EP1616154A1 - Dispositif pour determiner au moins un parametre d'un fluide s'ecoulant dans une conduite - Google Patents

Dispositif pour determiner au moins un parametre d'un fluide s'ecoulant dans une conduite

Info

Publication number
EP1616154A1
EP1616154A1 EP04709981A EP04709981A EP1616154A1 EP 1616154 A1 EP1616154 A1 EP 1616154A1 EP 04709981 A EP04709981 A EP 04709981A EP 04709981 A EP04709981 A EP 04709981A EP 1616154 A1 EP1616154 A1 EP 1616154A1
Authority
EP
European Patent Office
Prior art keywords
windshield
side wall
flow
discharge opening
main flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP04709981A
Other languages
German (de)
English (en)
Inventor
Uwe Konzelmann
Christoph Gmelin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1616154A1 publication Critical patent/EP1616154A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/12Cleaning arrangements; Filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow

Definitions

  • the invention relates to a device for determining at least one parameter of a medium flowing in a line with the features of the preamble of independent claim 1.
  • Such a device is known for example from DE 101 35 142 AI and is used, for example, in the intake tract of an internal combustion engine in order to determine the air mass flow fed to the internal combustion engine through a line.
  • the known device has a channel structure with an inlet area, from which a measuring channel provided with the measuring element branches off.
  • the inlet area has a discharge zone with at least one discharge opening which is located on a side wall of the part of the device which is introduced into the line.
  • the separation zone serves to separate liquid and / or solid particles from the channel structure, which are thus prevented from penetrating into the measuring channel provided with the measuring element and contaminating the measuring element.
  • edges, which through the main flow direction end face and the side walls of the pipe introduced part of the device are to be regarded as leading edges at which large areas of detached flow form when using the device in the flow-through line, which on the one hand large pressure losses and on the other hand an unintended pulsation of the
  • pressure fluctuations can be transmitted from the discharge opening through the separation zone to the inlet area and from there also to the measuring channel branching off from the inlet area.
  • the output signal of the measuring element can be significantly falsified by the pressure fluctuations in the measuring channel.
  • the device according to the invention for determining at least one parameter of a medium flowing in a line with the characterizing features of claim 1 has the advantage that, while largely maintaining the structural design of the known device and thus maintaining the robustness and insensitivity to dust and water by a relatively simple and inexpensive measure is achieved that influences of the pulsating flow are kept away from the measuring element. As a result, the quality and reproducibility of the measurement signal can be significantly improved.
  • At least one windshield arranged in the direction of the main flow direction, downstream behind the at least one discharge opening and projecting from the side wall provided with the discharge opening advantageously achieves the effect that the flow on the side wall is accelerated and the flow in the vicinity of the discharge opening more closely adjusts to the Sidewall approximates, which reduces pressure fluctuations that could otherwise be transferred to the measuring element through the discharge opening.
  • the windshield has a longitudinal extent in a direction perpendicular to the main flow direction and parallel to the side wall of the part, which corresponds to a multiple of the diameter of the discharge opening and which optimally extends in this direction over approximately the entire length of the channel structure provided part extends.
  • Windscreens have proven to be advantageous in which the windshield has a flat surface facing the main flow direction, which forms an angle with the side wall provided with the discharge opening which is greater than or equal to 90 ° and less than 160 °.
  • the distance of the end of the windshield projecting from the side wall from the side wall provided with the discharge opening is advantageously about 0.5 to 5 millimeters.
  • the windshield has cutouts which are indented in the windshield.
  • the windshield is advantageously formed by a comb-like structure of jags lined up next to one another.
  • FIG. 1 shows an embodiment of the device according to the invention in the installed position on a line
  • FIG. 2 shows a schematic view of a cross section through the device according to the invention with the windshield and a representation of the flow conditions in the line
  • 3a, 3b, 3c further exemplary embodiments for the windshield
  • FIG. 4 shows an enlarged detailed view from FIG. 2
  • FIG. 5 shows an enlarged view for a further exemplary embodiment
  • FIG. 6 shows a top view of the end face of the device with a windshield as shown in FIG. 5.
  • the line 1 shows a line 3 in which a medium flows in a main flow direction.
  • the main flow direction is identified by a corresponding arrow 18 in FIG. 1 and runs from right to left there.
  • the main direction of flow is defined as the direction in which the medium in the line flows from the entrance of the line to the exit of the line, mainly in this direction through the line, even if local vortex formation and locally existing separation areas of the flow are one local deviation of the flow from the main flow direction.
  • the line can be, for example, an intake manifold of an internal combustion engine.
  • the medium is, for example, the air flowing in the intake manifold.
  • a device 1 according to the invention is arranged on the line 3 such that a part 6 of the device is inserted into the line.
  • device 3 protrudes finger-like and is exposed to the medium flowing there with a predetermined orientation. ⁇ when switching of the part 6 construction in the duct 3, it is ensured that the part 6 als utilizat- a predetermined orientation with respect to the main direction of flow 18 of the medium.
  • the device 1 for determining at least one parameter of the medium comprises, in addition to the part 6 designed as a measuring housing, a carrier part (not shown) with an electrical connection, in which carrier part, for example, evaluation electronics can be accommodated.
  • the device 1 can be inserted, for example, with the part 6 through an insertion opening of a wall 15 of the line 3, which wall 15 limits a flow cross section of the line 3.
  • the evaluation electronics can be arranged inside and / or outside the flow cross section of the line 3.
  • a measuring element 9 on a measuring element carrier 10 is used in the device 1, the measuring data of which can be evaluated with the evaluation electronics.
  • the volume flow or the mass flow of the flowing medium, in particular the air mass flow is determined as a parameter.
  • Further parameters that can be measured are, for example, pressure, temperature, concentration of a medium component or flow velocity, which are determined by means of suitable sensor elements.
  • Part 6 has a housing with, for example, a cuboid structure with an end wall 13 facing in the installation position of the main flow direction 18 of the medium and a rear wall 14 facing away from it, a first side wall 17 and a second side wall 18 parallel thereto (FIG. 2) and, for example, a third wall 19 running parallel to the main flow direction and arranged at the end introduced into the line. Furthermore, part 6 has a channel structure with an inlet area 27 arranged therein and a measuring channel 40 branching off from the input area 27.
