EP1629577B1 - Funkenstrecke, insbesondere hochspannungsfunkenstrecke - Google Patents

Funkenstrecke, insbesondere hochspannungsfunkenstrecke Download PDF

Info

Publication number
EP1629577B1
EP1629577B1 EP04742741A EP04742741A EP1629577B1 EP 1629577 B1 EP1629577 B1 EP 1629577B1 EP 04742741 A EP04742741 A EP 04742741A EP 04742741 A EP04742741 A EP 04742741A EP 1629577 B1 EP1629577 B1 EP 1629577B1
Authority
EP
European Patent Office
Prior art keywords
spark
active
gap device
electrode
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04742741A
Other languages
English (en)
French (fr)
Other versions
EP1629577A1 (de
Inventor
Laurent Frescaline
Gilles Avrillaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITHPP
Original Assignee
ITHPP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITHPP filed Critical ITHPP
Publication of EP1629577A1 publication Critical patent/EP1629577A1/de
Application granted granted Critical
Publication of EP1629577B1 publication Critical patent/EP1629577B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/02Means for extinguishing arc
    • H01T1/04Means for extinguishing arc using magnetic blow-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means
    • H01T2/02Spark gaps comprising auxiliary triggering means comprising a trigger electrode or an auxiliary spark gap

