fraction of the plate.
  • the rod preferably extends away from the passive portion at least downstream of the electric arc trip zone, so that when an electric arc is triggered and an electric current is established, the electric charges circulating in the electrode are channeled and concentrated in the rod - at least as long as the electric arc extends between the rod and the other electrode - to induce a high magnetic field.
  • the spark gap comprises several pairs of discharge electrodes, said pairs being arranged in parallel.
  • the amount of charges conducted can be multiplied by the number of pairs of electrodes operating in parallel.
  • at least one of the discharge electrodes of each pair is connected to a connector of the spark gap that is specific to it.
  • the spark gap comprises at least, on the one hand, a connector per pair of discharge electrodes, and on the other hand, a single connector or a connector pair of electrodes.
  • Electrical decoupling means inductive, resistive, temporal Certainly are, arranged between the current generator and a series of connectors (one per pair of electrodes).
  • the spark gap comprises only two connectors
  • electrical decoupling means inductive, resistive, temporal .
  • a third version which corresponds to a combination of the two previous ones and in which the spark gap integrates means of internal decoupling and is used in association with external decoupling means, is also in accordance with the invention.
  • the invention also relates to a spark gap characterized in combination by all or some of the characteristics mentioned above and below.
  • the first spark gap according to the invention illustrated in Figures 1 and 2 comprises a stainless steel conductive parallelepipedic housing 1, a first discharge electrode 2, a second discharge electrode 3 and an electric arc release electrode 4.
  • Each discharge electrode 2, 3 has a generally elongated and straight shape, defining a longitudinal direction of the electrode. It comprises a straight elongated active portion, described below, whose longitudinal direction (guideline) coincides with that of the electrode.
  • the electrodes extend facing one another in a transverse direction Z, said unloading direction, so that their longitudinal directions are parallel and define a common longitudinal direction X.
  • the trip electrode 4 extends between the discharge electrodes, in a transverse direction Y, orthogonal to the longitudinal direction X and to the unloading direction Z. It extends more precisely between the active portions (described below). unloading electrodes, near the connection ends of said active portions. It defines a zone 21 for triggering an electric arc.
  • the discharge electrode 2 comprises on the one hand a passive portion comprising a hollow cylindrical tube 9, called a passive tube, which has an inner radius of the order of 55 mm, an outer radius of about 75 mm and a longitudinal slot 22 over almost all of its length.
  • Said passive portion has a downstream longitudinal end formed by a tip 16, electrically insulated (both the housing 1 and the active portion of the electrode).
  • the passive portion is also connected to a connector 11 via a nozzle 17 and a portion of tube 50 (of short length) extending the passive tube 9 upstream, said tip and tube portion forming part of the active portion (described later).
  • the connector 11 passes through the housing 1 for the connection of the electrode 2 to an electrical circuit, and in particular to one or more capacitors (s) high voltage.
  • the connector 11 comprises a conductive rod 12, a longitudinal end of which is welded in the endpiece 17, and a sleeve 13 of electrically insulating material for embedding the connector in the housing 1.
  • the passive portion of the discharge electrode 2 has a useful surface 23 oriented towards the electrode 3, formed by the portion of the external surface of the passive tube 9 located “below” (on the Figures 1 and 2 ) a "horizontal" median plane-orthogonal to the unloading direction-passing through a diameter of the tube.
  • the discharge electrode 2 further comprises an active portion comprising a cylindrical rod 10, called an active rod, of circular section having a substantially constant diameter of the order of 10 mm, and of length substantially corresponding to that of the passive tube.
  • the active portion has a longitudinal connection end which extends said active rod 10, and which comprises the tip 17, the tube portion 50 and a lug 15 for fixing the rod 10 to said tube portion 50.
  • the active portion also has a downstream longitudinal end 18, carried by the longitudinal end downstream 6 of the passive portion to which it is connected by a pin 14 of electrically insulating material.
  • the active rod 10 extends opposite, in the unloading direction Z, of the slot 22 of the passive tube 9, so as to protrude slightly (in the said unloading direction Z) from the useful surface 23 of the passive portion and to extend between this useful surface and the discharge electrode 3.
  • the active portion of the discharge electrode 2 has a useful surface 24 formed by the portion of the outer surface of the rod 10 which is directed towards the electrode 3 (this portion is cylindrical with a semicircular section) and which is extends, in the longitudinal direction, between the trigger electrode 4 and the downstream end 18 of the rod.
  • the discharge electrode 3 comprises on the one hand a passive portion formed by a plate or wall 6 of the housing 1, said passive wall. Said wall 6 of the housing is connected at one end 27 to a connector 7 for connecting said wall to ground.
  • the connector 7 has a conductive rod passing through the wall 6 (which provides the connection between said connector and the passive wall 6), and a mortise receiving the connection end of the active portion (described below) of the electrode 3.
  • the discharge electrodes 2 and 3, provided with their respective connector 11, 7, are arranged so that said connectors are facing in the transverse direction of unloading.
  • the passive portion of the discharge electrode 3 has a planar working surface formed by the portion of the inner face (facing the electrode 2) of the wall 6 of the housing which extends, in the longitudinal direction, between the tip 17 and the tip 16 of the electrode 2.
  • the discharge electrode 3 further comprises an active monobloc portion consisting of a cylindrical rod 5, called active rod, of circular section having a substantially constant diameter of the order of 10 mm.
  • the active portion has, on the one hand, a longitudinal end of formed connection by the longitudinal end 28 of the active rod, welded in the mortise of the connector 7, and secondly, a downstream longitudinal end formed by the opposite longitudinal end 20 of the active rod 5, carried by a wall 29 of the housing 1 in which it is fixed by an anchor 8 of electrically insulating material.
  • the downstream end of the active portion of the electrode 3 is thus electrically isolated.
  • the active rod 5 of the electrode 3 extends parallel to the passive wall 6 and close to the latter also extends parallel to the active rod 10 of the electrode 2.
  • the active portion of the discharge electrode 3 has a useful surface 26 formed by the portion of the outer surface of the rod 5 which is oriented towards the electrode 2 (this part is cylindrical with a semicircular section) and which extends, in the longitudinal direction, between the trigger electrode 4 and the free end 16 of the electrode 2.
  • the discharge electrodes 2 and 3 are thus brought to distinct potentials, the difference of which can be up to 50 kV.
  • the electrical charges are distributed over the useful surfaces of the active and passive portions of the discharge electrodes, and an electric field appears between the two electrodes. Because of their shape and their extent, the useful surfaces 23 and 25 of the passive portions of the electrodes act as reducers of the electric field, thus limiting the risks of self-priming of the spark gap under normal conditions of use of the spark plug. this.
  • Arc formation is then initiated between the active rods 10 and 5 of said electrodes, in the electric arcing trip zone 21, by bringing the trigger electrode 4 to a suitable given potential.
  • the presence of the trigger electrode when brought to this potential, locally increases the electric field and causes a breakdown in the electric arc trip zone.
  • a current is thus established between the conductive rods of the connectors 11 and 7.
  • This current flows essentially in the active portions of the electrodes: the electric charges propagate in the tip 17, the tube portion 50, the fixing lug 15 and the active rod 10 of the discharge electrode 2; they are transferred to the discharge electrode 3 by the electric arc formed between the active rods 10 and 5, which arc extends substantially in the transverse direction of unloading; then they propagate in the active rod 5 of the discharge electrode 3 to the connector 7.
  • the current is channeled into the active rods 10 and 5.
  • the trigger electrode extends near the connection ends of the active portions of the two discharge electrodes, slightly downstream (and not facing) of said connection ends. Therefore, when a current is established, it flows in the active rod of each electrode over a length which corresponds, at the time of the establishment of the current, to the distance - along the longitudinal direction - between the end of connection of the active portion and the electric arc trip zone. From its establishment, the current therefore has a component in the longitudinal direction X, immediately upstream of the electric arc. In the discharge electrode 2, the current flows towards the downstream end 18 of the rod 10, while it flows in the opposite direction in the discharge electrode 3, towards the connection end 28 of the rod 5.
  • each of the active rods 10, 5 induces a magnetic field with substantially circular field lines in the vicinity of the rods.
  • the resulting magnetic field (sum of the fields induced by the two electrodes) has a direction substantially orthogonal to the longitudinal and transverse directions of unloading, and a sense "returning" on the figure 1 .
  • the resulting induced magnetic field moves the electric arc in the longitudinal direction towards the downstream ends 18 and 20 of the active rods 10 and 5, along said rods which provide a straight range of displacement of the arc.
  • upstream and "downstream” are defined with reference to this direction of movement of the electric arc.
  • the active rods 10 and 5 having small diameters, their useful surfaces 24 and 26 have a small width.
  • the density of the current flowing in the active rods, along these useful surfaces 24 and 26, is therefore particularly high, so that the induced magnetic field is strong and the resulting Laplace force important.
  • the speed of displacement of the arc obtained is sufficiently high to considerably reduce, or even avoid, the damage due to erosion of the electrodes by the electric arc.
  • it is therefore not necessary to use a special expensive alloy to make the electrodes (a basic material such as a simple steel is suitable), or to provide a geometry that allows the arc to pass several times in the same place during the same shot.
  • the second spark gap according to the invention illustrated in figures 3 and 4 comprises: a parallelepipedal box 30, conductive or not, made of a steel or any synthetic material; two identical discharge electrodes 31 and 32; and an electrode 42 for triggering an electric arc.
  • each discharge electrode 31, 32 has a generally elongate and straight shape, defining a longitudinal direction of the electrode.
  • Each electrode comprises a straight elongated active portion, described below, whose longitudinal direction (guideline) coincides with that of the electrode.
  • the electrodes are arranged parallel to one another and symmetrically; they extend opposite one another in the transverse direction Z of unloading, and their parallel guidelines define a longitudinal direction X common.
  • the trigger electrode 42 also extends in the longitudinal direction X, and has, between the discharge electrodes, a free end defining in its vicinity a region 41 of electric arc triggering.
  • the trigger electrode 42 is mounted on a wall 48 of the housing 30 by means of a sleeve of insulating material, which allows both to fix the electrode on the housing 30 , to isolate the electrode from the housing, and to protect the fraction of the electrode which extends outside the housing 30 .
  • Each discharge electrode 31, 32 comprises an elongated flat plate 33 and a rod 34, whose respective longitudinal directions coincide with the longitudinal direction X of the electrode.
  • the rod 34 is fixed to the flat plate by a fixing flange 46 and screw means or bolts, so as to extend facing an upstream fraction of said plate.
  • the flat plate has a length of the order of 700 mm and a width (dimension in a transverse direction orthogonal to the longitudinal direction X and the discharge direction Z) of the order of 100 mm.
  • the rod 34 has a length of the order of 200 mm and a width of the order of 25 mm.
  • each discharge electrode 31, 32 is formed by the rod 34 and by a downstream fraction 44 of the plate which extends in the extension of a downstream longitudinal end 47 of the rod 34 towards a free end 35 of the plaque.
  • This active portion has a longitudinal connection end formed by an upstream longitudinal end 40 of the rod 34, and a downstream end formed by the free end 35 of the plate.
  • each rod 34 is slightly curved in a plane containing the two rods (plane of formation and displacement of the electric arc), so that the spacing between the two rods is variable: it is minimal in the zone 41 arc tripping, then increases downstream, towards the ends 47 of the rods 34.
  • the electric field induced between the rods 34 is maximum in the zone of electric arc trigger. The triggering of an electric arc is facilitated.
  • each electrode 31, 32 is formed by an upstream fraction 45 of the plate 33, which extends from an upstream end 36 of the plate 33 to the downstream end 47 of the rod 34. Said passive portion is directly connected to a connector by its upstream end 36.
  • connection ends 40 and 36 of the active and passive portions of each electrode are traversed by the conductive rod 38 of a connector 37.
  • the mechanical connection thus formed is electrically conductive; it makes it possible to connect the electrode in an electric circuit.
  • one of the connectors 37 can be connected to one or more capacitors and the other connector to a load.
  • the conductive rod 38 of the connector is surrounded by an insulating sleeve 39, for its installation in a wall of the housing 30 and its attachment to said wall.
  • the trigger electrode 42 when raised to a given potential, locally changes the electric field in the electric arc trip zone and initiates the formation of an electric arc between the rods. 34.
  • the established current channeled into the rods 34, flows in the longitudinal direction X, downstream - that is to say towards the free end 35 - in the electrode connected to the generator, and to the upstream-that is, towards the connection end 40- in the electrode connected to the load.
  • the established current induces a magnetic field between the electrodes, whose direction in the arc plane is orthogonal to the longitudinal direction and the discharge direction.
  • the induced magnetic field moves the arc toward the free ends of the active portions.
  • the discharge of a capacitor comprises an initial period during which the current flowing through the spark gap has an increasing intensity (initially zero).
  • the active portion of each electrode in the vicinity of the electric arc trip zone is advantageously formed by the rod 34, the useful surface of which has a small width in order to concentrate the electric charges, increase the current density and thus generate a high magnetic field in this area despite the low intensity of the current at the beginning of the discharge.
  • the induced field is sufficient to move the electric arc at a speed capable of limiting erosion.
  • the rods are advantageously dimensioned so that, as long as the intensity of the current is not sufficiently high, the moving electric arc still extends between the rods.
  • an element 43 of electrically insulating material is arranged between the active rod 34 and the passive upstream fraction 45 of the plate, downstream of the electric arc trip zone.
  • This element 43 can channel in the rod 34 the established current, at least until the moving electric arc has not reached the downstream end 47 of the rod.
  • the electrical insulation that the element 43 provides could also be obtained by leaving a space between the rod 34 and the passive upstream fraction 45, that is to say by removing the element 43, the gas contained in the housing 30. realizing an insulator.
  • the obtained speeds of displacement of the electric arc between the rods 34 and between the downstream fractions 44 of the plates are sufficiently high to limit the erosion of said downstream rods and fractions to the point of allowing the use of a basic material ( any copper or steel for example) for their manufacture, or to allow to transfer charge quantities and / or current intensities higher than those usually transferred.
  • a spark gap comprising an unloading electrode devoid of passive portion is in accordance with the invention, since the other electrode has one.
  • a spark gap comprising two identical discharge electrodes, similar to either electrode 2 or electrode 3 represented in the figures, is in accordance with the invention.
  • a spark gap comprising one of the electrodes 2 or 3 shown, associated with an electrode such as the electrode 31, is in accordance with the invention.
  • spark gap shown in Figures 1 and 2 could be used by connecting one of the electrodes to one or more capacitors (s) and the other electrode to a load, by means of a modification of the electrode 3 (such as the addition of an insulating sleeve around the connector 7 ) to isolate the latter from the housing 1.
  • the arcing trip means are not limited to the trigger electrodes shown.
  • a needle-shaped electrode which passes through (in the unloading direction) without contact the active portion of one of the discharge electrodes. When brought to a given given potential, such an electrode creates a plasma in its vicinity, which propagates so as to form an electric arc.
  • the spark gap is devoid of a trip electrode. It is closed either by applying a voltage higher than the minimum self-priming voltage, or by temporarily creating, between its discharge electrodes, an overvoltage greater than said self-priming voltage. Alternatively, the pressure of the gas inside the spark gap housing (by opening a corresponding regulating valve) is reduced.
  • the shape and structure of the electrodes are not limited to those illustrated.
  • the active portions of the electrodes may have a curved guideline, to form, for example, a turn or circular ring open (or possibly closed).
  • the passive portions of the electrodes may have various shapes, provided that these shapes are adapted (in particular by the extent and arrangement of their useful surface) to prevent inadvertent self-priming of the spark gap.