  • the arrangement of the device 1 relative to the line 3 ensures that the medium flowing in the main flow direction 18 strikes the part 6 in a predetermined direction and a partial flow of the medium in this direction through an opening 21 on the end face 13 into the entrance area 27 reaches the channel structure.
  • the opening 21 can, for example, be oriented perpendicular to the main flow direction 18, but a different orientation of the opening 21 to the main flow direction 18 is also conceivable.
  • Deflection wall 26 is arranged in opening 21. From the input area 27, the medium partly enters the measuring channel 30 provided with the measuring element 9 and partly flows further into an excretion zone 28 which is located behind the branching point for the measuring channel and which extends over at least one in the first side wall 17 and / or the second Side wall 18 and / or the wall 19 arranged excretion opening 33 in line 3 opens.
  • the main flow direction 18 runs in a plane in which the discharge opening 33 is also arranged.
  • a first partial flow of the medium that has entered the input region 27 flows completely into the measuring channel 30 and leaves it through the outlet 49 on the wall 19 of the part 6, while a second partial flow completely flows back through the one discharge opening 33 into the line 3.
  • liquid and / or solid particles such as oil or water particles, which can contaminate or damage the measuring element 9.
  • the discharge opening 33 and the geometric structure of the channel structure in the entrance area ensure that the liquid and solid particles do not get into the measuring channel, but flow back into line 3.
  • the exact mode of operation of the excretion zone is described, for example, in DE 101 35 142 AI. 2 shows a schematic cross section through part 6. The main flow direction 18 and the local flow conditions of the medium in the vicinity of part 3 are shown. Flow lines 60 of the medium flow near part 6 are shown. In the cross-sectional representation of FIG.
  • the part 6 has a windshield 50 arranged in the direction of the main flow direction 18, downstream behind the at least one discharge opening 33 and projecting from the side wall 16 provided with the discharge opening.
  • the windshield is arranged on the part 6 in such a way that the cutting plane shown in FIG. 2 cuts both the excretion opening and the windshield.
  • An enlarged detailed illustration is shown in FIG. 4.
  • the windshield designed as a wind deflector is fastened in this exemplary embodiment with an end section 52 to the rear wall 14 of the part 6 facing away from the main flow. A second end section 55 extends beyond the side wall 16 into the flow.
  • the distance h of the end 56 of the windshield 50 projecting from the side wall 16 from the side wall 16 provided with the Ausscheidungsö opening 33 is approximately 0.5 to 5 millimeters.
  • the distance h is defined by the shortest distance of the projecting end 56 of the windshield 50 from the plumb point 57 of the distance line shown in broken lines in FIG. 4 on a plane running through the side wall 16.
  • the end section 55 projecting into the flow from the side wall 16 has a flat surface 51 facing the main flow direction 18.
  • the flat surface 51 forms with the side wall 16 provided with the discharge opening 33 an obtuse angle ⁇ which is greater than or equal to 90 ° and less than 160 °.
  • the longitudinal extent of the windshield 50 cannot be seen in FIGS. 2 and 4. However, this is shown in FIG.
  • the windshield 50 extends in a direction perpendicular to the main flow direction 18 and parallel to the side wall 16 with a Longitudinal extension L, which corresponds to a multiple of the diameter of the discharge opening 33 and which preferably extends in this direction approximately over the entire length of the part 6 provided with the channel structure.
  • the windshield 50 can also be shorter.
  • FIG. 2 shows the flow lines of the medium flow in line 3 in the vicinity of part 6. It can be seen that the flow strikes the end wall 13 of the part 6 and that detachment regions are formed on the edges formed by the end wall 13 and the two side walls 16 and 17 facing away from one another, which are represented by the dashed lines 61 and 62.
  • the flow (line 62) can detach itself very strongly from the side wall, depending on the flow velocity, and cannot reconnect.
  • the flow is not stationary, but pulsates and generates pressure fluctuations, which is indicated by the vortices 63 in FIG. 2.
  • the windshield 50 causes a changed flow behavior on the other side wall 16.
  • the modified, smaller dead water area is represented by the dashed line 61.
  • the windshield 50 at the downstream end of the side wall 16 accelerates the flow in the vicinity of the side wall 16 and rests against the side wall in the area of the discharge opening 33. As a result, pressure fluctuations in the detachment area are not transmitted through the discharge opening 33 to the channel structure in the interior of the part 6.
  • 3a shows an exemplary embodiment with a windshield 30 which projects perpendicularly from the side wall 16.
  • 3a shows an embodiment in which the windshield is formed by a projection on the side wall 16, which is preferably formed in one piece with the part 6 and does not necessarily have to be arranged at the downstream end of the side wall 16.
  • 3c shows a windshield with a curved and therefore not flat surface facing the main flow direction.
  • the windshield protrudes from the side wall into the flow downstream of the discharge opening.
  • two excretion openings are provided on the two side walls 16, 17 facing away from one another
  • two windscreens can also protrude from the two side walls. If the excretion opening is arranged on the lower side wall 19, the windshield can also protrude from the lower side wall 19 of the part 6 downstream of the excretion opening.
  • FIGS. 5 and 6 shows a further development of the windshield shown in FIG. 2. 2
  • the flow behind the part 6 is deflected relatively strongly in the downstream direction, so that behind the part 6 there is a large dead water area in which the flow pulsates and pressure fluctuations predict.
  • the flow area in is under dead water area
  • the windshield In order to prevent pressure fluctuations in the dead water area from propagating as far as possible to the discharge opening 33, it is advantageous to provide the windshield with cutouts 53, as shown in FIG. 6.
  • the cutouts 53 can be indented in the windshield 50 at regular or irregular intervals.
  • the windshield shown in Fig. 6 has several V- shaped notches, so that the windshield 50 is formed by a comb-like structure of jags 54 lined up next to one another, the width of a jag being greater than the distance formed by the notches 53 between two adjacent jags.
  • strong longitudinal swirls 70 develop from the notches 53, the axes of which extend in the main flow direction 18.
  • the longitudinal vortices cause an exchange of momentum between the slow medium flow in the dead water area and the fast medium flow outside the dead water area, whereby the dead water area is advantageously reduced and the flow in this area is stabilized. A transfer of pressure fluctuations to the discharge opening is avoided even more reliably.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