Definitions

  • the invention relates to a spark gap and is particularly advantageous in the case of a high voltage spark gap for transferring a large quantity of electric charges.
  • a spark gap is a device of the closing switch type comprising two remote electrodes, called discharge electrodes, separated by a dielectric (gas, vapor, vacuum, etc.), between which an electric arc is formed when the potential difference between the electrodes is greater than a threshold value.
  • this threshold value is greater than a few kV, and the operating voltage of the spark gap (voltage applied to the spark gap, that is to say the potential difference between its electrodes) can go up to 1 MV.
  • Such a spark gap makes it possible to transfer a quantity of electrical charges ranging from a few hundred milli-Coulombs to several hundred Coulombs, corresponding to an electric current flowing through the spark gap between 1 kA and 1 MA.
  • a high-voltage spark gap is used in particular to power sequentially a test bench of materials under high pressure or any other device, says charge.
  • a shot Each operation of discharging the capacitor and transferring the charge, by the spark gap, of the electrical charges initially accumulated in the capacitor, is called a shot.
  • spark gap which comprises two hollow cylindrical discharge electrodes, symmetrical of revolution, each having an inner radius of about 8 cm, an outer radius of the order 10 cm and a length of the order of 20 cm.
  • the two cylindrical electrodes are aligned "end to end", that is to say arranged so that their axes of symmetry coincide and they have axial ends, called closure ends, 8 mm apart and opposite in the axial direction (direction of the axes of symmetry). It is between these axial ends of closure, whose facing annular end faces are substantially flat (in transverse planes), that forms the electric arc.
  • the opposite axial ends of the electrodes, called connection ends are each connected to a connector for integrating the spark gap into an electrical circuit.
  • one of the connectors can be used to connect a current generator (capacitor) and the other to connect a load.
  • a shot is triggered by a third electrode, called trigger electrode, which initiates the formation of an electric arc between the two discharge electrodes.
  • trigger electrode a third electrode, called trigger electrode, which initiates the formation of an electric arc between the two discharge electrodes.
  • the electrical charges, which the current generator transmits to the discharge electrode to which it is connected propagate from the connection end of the electrode towards its closure end in the axial direction, then are deflected, by means of inclined slots in the closing end of the electrode, so as to move in a direction comprising a tangential component (following the circular periphery of the electrode in a transverse plane).
  • the electrical charges then pass through the space between the electrodes in the axial direction, forming an axial electric arc, and are then again deflected tangentially in the closing end of the other discharge electrode, by means of inclined slits (in the opposite direction). contrary), to then find a substantially axial propagation to the connection end of the electrode.
  • the invention aims to overcome these disadvantages by providing a simple and inexpensive spark gap, having similar performance or greater than known spark gaps.
  • the invention aims to provide a high-voltage spark gap, which can operate at voltages similar to or greater than the usual operating voltages of the aforementioned spark gap, which can switch currents of similar or greater intensity to the switched currents.
  • the aforementioned known spark gap having a similar or greater service life than the known spark gap mentioned above, for a negligible undesirable failure and trip rate, and a lower cost price than the known spark gaps (and in particular to the known spark gap mentioned above).
  • the term “elongated”, used to describe the active portion of the discharge electrodes according to the invention, means that said active portion extends mainly along a line, called the guideline. In other words, it has a dimension along this guideline, called length, much higher than its other dimensions. Said guideline may be straight or curved.
  • the terms "transverse direction" of the active portion at a point designate a direction orthogonal, at this point, to the guideline (that is, orthogonal to a direction tangent to said line) of the active portion. ; and "transverse plane” at a point means a plane orthogonal at this point to the guideline of the active portion.
  • the cross section of the active portion at a point is the section of said portion in the transverse plane passing through this point.
  • each discharge electrode of the spark gap therefore comprises an elongated active portion.
  • the active portions of the two electrodes are adapted to, when a current is established, channel the current and induce between them a magnetic field that moves the electric arc along said portions.
  • the active portions provide an elongated range of displacement of the arc, which is advantageously free of slits.
  • At least one discharge electrode according to the invention also comprises at least one passive portion, specifically designed to prevent any closure of the spark gap by spontaneous and inadvertent breakdown under normal conditions of use of the spark gap, and the shape and arrangement are adapted to fulfill this function.
  • Each passive portion is especially designed and arranged to reduce the intensity of the electric field between the two discharge electrodes.
  • the presence of the passive portion (s) according to the invention makes it possible to choose and adjust the shape of the active portions so as to increase the performance of the spark gap.
  • it allows to choose and adjust the shape of the active portions so as to limit the risk of erosion of said portions by the arc.
  • This shape is chosen in particular so as to obtain (when an arc is formed) a high current density along said active portions, which induces a stronger magnetic field giving the arc a greater speed of displacement. A rapid displacement of the arc limits the risk of erosion of the active portions.
  • use conditions of the spark gap designate all the external parameters of use having an influence on the proper operation of the spark gap.
  • these parameters of use mention may be made of the voltage applied to the spark gap and the pressure of the gas (or vapor) contained in the spark gap, which gas electrically isolates the electrodes from each other in the absence of 'electric arc.
  • These conditions are said to be “normal” when the values taken by these parameters fall within the usual predefined ranges of use of the spark gap, for which the spark gap has been specifically designed.
  • the voltage applied to the spark gap must be within a given operating range, and must in particular, be less than a maximum operating value, which can be from 1 kV to 1 MV depending on the spark gap and according to its use.
  • a maximum operating value which can be from 1 kV to 1 MV depending on the spark gap and according to its use.
  • breakdown of the spark gap is not excluded despite the presence of the passive portion (s) according to the invention. Note that, if such a breakdown occurs, the formed arc will also appear between the active portions of the electrodes.
  • the two discharge electrodes or only one of them has (s) a passive portion.
  • upstream and downstream are used, for each of the discharge electrodes, with reference to the guideline of the active portion of the electrode and to the direction of movement of the electric arc along of this active portion.
  • the active and passive portions of at least one of the discharge electrodes are separated at least for a fraction of the length of the active portion downstream of the electric arc trip zone. This feature facilitates the channeling of electrical charges into the active portion when a current is established.
  • the active and passive portions are distant on this fraction of length and only separated by the gas present inside the spark gap.
  • an insulating solid element (of synthetic material for example) extends between said active and passive portions over this fraction of length.
  • the spark gap comprises a trigger device, such as a trip electrode, capable of initiating the formation of an electric arc in the electric arc trip zone.
  • a trigger device such as a trip electrode
  • the voluntary formation of an electric arc is triggered either by applying to the spark gap a voltage greater than a minimum self-priming voltage, or by modifying the pressure of the gas contained in the spark gap, in order to cause a self-priming of the spark gap.
  • the shape and arrangement of the active portions of the discharge electrodes are adapted so that the self-priming electric arc is formed in the electric arc trip zone.
  • the active portion of at least one of the discharge electrodes has a guideline, said longitudinal direction, substantially straight at least downstream of the electric arc trip zone.
  • the active portion of at least one of the discharge electrodes has a curved guideline.