Landscapes

  • Spark Plugs (AREA)
  • Plasma Technology (AREA)

Abstract

L'invention concerne un éclateur comprenant deux électrodes de déchargement (2 ; 3) présentant chacune une portion conductrice allongée (10 ; 5), dite portion active, ayant une extrémité longitudinale (15, 17 ; 28) de connexion reliée à un connecteur (11 ; 7). Les électrodes sont agencées de telle sorte que, lorsqu'un arc électrique se forme, cet arc se forme entre les portions actives et le courant électrique ainsi établi induise un champ magnétique qui déplace l'arc électrique le long desdites portions actives, de préférence à une vitesse élevée limitant l'érosion. Au moins une électrode de déchargement présente de plus au moins une autre portion conductrice (9, 16 ; 6), dite portion passive, électriquement reliée au connecteur et/ou à la portion active, et ayant une forme adaptée pour empêcher toute formation spontanée intempestive d'un arc électrique dans des conditions normales d'utilisation de l'éclateur.

Description

  • L'invention concerne, un éclateur et est particulièrement avantageuse dans le cas d'un éclateur à haute tension permettant de transférer une importante quantité de charges électriques.
  • Un éclateur est un dispositif du type commutateur à fermeture comprenant deux électrodes distantes, dites électrodes de déchargement, séparées par un diélectrique (gaz, vapeur, vide ...), entre lesquelles se forme un arc électrique lorsque la différence de potentiel entre les électrodes est supérieure à une valeur seuil. Dans un éclateur à haute tension, cette valeur seuil est supérieure à quelques kV, et la tension de fonctionnement de l'éclateur (tension appliquée à l'éclateur, c'est-à-dire la différence de potentiel entre ses électrodes) peut aller jusqu'à 1 MV. Un tel éclateur permet de transférer une quantité de charges électriques allant de quelques centaines de milli-Coulomb à plusieurs centaines de Coulomb, correspondant à un courant électrique traversant l'éclateur d'intensité comprise entre 1 kA et 1 MA.
  • Associé à un générateur de courant, et notamment à un condensateur apte à accumuler les quantités de charges électriques susmentionnées, un tel éclateur à haute tension est notamment utilisé pour alimenter de façon séquentielle un banc de test de matériaux sous haute pression ou tout autre dispositif, dit charge. Chaque opération de déchargement du condensateur et de transfert à la charge, par l'éclateur, des charges électriques initialement accumulées dans le condensateur, est appelée un tir.
  • Parmi les éclateurs connus, l'un des plus performants est un éclateur à gaz qui comprend deux électrodes de déchargement cylindriques creuses, symétriques de révolution, qui présentent chacune un rayon interne de l'ordre de 8 cm, un rayon externe de l'ordre de 10 cm et une longueur de l'ordre de 20 cm. Les deux électrodes cylindriques sont alignées "bout à bout", c'est-à-dire agencées de sorte que leurs axes de symétrie coïncident et qu'elles présentent des extrémités axiales, dites extrémités de fermeture, distantes de 8 mm environ et en regard selon la direction axiale (direction des axes de symétrie). C'est entre ces extrémités axiales de fermeture, dont les faces extrêmes annulaires en regard sont sensiblement planes (dans des plans transversaux), que se forme l'arc électrique. Les extrémités axiales opposées des électrodes, dites extrémités de connexion, sont reliées chacune à un connecteur en vue de l'intégration de l'éclateur dans un circuit électrique. En particulier, l'un des connecteurs peut servir au branchement d'un générateur de courant (condensateur) et l'autre au branchement d'une charge.
  • Un tir est déclenché par une troisième électrode, dite électrode de déclenchement, qui permet d'initier la formation d'un arc électrique entre les deux électrodes de déchargement. Lors d'un tir, les charges électriques, que transmet le générateur de courant à l'électrode de déchargement auquel il est relié, se propagent depuis l'extrémité de connexion de l'électrode vers son extrémité de fermeture selon la direction axiale, puis sont déviées, au moyen de fentes inclinées ménagées dans l'extrémité de fermeture de l'électrode, de façon à se déplacer dans une direction comprenant une composante tangentielle (suivant le pourtour circulaire de l'électrode dans un plan transversal). Les charges électriques traversent ensuite l'espace entre les électrodes selon la direction axiale, formant un arc électrique axial, puis sont de nouveau déviées tangentiellement dans l'extrémité de fermeture de l'autre électrode de déchargement, au moyen de fentes inclinées (en sens contraire), pour retrouver ensuite une propagation sensiblement axiale vers l'extrémité de connexion de l'électrode.
  • Ce déplacement tangentiel des charges électriques dans les extrémités de fermeture des électrodes de déchargement induit un champ magnétique radial, qui déplace l'arc électrique de façon circulaire le long des faces annulaires desdites extrémités de fermeture. Selon la quantité de charges transférée, l'arc électrique peut effectuer plusieurs tours (usuellement deux tours). On constate que la vitesse de l'arc au deuxième tour est supérieure à sa vitesse au premier tour en dépit d'une intensité de courant plus faible.
  • Malgré ce déplacement, pour une quantité de charges conduites supérieure à 140 C, l'arc électrique génère une usure importante et rapide des extrémités de fermeture des électrodes par érosion, obligeant à prévoir des extrémités de fermeture en un alliage spécial de cuivre et de tungstène. Cet alliage, particulièrement onéreux, grève le coût de revient de l'éclateur. Ce n'est qu'à ce prix que l'éclateur connu sus-cité peut aujourd'hui prétendre à une durée de vie de 18000 tirs.
  • On connaît également du document US 3,450,922 un éclateur sous vide, comportant deux électrodes parallèles en forme de plateaux cylindriques, montées fixes et distantes l'une de l'autre, chaque électrode étant reliée par sa tige de connexion respective à un circuit électrique. Une troisième électrode de déclenchement gainée de céramique isolante traverse l'un des plateaux et affleure la surface de celui-ci en un point écarté de l'axe du plateau. Lors d'un tir, l'arc électrique déclenché au droit de la troisième électrode en est écarté sous l'effet d'un champ magnétique généré par le courant d'arc. Cependant, un tel éclateur est complexe à réaliser du fait de l'alignement et de l'étanchéité nécessaires de la troisième électrode au travers de l'enveloppe et du plateau de l'électrode de déchargement. En outre il exige des matériaux particuliers et couteux, ne dégageant pas de gaz lors des sollicitations de tir, afin de ne pas réduire la durée de vie du vide intérieur.
  • L'invention vise à pallier ces inconvénients en proposant un éclateur simple et peu coûteux, ayant des performances similaires ou supérieures aux éclateurs connus.
  • En particulier, l'invention vise à fournir un éclateur à haute tension, pouvant fonctionner à des tensions similaires ou supérieures aux tensions usuelles de fonctionnement de l'éclateur connu sus-cité, pouvant commuter des courants d'intensité similaire ou supérieure aux courants commutés par l'éclateur connu sus-cité, ayant une durée de vie similaire ou supérieure à celle de l'éclateur connu sus-cité, pour un taux d'échec et de déclenchement indésirable négligeable, et un coût de revient inférieur aux éclateurs connus (et notamment à l'éclateur connu sus-cité).
  • L'invention concerne un éclateur comprenant :
    • deux électrodes de déchargement rigides, montées fixes et distantes l'une de l'autre, et
    • au moins deux connecteurs, chaque électrode étant reliée à l'un des connecteurs en vue de la connexion desdites électrodes à un circuit électrique comprenant un générateur de courant,
    dans lequel :
    • chaque électrode de déchargement présente une portion conductrice allongée, dite portion active, présentant une extrémité longitudinale, dite extrémité longitudinale de connexion, reliée au connecteur, et une extrémité longitudinale opposée dite extrémité aval,
    • des moyens de déclenchement sont adaptés pour initier la formation d'un arc électrique entre les portions actives des électrodes, dans une zone, dite zone de déclenchement d'arc électrique,
    • les portions actives des électrodes de déchargement sont agencées pour pouvoir canaliser un courant électrique et pour pouvoir former une portée allongée de déplacement de l'arc électrique sous l'effet d'un champ magnétique induit par ledit courant,
    • au moins une électrode de déchargement présente au moins une autre portion conductrice, dite portion passive, électriquement reliée au connecteur et/ou à la portion active, ladite portion passive présentant une surface, dite surface utile, définie comme la partie de surface de la portion passive qui s'étend en vis-à-vis de l'autre électrode, ayant un rayon de courbure minimal qui est supérieur à un rayon seuil en dessous duquel l'intensité du champ électrique entre les électrodes de déchargement est supérieure à une valeur minimale d'auto-amorçage dans des conditions normales d'utilisation de l'éclateur, ladite portion passive étant adaptée pour empêcher toute formation spontanée intempestive d'un arc électrique (dite auto-amorçage) dans lesdites conditions normales d'utilisation de l'éclateur.
  • A noter que le terme "allongée", employé pour qualifier la portion active des électrodes de déchargement selon l'invention, signifie que ladite portion active s'étend principalement selon une ligne, dite ligne directrice. En d'autres termes, elle présente une dimension selon cette ligne directrice, dite longueur, bien supérieure à ses autres dimensions. Ladite ligne directrice peut être droite ou courbe. Par ailleurs, les termes "direction transversale" de la portion active en un point désignent une direction orthogonale, en ce point, à la ligne directrice (c'est-à-dire orthogonale à une direction tangente à ladite ligne) de la portion active ; et on entend par "plan transversal" en un point, un plan orthogonal en ce point à la ligne directrice de la portion active. De même, la section transversale de la portion active en un point est la section de ladite portion dans le plan transversal passant par ce point.
  • Selon l'invention, chaque électrode de déchargement de l'éclateur comprend donc une portion active allongée. De par leur forme et leur agencement relatif, les portions actives des deux électrodes sont adaptées pour, lorsqu'un courant est établi, canaliser le courant et induire entre elles un champ magnétique qui déplace l'arc électrique le long desdites portions. Les portions actives réalisent une portée allongée de déplacement de l'arc, qui est avantageusement exempte de fentes.
  • Par ailleurs, au moins une électrode de déchargement selon l'invention comprend également au moins une portion passive, spécifiquement prévue pour éviter toute fermeture de l'éclateur par claquage spontané et intempestif dans des conditions normales d'utilisation de l'éclateur, et dont la forme et l'agencement sont adaptés pour remplir cette fonction. Chaque portion passive est notamment conçue et agencée de façon à réduire l'intensité du champ électrique entre les deux électrodes de déchargement.
  • La présence de la (des) portion(s) passive(s) selon l'invention permet de choisir et d'ajuster la forme des portions actives de façon à augmenter les performances de l'éclateur. En particulier, elle permet de choisir et d'ajuster la forme des portions actives de façon à limiter les risques d'érosion desdites portions par l'arc. Cette forme est notamment choisie de façon à obtenir (lorsqu'un arc est formé) une densité de courant élevée le long desdites portions actives, qui induit un champ magnétique plus fort conférant à l'arc une vitesse de déplacement plus importante. Un déplacement rapide de l'arc limite en effet les risques d'érosion des portions actives.
  • A noter que les termes "conditions d'utilisation de l'éclateur" employés ci-dessus désignent l'ensemble des paramètres extérieurs d'utilisation ayant une influence sur le bon fonctionnement de l'éclateur. Parmi ces paramètres d'utilisation, on peut citer la tension appliquée à l'éclateur et la pression du gaz (ou vapeur) contenu dans l'éclateur, lequel gaz isole électriquement les électrodes l'une de l'autre en l'absence d'arc électrique. Ces conditions sont dites "normales" lorsque les valeurs prises par ces paramètres entrent dans des plages usuelles prédéfinies d'utilisation de l'éclateur, pour lesquelles l'éclateur à été spécifiquement conçu. En particulier, dans des conditions normales d'utilisation, la tension appliquée à l'éclateur doit être comprise dans une plage de fonctionnement donnée, et doit notamment être inférieure à une valeur maximale de fonctionnement, qui peut être de 1 kV à 1 MV selon l'éclateur et selon son utilisation. En dehors de ces conditions normales d'utilisation, et notamment si une tension supérieure à une tension maximale de fonctionnement prévue est appliquée à l'éclateur, un claquage de l'éclateur n'est pas exclu en dépit de la présence de la (des) portion(s) passive(s) selon l'invention. A noter que, si un tel claquage survient, l'arc électrique formé apparaîtra également entre les portions actives des électrodes.
  • Selon les conditions normales d'utilisation de l'éclateur, les deux électrodes de déchargement ou l'une seulement de celles-ci possède(nt) une portion passive.
  • Dans toute la suite, les termes "amont" et "aval" sont utilisés, pour chacune des électrodes de déchargement, en référence à la ligne directrice de la portion active de l'électrode et au sens de déplacement de l'arc électrique le long de cette portion active.
  • Avantageusement et selon l'invention, les portions active et passive d'au moins une des électrodes de déchargement sont séparées au moins sur une fraction de la longueur de la portion active en aval de la zone de déclenchement d'arc électrique. Cette caractéristique facilite la canalisation des charges électriques dans la portion active lorsqu'un courant est établi. Dans une première version de l'invention, les portions active et passive sont distantes sur cette fraction de longueur et uniquement séparées par le gaz présent à l'intérieur de l'éclateur. Dans une deuxième version, un élément solide isolant (en matière synthétique par exemple) s'étend entre lesdites portions active et passive sur cette fraction de longueur.
  • Avantageusement et selon l'invention, l'éclateur comprend un dispositif de déclenchement, tel qu'une électrode de déclenchement, apte à initier la formation d'un arc électrique dans la zone de déclenchement d'arc électrique.
  • En variante, la formation volontaire d'un arc électrique est déclenchée soit en appliquant à l'éclateur une tension supérieure à une tension minimale d'auto-amorçage, soit en modifiant la pression du gaz contenu dans l'éclateur, en vue de provoquer un auto-amorçage de l'éclateur. Dans cette variante, la forme et l'agencement des portions actives des électrodes de déchargement sont -adaptés pour que l'arc électrique formé par auto-amorçage se forme dans la zone de déclenchement d'arc électrique.
  • Avantageusement et selon l'invention, la portion active d'au moins une des électrodes de déchargement présente une ligne directrice, dite direction longitudinale, sensiblement droite au moins en aval de la zone de déclenchement d'arc électrique. En variante ou en combinaison, la portion active d'au moins une des électrodes de déchargement présente une ligne directrice courbe.
  • Dans une version préférée de l'invention, les portions actives des électrodes de déchargement s'étendent sensiblement en regard l'une de l'autre, au moins en aval de la zone de déclenchement d'arc électrique, étant précisé que l'on entend par là que tout plan transversal (en aval de la zone de déclenchement) de la portion active d'au moins une des électrodes coupe la portion active de l'autre électrode. La direction transversale selon laquelle les portions actives sont en regard est dite direction de déchargement, compte tenu de ce que l'arc électrique qui se forme entre les portions actives s'étend sensiblement selon cette direction.
  • Avantageusement et selon l'invention, les portions actives des électrodes de déchargement présentent des extrémités longitudinales de connexion situées d'un même côté de l'éclateur, et de préférence agencées sensiblement en regard l'une de l'autre.
  • Avantageusement et selon l'invention, les portions actives des électrodes de déchargement présentent des formes globales similaires. En particulier, les portions actives des électrodes de déchargement présentent toutes deux des formes allongées sensiblement droites et des lignes directrices sensiblement droites (directions longitudinales). En variante, elles présentent toutes deux des lignes directrices courbes suivant sensiblement la(les) même(s) courbure(s). En particulier, les portions actives peuvent présenter des lignes directrices sensiblement circulaires et des formes de couronnes ouvertes.
  • Qu'elles soient droites ou courbes, les lignes directrices des portions actives sont de préférence sensiblement parallèles, au moins en aval de la zone de déclenchement d'arc électrique. Les portions actives sont alors en regard l'une de l'autre au moins en aval de la zone de déclenchement, et l'écartement desdites portions est sensiblement constant sur toute la longueur des portions actives. L'arc électrique en déplacement le long de ces portions actives présente donc également une longueur sensiblement constante. Cette version préférée de l'invention n'exclut pas la possibilité de prévoir des électrodes de déchargement dont les portions actives présentent des lignes directrices formant entre elles, en un point ou en tout point, un angle non nul et/ou des portions actives dont l'écartement n'est pas constant. En particulier, l'écartement des portions actives peut augmenter vers l'aval (dans le sens de déplacement de l'arc).
  • Avantageusement et selon l'invention, la portion active de chaque électrode de déchargement présente une forme adaptée pour que le champ magnétique induit déplace l'arc électrique à une vitesse suffisante pour éviter une érosion desdites portions actives par fusion et/ou vaporisation locale(s) (au point d'impact de l'arc électrique). Une telle vitesse permet de s'affranchir de l'utilisation d'alliages coûteux (exemple : alliages de cuivre et de tungstène) pour la réalisation de ces électrodes. Ainsi, avantageusement et selon l'invention, les portions actives - ainsi que la(les) portion(s) passive(s)- des électrodes de déchargement sont en un matériau conducteur basique choisi parmi les aciers, les aciers inoxydables, les laitons, l'aluminium, le cuivre, certains alliages à base de cuivre... (cette liste n'étant pas limitative).
  • En particulier, chaque portion active présente une surface, dite surface utile, de dimensions adaptées pour que le champ magnétique induit déplace l'arc électrique à une vitesse suffisante pour éviter une érosion des portions actives par fusion et/ou vaporisation locale(s), la surface utile de la portion active étant définie (géométriquement) comme la partie de surface de la portion active qui s'étend en vis-à-vis de l'autre électrode en aval de la zone de déclenchement d'arc électrique.
  • Cette surface utile de la portion active peut présenter, pour au moins une des électrodes de déchargement, une largeur sensiblement constante, le terme "largeur" désignant une dimension selon une direction transversale orthogonale à la direction transversale de déchargement.
  • En variante ou en combinaison, la portion active d'au moins une électrode de déchargement présente une surface utile de largeur croissante vers l'aval (dans le sens de déplacement de l'arc, vers l'extrémité aval de la portion active). Cette caractéristique est avantageuse pour les raisons suivantes. Le déclenchement d'un arc électrique établit un courant électrique à travers l'éclateur, dont l'intensité est croissante dans une phase initiale, avant d'atteindre une valeur maximale et de redécroître vers zéro (régime apériodique) ou d'osciller en s'amortissant (régime oscillant) jusqu'à ce que l'énergie initialement stockée dans le(s) condensateur(s) soit intégralement dissipée. Cette phase initiale est critique compte tenu de la faible intensité du courant et de la faible énergie cinétique de l'arc électrique. Durant cette phase initiale, l'arc est déplacé le long d'une fraction amont de la portion active de l'électrode, depuis son point de formation dans la zone de déclenchement d'arc électrique. Sur cette fraction amont, pour déplacer l'arc à une vitesse élevée, il est donc nécessaire de disposer d'un champ magnétique fort entre les électrodes, notamment susceptible de compenser la faible intensité du courant dans l'arc. L'utilisation, pour chaque électrode, d'une portion active présentant une surface utile de faible largeur sur une telle fraction amont, permet d'augmenter la densité du courant circulant dans cette fraction et de disposer d'un champ magnétique fort en regard de celle-ci. En revanche, la largeur de la surface utile peut être supérieure sur une fraction aval de la portion active le long de laquelle l'arc électrique déplacé possède une intensité de courant élevée et/ou une certaine énergie cinétique. Dans cette fraction aval, le champ magnétique induit est en effet suffisant pour déplacer l'arc aux vitesses souhaitées sans qu'il ne soit nécessaire de l'augmenter en utilisant une portion active de faible largeur.
  • Il est donc possible de prévoir une portion active dont la surface utile s'élargit vers l'aval. A noter que cet élargissement peut être progressif le long de la portion active ou brutal ponctuellement (la surface utile ayant une largeur constante sur des fractions de longueur de la portion active). Cet élargissement permet, de surcroît, de limiter la présence d'une éventuelle portion passive à une fraction amont de la portion active, si toutefois la surface utile de la portion active est conçue de façon à présenter, dans sa fraction aval élargie, un rayon de courbure minimal suffisamment élevé pour que tout risque d'auto-amorçage dans cette zone soit écarté.
  • A titre d'exemple, dans le cas d'un éclateur haute tension apte à transmettre un courant électrique d'intensité comprise entre 1 kA et 1 MA, et à transférer une quantité de charges comprise entre 0,1 et 200 C, la surface utile de la portion active de chaque électrode de déchargement présente de préférence une longueur comprise entre 5 et 200 cm, et une largeur inférieure à 50 cm sur cette longueur et inférieure à 7 cm au moins sur une fraction amont de cette longueur. La largeur de la surface utile peut avantageusement être inférieure à 2 cm au moins sur une fraction amont de cette longueur si l'éclateur est destiné à transférer des quantités de charges inférieures à 20 C. Dans tous les cas, la vitesse de déplacement d'arc obtenue autorise l'utilisation d'électrodes en un matériau basique et peu coûteux tel que le cuivre ou un acier inoxydable.
  • Avantageusement et selon l'invention, l'éclateur présente également l'une ou plusieurs des caractéristiques suivantes :
    • au moins une des électrodes de déchargement présente une portion active ayant une forme de tige cylindrique (une telle tige possède une ligne directrice droite), au moins entre la zone de déclenchement d'arc électrique et son extrémité aval,
    • au moins une des électrodes de déchargement présente une portion active ayant une forme de tige (de ligne directrice droite ou courbe) de section transversale circulaire, au moins entre la zone de déclenchement d'arc électrique et son extrémité aval. A noter que la largeur de la surface utile d'une telle portion active correspond au diamètre de la tige. Ladite tige présente une section transversale de diamètre sensiblement constant, de préférence inférieur à 2 cm si les quantités de charges à transférer sont inférieures à 20 C. En variante, ladite tige présente une section transversale de diamètre croissant (de façon progressive ou non) vers l'aval, ledit diamètre étant inférieur à 2 cm dans la zone de déclenchement d'arc électrique si les quantités de charges à transférer sont inférieures à 20 C,
    • la portion active d'au moins une électrode de déchargement présente une extrémité longitudinale aval électriquement isolée.
  • Par ailleurs, selon l'invention, au moins une électrode de déchargement possède une portion passive. Chaque portion passive s'étend de préférence sensiblement en regard de la portion active de l'électrode selon la direction transversale de déchargement. Avantageusement et selon l'invention, chaque portion passive s'étend le long au moins d'une fraction amont de la portion active de l'électrode ; ladite portion passive s'étend en saillie d'un bord longitudinal de la portion active et de façon à ne pas traverser un espace intercalaire s'étendant entre les portions actives des deux électrodes.
  • La portion passive doit notamment s'étendre le long d'au moins une fraction amont de la portion active dans laquelle la forme de ladite portion active (faible largeur et/ou faible rayon de courbure de la surface de portion active qui est orientée vers l'autre électrode...), ainsi choisie pour induire dans cette zone un champ magnétique élevé, génère également un renforcement du champ électrique susceptible de déclencher la formation inopinée d'un arc électrique (auto-amorçage) dans des conditions normales d'utilisation de l'éclateur. Selon la forme choisie pour la portion active, la portion passive peut également s'étendre sur toute la longueur de la portion active.
  • Avantageusement et selon l'invention, chaque portion passive présente une surface, dite surface utile, ayant un rayon de courbure minimal qui est supérieur à un rayon seuil en dessous duquel, dans les conditions normales d'utilisation de l'éclateur, l'intensité du champ électrique entre les électrodes de déchargement est supérieure à une valeur minimale d'auto-amorçage de l'éclateur (définie comme étant l'intensité de champ électrique minimale provoquant la formation spontanée d'un arc électrique). La surface utile de la portion passive est définie comme la partie de surface de la portion passive qui s'étend en vis-à-vis de l'autre électrode. A noter que selon cette définition, la surface utile de la portion passive peut éventuellement s'étendre en amont de la zone de déclenchement d'arc électrique (contrairement à la surface utile de la portion active telle que définie précédemment).
  • Avantageusement et selon l'invention, la portion passive d'au moins une électrode de déchargement présente une surface utile plane (c'est-à-dire de rayon de courbure infini).
  • Dans une version de l'invention, au moins une des électrodes de déchargement comprend :
    • une portion active qui présente, au moins en aval de la zone de déclenchement d'arc électrique, la forme d'une tige cylindrique de section circulaire, dite tige active,
    • une portion passive présentant la forme d'un tube cylindrique creux, dit tube passif, de section supérieure à celle de la tige active, ledit tube présentant une fente longitudinale en regard de laquelle s'étend la tige active, ledit tube passif et ladite tige active étant agencés de sorte que la tige s'étende entre le tube et l'autre électrode de déchargement. L'extrémité longitudinale aval de la tige active est avantageusement portée par une extrémité longitudinale aval du tube, à laquelle elle est reliée par des moyens de fixation de préférence électriquement isolants.
  • En variante ou en combinaison, au moins une des électrodes de déchargement comprend, d'une part, une portion active présentant, au moins en aval de la zone de déclenchement d'arc électrique, la forme d'une tige cylindrique et, d'autre part, une portion passive en forme de plaque plane, lesdites plaque et tige étant distantes l'une de l'autre et agencées de sorte que la tige s'étende entre la plaque et l'autre électrode de déchargement, parallèlement à ladite plaque et à proximité de celle-ci.
  • Avantageusement et selon l'invention, l'éclateur comprend un boîtier à l'intérieur duquel sont placées les électrodes de déchargement. Ledit boîtier peut comprendre au moins une paroi conductrice faisant office de portion passive (en forme de plaque plane) d'une électrode de déchargement.
  • En variante ou en combinaison, au moins une des électrodes de déchargement comprend une plaque plane allongée, dont une extrémité longitudinale de connexion est reliée au connecteur. La portion active de l'électrode est constituée d'une fraction aval de ladite plaque et d'au moins une barre ou tige de longueur et de largeur inférieures respectivement à celles de la plaque, fixée sur une fraction amont de ladite plaque. La portion passive de l'électrode est essentiellement constituée par la fraction amont de la plaque. La tige s'étend de préférence à distance de la portion passive au moins en aval de la zone de déclenchement d'arc électrique, de sorte que, lorsqu'un arc électrique est déclenché et qu'un courant électrique est établi, les charges électriques circulant dans l'électrode sont canalisées et concentrées dans la tige -au moins tant que l'arc électrique s'étend entre la tige et l'autre électrode- en vue d'induire un champ magnétique élevé.
  • Avantageusement et selon l'invention, l'éclateur comprend plusieurs paires d'électrodes de déchargement, lesdites paires étant agencées en parallèle. Ainsi, la quantité de charges conduite peut être multipliée par le nombre de paires d'électrodes fonctionnant en parallèle. Dans une première version de l'invention, au moins une des électrodes de déchargement de chaque paire est reliée à un connecteur de l'éclateur qui lui est propre. En d'autres termes, l'éclateur comprend au moins, d'une part, un connecteur par paire d'électrodes de déchargement, et d'autre part, un unique connecteur ou un connecteur par paire d'électrodes. Des moyens de découplage électrique (inductif, résistif, temporel...) sont, dans ce cas, agencés entre le générateur de courant et une série de connecteurs (un par paire d'électrodes). Dans une deuxième version de l'invention où l'éclateur ne comprend que deux connecteurs, celui-ci intègre des moyens de découplage électrique (inductif, résistif, temporel...) entre l'un des deux connecteurs et l'une des électrodes de chaque paire. Une troisième version, qui correspond à une combinaison des deux précédentes et dans laquelle l'éclateur intègre des moyens de découplage internes et est utilisé en association avec des moyens de découplage externes, est également conforme à l'invention.
  • L'invention concerne également un éclateur caractérisé en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus et ci-après.
  • D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante qui se réfère aux figures annexées représentant des modes de réalisation préférentiels de l'invention donnés uniquement à titre d'exemples non limitatifs, et dans lesquelles :
    • la figure 1 est une vue schématique en coupe selon un plan longitudinal d'un premier éclateur selon l'invention,
    • la figure 2 est une vue schématique en coupe selon un plan transversal du premier éclateur selon l'invention,
    • la figure 3 est une vue schématique en coupe selon un premier plan longitudinal d'un deuxième éclateur selon l'invention,
    • la figure 4 est une vue schématique en coupe selon un deuxième plan longitudinal AA -orthogonal au premier plan longitudinal- du deuxième éclateur selon l'invention.
  • Le premier éclateur selon l'invention illustré aux figures 1 et 2 comprend un boîtier 1 parallélépipédique conducteur en acier inoxydable, une première électrode de déchargement 2, une seconde électrode de déchargement 3 et une électrode de déclenchement d'arc électrique 4.
  • Chaque électrode de déchargement 2, 3 présente une forme générale allongée et droite, définissant une direction longitudinale de l'électrode. Elle comprend une portion active allongée droite, décrite plus loin, dont la direction longitudinale (ligne directrice) coïncide avec celle de l'électrode. Les électrodes s'étendent en regard l'une de l'autre selon une direction transversale Z, dite direction de déchargement, de sorte que leurs directions longitudinales sont parallèles et définissent une direction longitudinale X commune.
  • L'électrode de déclenchement 4 s'étend entre les électrodes de déchargement, selon une direction transversale Y, orthogonale à la direction longitudinale X et à la direction_de déchargement Z. Elle s'étend plus précisément entre les portions actives (décrites ci-dessous) des électrodes de déchargement, à proximité des extrémités de connexion desdites portions actives. Elle définit une zone 21 de déclenchement d'arc électrique.
  • L'électrode de déchargement 2 comprend d'une part une portion passive comprenant un tube creux cylindrique 9, dit tube passif, qui présente un rayon interne de l'ordre de 55 mm, un rayon externe de l'ordre de 75 mm et une fente longitudinale 22 sur la quasi-totalité de sa longueur. Ladite portion passive présente une extrémité longitudinale aval réalisée par un embout 16, électriquement isolée (à la fois du boîtier 1 et de la portion active de l'électrode). La portion passive est par ailleurs reliée à un connecteur 11 par l'intermédiaire d'un embout 17 et d'une portion de tube 50 (de faible longueur) prolongeant le tube passif 9 vers l'amont, lesdits embout et portion de tube formant une partie de la portion active (décrite plus loin). Le connecteur 11 traverse le boîtier 1 en vue du branchement de l'électrode 2 à un circuit électrique, et notamment à un ou plusieurs condensateur(s) haute tension. Le connecteur 11 comprend une tige conductrice 12, dont une extrémité longitudinale est soudée dans l'embout 17, et un manchon 13 en matériau électriquement isolant pour l'encastrement du connecteur dans le boîtier 1.
  • La portion passive de l'électrode de déchargement 2 présente une surface utile 23 orientée vers l'électrode 3, formée par la partie de la surface externe du tube passif 9 située "en dessous" (sur les figures 1 et 2) d'un plan médian "horizontal" -orthogonal à la direction de déchargement- passant par un diamètre du tube.
  • L'électrode de déchargement 2 comprend d'autre part une portion active comprenant une tige cylindrique 10, dite tige active, de section circulaire ayant un diamètre sensiblement constant de l'ordre de 10 mm, et de longueur correspondant sensiblement à celle du tube passif 9. La portion active présente une extrémité longitudinale de connexion qui prolonge ladite tige active 10, et qui comprend l'embout 17, la portion de tube 50 et une patte 15 de fixation de la tige 10 à ladite portion de tube 50. La portion active présente par ailleurs une extrémité longitudinale aval 18, portée par l'extrémité longitudinale aval 6 de la portion passive à laquelle elle est reliée par une cheville 14 en matériau électriquement isolant. La tige active 10 s'étend en regard, selon la direction de déchargement Z, de la fente 22 du tube passif 9, de façon à faire légèrement saillie (selon ladite direction de déchargement Z) de la surface utile 23 de la portion passive et à s'étendre entre cette surface utile et l'électrode de déchargement 3.
  • La portion active de l'électrode de déchargement 2 présente une surface utile 24 formée par la partie de la surface externe de la tige 10 qui est orientée vers l'électrode 3 (cette partie est cylindrique de section semi-circulaire) et qui s'étend, selon la direction longitudinale, entre l'électrode de déclenchement 4 et l'extrémité aval 18 de la tige.
  • L'électrode de déchargement 3 comprend d'une part une portion passive formée par une plaque ou paroi 6 du boîtier 1, dite paroi passive. Ladite paroi 6 du boîtier est connectée, à une extrémité 27, à un connecteur 7 permettant de relier ladite paroi à la masse. Le connecteur 7 présente une tige conductrice traversant la paroi 6 (qui assure la connexion entre ledit connecteur et la paroi passive 6), et une mortaise de réception de l'extrémité de connexion de la portion active (décrite ci-dessous) de l'électrode 3. Les électrodes de déchargement 2 et 3, munies de leur connecteur 11, 7 respectif, sont agencées de sorte que lesdits connecteurs soient en regard selon la direction transversale de déchargement.
  • La portion passive de l'électrode de déchargement 3 présente une surface utile 25 plane, formée par la partie de la face interne (orientée vers l'électrode 2) de la paroi 6 du boîtier qui s'étend, selon la direction longitudinale, entre l'embout 17 et l'embout 16 de l'électrode 2.
  • L'électrode de déchargement 3 comprend d'autre part une portion active monobloc constituée d'une tige cylindrique 5, dite tige active, de section circulaire ayant un diamètre sensiblement constant de l'ordre de 10 mm. La portion active présente, d'une part, une extrémité longitudinale de connexion formée par l'extrémité longitudinale 28 de la tige active, soudée dans la mortaise du connecteur 7, et d'autre part, une extrémité longitudinale aval formée par l'extrémité longitudinale opposée 20 de la tige active 5, portée par une paroi 29 du boîtier 1 dans laquelle elle est fixée par une cheville 8 en matériau électriquement isolant. L'extrémité aval de la portion active de l'électrode 3 est ainsi électriquement isolée. La tige active 5 de l'électrode 3 s'étend parallèlement à la paroi passive 6 et à proximité de cette dernière elle s'étend également parallèlement à la tige active 10 de l'électrode 2.
  • La portion active de l'électrode de déchargement 3 présente une surface utile 26 formée par la partie de la surface externe de la tige 5 qui est orientée vers l'électrode 2 (cette partie est cylindrique de section semi-circulaire) et qui s'étend, selon la direction longitudinale, entre l'électrode de déclenchement 4 et l'embout libre 16 de l'électrode 2.
  • Pour réaliser un tir, on branche le connecteur 11 à un ou plusieurs condensateurs, le connecteur 7 et le boîtier 1 étant connectés à la masse. Les électrodes de déchargement 2 et 3 sont ainsi portées à des potentiels distincts, dont la différence peut s'élever à 50 kV. Les charges électriques se répartissent sur les surfaces utiles des portions actives et passives des électrodes de déchargement, et un champ électrique apparaît entre les deux électrodes. De par leur forme et leur étendue, les surfaces utiles 23 et 25 des portions passives des électrodes agissent comme des réducteurs du champ électrique, limitant ainsi les risques d'auto-amorçage de l'éclateur dans des conditions normales d'utilisation de celui-ci.
  • On amorce ensuite la formation d'un arc entre les tiges actives 10 et 5 desdites électrodes, dans la zone 21 de déclenchement d'arc électrique, en portant l'électrode de déclenchement 4 à un potentiel donné adapté. La présence de l'électrode de déclenchement, lorsqu'elle est portée à ce potentiel, augmente localement le champ électrique et provoque un claquage dans la zone de déclenchement d'arc électrique.
  • Un courant est ainsi établi entre les tiges conductrices des connecteurs 11 et 7. Ce courant circule essentiellement dans les portions actives des électrodes : les charges électriques se propagent dans l'embout 17, la portion de tube 50, la patte de fixation 15 et la tige active 10 de l'électrode de déchargement 2 ; elles sont transférées à l'électrode de déchargement 3 par l'arc électrique formé entre les tiges actives 10 et 5, lequel arc s'étend sensiblement selon la direction transversale de déchargement ; puis elles se propagent dans la tige active 5 de l'électrode de déchargement 3 vers le connecteur 7. Le courant est canalisé dans les tiges actives 10 et 5.
  • A noter que l'électrode de déclenchement s'étend à proximité des extrémités de connexion des portions actives des deux électrodes de déchargement, légèrement en aval (et non en regard) desdites extrémités de connexion. Dès lors, lorsqu'un courant est établi, celui-ci circule dans la tige active de chaque électrode sur une longueur qui correspond, au moment de l'établissement du courant, à la distance -selon la direction longitudinale- entre l'extrémité de connexion de la portion active et la zone de déclenchement d'arc électrique. Dès son établissement, le courant présente donc une composante selon la direction longitudinale X, immédiatement à l'amont de l'arc électrique. Dans l'électrode de déchargement 2, le courant circule vers l'extrémité aval 18 de la tige 10, tandis qu'il circule dans le sens contraire dans l'électrode de déchargement 3, vers l'extrémité de connexion 28 de la tige 5. La circulation de courant dans chacune des tiges actives 10, 5 induit un champ magnétique aux lignes de champ sensiblement circulaires au voisinage des tiges. Entre lesdites tiges, dans le plan de l'arc (plan comprenant les deux tiges et dans lequel est formé et se déplace l'arc), le champ magnétique résultant (somme des champs induits par les deux électrodes) présente une direction sensiblement orthogonale aux directions longitudinale et transversale de déchargement, et un sens "rentrant" sur la figure 1. Le champ magnétique induit résultant déplace l'arc électrique selon la direction longitudinale vers les extrémités aval 18 et 20 des tiges actives 10 et 5, le long desdites tiges qui réalisent une portée droite de déplacement de l'arc. Les termes "amont" et "aval" sont définis en référence à ce sens de déplacement de l'arc électrique.
  • Les tiges actives 10 et 5 présentant de petits diamètres, leurs surfaces utiles 24 et 26 ont une faible largeur. La densité du courant circulant dans les tiges actives, le long de ces surfaces utiles 24 et 26, est donc particulièrement élevée, de sorte que le champ magnétique induit est fort et la force de Laplace résultante importante. La vitesse de déplacement de l'arc obtenue est suffisamment élevée pour réduire de façon considérable, voire éviter, les dommages dus à l'érosion des électrodes par l'arc électrique. Contrairement aux éclateurs connus, il n'est donc pas nécessaire d'utiliser un alliage spécial coûteux pour réaliser les électrodes (un matériau basique tel qu'un simple acier convient), ni de prévoir une géométrie permettant à l'arc de passer plusieurs fois au même endroit lors d'un même tir.
  • Le deuxième éclateur selon l'invention illustré aux figures 3 et 4 comprend : un boîtier 30 parallélépipédique, conducteur ou non, réalisé dans un acier ou dans une matière synthétique quelconque ; deux électrodes de déchargement 31 et 32 identiques ; et une électrode 42 de déclenchement d'arc électrique.
  • De façon similaire au premier éclateur, chaque électrode de déchargement 31, 32 présente une forme générale allongée et droite, définissant une direction longitudinale de l'électrode. Chaque électrode comprend une portion active allongée droite, décrite plus loin, dont la direction longitudinale (ligne directrice) coïncide avec celle de l'électrode. Les électrodes sont agencées parallèlement l'une à l'autre et de façon symétrique ; elles s'étendent en regard l'une de l'autre selon la direction transversale Z de déchargement, et leurs lignes directrices parallèles définissent une direction longitudinale X commune.
  • L'électrode de déclenchement 42 s'étend également selon la direction longitudinale X, et présente, entre les électrodes de déchargement, une extrémité libre définissant à son voisinage une zone 41 de déclenchement d'arc électrique. L'électrode de déclenchement 42 est montée sur une paroi 48 du boîtier 30 au moyen d'un manchon en matériau isolant, qui permet à la fois de fixer l'électrode de déclenchement 42 sur le boîtier 30, d'isoler l'électrode du boîtier, et de protéger la fraction de l'électrode qui s'étend à l'extérieur du boîtier 30.
  • Chaque électrode de déchargement 31, 32 comprend une plaque plane allongée 33 et une tige 34, dont les directions longitudinales respectives coïncident avec la direction longitudinale X de l'électrode. La tige 34 est fixée à la plaque plane par une bride de fixation 46 et des moyens à vis ou boulons, de façon à s'étendre en regard d'une fraction amont de ladite plaque. La plaque plane présente une longueur de l'ordre de 700 mm et une largeur (dimension selon une direction transversale orthogonale à la direction longitudinale X et à la direction de déchargement Z) de l'ordre de 100 mm. La tige 34 présente une longueur de l'ordre de 200 mm et une largeur de l'ordre de 25 mm.
  • La portion active de chaque électrode de déchargement 31, 32 est formée par la tige 34 et par une fraction aval 44 de la plaque qui s'étend dans le prolongement d'une extrémité longitudinale aval 47 de la tige 34 vers une extrémité libre 35 de la plaque. Cette portion active présente une extrémité longitudinale de connexion formée par une extrémité longitudinale amont 40 de la tige 34, et une extrémité aval formée par l'extrémité libre 35 de la plaque.
  • A noter que chaque tige 34 est légèrement courbée dans un plan contenant les deux tiges (plan de formation et de déplacement de l'arc électrique), de sorte que l'écartement entre les deux tiges est variable : il est minimal dans la zone 41 de déclenchement d'arc électrique, puis augmente vers l'aval, en direction des extrémités 47 des tiges 34. Lorsque les électrodes de déchargement sont portées à des potentiels distincts, le champ électrique induit entre les tiges 34 est donc maximal dans la zone de déclenchement d'arc électrique. Le déclenchement d'un arc électrique en est facilité.
  • La portion passive de chaque électrode 31, 32 est formée par une fraction amont 45 de la plaque 33, qui s'étend depuis une extrémité amont 36 de la plaque 33 jusqu'à l'extrémité aval 47 de la tige 34. Ladite portion passive est directement reliée à un connecteur par son extrémité amont 36.
  • Les extrémités de connexion 40 et 36 des portions active et passive de chaque électrode sont traversées par la tige conductrice 38 d'un connecteur 37. La liaison mécanique ainsi réalisée est électriquement conductrice ; elle permet de brancher l'électrode dans un circuit électrique. En particulier, on peut brancher l'un des connecteurs 37 à un ou plusieurs condensateurs et l'autre connecteur à une charge. La tige conductrice 38 du connecteur est entourée d'un manchon isolant 39, pour son encastrement dans une paroi du boîtier 30 et sa fixation à ladite paroi.
  • De façon similaire au premier éclateur, l'électrode de déclenchement 42, lorsqu'elle est portée à un potentiel donné, modifie localement le champ électrique dans la zone de déclenchement d'arc électrique et initie la formation d'un arc électrique entre les tiges 34. Le courant établi, canalisé dans les tiges 34, circule selon la direction longitudinale X, vers l'aval -c'est-à-dire vers l'extrémité libre 35- dans l'électrode connectée au générateur, et vers l'amont -c'est-à-dire vers l'extrémité de connexion 40- dans l'électrode connectée à la charge.
  • Le courant établi induit un champ magnétique entre les électrodes, dont la direction dans le plan de l'arc est orthogonale à la direction longitudinale et à la direction de déchargement. Le champ magnétique induit déplace l'arc vers les extrémités libres 35 des portions actives.
  • Le déchargement d'un condensateur comprend une période initiale durant laquelle le courant traversant l'éclateur présente une intensité croissante (initialement nulle). La portion active de chaque électrode au voisinage de la zone de déclenchement d'arc électrique est avantageusement formée par la tige 34, dont la surface utile présente une faible largeur en vue de concentrer les charges électriques, augmenter la densité de courant et générer ainsi un champ magnétique élevé dans cette zone en dépit de la faible intensité du courant au début de la décharge. Le champ induit est suffisant pour déplacer l'arc électrique à une vitesse apte à limiter l'érosion. Les tiges sont avantageusement dimensionnées de telle sorte que, tant que l'intensité du courant n'est pas suffisamment élevée, l'arc électrique en déplacement s'étende encore entre les tiges.
  • A noter que, pour chaque électrode de déchargement 31, 32, un élément 43 en matériau électriquement isolant est agencé entre la tige active 34 et la fraction amont passive 45 de la plaque, en aval de la zone de déclenchement d'arc électrique. Cet élément 43 permet de canaliser dans la tige 34 le courant établi, du moins tant que l'arc électrique en déplacement n'a pas atteint l'extrémité aval 47 de la tige. L'isolation électrique que l'élément 43 assure pourrait également être obtenue en laissant un espace entre la tige 34 et la fraction amont passive 45, c'est-à-dire en retirant l'élément 43, le gaz contenu dans le boîtier 30 réalisant un isolant.
  • Après que l'arc électrique a atteint l'extrémité 47 de la tige 34, son déplacement s'effectue le long de la fraction aval 44 de la plaque. Lesdites plaques présentant une largeur supérieure à celle des tiges 34, la densité de courant circulant sur la surface utile de ces plaques est inférieure à celle circulant sur la surface utile des tiges. Le champ induit entre les plaques 33 en regard dans cette zone est par conséquent moindre, mais est néanmoins suffisant pour déplacer l'arc à une vitesse importante, dans la mesure où l'intensité du courant dans l'arc électrique est désormais élevée (la phase initiale étant terminée).
  • Les vitesses obtenues de déplacement de l'arc électrique entre les tiges 34 et entre les fractions aval 44 des plaques, sont suffisamment élevées pour limiter l'érosion desdites tiges et fractions aval au point d'autoriser l'emploi d'un matériau basique (cuivre ou acier quelconque par exemple) pour leur fabrication, ou de permettre de transférer des quantités de charges et/ou des intensités de courant supérieures à celles usuellement transférées.
  • Il va de soi que l'invention peut faire l'objet de nombreuses variantes par rapport aux modes de réalisation précédemment décrits et représentés sur les figures.
  • En particulier et surtout, un éclateur comprenant une électrode de déchargement dépourvue de portion passive est conforme à l'invention, dès lors que l'autre électrode en possède une.
  • Par ailleurs, un éclateur comprenant deux électrodes de déchargement identiques, similaires soit à l'électrode 2 soit à l'électrode 3 représentées sur les figures, est conforme à l'invention. De même, un éclateur comprenant l'une des électrodes 2 ou 3 représentées, associée à une électrode telle que l'électrode 31, est conforme à l'invention.
  • En outre, l'éclateur illustré aux figures 1 et 2 pourrait être utilisé en connectant l'une des électrodes à un ou plusieurs condensateur(s) et l'autre électrode à une charge, moyennant une modification de l'électrode 3 (telle que l'adjonction d'un manchon isolant autour du connecteur 7) en vue d'isoler celle-ci du boîtier 1.
  • Par ailleurs, les moyens de déclenchement d'arc électrique ne sont pas limités aux électrodes de déclenchement représentées. En particulier, il est possible d'utiliser une électrode en forme d'aiguille qui traverse (selon la direction de déchargement) sans contact la portion active de l'une des électrodes de déchargement. Lorsqu'elle est portée à un potentiel donné adapté, une telle électrode crée un plasma à son voisinage, qui se propage de façon à former un arc électrique. En variante, l'éclateur est dépourvu d'électrode de déclenchement. Sa fermeture est réalisée soit en lui appliquant une tension supérieure à la tension minimale d'auto-amorçage, soit en créant temporairement, entre ses électrodes de déchargement, une surtension supérieure à ladite tension d'auto-amorçage. En variante, on diminue la pression du gaz à l'intérieur du boîtier de l'éclateur (par ouverture d'une vanne de réglage correspondante).
  • De façon plus générale, la forme et la structure des électrodes ne sont pas limitées à celles illustrées. En particulier, les portions actives des électrodes peuvent présenter une ligne directrice courbe, jusqu'à former, par exemple, une spire ou couronne circulaire ouverte (voire éventuellement fermée). Les portions passives des électrodes peuvent présenter des formes diverses, dès lors que ces formes sont adaptées (notamment de par l'étendue et l'agencement de leur surface utile) pour éviter tout auto-amorçage intempestif de l'éclateur.

Claims (27)

  1. Éclateur comprenant deux électrodes de déchargement rigides, montées fixes et distantes l'une de l'autre, et au moins deux connecteurs, chaque électrode étant reliée à l'un des connecteurs en vue de la connexion desdites électrodes à un circuit électrique comprenant un générateur de courant, dans lequel :
    - chaque électrode de déchargement (2 ; 3 ; 31) présente une portion conductrice allongée (10 ; 5 ; 34, 44), dite portion active, présentant une extrémité longitudinale (15, 50, 17 ; 28 ; 40), dite extrémité longitudinale de connexion, reliée au connecteur (11 ; 7 ; 37), et une extrémité longitudinale opposée (18 ; 20 ; 35) dite extrémité aval,
    - des moyens de déclenchement (4 ; 42) sont adaptés pour initier la formation d'un arc électrique entre les portions actives des électrodes, dans une zone (21 ; 41), dite zone de déclenchement d'arc électrique,
    - les portions actives des électrodes de déchargement sont agencées pour pouvoir canaliser un courant électrique et pour pouvoir former une portée allongée de déplacement de l'arc électrique sous l'effet d'un champ magnétique induit par ledit courant,
    - au moins une électrode de déchargement (2 ; 3 ; 31) présente au moins une autre portion conductrice (9, 16 ; 6 ; 45), dite portion passive, électriquement reliée au connecteur et/ou à la portion active, ladite portion passive présentant une surface (23 ; 25), dite surface utile, définie comme la partie de surface de la portion passive qui s'étend en vis-à-vis de l'autre électrode, ayant un rayon de courbure minimal qui est supérieur à un rayon seuil en dessous duquel l'intensité du champ électrique entre les électrodes de déchargement est supérieure à une valeur minimale d'auto-amorçage dans des conditions normales d'utilisation de l'éclateur, ladite portion passive étant adaptée pour empêcher toute formation spontanée intempestive d'un arc électrique dans lesdites conditions normales d'utilisation de l'éclateur.
  2. Eclateur selon la revendication 1, caractérisé en ce que chaque électrode de déchargement présente une portion passive.
  3. Eclateur selon l'une des revendications 1 ou 2, caractérisé en ce que les portions active et passive d'au moins une des électrodes de déchargement sont séparées au moins sur une fraction de la longueur de la portion active en aval de la zone de déclenchement d'arc électrique.
  4. Eclateur selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend un dispositif (4 ; 42) de déclenchement, apte à initier la formation d'un arc électrique dans la zone (21 ; 41) de déclenchement d'arc électrique.
  5. Eclateur selon l'une des revendications 1 à 4, caractérisé en ce que les portions actives (10, 5) des électrodes de déchargement s'étendent sensiblement en regard l'une de l'autre, au moins en aval de la zone (21 ; 41) de déclenchement d'arc électrique.
  6. Eclateur selon l'une des revendications 1 à 5, caractérisé en ce que les portions actives des électrodes de déchargement présentent des extrémités longitudinales de connexion (17, 50, 15 ; 28 ; 40) agencées d'un même côté de l'éclateur.
  7. Eclateur selon l'une des revendications 1 à 6, caractérisé en ce que les portions actives (10, 5 ; 34, 44) des électrodes de déchargement présentent des lignes directrices sensiblement parallèles.
  8. Eclateur selon l'une des revendications 1 à 7, caractérisé en ce que la portion active (10 ; 5 ; 34, 44) d'au moins une des électrodes de déchargement présente une ligne directrice, dite direction longitudinale, sensiblement droite, au moins en aval de la zone de déclenchement d'arc électrique (21 ; 41).
  9. Eclateur selon l'une des revendications 1 à 8, caractérisé en ce que les portions actives (10 ; 5 ; 34, 44) des électrodes de déchargement présentent des formes globales similaires.
  10. Eclateur selon l'une des revendications 1 à 9, caractérisé en ce que la portion active de chaque électrode de déchargement présente une surface (24 ; 26), dite surface utile, de dimensions adaptées pour que le champ magnétique induit déplace l'arc électrique à une vitesse suffisante pour éviter une érosion des portions actives par fusion et/ou vaporisation locale(s), ladite surface utile de la portion active étant définie comme la partie de surface de la portion active qui s'étend en vis-à-vis de l'autre électrode en aval de la zone de déclenchement d'arc électrique.
  11. Eclateur selon la revendication 10, apte à transmettre un courant électrique d'intensité comprise entre 1 kA et 1 MA, et à transférer une quantité de charges comprise entre 0,1 et 200 C, caractérisé en ce que la surface utile (24 ; 26) de la portion active de chaque électrode de déchargement présente une longueur comprise entre 5 et 200 cm, et une largeur inférieure à 50 cm sur cette longueur et inférieure à 7 cm au moins sur une fraction amont de cette longueur.
  12. Eclateur selon l'une des revendications 1 à 11, caractérisé en ce que les portions actives (10 ; 5 ; 34, 44) des électrodes de déchargement sont en un matériau conducteur basique tel qu'un acier, un acier inoxydable, un laiton, l'aluminium, le cuivre, un alliage à base de cuivre.
  13. Eclateur selon l'une des revendications 1 à 12, caractérisé en ce qu'au moins une (2 ; 3) des électrodes de déchargement présente une portion active (10 ; 5) ayant une forme de tige cylindrique, au moins entre la zone de déclenchement d'arc électrique et son extrémité aval.
  14. Eclateur selon l'une des revendications 1 à 13, caractérisé en ce qu'au moins une (2 ; 3) des électrodes de déchargement présente une portion active ayant une forme de tige (10 ; 5) de section transversale circulaire, au moins entre la zone de déclenchement d'arc électrique et son extrémité aval.
  15. Eclateur selon la revendication 14, caractérisé en ce que ladite tige présente une section transversale de diamètre sensiblement constant.
  16. Eclateur selon la revendication 14, caractérisé en ce que ladite tige présente une section transversale ayant un diamètre croissant vers l'aval.
  17. Eclateur selon l'une des revendications 1 à 16, caractérisé en ce que la portion active d'au moins une des électrodes de déchargement présente une extrémité aval électriquement isolée.
  18. Eclateur selon l'une des revendications 1 à 17, caractérisé en ce que chaque portion passive (45) s'étend le long au moins d'une fraction amont (34) de la portion active de l'électrode de déchargement, en saillie d'un bord longitudinal de ladite portion active et de façon à ne pas traverser un espace intercalaire s'étendant entre les portions actives des deux électrodes.
  19. Eclateur selon l'une des revendications 1 à 18, caractérisé en ce que la portion passive d'au moins une (3) électrode de déchargement présente une surface utile (25) plane.
  20. Eclateur selon l'une des revendications 1 à 19, caractérisé en ce qu'au moins une (2) des électrodes de déchargement comprend une portion active présentant, au moins en aval de la zone de déclenchement d'arc électrique, une forme de tige (10) cylindrique de section circulaire, dite tige active, et une portion passive présentant la forme d'un tube (9) cylindrique creux de section supérieure à celle de la tige active, ledit tube présentant une fente longitudinale (22) en regard de laquelle s'étend la tige active (10), l'extrémité longitudinale aval (18) de la tige active étant portée par une extrémité longitudinale aval (16) du tube.
  21. Eclateur selon l'une des revendications 1 à 20, caractérisé en ce qu'au moins une (3) des électrodes de déchargement comprend une portion active (5) présentant, au moins en aval de la zone de déclenchement d'arc électrique, une forme de tige cylindrique, et une portion passive (6) en forme de plaque plane, lesdites plaque et tige étant distantes l'une de l'autre et agencées de sorte que la tige s'étendent entre la plaque et l'autre électrode, parallèlement à ladite plaque et à proximité de celle-ci.
  22. Eclateur selon l'une des revendications 1 à 21, caractérisé en ce qu'il comprend un boîtier (1 ; 30) à l'intérieur duquel sont placées les électrodes de déchargement.
  23. Eclateur selon la revendication 22, caractérisé en ce que le boîtier comprend au moins une paroi conductrice (6) faisant office de portion passive d'une électrode (3) de déchargement.
  24. Eclateur selon l'une des revendications 1 à 23, caractérisé en ce qu'au moins une (31, 32) des électrodes de déchargement comprend une plaque plane allongée (33), et en ce que la portion active de l'électrode est constituée d'une fraction aval (44) de ladite plaque et d'au moins une tige (34) de longueur et de largeur inférieures respectivement à celles de la plaque, ladite tige étant fixée sur une fraction amont (45) de ladite plaque, la portion passive de l'électrode étant constituée par la fraction amont (45) de la plaque.
  25. Eclateur selon l'une des revendications 1 à 24, caractérisé en ce qu'il comprend plusieurs paires d'électrodes de déchargement, agencées en parallèle.
  26. Eclateur selon la revendication 25, caractérisé en ce qu'il comprend des moyens de découplage électrique entre l'un de ses connecteurs et l'une des électrodes de chaque paire.
  27. Eclateur selon l'une des revendications 25 ou 26, caractérisé en ce qu'au moins une des électrodes de déchargement de chaque paire est reliée à un connecteur de l'éclateur qui lui est propre.
EP04742741A 2003-06-02 2004-05-14 Eclateur, et notamment eclateur a haute tension Expired - Lifetime EP1629577B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0306629A FR2855662B1 (fr) 2003-06-02 2003-06-02 Eclateur, et notamment eclateur a haute tension
PCT/FR2004/001192 WO2004109874A1 (fr) 2003-06-02 2004-05-14 Eclateur, et notamment eclateur a haute tension

Publications (2)

Publication Number Publication Date
EP1629577A1 EP1629577A1 (fr) 2006-03-01
EP1629577B1 true EP1629577B1 (fr) 2010-11-03

Family

ID=33427599

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04742741A Expired - Lifetime EP1629577B1 (fr) 2003-06-02 2004-05-14 Eclateur, et notamment eclateur a haute tension

Country Status (10)

Country Link
US (1) US7463471B2 (fr)
EP (1) EP1629577B1 (fr)
JP (1) JP4442921B2 (fr)
KR (1) KR101050494B1 (fr)
CN (1) CN1799172B (fr)
AU (1) AU2004246293B2 (fr)
CA (1) CA2523850C (fr)
DE (1) DE602004029884D1 (fr)
FR (1) FR2855662B1 (fr)
WO (1) WO2004109874A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466950B2 (en) 2012-12-07 2016-10-11 Ene29 S.Ar.L. Co-axial commutation spark gap

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014130552A1 (fr) * 2013-02-20 2014-08-28 Emprimus, Llc Protection contre les surtensions pour des systèmes d'alimentation électrique
US9341610B1 (en) 2013-08-29 2016-05-17 The Boeing Company Electrical arc trigger systems, methods, and apparatuses
US9514917B1 (en) * 2013-08-29 2016-12-06 The Boeing Company Controlled-energy electrical arc systems, methods, and apparatuses
US8786996B1 (en) 2013-11-22 2014-07-22 Extreme Broadband Engineering, Llc Methods and devices for protecting CATV circuits from combination and ring waves
CN113396517B (zh) 2018-09-28 2024-08-20 科技持有有限责任公司 通过变压器中性点闭锁系统和触发断相的电网保护
US11664653B2 (en) 2020-05-22 2023-05-30 Techhold, Llc Overvoltage protection assembly
RU210126U1 (ru) * 2021-11-22 2022-03-29 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Управляемый вакуумный искровой разрядник с плёночными электродами
RU210127U1 (ru) * 2021-11-29 2022-03-29 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Компактный вакуумный искровой разрядник
CN114203519B (zh) * 2021-12-17 2022-09-23 中船重工安谱(湖北)仪器有限公司 放电装置及离子迁移谱仪

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB620475A (en) * 1943-09-08 1949-03-25 Western Electric Co Improvements in ionic discharge devices
US2716198A (en) * 1949-01-18 1955-08-23 Ferranti Ltd Electric spark discharge device
US3230410A (en) * 1960-12-29 1966-01-18 Gen Electric Arc discharge device with triggering electrode
DE1280384B (de) * 1964-06-10 1968-10-17 Siemens Ag Gasentladungs-UEberspannungsableiter
US3450922A (en) * 1966-08-03 1969-06-17 Gen Electric Triggerable vacuum gap having offset trigger
US3524099A (en) * 1968-06-13 1970-08-11 Gen Electric Spark gap assembly for lightning arresters
CH519807A (de) * 1970-05-12 1972-02-29 Bbc Brown Boveri & Cie Funkenstreckenanordnung eines magnetisch beblasenen Überspannungsableiters
US4267481A (en) * 1979-04-12 1981-05-12 Sauder Larry D Spark plug with hot/sharp ground electrode
FR2510813A1 (fr) * 1981-07-28 1983-02-04 Comp Generale Electricite Eclateur a plusieurs paires d'electrodes en parallele
CN1041260C (zh) * 1995-01-28 1998-12-16 克罗内有限公司 确定浪涌电压抑制器中最高电压的空气火花隙
DE19818674B4 (de) * 1998-04-27 2004-04-29 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzelement
EP1892808A3 (fr) * 2001-02-08 2008-06-25 Ngk Spark Plug Co., Ltd Procédé de fabrication de bougie d'allumage et appareil de mise en oeuvre de ce procédé

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466950B2 (en) 2012-12-07 2016-10-11 Ene29 S.Ar.L. Co-axial commutation spark gap

Also Published As

Publication number Publication date
AU2004246293A1 (en) 2004-12-16
WO2004109874A1 (fr) 2004-12-16
AU2004246293B2 (en) 2008-10-16
JP4442921B2 (ja) 2010-03-31
CA2523850C (fr) 2015-11-17
DE602004029884D1 (de) 2010-12-16
EP1629577A1 (fr) 2006-03-01
KR101050494B1 (ko) 2011-07-20
FR2855662B1 (fr) 2005-07-15
KR20060020659A (ko) 2006-03-06
US20070058319A1 (en) 2007-03-15
FR2855662A1 (fr) 2004-12-03
US7463471B2 (en) 2008-12-09
CA2523850A1 (fr) 2004-12-16
JP2006526874A (ja) 2006-11-24
CN1799172B (zh) 2010-04-28
CN1799172A (zh) 2006-07-05

Similar Documents

Publication Publication Date Title
EP2867912B1 (fr) Interrupteur électrique formant coupe-circuit à actionnement rapide
EP1629577B1 (fr) Eclateur, et notamment eclateur a haute tension
FR2953324A1 (fr) Interrupteur electrique a tiroir coulissant formant coupe-circuit ou commutateur
EP2795648B1 (fr) Dispositif de protection contre les particules engendrees par un arc electrique de commutation
EP2073229B1 (fr) Court-circuiteur pyrotechnique à contacts électrique auto-serrant et ensemble de protection contre les arcs internes comportant un tel court-circuiteur
FR2953322A1 (fr) Interrupteur electrique formant coupe-circuit a actionnement rapide
FR3051281A1 (fr) Dispositif de coupure electrique et systeme electrique securise comprenant un tel dispositif
FR2520927A1 (fr) Chambre a vide pour extinction d'arc
EP2073235B1 (fr) Court-circuiteur électrique comprenant un actionneur pyrotechnique autonome et ensemble de protection contre les arcs internes comportant un tel court-circuiteur
EP1376634A1 (fr) Ampoule à vide pour un appareil de protection éléctrique tel un interrupteur ou un disjoncteur
EP3311200B1 (fr) Outil de génération d'ondes sismiques tel un éclateur d'un dispositif de génération d'arcs électriques
EP2929604B1 (fr) Éclateur de commutation coaxial
EP3226276B1 (fr) Sectionneur adapté aux moyennes et hautes tensions et méthode de déconnexion au moyen dudit sectionneur
EP2144263B1 (fr) Appareillage électrique sous enveloppe metallique a gradient de tension reduit
EP3226274A1 (fr) Sectionneur à division d'arc adapté aux moyennes et hautes tensions et méthode de déconnexion au moyen dudit sectionneur
WO2013064532A1 (fr) Appareillage electrique comportant des moyens pour limiter la formation d'un arc electrique
EP2959494B1 (fr) Appareillage électrique comportant une électrode mobile
EP1406279A1 (fr) Disjoncteur à gaz à arc tournant
FR2837615A1 (fr) Dispositif pour controler un champ electrique eleve dans un materiau synthetique isolant, comprenant au moins une electrode rigide
FR3056822A1 (fr) Ampoule a vide pour appareil de connexion electrique
FR2599187A1 (fr) Disjoncteur electrique a isolement gazeux et a bobine de soufflage electromagnetique pour la rotation de l'arc

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

111L Licence recorded

Free format text: 0100 IVANHOE INDUSTRIES, INC.

Effective date: 20070203

17Q First examination report despatched

Effective date: 20081114

111L Licence recorded

Free format text: 0101 I-PULSE INC

Effective date: 20090626

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602004029884

Country of ref document: DE

Date of ref document: 20101216

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004029884

Country of ref document: DE

Effective date: 20110804

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004029884

Country of ref document: DE

Owner name: ITOPP, FR

Free format text: FORMER OWNER: ITHPP, THEGRA, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004029884

Country of ref document: DE

Representative=s name: IPSILON PATENTANWALTSGESELLSCHAFT MBH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230525

Year of fee payment: 20

Ref country code: DE

Payment date: 20230519

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004029884

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240513