L'invention concerne un dispositif pour déterminer au moins un paramètre d'un fluide s'écoulant dans une conduite dans le sens du flux principal, ce dispositif comprenant une pièce qui est montée dans la conduite, dans une direction déterminée relativement au sens du flux principal, de sorte qu'un flux partiel du fluide s'écoulant dans la conduite arrive dans une zone d'entrée d'une structure de canal formée dans ladite pièce. A partir de la zone d'entrée dérive un conduit de mesure doté d'un élément de mesure pour déterminer ledit paramètre. La zone d'entrée comprend une zone de précipitation séparée du conduit de mesure et pourvue d'au moins un orifice de précipitation, lequel débouche dans la conduite au niveau d'une paroi latérale de la pièce sensiblement parallèle au sens du flux principal. L'invention est caractérisée en ce que ladite pièce comporte de préférence au moins un déflecteur qui est disposé à une certaine distance de la paroi latérale pourvue de l'orifice de précipitation, dans le sens du flux principal, en aval et à l'arrière dudit orifice de précipitation.
EP04709981A 2003-04-10 2004-02-11 Dispositif pour determiner au moins un parametre d'un fluide s'ecoulant dans une conduite Pending EP1616154A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10316450.2A DE10316450B4 (de) 2003-04-10 2003-04-10 Vorrichtung zur Bestimmung wenigstens eines Parameters eines in einer Leitung strömenden Mediums
PCT/DE2004/000244 WO2004092689A1 (fr) 2003-04-10 2004-02-11 Dispositif pour determiner au moins un parametre d'un fluide s'ecoulant dans une conduite