  • the active portions of the discharge electrodes extend substantially facing each other, at least downstream of the electric arc release zone, it being specified that one This means that any transverse plane (downstream of the tripping zone) of the active portion of at least one of the electrodes intersects the active portion of the other electrode.
  • the transverse direction in which the active portions are facing is said unloading direction, given that the electric arc that is formed between the active portions extends substantially in this direction.
  • the active portions of the discharge electrodes have longitudinal connection ends located on the same side of the spark gap, and preferably arranged substantially facing one another.
  • the active portions of the discharge electrodes have similar overall shapes.
  • the active portions of the discharge electrodes both have substantially straight elongated shapes and substantially straight lines (longitudinal directions).
  • they both have curved guidelines substantially following the (the) same (s) curvature (s).
  • the active portions may have substantially circular guidelines and open crown shapes.
  • the guidelines of the active portions are preferably substantially parallel, at least downstream of the electric arc trip zone.
  • the active portions are then facing each other at least downstream of the trigger zone, and the spacing of said portions is substantially constant over the entire length of the active portions.
  • the electric arc moving along these active portions therefore also has a substantially constant length.
  • This preferred version of the invention does not exclude the possibility of providing unloading electrodes whose active portions have guide lines forming, at a point or at any point, a non-zero angle and / or active portions of which the spacing is not constant.
  • the spacing of the active portions may increase downstream (in the direction of movement of the arc).
  • the active portion of each discharge electrode has a shape adapted for the induced magnetic field to move the electric arc at a speed sufficient to avoid erosion of said active portions by melting and / or local vaporization (s). ) (at the point of impact of the electric arc).
  • a speed makes it possible to dispense with the use of expensive alloys (example: copper and tungsten alloys) for the production of these electrodes.
  • the active portions - as well as the passive portion (s) - of the discharge electrodes are made of a basic conductive material chosen from among steels, stainless steels, brasses, aluminum, copper, some copper-based alloys ... (this list is not exhaustive).
  • each active portion has a surface, called a useful surface, of suitable dimensions for the induced magnetic field to move the electric arc at a speed sufficient to prevent erosion of the active portions by local melting and / or vaporization (s), the effective area of the active portion being defined (geometrically) as the surface portion of the active portion extending opposite the other electrode downstream of the electric arc trip zone.
  • This useful surface of the active portion may have, for at least one of the discharge electrodes, a substantially constant width, the term "width" denoting a dimension in a transverse direction orthogonal to the transverse direction of unloading.
  • the active portion of at least one unloading electrode has a useful surface of increasing width downstream (in the direction of movement of the arc, towards the downstream end of the active portion).
  • This feature is advantageous for the following reasons.
  • the triggering of an electric arc establishes an electric current through the spark gap, the intensity of which is increasing in an initial phase, before reaching a maximum value and to decrease towards zero (aperiodic regime) or to oscillate in s damping (oscillating speed) until the energy initially stored in the capacitor (s) is completely dissipated.
  • This initial phase is critical given the low intensity of the current and the low kinetic energy of the electric arc.
  • the arc is displaced along an upstream fraction of the active portion of the electrode, from its point of formation in the electric arc trip zone.
  • This upstream fraction to move the arc at a high speed, it is therefore necessary to have a strong magnetic field between the electrodes, in particular capable of compensating for the low intensity of the current in the arc.
  • the use, for each electrode, of an active portion having a useful surface of small width on such an upstream fraction makes it possible to increase the density of the current flowing in this fraction and to have a strong magnetic field opposite it.
  • the width of the usable area may be greater on a downstream fraction of the active portion along which the displaced electric arc has a high current intensity and / or a certain kinetic energy. In this downstream fraction, the induced magnetic field is indeed sufficient to move the arc at the desired speeds without it being necessary to increase it using a small width active portion.
  • the surface the active portion of each discharge electrode preferably has a length of between 5 and 200 cm, and a width less than 50 cm over this length and less than 7 cm at least on an upstream fraction of this length.
  • the width of the useful surface may advantageously be less than 2 cm at least on an upstream fraction of this length if the spark gap is intended to transfer quantities of charges lower than 20 C.
  • At least one discharge electrode has a passive portion.
  • Each passive portion preferably extends substantially opposite the active portion of the electrode in the transverse direction of unloading.
  • each passive portion extends along at least an upstream fraction of the active portion of the electrode; said passive portion protrudes from a longitudinal edge of the active portion and so as not to pass through an intermediate space extending between the active portions of the two electrodes.
  • the passive portion must in particular extend along at least an upstream fraction of the active portion in which the shape of said active portion (small width and / or small radius of curvature of the active portion surface which is oriented towards the other electrode ...), thus chosen to induce in this zone a high magnetic field, also generates a strengthening of the electric field capable of triggering the unexpected formation of an electric arc (self-priming) under normal conditions of use of the spark gap.
  • the passive portion may also extend over the entire length of the active portion.
  • each passive portion has a surface, called a useful surface, having a minimum radius of curvature which is greater than a threshold radius below which, under the normal conditions of use of the spark gap, the intensity the electric field between the discharge electrodes is greater than a minimum spark gap self-priming value (defined as the minimum electric field strength causing spontaneous arcing).
  • the useful area of the passive portion is defined as the surface portion of the passive portion extending opposite the other electrode. Note that according to this definition, the useful area of the passive portion may possibly extend upstream of the electric arc trip zone (unlike the useful surface of the active portion as defined above).
  • the passive portion of at least one discharge electrode has a plane useful surface (that is to say of infinite radius of curvature).
  • At least one of the discharge electrodes comprises, on the one hand, an active portion having, at least downstream of the electric arc trip zone, the shape of a cylindrical rod and, on the other hand, a passive portion in the form of a flat plate, said plate and rod being distant from each other and arranged so that the rod extends between the plate and the other unloading electrode, parallel to said plate and close to it.
  • the spark gap comprises a housing inside which are placed the discharge electrodes.
  • Said housing may comprise at least one conductive wall acting as a passive portion (in the form of a flat plate) of an unloading electrode.
  • At least one of the discharge electrodes comprises an elongate flat plate, a longitudinal connection end of which is connected to the connector.
  • the active portion of the electrode consists of a downstream fraction of said plate and at least one rod or rod of length and width respectively lower than those of the plate, fixed on an upstream fraction of said plate.
  • the passive portion of the electrode is essentially constituted by the upstream fraction of the plate.
  • the rod preferably extends away from the passive portion at least downstream of the electric arc trip zone, so that when an electric arc is triggered and an electric current is established, the electric charges circulating in the electrode are channeled and concentrated in the rod - at least as long as the electric arc extends between the rod and the other electrode - to induce a high magnetic field.
  • the spark gap comprises several pairs of discharge electrodes, said pairs being arranged in parallel.
  • the amount of charges conducted can be multiplied by the number of pairs of electrodes operating in parallel.
  • at least one of the discharge electrodes of each pair is connected to a connector of the spark gap that is specific to it.