Publications (1)

Publication Number Publication Date
EP1616154A1 true EP1616154A1 (fr) 2006-01-18

Family

ID=33016252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04709981A Pending EP1616154A1 (fr) 2003-04-10 2004-02-11 Dispositif pour determiner au moins un parametre d'un fluide s'ecoulant dans une conduite

Country Status (6)

Country Link
US (1) US7401509B2 (fr)
EP (1) EP1616154A1 (fr)
JP (1) JP2006522921A (fr)
KR (1) KR20060026848A (fr)
DE (1) DE10316450B4 (fr)
WO (1) WO2004092689A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10318500A1 (de) * 2003-04-24 2004-11-25 Robert Bosch Gmbh Vorrichtung und Verfahren zur Kalibrierung eines Bildsensors
DE102006045660B4 (de) 2006-09-27 2023-06-22 Robert Bosch Gmbh Steckfühler mit Strömungsleitelementen
DE102006045659B4 (de) 2006-09-27 2023-05-04 Robert Bosch Gmbh Steckfühler mit verbesserten Umströmungseigenschaften
DE102007019282A1 (de) * 2007-04-24 2008-11-06 Robert Bosch Gmbh Vorrichtung zur Messung strömender Medien
DE102009002853B4 (de) 2009-05-06 2022-02-10 Robert Bosch Gmbh Vorrichtung zur Erfassung eines Parameters eines strömenden fluiden Mediums
JP5408195B2 (ja) * 2011-07-19 2014-02-05 株式会社デンソー 空気流量測定装置
DE102011080894A1 (de) * 2011-08-12 2013-02-14 Endress + Hauser Flowtec Ag Sensor-Modul zum Messen und/oder Überwachen von Parametern von in Rohrleitungen strömenden Medien sowie damit gebildetes Meßsystem
DE102012211133B4 (de) 2012-06-28 2023-09-07 Robert Bosch Gmbh Sensoranordnung zur Bestimmung wenigstens eines Parameters eines durch einen Kanal strömenden fluiden Mediums
JP5464294B2 (ja) * 2013-07-04 2014-04-09 株式会社デンソー 空気流量測定装置
JP6690899B2 (ja) * 2015-06-29 2020-04-28 株式会社デンソー 空気流量測定装置
JP6568593B2 (ja) 2015-09-30 2019-08-28 日立オートモティブシステムズ株式会社 物理量検出装置
JP6289585B1 (ja) * 2016-10-25 2018-03-07 三菱電機株式会社 流量測定装置
JP7168390B2 (ja) * 2018-09-19 2022-11-09 株式会社Soken 流量測定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2846207B2 (ja) * 1992-09-17 1999-01-13 株式会社日立製作所 空気流量測定装置
JP3193837B2 (ja) * 1994-10-18 2001-07-30 株式会社日立製作所 発熱抵抗式流量測定装置
US5563340A (en) * 1995-03-28 1996-10-08 Ford Motor Company Mass air flow sensor housing
JPH109921A (ja) * 1996-06-21 1998-01-16 Hitachi Ltd 空気流量測定装置
JP3758111B2 (ja) 1998-03-06 2006-03-22 株式会社デンソー 空気流量測定装置
JP3577941B2 (ja) * 1998-04-02 2004-10-20 三菱電機株式会社 流量測定装置
DE19815656A1 (de) * 1998-04-08 1999-10-14 Bosch Gmbh Robert Meßvorrichtung zum Messen der Masse eines strömenden Mediums
DE19815658A1 (de) * 1998-04-08 1999-10-14 Bosch Gmbh Robert Vorrichtung zum Messen der Masse eines strömenden Mediums
JP3475853B2 (ja) * 1998-12-21 2003-12-10 三菱電機株式会社 流量測定装置
DE10135142A1 (de) * 2001-04-20 2002-10-31 Bosch Gmbh Robert Vorrichtung zur Bestimmung zumindest eines Parameters eines in einer Leitung strömenden Mediums
JP4170900B2 (ja) 2001-07-18 2008-10-22 株式会社日立製作所 気体流量測定装置
DE102004035893B4 (de) * 2004-07-23 2013-03-14 Robert Bosch Gmbh Vorrichtung zur Bestimmung wenigstens eines Parameters eines in einer Leitung strömenden Mediums