  • the spark gap comprises at least, on the one hand, a connector per pair of discharge electrodes, and on the other hand, a single connector or a connector pair of electrodes.
  • Electrical decoupling means inductive, resistive, temporal Certainly are, arranged between the current generator and a series of connectors (one per pair of electrodes).
  • the spark gap comprises only two connectors
  • electrical decoupling means inductive, resistive, temporal .
  • a third version which corresponds to a combination of the two previous ones and in which the spark gap integrates means of internal decoupling and is used in association with external decoupling means, is also in accordance with the invention.
  • the invention also relates to a spark gap characterized in combination by all or some of the characteristics mentioned above and below.
  • the first spark gap according to the invention illustrated in Figures 1 and 2 comprises a stainless steel conductive parallelepipedic housing 1, a first discharge electrode 2, a second discharge electrode 3 and an electric arc release electrode 4.
  • Each discharge electrode 2, 3 has a generally elongated and straight shape, defining a longitudinal direction of the electrode. It comprises a straight elongated active portion, described below, whose longitudinal direction (guideline) coincides with that of the electrode.
  • the electrodes extend facing one another in a transverse direction Z, said unloading direction, so that their longitudinal directions are parallel and define a common longitudinal direction X.
  • the trip electrode 4 extends between the discharge electrodes, in a transverse direction Y, orthogonal to the longitudinal direction X and to the unloading direction Z. It extends more precisely between the active portions (described below). unloading electrodes, near the connection ends of said active portions. It defines a zone 21 for triggering an electric arc.
  • the discharge electrode 2 comprises on the one hand a passive portion comprising a hollow cylindrical tube 9, called a passive tube, which has an inner radius of the order of 55 mm, an outer radius of about 75 mm and a longitudinal slot 22 over almost all of its length.
  • Said passive portion has a downstream longitudinal end formed by a tip 16, electrically insulated (both the housing 1 and the active portion of the electrode).
  • the passive portion is also connected to a connector 11 via a nozzle 17 and a portion of tube 50 (of short length) extending the passive tube 9 upstream, said tip and tube portion forming part of the active portion (described later).
  • the connector 11 passes through the housing 1 for the connection of the electrode 2 to an electrical circuit, and in particular to one or more capacitors (s) high voltage.
  • the connector 11 comprises a conductive rod 12, a longitudinal end of which is welded in the endpiece 17, and a sleeve 13 of electrically insulating material for embedding the connector in the housing 1.
  • the passive portion of the discharge electrode 2 has a useful surface 23 oriented towards the electrode 3, formed by the portion of the external surface of the passive tube 9 located “below” (on the Figures 1 and 2 ) a "horizontal" median plane-orthogonal to the unloading direction-passing through a diameter of the tube.
  • the discharge electrode 2 further comprises an active portion comprising a cylindrical rod 10, called an active rod, of circular section having a substantially constant diameter of the order of 10 mm, and of length substantially corresponding to that of the passive tube.
  • the active portion has a longitudinal connection end which extends said active rod 10, and which comprises the tip 17, the tube portion 50 and a lug 15 for fixing the rod 10 to said tube portion 50.
  • the active portion also has a downstream longitudinal end 18, carried by the longitudinal end downstream 6 of the passive portion to which it is connected by a pin 14 of electrically insulating material.
  • the active rod 10 extends opposite, in the unloading direction Z, of the slot 22 of the passive tube 9, so as to protrude slightly (in the said unloading direction Z) from the useful surface 23 of the passive portion and to extend between this useful surface and the discharge electrode 3.
  • the active portion of the discharge electrode 2 has a useful surface 24 formed by the portion of the outer surface of the rod 10 which is directed towards the electrode 3 (this portion is cylindrical with a semicircular section) and which is extends, in the longitudinal direction, between the trigger electrode 4 and the downstream end 18 of the rod.
  • the discharge electrode 3 comprises on the one hand a passive portion formed by a plate or wall 6 of the housing 1, said passive wall. Said wall 6 of the housing is connected at one end 27 to a connector 7 for connecting said wall to ground.
  • the connector 7 has a conductive rod passing through the wall 6 (which provides the connection between said connector and the passive wall 6), and a mortise receiving the connection end of the active portion (described below) of the electrode 3.
  • the discharge electrodes 2 and 3, provided with their respective connector 11, 7, are arranged so that said connectors are facing in the transverse direction of unloading.
  • the passive portion of the discharge electrode 3 has a planar working surface formed by the portion of the inner face (facing the electrode 2) of the wall 6 of the housing which extends, in the longitudinal direction, between the tip 17 and the tip 16 of the electrode 2.
  • the discharge electrode 3 further comprises an active monobloc portion consisting of a cylindrical rod 5, called active rod, of circular section having a substantially constant diameter of the order of 10 mm.
  • the active portion has, on the one hand, a longitudinal end of formed connection by the longitudinal end 28 of the active rod, welded in the mortise of the connector 7, and secondly, a downstream longitudinal end formed by the opposite longitudinal end 20 of the active rod 5, carried by a wall 29 of the housing 1 in which it is fixed by an anchor 8 of electrically insulating material.
  • the downstream end of the active portion of the electrode 3 is thus electrically isolated.
  • the active rod 5 of the electrode 3 extends parallel to the passive wall 6 and close to the latter also extends parallel to the active rod 10 of the electrode 2.
  • the active portion of the discharge electrode 3 has a useful surface 26 formed by the portion of the outer surface of the rod 5 which is oriented towards the electrode 2 (this part is cylindrical with a semicircular section) and which extends, in the longitudinal direction, between the trigger electrode 4 and the free end 16 of the electrode 2.
  • the discharge electrodes 2 and 3 are thus brought to distinct potentials, the difference of which can be up to 50 kV.
  • the electrical charges are distributed over the useful surfaces of the active and passive portions of the discharge electrodes, and an electric field appears between the two electrodes. Because of their shape and their extent, the useful surfaces 23 and 25 of the passive portions of the electrodes act as reducers of the electric field, thus limiting the risks of self-priming of the spark gap under normal conditions of use of the spark plug. this.
  • Arc formation is then initiated between the active rods 10 and 5 of said electrodes, in the electric arcing trip zone 21, by bringing the trigger electrode 4 to a suitable given potential.
  • the presence of the trigger electrode when brought to this potential, locally increases the electric field and causes a breakdown in the electric arc trip zone.
  • a current is thus established between the conductive rods of the connectors 11 and 7.
  • This current flows essentially in the active portions of the electrodes: the electric charges propagate in the tip 17, the tube portion 50, the fixing lug 15 and the active rod 10 of the discharge electrode 2; they are transferred to the discharge electrode 3 by the electric arc formed between the active rods 10 and 5, which arc extends substantially in the transverse direction of unloading; then they propagate in the active rod 5 of the discharge electrode 3 to the connector 7.
  • the current is channeled into the active rods 10 and 5.
  • the trigger electrode extends near the connection ends of the active portions of the two discharge electrodes, slightly downstream (and not facing) of said connection ends. Therefore, when a current is established, it flows in the active rod of each electrode over a length which corresponds, at the time of the establishment of the current, to the distance - along the longitudinal direction - between the end of connection of the active portion and the electric arc trip zone. From its establishment, the current therefore has a component in the longitudinal direction X, immediately upstream of the electric arc. In the discharge electrode 2, the current flows towards the downstream end 18 of the rod 10, while it flows in the opposite direction in the discharge electrode 3, towards the connection end 28 of the rod 5.
  • each of the active rods 10, 5 induces a magnetic field with substantially circular field lines in the vicinity of the rods.
  • the resulting magnetic field (sum of the fields induced by the two electrodes) has a direction substantially orthogonal to the longitudinal and transverse directions of unloading, and a sense "returning" on the figure 1 .
  • the resulting induced magnetic field moves the electric arc in the longitudinal direction towards the downstream ends 18 and 20 of the active rods 10 and 5, along said rods which provide a straight range of displacement of the arc.
  • upstream and "downstream” are defined with reference to this direction of movement of the electric arc.
  • the active rods 10 and 5 having small diameters, their useful surfaces 24 and 26 have a small width.
  • the density of the current flowing in the active rods, along these useful surfaces 24 and 26, is therefore particularly high, so that the induced magnetic field is strong and the resulting Laplace force important.
  • the speed of displacement of the arc obtained is sufficiently high to considerably reduce, or even avoid, the damage due to erosion of the electrodes by the electric arc.
  • it is therefore not necessary to use a special expensive alloy to make the electrodes (a basic material such as a simple steel is suitable), or to provide a geometry that allows the arc to pass several times in the same place during the same shot.
  • the second spark gap according to the invention illustrated in figures 3 and 4 comprises: a parallelepipedal box 30, conductive or not, made of a steel or any synthetic material; two identical discharge electrodes 31 and 32; and an electrode 42 for triggering an electric arc.
  • each discharge electrode 31, 32 has a generally elongate and straight shape, defining a longitudinal direction of the electrode.
  • Each electrode comprises a straight elongated active portion, described below, whose longitudinal direction (guideline) coincides with that of the electrode.
  • the electrodes are arranged parallel to one another and symmetrically; they extend opposite one another in the transverse direction Z of unloading, and their parallel guidelines define a longitudinal direction X common.
  • the trigger electrode 42 also extends in the longitudinal direction X, and has, between the discharge electrodes, a free end defining in its vicinity a region 41 of electric arc triggering.
  • the trigger electrode 42 is mounted on a wall 48 of the housing 30 by means of a sleeve of insulating material, which allows both to fix the electrode on the housing 30 , to isolate the electrode from the housing, and to protect the fraction of the electrode which extends outside the housing 30 .
  • Each discharge electrode 31, 32 comprises an elongated flat plate 33 and a rod 34, whose respective longitudinal directions coincide with the longitudinal direction X of the electrode.
  • the rod 34 is fixed to the flat plate by a fixing flange 46 and screw means or bolts, so as to extend facing an upstream fraction of said plate.
  • the flat plate has a length of the order of 700 mm and a width (dimension in a transverse direction orthogonal to the longitudinal direction X and the discharge direction Z) of the order of 100 mm.
  • the rod 34 has a length of the order of 200 mm and a width of the order of 25 mm.
  • each discharge electrode 31, 32 is formed by the rod 34 and by a downstream fraction 44 of the plate which extends in the extension of a downstream longitudinal end 47 of the rod 34 towards a free end 35 of the plaque.
  • This active portion has a longitudinal connection end formed by an upstream longitudinal end 40 of the rod 34, and a downstream end formed by the free end 35 of the plate.
  • each rod 34 is slightly curved in a plane containing the two rods (plane of formation and displacement of the electric arc), so that the spacing between the two rods is variable: it is minimal in the zone 41 arc tripping, then increases downstream, towards the ends 47 of the rods 34.
  • the electric field induced between the rods 34 is maximum in the zone of electric arc trigger. The triggering of an electric arc is facilitated.
  • each electrode 31, 32 is formed by an upstream fraction 45 of the plate 33, which extends from an upstream end 36 of the plate 33 to the downstream end 47 of the rod 34. Said passive portion is directly connected to a connector by its upstream end 36.
  • connection ends 40 and 36 of the active and passive portions of each electrode are traversed by the conductive rod 38 of a connector 37.
  • the mechanical connection thus formed is electrically conductive; it makes it possible to connect the electrode in an electric circuit.
  • one of the connectors 37 can be connected to one or more capacitors and the other connector to a load.
  • the conductive rod 38 of the connector is surrounded by an insulating sleeve 39, for its installation in a wall of the housing 30 and its attachment to said wall.
  • the trigger electrode 42 when raised to a given potential, locally changes the electric field in the electric arc trip zone and initiates the formation of an electric arc between the rods. 34.
  • the established current channeled into the rods 34, flows in the longitudinal direction X, downstream - that is to say towards the free end 35 - in the electrode connected to the generator, and to the upstream-that is, towards the connection end 40- in the electrode connected to the load.
  • the established current induces a magnetic field between the electrodes, whose direction in the arc plane is orthogonal to the longitudinal direction and the discharge direction.
  • the induced magnetic field moves the arc toward the free ends of the active portions.
  • the discharge of a capacitor comprises an initial period during which the current flowing through the spark gap has an increasing intensity (initially zero).
  • the active portion of each electrode in the vicinity of the electric arc trip zone is advantageously formed by the rod 34, the useful surface of which has a small width in order to concentrate the electric charges, increase the current density and thus generate a high magnetic field in this area despite the low intensity of the current at the beginning of the discharge.
  • the induced field is sufficient to move the electric arc at a speed capable of limiting erosion.
  • the rods are advantageously dimensioned so that, as long as the intensity of the current is not sufficiently high, the moving electric arc still extends between the rods.
  • an element 43 of electrically insulating material is arranged between the active rod 34 and the passive upstream fraction 45 of the plate, downstream of the electric arc trip zone.
  • This element 43 can channel in the rod 34 the established current, at least until the moving electric arc has not reached the downstream end 47 of the rod.
  • the electrical insulation that the element 43 provides could also be obtained by leaving a space between the rod 34 and the passive upstream fraction 45, that is to say by removing the element 43, the gas contained in the housing 30. realizing an insulator.
  • the obtained speeds of displacement of the electric arc between the rods 34 and between the downstream fractions 44 of the plates are sufficiently high to limit the erosion of said downstream rods and fractions to the point of allowing the use of a basic material ( any copper or steel for example) for their manufacture, or to allow to transfer charge quantities and / or current intensities higher than those usually transferred.
  • a spark gap comprising an unloading electrode devoid of passive portion is in accordance with the invention, since the other electrode has one.
  • a spark gap comprising two identical discharge electrodes, similar to either electrode 2 or electrode 3 represented in the figures, is in accordance with the invention.
  • a spark gap comprising one of the electrodes 2 or 3 shown, associated with an electrode such as the electrode 31, is in accordance with the invention.
  • spark gap shown in Figures 1 and 2 could be used by connecting one of the electrodes to one or more capacitors (s) and the other electrode to a load, by means of a modification of the electrode 3 (such as the addition of an insulating sleeve around the connector 7 ) to isolate the latter from the housing 1.
  • the arcing trip means are not limited to the trigger electrodes shown.
  • a needle-shaped electrode which passes through (in the unloading direction) without contact the active portion of one of the discharge electrodes. When brought to a given given potential, such an electrode creates a plasma in its vicinity, which propagates so as to form an electric arc.
  • the spark gap is devoid of a trip electrode. It is closed either by applying a voltage higher than the minimum self-priming voltage, or by temporarily creating, between its discharge electrodes, an overvoltage greater than said self-priming voltage. Alternatively, the pressure of the gas inside the spark gap housing (by opening a corresponding regulating valve) is reduced.
  • the shape and structure of the electrodes are not limited to those illustrated.
  • the active portions of the electrodes may have a curved guideline, to form, for example, a turn or circular ring open (or possibly closed).
  • the passive portions of the electrodes may have various shapes, provided that these shapes are adapted (in particular by the extent and arrangement of their useful surface) to prevent inadvertent self-priming of the spark gap.

Landscapes

  • Spark Plugs (AREA)
  • Plasma Technology (AREA)

Claims (27)

  1. Funkenstrecke mit zwei starren Entladungselektroden, die fest und im Abstand zueinander montiert sind, und mindestens zwei Verbindern, wobei jede Elektrode mit einem der Verbinder zwecks Anschluß der besagten Elektroden an einen Stromkreis verbunden ist, der einen Stromgenerator umfaßt, in dem:
    - jede Entladungselektrode (2; 3; 31) einen länglichen Leitabschnitt (10; 5; 34; 44) aufweist, den sogenannten aktiven Abschnitt, der ein Längsende (15, 50, 17; 28; 40) aufweist, das sogenannte Anschlußlängsende, das mit dem Verbinder (11; 7; 37) verbunden ist, und ein entgegengesetztes Längsende (18; 20; 35), das sogenannte untere Ende,
    - Auslösemittel (4; 42) für die Bildung eines Lichtbogens zwischen den aktiven Abschnitten der Elektroden in einer Zone (21; 41), der sogenannten Auslösezone von Lichtbogen, angepaßt sind,
    - die aktiven Abschnitte der Entladungselektroden so gestaltet sind, daß sie einen elektrischen Strom leiten können, und daß sie eine längliche Tragweite der Verschiebung des Lichtbogens unter der Einwirkung eines vom besagten Strom induzierten Magnetfelds bilden können,
    - mindestens eine Entladungselektrode (2; 3; 31) mindestens einen weiteren leitenden Abschnitt (9, 16; 6; 45), den sogenannten passiven Abschnitt, aufweist, der an den Verbinder und/oder den aktiven Abschnitt elektrisch angeschlossen ist, wobei der besagte passive Abschnitt eine Fläche (23; 25) aufweist, die sogenannte Nutzfläche, die als der Flächenteil des passiven Abschnitts definiert ist, der sich gegenüber der anderen Elektrode erstreckt und einen minimalen Krümmungsradius hat, der größer als ein Schwellenradius ist, unter dem die Stärke des elektrischen Felds zwischen den Entladungselektroden unter normalen Benutzungsbedingungen der Funkenstrecke über einem Mindestwert der Selbstzündung liegt, wobei der besagte passive Abschnitt geeignet ist, jegliche spontane plötzliche Bildung eines Lichtbogens unter den besagten normalen Benutzungsbedingungen der Funkenstrecke zu verhindern.
  2. Funkenstrecke nach Anspruch 1, dadurch gekennzeichnet, daß jede Entladungselektrode einen passiven Abschnitt aufweist.
  3. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der aktive und der passive Abschnitt von mindestens einer Entladungselektrode zumindest auf einem Teil der Länge des aktiven Abschnitts vor der Auslösezone von Lichtbogen getrennt sind.
  4. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie eine Auslösevorrichtung (4; 42) umfaßt, die für die Bildung eines Lichtbogens in der Auslösezone (21; 41) von Lichtbogen geeignet ist.
  5. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sich die aktiven Abschnitte (10, 5) der Entladungselektroden deutlich einander gegenüber erstrecken, und dies zumindest nach der Auslösezone (21; 41) von Lichtbogen.
  6. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die aktiven Abschnitte der Entladungselektroden Anschlußlängsenden (17, 50, 15; 28; 40) aufweisen, die auf der gleichen Seite der Funkenstrecke gestaltet sind.
  7. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die aktiven Abschnitte (10, 5; 34, 44) der Entladungselektroden deutlich parallele Leitlinien aufweisen.
  8. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der aktive Abschnitt (10, 5; 34, 44) mindestens einer Entladungselektroden eine Leitlinie, die sogenannte Längsrichtung aufweist, die deutlich gerade ist und zumindest nach der Auslösezone (21; 41) von Lichtbogen liegt.
  9. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die aktiven Abschnitte (10, 5; 34, 44) der Entladungselektroden ähnliche globale Formen aufweisen.
  10. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der aktive Abschnitt jeder Entladungselektrode eine Fläche (24; 26), die sogenannte Nutzfläche, mit Abmessungen aufweist, die geeignet sind, daß das induzierte Magnetfeld den Lichtbogen mit ausreichender Geschwindigkeit verschiebt, damit eine Erosion der aktiven Abschnitte durch örtliches Schmelzen und/oder Verdunstung vermieden wird, wobei die besagte Nutzfläche des aktiven Abschnitts als der Flächenteil des aktiven Abschnitts definiert wird, der sich gegenüber der anderen Elektrode nach der Auslösezone von Lichtbogen erstreckt.
  11. Funkenstrecke nach Anspruch 10, der geeignet ist, einen elektrischen Strom mit Stromstärke zwischen 1 kA und 1 MA zu übermitteln und eine Menge von Ladungen zwischen 0,1 und 200 C zu übertragen, dadurch gekennzeichnet, daß die Nutzfläche (24; 26) des aktiven Abschnitts jeder Entladungselektrode eine Länge zwischen 5 und 200 cm und eine Breite unter 50 cm auf dieser Länge und unter 7 cm zumindest auf einem vorherigen Anteil dieser Länge aufweist.
  12. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die aktiven Abschnitte (10, 5; 34, 44) der Entladungselektroden aus einem leitfähigen Grundmaterial bestehen wie zum Beispiel ein Stahl, ein Edelstahl, ein Messing, Aluminium, Kupfer, eine Kupferlegierung.
  13. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 12, dadurch gekennzeichnet, daß mindestens eine Entladungselektrode (2; 3) einen aktiven Abschnitt (10; 5) aufweist, der die Form eines zylinderförmigen Stabs hat, und dies zumindest zwischen der Auslösezone von Lichtbogen und seinem unteren Ende.
  14. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 13, dadurch gekennzeichnet, daß mindestens eine Entladungselektrode (2; 3) einen aktiven Abschnitt (10; 5) aufweist, der die Form eines Stabs mit kreisförmigem Querschnitt hat, und dies zumindest zwischen der Auslösezone von Lichtbogen und seinem unteren Ende.
  15. Funkenstrecke nach Anspruch 14, dadurch gekennzeichnet, daß der besagte Stab einen Querschnitt mit deutlich konstantem Durchmesser aufweist.
  16. Funkenstrecke nach Anspruch 14, dadurch gekennzeichnet, daß der besagte Stab einen Querschnitt mit einem nach unten zunehmenden Durchmesser aufweist.
  17. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 16, dadurch gekennzeichnet, daß der aktive Abschnitt zumindest einer Entladungselektrode ein elektrisch isoliertes unteres Ende aufweist.
  18. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 17, dadurch gekennzeichnet, daß sich jeder passive Abschnitt (45) entlang zumindest einem oberen Anteil (34) des aktiven Abschnitts der Entladungselektrode erstreckt und zwar von einer Längskante des besagten aktiven Abschnitts vorspringend und so, daß er keinen Zwischenraum durchquert, der sich zwischen den aktiven Abschnitten der beiden Elektroden erstreckt.
  19. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 18, dadurch gekennzeichnet, daß der passive Abschnitt zumindest einer Entladungselektrode (3) eine ebene Nutzfläche (25) aufweist.
  20. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 19, dadurch gekennzeichnet, daß zumindest eine Entladungselektrode (2) einen aktiven Abschnitt umfaßt, der zumindest nach der Auslösezone von Lichtbogen eine zylindrische Stabform (10) mit kreisförmigem Querschnitt aufweist, den sogenannten aktiven Stab, und einen passiven Abschnitt, der die Form eines zylinderförmigen hohlen Rohrs (9) mit größerem Querschnitt als demjenigen des aktiven Stabs aufweist, wobei das besagte Rohr einen Längsschlitz (22) aufweist, dem gegenüber sich der aktive Stab (10) erstreckt, wobei das untere Längsende (18) des aktiven Stabs von einem unteren Längsende (16) des Rohrs getragen wird.
  21. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 20, dadurch gekennzeichnet, daß zumindest eine Entladungselektrode (3) einen aktiven Abschnitt (5) umfaßt, der zumindest nach der Auslösezone von Lichtbogen eine zylindrische Stabform aufweist, und einen passiven Abschnitt (6) in Form einer ebenen Platte, wobei die besagte Platte und der Stab voneinander entfernt und so gestaltet sind, daß sich der Stab zwischen der Platte und der anderen Elektrode parallel zur besagten Platte und in deren Nähe erstreckt.
  22. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 21, dadurch gekennzeichnet, daß sie ein Gehäuse (1; 30) umfaßt, in dessen Innern die Entladungselektroden plaziert sind.
  23. Funkenstrecke nach Anspruch 22, dadurch gekennzeichnet, daß das Gehäuse zumindest eine leitfähige Wand (6) umfaßt, die als passiver Abschnitt einer Entladungselektrode (3) dient.
  24. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 23, dadurch gekennzeichnet, daß zumindest eine Entladungselektrode (31, 32) eine längliche ebene Platte (33) umfaßt, und dadurch, daß der aktive Abschnitt der Elektrode aus einem unteren Anteil (44) der besagten Platte gebildet wird und zumindest aus einem Stab (34) geringerer Länge beziehungsweise Breite als diejenige der Platte, wobei der besagte Stab auf einem oberen Anteil (45) der besagten Platte befestigt ist und der passive Abschnitt der Elektrode von einem oberen Anteil (45) der Platte gebildet wird.
  25. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 1 bis 24, dadurch gekennzeichnet, daß sie mehrere Paare von parallel angeordneten Entladungselektroden umfaßt.
  26. Funkenstrecke nach Anspruch 25, dadurch gekennzeichnet, daß sie Mittel zum elektrischen Entkoppeln zwischen einem ihrer Verbinder und einer der Elektroden jedes Paares umfaßt.
  27. Funkenstrecke nach einem beliebigen der vorstehenden Ansprüche 25 oder 26, dadurch gekennzeichnet, daß zumindest eine Entladungselektrode jedes Paares mit einem ihm eigenen Verbinder der Funkenstrecke verbunden ist.
EP04742741A 2003-06-02 2004-05-14 Funkenstrecke, insbesondere hochspannungsfunkenstrecke Expired - Lifetime EP1629577B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0306629A FR2855662B1 (fr) 2003-06-02 2003-06-02 Eclateur, et notamment eclateur a haute tension
PCT/FR2004/001192 WO2004109874A1 (fr) 2003-06-02 2004-05-14 Eclateur, et notamment eclateur a haute tension

Publications (2)

Publication Number Publication Date
EP1629577A1 EP1629577A1 (de) 2006-03-01
EP1629577B1 true EP1629577B1 (de) 2010-11-03

Family

ID=33427599

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04742741A Expired - Lifetime EP1629577B1 (de) 2003-06-02 2004-05-14 Funkenstrecke, insbesondere hochspannungsfunkenstrecke

Country Status (10)

Country Link
US (1) US7463471B2 (de)
EP (1) EP1629577B1 (de)
JP (1) JP4442921B2 (de)
KR (1) KR101050494B1 (de)
CN (1) CN1799172B (de)
AU (1) AU2004246293B2 (de)
CA (1) CA2523850C (de)
DE (1) DE602004029884D1 (de)
FR (1) FR2855662B1 (de)
WO (1) WO2004109874A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466950B2 (en) 2012-12-07 2016-10-11 Ene29 S.Ar.L. Co-axial commutation spark gap

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2987212T3 (da) * 2013-02-20 2023-01-09 Techhold Llc Overspændingsbeskyttelse for strømsystemer
US9514917B1 (en) * 2013-08-29 2016-12-06 The Boeing Company Controlled-energy electrical arc systems, methods, and apparatuses
US9341610B1 (en) 2013-08-29 2016-05-17 The Boeing Company Electrical arc trigger systems, methods, and apparatuses
US8786996B1 (en) 2013-11-22 2014-07-22 Extreme Broadband Engineering, Llc Methods and devices for protecting CATV circuits from combination and ring waves
CN113396517A (zh) 2018-09-28 2021-09-14 科技持有有限责任公司 通过变压器中性点闭锁系统和触发断相的电网保护
WO2021237119A1 (en) 2020-05-22 2021-11-25 Techhold, Llc Overvoltage protection assembly
RU210126U1 (ru) * 2021-11-22 2022-03-29 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Управляемый вакуумный искровой разрядник с плёночными электродами
RU210127U1 (ru) * 2021-11-29 2022-03-29 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Компактный вакуумный искровой разрядник
CN114203519B (zh) * 2021-12-17 2022-09-23 中船重工安谱(湖北)仪器有限公司 放电装置及离子迁移谱仪

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB620475A (en) * 1943-09-08 1949-03-25 Western Electric Co Improvements in ionic discharge devices
US2716198A (en) * 1949-01-18 1955-08-23 Ferranti Ltd Electric spark discharge device
US3230410A (en) * 1960-12-29 1966-01-18 Gen Electric Arc discharge device with triggering electrode
DE1280384B (de) * 1964-06-10 1968-10-17 Siemens Ag Gasentladungs-UEberspannungsableiter
US3450922A (en) * 1966-08-03 1969-06-17 Gen Electric Triggerable vacuum gap having offset trigger
US3524099A (en) * 1968-06-13 1970-08-11 Gen Electric Spark gap assembly for lightning arresters
CH519807A (de) * 1970-05-12 1972-02-29 Bbc Brown Boveri & Cie Funkenstreckenanordnung eines magnetisch beblasenen Überspannungsableiters
US4267481A (en) * 1979-04-12 1981-05-12 Sauder Larry D Spark plug with hot/sharp ground electrode
FR2510813A1 (fr) * 1981-07-28 1983-02-04 Comp Generale Electricite Eclateur a plusieurs paires d'electrodes en parallele
CN1041260C (zh) * 1995-01-28 1998-12-16 克罗内有限公司 确定浪涌电压抑制器中最高电压的空气火花隙
DE19818674B4 (de) * 1998-04-27 2004-04-29 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzelement
DE60224856T2 (de) * 2001-02-08 2009-01-22 NGK Spark Plug Co., Ltd., Nagoya-shi Herstellungsverfahren einer Zündkerze und Vorrichtung zur Durchführung desselbens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466950B2 (en) 2012-12-07 2016-10-11 Ene29 S.Ar.L. Co-axial commutation spark gap

Also Published As

Publication number Publication date
JP2006526874A (ja) 2006-11-24
CN1799172A (zh) 2006-07-05
JP4442921B2 (ja) 2010-03-31
CA2523850C (fr) 2015-11-17
AU2004246293A1 (en) 2004-12-16
CN1799172B (zh) 2010-04-28
EP1629577A1 (de) 2006-03-01
DE602004029884D1 (de) 2010-12-16
KR20060020659A (ko) 2006-03-06
CA2523850A1 (fr) 2004-12-16
FR2855662B1 (fr) 2005-07-15
KR101050494B1 (ko) 2011-07-20
WO2004109874A1 (fr) 2004-12-16
US7463471B2 (en) 2008-12-09
AU2004246293B2 (en) 2008-10-16
US20070058319A1 (en) 2007-03-15
FR2855662A1 (fr) 2004-12-03

Similar Documents

Publication Publication Date Title
EP2867912B1 (de) Elektrischer schalter zur herstellung eines schnellbetätigungsschutzschalters
EP1629577B1 (de) Funkenstrecke, insbesondere hochspannungsfunkenstrecke
FR2953324A1 (fr) Interrupteur electrique a tiroir coulissant formant coupe-circuit ou commutateur
EP2795648B1 (de) Vorrichtung zum schutz vor partikeln eines elektrischen lichtbogens
EP2073229B1 (de) Pyrotechnischer Erdungs-Trennschalter mit selbstschließenden elektrischen Kontakten und Schutzanlage gegen interne Lichtbögen, die mit einem solchen Erdungs-Trennschalter ausgestattet ist
FR2953322A1 (fr) Interrupteur electrique formant coupe-circuit a actionnement rapide
FR3051281A1 (fr) Dispositif de coupure electrique et systeme electrique securise comprenant un tel dispositif
FR2520927A1 (fr) Chambre a vide pour extinction d'arc
EP2073235B1 (de) Elektrischer Erdungs-Trennschalter, der ein autonomes pyrotechnisches Stellglied umfasst, und Schutzanlage gegen interne Lichtbögen, die mit einem solchen Erdungs-Trennschalter ausgestattet ist
EP1376634A1 (de) Vakuumröhre für elektrisches Schutzgerät wie z.B. einen Schalter oder einen Lastschalter
EP3311200B1 (de) Werkzeug zur erzeugung seismischer wellen, wie eine funkenstrecke einer vorrichtung zur erzeugung von lichtbögen
EP2929604B1 (de) Koaxiale schaltfunkenstrecke
EP3226276B1 (de) Trennschalter, der an mittel- und hochspannungen angepasst ist, und abschaltmethode mithilfe dieses trennschalters
CH687839A5 (fr) Chambre de coupure de disjoncteur haute tension.
EP2144263B1 (de) Elektrogeräte unter einer Metallhülle mit reduziertem Spannungsgradienten
EP3226274A1 (de) Trennschalter mit bogenteilung, der an mittel- und hochspannungen angepasst ist, und abschaltmethode mithilfe dieses trennschalters
WO2013064532A1 (fr) Appareillage electrique comportant des moyens pour limiter la formation d'un arc electrique
EP2959494B1 (de) Schaltvorrichtung mit einer bewegbaren elektrode
EP1406279A1 (de) Druckgaslastschalter mit rotierendem Lichtbogen
FR2837615A1 (fr) Dispositif pour controler un champ electrique eleve dans un materiau synthetique isolant, comprenant au moins une electrode rigide
FR2599187A1 (fr) Disjoncteur electrique a isolement gazeux et a bobine de soufflage electromagnetique pour la rotation de l'arc

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

111L Licence recorded

Free format text: 0100 IVANHOE INDUSTRIES, INC.

Effective date: 20070203

17Q First examination report despatched

Effective date: 20081114

111L Licence recorded

Free format text: 0101 I-PULSE INC

Effective date: 20090626

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602004029884

Country of ref document: DE

Date of ref document: 20101216

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004029884

Country of ref document: DE

Effective date: 20110804

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004029884

Country of ref document: DE

Owner name: ITOPP, FR

Free format text: FORMER OWNER: ITHPP, THEGRA, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004029884

Country of ref document: DE

Representative=s name: IPSILON PATENTANWALTSGESELLSCHAFT MBH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230525

Year of fee payment: 20

Ref country code: DE

Payment date: 20230519

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004029884

Country of ref document: DE