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004092689A1 *

Also Published As

Publication number Publication date
JP2006522921A (ja) 2006-10-05
KR20060026848A (ko) 2006-03-24
WO2004092689A8 (fr) 2006-01-12
WO2004092689A1 (fr) 2004-10-28
US20070163338A1 (en) 2007-07-19
US7401509B2 (en) 2008-07-22
DE10316450A1 (de) 2004-10-21
DE10316450B4 (de) 2019-08-08

Similar Documents

Publication Publication Date Title
EP1646848B1 (fr) Dispositif pour determiner au moins un parametre d'une substance en ecoulement dans un conduit
DE102004035893B4 (de) Vorrichtung zur Bestimmung wenigstens eines Parameters eines in einer Leitung strömenden Mediums
EP1384047B1 (fr) Dispositif pour determiner au moins un parametre relatif a un fluide circulant dans une conduite
EP1549917B1 (fr) Debitmetre d'air dote d'un dispositif de separation de particules etrangeres
EP1646847B1 (fr) Dispositif pour determiner au moins un parametre d'un fluide qui circule dans une conduite
DE10316450B4 (de) Vorrichtung zur Bestimmung wenigstens eines Parameters eines in einer Leitung strömenden Mediums
DE10245965B4 (de) Vorrichtung zur Bestimmung wenigstens eines Parameters eines in einer Leitung strömenden Mediums
DE10124997C2 (de) Strömungsraten-Messvorrichtung
EP2142890B1 (fr) Dispositif de mesure de fluides en écoulement
DE10230531B4 (de) Vorrichtung zur Bestimmung wenigstens eines Parameters eines in einer Leitung strömenden Mediums
DE102004022271A1 (de) Vorrichtung zur Bestimmung wenigstens eines Parameters eines in einer Leitung strömenden Mediums
DE102008042807B4 (de) Vorrichtung zur Bestimmung eines Parameters eines strömenden fluiden Mediums
EP1019679A1 (fr) Dispositif pour mesurer la masse d'un fluide en ecoulement
DE10253970A1 (de) Vorrichtung zur Bestimmung wenigstens eines Parameters eines in einer Leitung strömenden Mediums
DE10154253B4 (de) Vorrichtung mit einem Luftansaugrohr und einer darin eingesteckten Luftmassensensoranordnung
DE19942501A1 (de) Vorrichtung zur Messung von zumindest einem Parameter eines in einer Leitung strömenden Mediums
WO2001075402A1 (fr) Unite de protection pour detecteur de debit massique place dans un canal d'air d'admission
DE10348400A1 (de) Vorrichtung zur Bestimmung wenigstens eines Parameters eines in einer Leitung strömenden Mediums
DE10028632A1 (de) Druckerkennungsvorrichtung und Einbauanordnung hierfür
DE102008042164B4 (de) Vorrichtung zur Bestimmung eines Parameters eines strömenden Mediums
EP1283411A1 (fr) Dispositif protecteur pour un détecteur de débit
DE10204615B4 (de) Gasmassensensoranordnung
DE102013106493B4 (de) Anordnung zur Abgasmassenstrombestimmung
DE10139529A1 (de) Schutzeinrichtung für einen Sensor
DE102004022273A1 (de) Verfahren zur Verkleinerung der Ablösezone an umströmten Bauteilen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20051110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR