EP1614165A2 - MODULE PHOTOVOLTAIQUE ET PROCEDE DE FABRICATION D’UN TEL MODULE - Google Patents

MODULE PHOTOVOLTAIQUE ET PROCEDE DE FABRICATION D’UN TEL MODULE

Info

Publication number
EP1614165A2
EP1614165A2 EP04742507A EP04742507A EP1614165A2 EP 1614165 A2 EP1614165 A2 EP 1614165A2 EP 04742507 A EP04742507 A EP 04742507A EP 04742507 A EP04742507 A EP 04742507A EP 1614165 A2 EP1614165 A2 EP 1614165A2
Authority
EP
European Patent Office
Prior art keywords
module
cells
plates
photovoltaic cells
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04742507A
Other languages
German (de)
English (en)
Inventor
Guy Baret
Hubert Lauvray
Roland Einhaus
Klaus Bamberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apollon Solar SAS
Original Assignee
Apollon Solar SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0304729A external-priority patent/FR2853993B1/fr
Priority claimed from FR0313489A external-priority patent/FR2862427B1/fr
Application filed by Apollon Solar SAS filed Critical Apollon Solar SAS
Publication of EP1614165A2 publication Critical patent/EP1614165A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Photovoltaic module and method of manufacturing such a module
  • the invention relates to a photovoltaic module comprising an assembly of photovoltaic cells, arranged side by side between front and rear plates, and a sealing joint disposed between the plates and delimiting a sealed interior volume, maintained at a pressure below atmospheric pressure. , in which the photovoltaic cells are arranged.
  • photovoltaic cells are covered with a network of electrodes and connected to each other by welding of metal strips.
  • the assembly thus formed is then placed between two sheets of polymer, themselves sandwiched between two glass substrates.
  • the assembly is then heated to around 120 ° C to strongly soften the polymer, make it waterproof and transparent and ensure the mechanical cohesion of the module.
  • sealing especially against the ingress of moisture, is often not guaranteed in the long term.
  • Document WO03 / 038911 describes a method of manufacturing a photovoltaic module comprising the assembly of photovoltaic cells arranged side by side between front and rear plates.
  • a mineral sealing joint placed between the plates, delimits a sealed interior volume inside which all the cells are arranged.
  • the sealing operation takes place at a temperature between 380 ° C and 480 ° C for a period of less than 30 minutes.
  • the material of the sealing joint softens considerably and makes the interior volume of the sealing joint watertight towards the outside, which makes it possible to avoid any diffusion of water towards the interior of the module throughout the life of the module.
  • the pressure of the interior volume is of the order of one atmosphere at the sealing temperature.
  • the final pressure, after cooling to room temperature, is lower, of the order of 400millibars.
  • a vacuum vis-à-vis the outside therefore forms automatically inside the assembly and causes the application of a force by the front and rear plates on the cells. This force ensures contact between the cells and connecting conductors deposited on the front and rear plates without the need for solder between the cells and the connecting conductors.
  • the application of a temperature of the order of 400 ° C. risks deteriorating the quality of the photovoltaic cells currently available on the market.
  • a photovoltaic cell can be formed on a solid silicon substrate cut in the form of slices a few hundred microns thick.
  • the substrate can consist of monocrystalline silicon, polycrystalline silicon or semiconductor layers deposited on a substrate glass or ceramic. It has on its surface a network of narrow electrodes, generally in silver or aluminum, intended to drain the current towards one or more main electrodes from 1 to a few millimeters in width, also in silver or aluminum.
  • rear connection conductors associated with a first cell are connected to the front connection conductors associated with a second, adjacent cell. If the module has more than two cells, the rear connection conductors of the second cell are then connected to the front connection conductors of the next cell, all the cells thus being electrically connected in series.
  • a rear connection conductor of a cell and the associated front connection conductor of the neighboring cell can be formed by the same interconnection conductor.
  • the connecting conductors of the end cells serve as connectors to the outside.
  • An assembly of photovoltaic cells in matrix form can comprise conductors of transverse links connecting the cells electrically in parallel.
  • the transverse connection conductors constituted by a copper core and a surface deposit of a tin-lead alloy, are soldered with a tin-lead alloy on connection areas of the cell.
  • the connecting conductors can also be produced by depositing a silver paste on a module support passover according to the desired pattern, then baking at high temperature.
  • the front and rear connection conductors are formed on the internal face of the front and rear glass substrates opposite the location of each of the cells.
  • the connecting conductors are then soldered to the cells and to interconnection elements intended for connect the cells in series.
  • the space remaining between the glass substrates is then filled with an organic resin.
  • connection conductors and the assembly of the cells constitutes a handicap since they are long and costly operations which can break the cells and entail a high production cost.
  • the object of the invention is to remedy these drawbacks and, in particular, to produce a module having good long-term tightness and to simplify the process for manufacturing a photovoltaic module, so that its manufacture can, preferably, be carried out at room temperature, while reducing manufacturing costs.
  • Figures 1 and 2 illustrate the steps of assembling a particular embodiment of a method of manufacturing a photovoltaic module according to the invention.
  • Figures 3 and 4 illustrate, in section along the axis AA, a particular embodiment of the suction step of a method of manufacturing a photovoltaic module according to Figure 2.
  • Figures 5 and 6 show two particular embodiments of a photovoltaic module according to the invention.
  • Figures 7 and 8 illustrate two particular embodiments of a method for producing a photovoltaic module according to the invention.
  • Figures 9 and 10 show a particular embodiment of a photovoltaic module according to the invention respectively in section along the axis B-B and in view from below.
  • Figures 11 and 12 show various particular embodiments of interconnection conductors of a photovoltaic module according to the invention.
  • Figure 1 shows the assembly of photovoltaic cells 1 arranged side by side between front plates 2 and rear 3 and an organic sealing joint 4.
  • the plates 2 and 3 and the photovoltaic cells are held in parallel .
  • these can be pre-fixed, as well as the corresponding conductors of electrical interconnection, before assembly of the plates 2 and 3, on one of the plates, for example on the plate back 3.
  • They can, for example, be pre-bonded using an organic solvent-free adhesive, for example using a derivative from the polyvinyl family.
  • the adhesive can be made of the same material as the organic seal 4, for example by a derivative of poly-butylene.
  • the organic seal 4 can be deposited on one of the plates 2 and 3, for example on the front plate 2, at the periphery of the assembly of the photovoltaic cells 1. Then, the front plates 2 and rear 3 are sealed by the 'Intermediate of the organic seal 4, which can be of a thermoplastic nature, for example from the family of poly-butylenes.
  • the organic seal 4 can be made of any organic material capable of providing an effective barrier to humidity and to gases, in particular to oxygen.
  • the sealed interior volume 5 is filled with a neutral gas.
  • the neutral gas can consist of any pure or mixed gas compatible with the materials of the elements arranged inside the sealed volume, for example argon.
  • the concentration of gases, in particular argon can be determined by spectral analysis, which makes it possible to control the atmosphere and the composition of gases inside the sealed interior volume (5).
  • the assembly is preferably compressed by applying pressure P1 on the plates 2 and 3.
  • the organic seal 4 delimits a sealed interior volume 5 to the inside of which are arranged all the photovoltaic cells 1.
  • the material of the organic seal 4 is preferably from the family of poly-butylenes, without solvent, for example poly-iso-butylene.
  • the poly-butylene gasket remains flexible and its color, initially matt black, changes to shiny black, at the interface with the plates 2 and 3, which eventually makes it possible to check the seal. .
  • the mechanical characteristics of the joint remain unchanged, although the joint retains a certain elasticity.
  • the module compression step thus makes it possible to control the thickness of the module.
  • the depression is formed by suction in order to ensure sufficient contact pressure to allow the electrical conduction necessary for the proper functioning of the solderless module of the interconnection contacts between cells.
  • the suction is carried out after sealing the module.
  • the suction creates a vacuum in the sealed interior volume 5, up to 0.5 bar.
  • the suction (shown schematically by dotted arrows) is, for example, carried out by means of a perforation tool, for example by means of a syringe 6 passing through the organic seal 4 and connected to a device d external suction (not shown).
  • the perforation tool is dimensioned so that when it is removed, the seal is not disturbed.
  • the syringe 6 is introduced into the organic seal 4 near a corner of the module.
  • the residual elasticity of the organic seal allows the automatic filling of the small penetration orifice of the syringe when it is withdrawn.
  • the application of pressure P2 on two perpendicular faces 7a and 7b of the seal on either side of the penetration orifice of the syringe allows close this hole and ensure the seal of the joint.
  • the method preferably includes, before creating the vacuum, a neutral gas scanning step, possibly carried out by means of two syringes, a first syringe allowing to aspirate and a second syringe making it possible to supply the gases simultaneously. neutral.
  • the sealed internal volume 5 is maintained at a pressure substantially lower than atmospheric pressure, which causes the application of a force by the front plates 2 and rear 3 on the photovoltaic cells 1
  • This force ensures contact between the cells and connecting conductors, ensuring the electrical connections between the cells, without the need for soldering between the cells and the connecting conductors.
  • the material constituting the connecting conductors can be based on copper, a copper alloy or any other metallic material with high conductivity which ensures good contact with the photovoltaic cells 1 under the action of the vacuum force.
  • the seal of the organic seal 4 is obtained after compression of the front and rear plates, with the organic seal present at the periphery of the entire module.
  • the thickness of the joint determined by the amount of organic material deposited and by the compression force during sealing, then remains constant. The process being carried out at room temperature, it is compatible with all photovoltaic cells. .
  • a reinforcing system 8 may optionally be arranged around the sealing joint 4, to improve the strength of the module.
  • the front 2 and rear 3 plates can both be glass plates, for example made of soda-lime glass 1, 6 to 6 mm thick, a typical value being 3 to 4 mm for the front plate 2 and 2 to 4mm for the back plate 3.
  • the glass is advantageously clear or extra white glass, that is to say containing little iron, because the optical transmission of such a glass is very good.
  • the glass may also have been thermally toughened in order to increase its mechanical strength.
  • the front plate 2 of the photovoltaic module is preferably made of glass, while the rear plate 3 consists of a rigid sheet, insulating at least on the surface, of plastic material or metal, for example aluminum or steel stainless treated on the surface so as not to be conductive on the surface. Such a sheet allows protect the photovoltaic cells while clearly reducing (up to 2 times) the weight.
  • the method can, moreover, include a step of chemical attack, basic for example, of the front glass plate, carried out before assembly of the module, so as to roughen the internal face 9 of the front glass plate, it that is to say the face oriented towards the photovoltaic cells 1, as shown in FIG. 5.
  • a step of chemical attack basic for example, of the front glass plate, carried out before assembly of the module, so as to roughen the internal face 9 of the front glass plate, it that is to say the face oriented towards the photovoltaic cells 1, as shown in FIG. 5.
  • the treatment can be carried out by an anisotropic attack on the glass, the external face of the front plate 2 being protected, so as to give a texture to the internal face 9 of the front plate 2.
  • This technique makes it possible to obtain an improvement in the efficiency of the photovoltaic module.
  • This texturing can also be carried out by tempering the glass, after protecting the external face of the glass, for example, by chemical attack.
  • the photovoltaic module shown in FIG. 6 further comprises, between the photovoltaic cells 1 and the rear plate 3 and / or between the photovoltaic cells 1, a substance 10 intended to absorb infrared and ultraviolet radiation and to emit radiation in a visible spectral band corresponding substantially to the maximum of the absorption band of the photovoltaic cells.
  • Substance 10 comprises, for example, poly methyl methacrylate (PMMA) and / or a metal salt and or a pigment consisting of a compound mainly containing mixed rare earth oxides based on lanthanum, erbium, terbium , neodymium and praseodymium, alkali metals or alkaline earth metals. These oxides transform ultraviolet radiation into visible radiation having a wavelength between 550 nm and 650 nm. We can thus increase the yield of photovoltaic module. The absorption of infrared radiation lowers the operating temperature of the photovoltaic cells.
  • the method successively comprises the assembly and the partial sealing of the module, so as to leave two openings 13a and 13b in the sealing joint 4, and a scanning by neutral gases, shown diagrammatically by dotted arrows 14, of the interior volume by means of the two openings 13a and 13b.
  • the vacuum is then established by suction via the two openings 13a and 13b. After the aspiration, the two openings 13a and 13b are blocked without damaging the vacuum. It is also possible to plug one of the openings 13 after scanning and to perform the suction via the other openings 13, which is then plugged.
  • the method successively comprises the assembly of the module and, in a sealed enclosure 17, a sweeping by neutral gases and the establishment of the vacuum by suction.
  • the sealing of the front 2 and rear 3 plates is then carried out by compression 18 of the sealing joint 4, the front 2 and rear 3 plates being arranged between two preformed parts 19 and 20 also making it possible to establish the sealed enclosure 17.
  • the module according to the invention can be large, the glass having a corresponding thickness, without the need to add a frame.
  • the invention applies to all types of photovoltaic modules, including modules comprising photovoltaic cells 1 each having poles positive and negative arranged on the same side of the cell, as described below.
  • the photovoltaic module shown in FIG. 9 comprises photovoltaic cells 1 arranged side by side between the internal faces of the front plates 2 and rear 3. Only three cells 1a, 1b and 1c are shown in FIG. 9 for reasons of clarity. Positive and negative poles of each cell are brought back on the back face of this one.
  • connection of a positive pole of a cell and a negative pole of the adjacent cell is carried out very simply by means of at least one interconnection conductor constituted by a metal strip, for example by a strip of paste d silver, deposited, for example by screen printing, on the internal face of the rear plate 3 before placing the cells. It is also possible to carry out the electrical interconnection of cells by metallic conductors pre-fixed by an adhesive on the rear plate of the module.
  • a metal strip 1 1 a deposited on the rear plate 3, is positioned on an area connecting the locations of the two adjacent cells 1 a and 1 b, so as to come into contact on the rear face of the cell
  • the area has the shape of a stair step.
  • a network of interconnection conductors (1 1 ) is thus formed on the back plate 3, before placing the cells.
  • the width of the strips of silver paste 1 1 is large, each strip of silver paste 11 being able, for example, to have a width of between 3mm and 10 mm, more typically between 3mm and 5 mm.
  • the interconnections can also be prepared by screen printing.
  • the seal 4 is deposited on one of the plates or on the two plates 2 and 3, according to a path described below, that is to say along the four sides.
  • the organic sealing joint 4 is located at the periphery of the surface common to the two front and rear plates 2 and 3. It is thus arranged on the periphery of the rear plate 3 except on the left side for the back plate 3, in order to allow access from the outside to conductors 12 for connection with the outside.
  • a conductor 12 for connection to the outside of the end cells (1a and 1c) can project outwards beyond the joint 4.
  • the seal 4 can then be arranged, as described above, between the front 2 and rear 3 plates, at the periphery of the module, so as to delimit a sealed interior volume inside which all the cells 1 are arranged.
  • the sealing joint 4 has a thickness of several hundred microns, which mainly depends on the thickness of the cells 1, to which is added the thickness of the metal strips 11 constituting interconnection conductors, formed on the front face of the back plate 3, connecting cells 1 in series connecting a positive pole of cell 1 a to a negative pole of adjacent cell 1 b.
  • an interconnection conductor 15 connects a front face of a first cell 1 a and a rear face of a second adjacent cell 1 b.
  • the interconnection conductor 15 and constituted by a rigid material, for example by an alloy of copper and magnesium or by hardened copper, retaining all of its electrical conductivity.
  • a first corrugated end 16a is disposed between the front face of the first cell 1a and the internal face of the front plate 2.
  • a second corrugated end 16b is disposed between the rear face of the second cell 1b and the internal face of the plate rear 3.
  • the intermediate part of the interconnection conductor, disposed between the adjacent cells 1 a and 1 b is not wavy. In a variant, one of the ends 16 can be produced without undulation.
  • a corrugated interconnection conductor 15 can be used to connect the positive and negative poles of two adjacent single-sided cells, that is to say each having positive and negative poles arranged on the same side of the cell. This undulation makes it possible to improve, through a spring effect, the contact between the cell 1 and the interconnection conductor 15.
  • Interconnection conductors 15, constituted by a rigid material, connecting the photovoltaic cells 1 to one another can have any profiled shape, for example a section in the form of a U, a W or a V, as shown in Figure 12, so as to obtain a spring effect between the photovoltaic cells 1 and the corresponding plate 2 or 3.
  • the spring effect makes it possible to compensate for variations in thickness of the cells and / or the front and rear plates and variations due to the thermal expansion of the constituent elements of the module and, thus, of limiting the risk of breakage of the cells by ensuring constant electrical contact between the cells 1 and the interconnection conductors 15.
  • the interconnection conductors 15 can also have a helical shape.
  • the method according to the invention can be applied to the production of photovoltaic modules, then of solar generators, from square, rectangular or round photovoltaic cells and whose characteristic dimensions can range from a few centimeters to several tens of centimeters.
  • the cells are preferably square cells whose side is between 8cm and 30cm.
  • the strips of silver paste can be deposited on the internal face of the front plate.
  • the invention applies to all types of photovoltaic cells, not only to silicon, monocrystalline or polycrystalline photovoltaic cells, but also to cells of gallium arsenide, to cells formed by silicon ribbons, to cells with silicon beads formed by a network of silicon beads inserted in conductive sheets, or in photovoltaic cells formed by depositing and etching a thin layer of silicon, copper / indium / selenium or cadmium / tellurium on a plate glass or ceramic.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Le module photovoltaïque comporte des plaques avant (2) et arrière (3). Un joint de scellement (4) organique est disposé entre les plaques et délimite un volume intérieur étanche (5), maintenu à une pression inférieure à la pression atmosphérique, dans lequel sont disposées les cellules photovoltaïques (1). Le joint de scellement (4) est un joint organique, par exemple de nature thermoplastique, par exemple de la famille des poly-butylènes. Le procédé de fabrication comporte la formation de la dépression par aspiration. Le procédé peut comporter un balayage par gaz neutres, l'établissement de la dépression et le scellement par compression (P1). Le procédé peut également comporter un scellement partiel du module, de manière à laisser deux ouvertures dans le joint de scellement (4), un balayage par gaz neutres du volume intérieur par l'intermédiaire des deux ouvertures, l'établissement de la dépression et le bouchage des ouvertures.

Description

Module photovoltaïque et procédé de fabrication d'un tel module
Domaine technique de l'invention
L'invention concerne un module photovoltaïque comportant un assemblage de cellules photovoitaïques, disposées côte à côte entre des plaques avant et arrière, et un joint de scellement disposé entre les plaques et délimitant un volume intérieur étanche, maintenu à une pression inférieure à la pression atmosphérique, dans lequel sont disposées les cellules photovoitaïques.
État de la technique
Classiquement, pour fabriquer un module photovoltaïque, des cellules photovoitaïques sont recouvertes d'un réseau d'électrodes et connectées entre elles par soudure de rubans métalliques. L'ensemble ainsi formé est ensuite placé entre deux feuilles de polymère, elles-mêmes enserrées entre deux substrats de verre. L'ensemble est alors chauffé aux environs de 120°C pour ramollir fortement le polymère, le rendre étanche et transparent et assurer la cohésion mécanique du module. Cependant, l'étanchéité, surtout contre la pénétration d'humidité, n'est souvent pas assurée à long terme.
Ce type de procédé de fabrication implique une large consommation de pâte de soudure à base d'étain, de plomb et de zinc, très coûteuse. La soudure elle- même est une opération coûteuse, mécaniquement compliquée, nécessitant le retournement de la cellule et pouvant entraîner des risques non négligeables de _ casse de la cellule. Afin d'assurer l'étanchéite du module, un joint de scellement non minéral peut être déposé à la périphérie de l'ensemble des cellules ou bien l'espace restant entre les substrats de verre est rempli par une résine organique.
Le document WO03/038911 décrit un procédé de fabrication d'un module photovoltaïque comportant l'assemblage de cellules photovoitaïques disposées côte à côte entre des plaques avant et arrière. Un joint de scellement minéral, disposé entre les plaques, délimite un volume intérieur étanche à l'intérieur duquel sont disposées toutes les cellules. L'opération de scellement a lieu à une température comprise entre 380°C et 480°C pendant une durée inférieure à 30 minutes. Au cours du scellement, le matériau du joint de scellement se ramollit fortement et rend le volume intérieur au joint de scellement étanche vis-à-vis de l'extérieur, ce qui permet d'éviter toute diffusion d'eau vers l'intérieur du module pendant toute la durée de vie du module. La pression du volume intérieur est de l'ordre d'une atmosphère à la température de scellement. La pression finale, après refroidissement à la température ambiante, est inférieure, de l'ordre de 400millibars. Une dépression vis-à-vis de l'extérieur se forme donc automatiquement à l'intérieur de l'assemblage et entraîne l'application d'une force par les plaques avant et arrière sur les cellules. Cette force assure un contact entre les cellules et des conducteurs de liaison déposés sur les plaques avant et arrière sans qu'il soit nécessaire de disposer de la soudure entre les cellules et les conducteurs de liaison. Cependant, l'application d'une température de l'ordre de 400°C risque de détériorer la qualité des cellules photovoitaïques actuellement disponibles sur le marché.
Une cellule photovoltaïque peut être formée sur un substrat en silicium massif découpé sous forme de tranches de quelques centaines de microns d'épaisseur. Le substrat peut être constitué de silicium monocristallin, de silicium polycristallin ou de couches semiconductrices déposées sur un substrat de verre ou de céramique. Elle possède à sa surface un réseau d'électrodes étroites, généralement en argent ou en aluminium, destinées à drainer le courant vers une ou plusieurs électrodes principales de 1 à quelques millimètres de largeur, également en argent ou en aluminium.
Dans un module photovoltaïque connu, des conducteurs de liaison arrière associés à une première cellule sont reliés aux conducteurs de liaison avant associés à une seconde cellule, adjacente. Si le module comporte plus de deux cellules, les conducteurs de liaison arrière de la seconde cellule sont alors connectés aux conducteurs de liaison avant de la cellule suivante, toutes les cellules étant ainsi connectées électriquement en série. En pratique, un conducteur de liaison arrière d'une cellule et le conducteur de liaison avant associé de la cellule voisine peuvent être constitués par un même conducteur d'interconnexion. Les conducteurs de liaison des cellules d'extrémité servent de connecteurs vers l'extérieur.
Un assemblage de cellules photovoltaïque sous forme matricielle peut comporter des conducteurs de liaisons transversaux reliant les cellules électriquement en parallèle. Typiquement les conducteurs de liaison transversaux, constitués par une âme en cuivre et un dépôt superficiel d'un alliage étain-plomb, sont soudés avec un alliage étain-plomb sur des zones de connexion de la cellule. Les conducteurs de liaison peuvent également être réalisés par dépôt d'une pâte d'argent sur une pâque de support du module selon le motif désiré, puis cuisson à haute température.
Dans le document DE-A-4128766, les conducteurs de liaison avant et arrière sont formés sur la face interne des substrats de verre avant et arrière en regard de l'emplacement de chacune des cellules. Les conducteurs de liaison sont ensuite soudés sur les cellules et sur des éléments d'interconnexion destinés à connecter les cellules en série. L'espace restant entre les substrats de verre est ensuite rempli par une résine organique.
Par ailleurs, dans certaines cellules connues (brevet US6384317), les pôles positif et négatif de la cellule sont ramenés sur une des faces de celle-ci, en particulier sur sa face arrière.
La soudure des conducteurs de liaison et l'assemblage des cellules constitue un handicap car ce sont des opérations longues et coûteuses pouvant casser les cellules et entraîner un coût de production élevé.
Objet de l'invention
L'invention a pour but de remédier à ces inconvénients et, en particulier, de réaliser un module présentant une bonne étanchéité à long terme et de simplifier le procédé de fabrication d'un module photovoltaïque, de manière à ce que sa fabrication puisse, de préférence, être réalisée à la température ambiante, tout en diminuant les coûts de fabrication.
Selon l'invention, ce but est atteint par les revendications annexées et, en particulier, par le fait que le joint de scellement est un joint organique élastique.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
Les figures 1 et 2 illustrent les étapes d'assemblage d'un mode de réalisation particulier d'un procédé de fabrication d'un module photovoltaïque selon l'invention.
Les figures 3 et 4 illustrent, en coupe selon l'axe A-A, un mode de réalisation particulier de l'étape d'aspiration d'un procédé de fabrication d'un module photovoltaïque selon la figure 2. Les figures 5 et 6 représentent deux modes de réalisation particuliers d'un module photovoltaïque selon l'invention.
Les figures 7 et 8 illustrent deux modes de réalisation particuliers d'un procédé de réalisation d'un module photovoltaïque selon l'invention.
Les figures 9 et 10 représentent un mode de réalisation particulier d'un module photovoltaïque selon l'invention respectivement en coupe selon l'axe B-B et en vue de dessous.
Les figures 11 et 12 représentent divers modes de réalisation particuliers de conducteurs d'interconnexion d'un module photovoltaïque selon l'invention.
Description de modes particuliers de réalisation
La figure 1 représente l'assemblage de cellules photovoitaïques 1 disposées côte à côte entre des plaques avant 2 et arrière 3 et d'un joint de scellement organique 4. Pour l'assemblage, les plaques 2 et 3 et les cellules photovoitaïques sont maintenues parallèlement. Afin de maintenir les cellules photovoitaïques 1 pendant l'assemblage, celles-ci peuvent être pré-fixées, ainsi que les conducteurs correspondants d'interconnexion électrique, avant assemblage des plaques 2 et 3, sur une des plaques, par exemple sur la plaque arrière 3. Elles peuvent, par exemple être pré-collées par l'intermédiaire d'une colle organique sans solvant, par exemple par un dérivé de la famille des polyvinyles. La colle peut être constituée par le même matériau que le joint organique 4, par exemple par un dérivé du poly-butylène. Puis, le joint organique 4 peut être déposé sur une des plaques 2 et 3, par exemple sur la plaque avant 2, à la périphérie de l'ensemble des cellules photovoitaïques 1. Ensuite, les plaques avant 2 et arrière 3 sont scellées par l'intermédiaire du joint organique 4, qui peut être de nature thermoplastique, par exemple de la famille des poly-butylènes. Le joint organique 4 peut être réalisé en tout matériau organique susceptible d'assurer une barrière efficace à l'humidité et aux gaz, notamment à l'oxygène. Le volume intérieur étanche 5 est rempli par un gaz neutre. Le gaz neutre peut être constitué par tout gaz pur ou mixte compatible avec les matériaux des éléments disposés à l'intérieur du volume étanche, par exemple de l'argon. La concentration des gaz, notamment de l'argon, peut être déterminée par analyse spectrale, ce qui permet de contrôler l'atmosphère et la composition de gaz à l'intérieur du volume intérieur étanche (5).
Au cours de l'assemblage, comme représenté à la figure 2, l'ensemble est, de préférence, comprimé en appliquant une pression P1 sur les plaques 2 et 3. Ainsi, le joint organique 4 délimite un volume intérieur étanche 5 à l'intérieur duquel sont disposées toutes les cellules photovoitaïques 1. Le matériau du joint organique 4 est, de préférence, de la famille des poly-butylènes, sans solvant, par exemple du poly-iso-butylène. Après sa mise en place et compression, le joint en poly-butylène reste flexible et sa couleur, initialement noir mat, se change en noir brillant, à l'interface avec les plaques 2 et 3, ce qui permet éventuellement de vérifier l'étanchéite. Les caractéristiques mécaniques du joint restent inchangées, bien que le joint conserve une certaine élasticité. L'étape de compression du module permet ainsi de contrôler l'épaisseur du module. Selon l'invention, la dépression est formée par aspiration afin d'assurer une pression de contact suffisante pour permettre la conduction électrique nécessaire au bon fonctionnement du module sans soudure des contacts d'interconnexion entre cellules. Dans un premier mode de réalisation particulier du procédé de fabrication, représenté aux figures 3 et 4, l'aspiration est réalisée après scellement du module. L'aspiration permet de créer une dépression dans le volume intérieur étanche 5, allant jusqu'à 0,5 bar. L'aspiration (schématisé par des flèches en pointillé) est, par exemple, réalisée par l'intermédiaire d'un outil de perforation, par exemple par l'intermédiaire d'une seringue 6 traversant le joint organique 4 et connectée à un dispositif d'aspiration externe (non- représenté). L'outil de perforation est dimensionné de manière à ce que, lors de son retrait, l'étanchéite ne soit pas perturbée. Sur la figure 3, la seringue 6 est introduite dans le joint organique 4 à proximité d'un coin du module. L'élasticité résiduelle du joint organique permet le rebouchage automatique du petit orifice de pénétration de la seringue lors du retrait de celle-ci. Comme représenté à la figure 4, lors du retrait de la seringue 6, l'application d'une pression P2 sur deux faces perpendiculaires 7a et 7b du joint de part et d'autre de l'orifice de pénétration de la seringue, permet de refermer cet orifice et d'assurer l'étanchéite du joint. Le procédé comporte, de préférence, avant de créer la dépression, une étape de balayage par gaz neutres, éventuellement effectuée par l'intermédiaire de deux seringues, une première seringue permettant d'aspirer et une seconde seringue permettant de fournir, simultanément, les gaz neutres.
Après la mise en œuvre du joint organique 4, le volume intérieur étanche 5 est maintenu à une pression sensiblement inférieure à la pression atmosphérique, ce qui entraîne l'application d'une force par les plaques avant 2 et arrière 3 sur les cellules photovoitaïques 1. Cette force assure un contact entre les cellules et des conducteurs de liaison, assurant les liaisons électriques entre les cellules, sans qu'il soit nécessaire de disposer de soudure entre les cellules et les conducteurs de liaison. Le matériau constituant les conducteurs de liaison peut être à base de cuivre, un alliage de cuivre ou tout autre matériau métallique à haute conductivité qui assure un bon contact avec les cellules photovoitaïques 1 sous l'action de la force de dépression.
L'étanchéite du joint organique 4 est obtenue après compression des plaques avant et arrière, avec le joint organique présent à la périphérie de l'ensemble du module. L'épaisseur du joint, déterminée par la quantité de matériau organique déposé et par la force de compression lors du scellement, reste ensuite constante. Le procédé étant réalisé à température ambiante, il est compatible avec toutes les cellules photovoitaïques. .
Le joint organique 4, notamment lorsqu'il s'agit de poly-butylène, garde une certaine élasticité après mise en œuvre. Comme représenté à la figure 5, un système renforçant 8 peut éventuellement être disposé autour du joint de scellement 4, pour améliorer la solidité du module.
Les plaques avant 2 et arrière 3 peuvent toutes deux être des plaques en verre, par exemple en verre sodo-calcique de 1 ,6 à 6mm d'épaisseur, une valeur typique étant de 3 à 4mm pour la plaque avant 2 et de 2 à 4mm pour la plaque arrière 3. Le verre est avantageusement un verre clair ou extra blanc, c'est-à- dire contenant peu de fer, car la transmission optique d'un tel verre est très bonne. Le verre peut également avoir subi une trempe thermique afin d'augmenter sa résistance mécanique. Cependant, la plaque avant 2 du module photovoltaïque est, de préférence, en verre, tandis que la plaque arrière 3 est constituée par une feuille rigide, isolante au moins en surface, en matériau plastique ou en métal, par exemple en aluminium ou en acier inoxydable traité en surface pour ne pas être conducteur en surface. Une telle feuille permet de protéger les cellules photovoitaïques tout en réduisant nettement (jusqu'à 2 fois) le poids.
Le procédé peut, de plus, comporter une étape d'attaque chimique, basique par exemple, de la plaque de verre avant, réalisée avant assemblage du module, de manière à rendre rugueuse la face interne 9 de la plaque de verre avant, c'est- à-dire la face orientée vers les cellules photovoitaïques 1 , comme représenté à la figure 5. Ainsi, le rayonnement réfléchi par les cellules photovoitaïques 1 est, en partie, récupéré par des réflexions multiples sur les différentes zones de la surface de la plaque avant 2. Le traitement peut être réalisé par une attaque anisotrope du verre, la face externe de la plaque avant 2 étant protégée, de manière à donner une texture à la face interne 9 de la plaque avant 2. Cette technique permet d'obtenir une amélioration du rendement du module photovoltaïque. On peut également réaliser cette texturation par trempage du verre, après protection de la face externe du verre, par exemple, par une attaque chimique.
Le module photovoltaïque représenté à la figure 6 comporte, de plus, entre les cellules photovoitaïques 1 et la plaque arrière 3 et/ou entre les cellules photovoitaïques 1 , une substance 10 destinée à absorber le rayonnement infrarouge et ultraviolet et à émettre un rayonnement dans une bande spectrale visible correspondant sensiblement au maximum de la bande d'absorption des cellules photovoitaïques. La substance 10 comporte, par exemple, du poly- méthacrylate de méthyle (PMMA) et/ou un sel métallique et ou un pigment constitué par un composé contenant principalement des oxydes mixtes de terres rares à base de lanthane, d'erbium, de terbium, de néodyme et de praséodyme, de métaux alcalins ou de métaux alcanino-terreux. Ces oxydes transforment le rayonnement ultraviolet en rayonnement visible ayant une longueur d'onde comprise entre 550 nm et 650 nm. On peut ainsi augmenter le rendement du module photovoltaïque. L'absorption du rayonnement infrarouge permet d'abaisser la température de fonctionnement des cellules photovoitaïques.
Dans un deuxième mode de réalisation particulier du procédé de fabrication, représenté à la figure 7, le procédé comporte successivement l'assemblage et le scellement partiel du module, de manière à laisser deux ouvertures 13a et 13b dans le joint de scellement 4, et un balayage par gaz neutres, schématisé par des flèches 14 en pointillé, du volume intérieur par l'intermédiaire des deux ouvertures 13a et 13b. La dépression est ensuite établie par aspiration par l'intermédiaire des deux ouvertures 13a et 13b. Après l'aspiration, les deux ouvertures 13a et 13b sont bouchées sans détériorer la dépression. Il est également possible de boucher l'une des ouvertures 13 après balayage et d'effectuer l'aspiration par l'intermédiaire de l'autre ouvertures 13, qui est ensuite bouchée.
Dans un troisième mode de réalisation particulier du procédé de fabrication, représenté à la figure 8, le procédé comporte successivement l'assemblage du module et, dans une enceinte étanche 17, un balayage par gaz neutres et l'établissement de la dépression par aspiration. Le scellement des plaques avant 2 et arrière 3 est ensuite effectué par compression 18 du joint de scellement 4, les plaques avant 2 et arrière 3 étant disposées entre deux pièces préformées 19 et 20 permettant également d'établir l'enceinte étanche 17.
Le module selon l'invention peut être de grandes dimensions, le verre ayant une épaisseur correspondante, sans qu'il soit nécessaire d'y ajouter un cadre.
L'invention s'applique à tout type de modules photovoitaïques, y compris les modules comportant des cellules photovoitaïques 1 ayant chacune des pôles positif et négatif disposés d'un même côté de la cellule, comme décrit ci- dessous.
Le module photovoltaïque représenté à la figure 9 comporte des cellules photovoitaïques 1 disposées côte à côte entre des faces internes des plaques avant 2 et arrière 3. Seules trois cellules 1a, 1 b et 1c sont représentées sur la figure 9 pour des raisons de clarté. Des pôles positif et négatif de chaque cellule sont ramenés sur la face arrière de celle-ci.
La connexion d'un pôle positif d'une cellule et d'un pôle négatif de la cellule adjacente est réalisée très simplement au moyen d'au moins un conducteur d'interconnexion constitué par une bande métallique, par exemple par une bande de pâte d'argent, déposée, par exemple par sérigraphie, sur la face interne de la plaque arrière 3 avant mise en place des cellules. Il est également possible de réaliser l'interconnexion électrique de cellules par des conducteurs métalliques pré-fixés par une colle sur la plaque arrière du module.
Sur les figures 9 et 10, une bande métallique 1 1 a, déposée sur la plaque arrière 3, est positionnée sur une zone reliant les emplacements des deux cellules adjacentes 1 a et 1 b, de façon à venir en contact sur la face arrière des cellules
1 a et 1 b, respectivement avec le pôle positif de la cellule 1 a et avec le pôle négatif de la cellule 1 b. Sur la figure 10, la zone présente la forme d'une marche d'escalier. Une bande de pâte d'argent 1 1 b, connectant le pôle positif de la cellule 1 b- au pôle négatif de la cellule 1c, est disposée de manière analogue sur la plaque arrière 3. Un réseau de conducteurs d'interconnexion (1 1) est ainsi formé sur la plaque arrière 3, avant mise en place des cellules. Lorsque la face arrière n'est pas active optiquement, il n'y a pas de contrainte sur la transmission optique de la plaque arrière 3 et le motif du réseau de bandes de pâte d'argent 1 1 est choisi de manière à ce que la conduction soit maximale. Selon une première variante de réalisation, la largeur des bandes de pâte d'argent 1 1 est élevée, chaque bande de pâte d'argent 11 pouvant, par exemple, avoir une largeur comprise entre 3mm et 10 mm, plus typiquement comprise entre 3mm et 5 mm.
Lorsque les pôles positif et négatif des cellules sont disposés respectivement sur la face avant et sur la face arrière, les interconnexions peuvent également être préparées par sérigraphie.
Le joint 4 est déposé sur l'une des plaques ou sur les deux plaques 2 et 3, selon un chemin décrit ci-dessous, c'est-à-dire le long des quatre côtés.
Dans le mode de réalisation particulier de la figure 10, le joint de scellement organique 4 est localisé à la périphérie de la surface commune aux deux plaques avant et arrière 2 et 3. Il est ainsi disposé sur la périphérie de la plaque arrière 3 sauf sur le côté gauche pour la plaque arrière 3, afin de permettre l'accès depuis l'extérieur à des conducteurs 12 de connexion avec l'extérieur. Par exemple, un conducteur 12 de connexion vers l'extérieur des cellules d'extrémité (1 a et 1c) peut faire saillie vers l'extérieur au-delà du joint 4.
Le joint 4 peut ensuite être disposé, comme décrit ci-dessus, entre les plaques avant 2 et arrière 3, à la périphérie du module, de manière à délimiter un volume intérieur étanche à l'intérieur duquel sont disposées toutes les cellules 1.
Le joint de scellement 4 a une épaisseur de plusieurs centaines de microns, qui dépend surtout de l'épaisseur des cellules 1 , à laquelle s'ajoute l'épaisseur des bandes métalliques 11 constituant des conducteurs d'interconnexion, formées sur la face avant de la plaque arrière 3, connectant en série les cellules 1 en reliant un pôle positif d'une cellule 1 a à un pôle négatif de la cellule 1 b adjacente.
Sur la figure 11 , un conducteur d'interconnexion 15 relie une face avant d'une première cellule 1 a et une face arrière d'une seconde cellule adjacente 1 b. Le conducteur d'interconnexion 15 et constitué par un matériau rigide, par exemple par un alliage de cuivre et de magnésium ou par un cuivre durci, conservant toute sa conductivité électrique. Une première extrémité ondulée 16a est disposée entre la face avant de la première cellule 1 a et la face interne de la plaque avant 2. Une seconde extrémité ondulée 16b est disposée entre la face arrière de la seconde cellule 1b et la face interne de la plaque arrière 3. Dans le mode de réalisation particulier représenté à la figure 12, la partie intermédiaire du conducteur d'interconnexion, disposée entre les cellules adjacentes 1 a et 1 b, n'est pas ondulée. Dans une variante, l'une des extrémités 16 peut être réalisée sans ondulation.
De manière analogue, un conducteur d'interconnexion 15 ondulé peut être utilisé pour relier les pôles positif et négatif de deux cellules adjacentes mono face, c'est-à-dire ayant chacune des pôles positif et négatif disposés d'un même côté de la cellule. Cette ondulation permet d'améliorer, par l'intermédiaire d'un effet ressort, le contact entre la cellule 1 et le conducteur d'interconnexion 15.
Des conducteurs d'interconnexion 15, constitués par un matériau rigide, reliant les cellules photovoitaïques 1 entre-elles peuvent avoir une forme profilée quelconque, par exemple une section sous forme d'un U, d'un W ou d'un V, comme représenté à la figure 12, de manière à obtenir un effet de ressort entre les cellules photovoitaïques 1 et la plaque 2 ou 3 correspondante. L'effet de ressort permet de compenser des variations d'épaisseur des cellules et/ou des plaques avant et arrière et des variations dues à la dilatation thermique des éléments constitutifs du module et, ainsi, de limiter le risque de casse des cellules en assurant un contact électrique constant entre les cellules 1 et les conducteurs d'interconnexion 15. Les conducteurs d'interconnexion 15 peuvent également avoir une forme d'hélice.
Le procédé selon l'invention peut être appliqué à la réalisation de modules photovoitaïques, puis de générateurs solaires, à partir de cellules photovoitaïques carrées, rectangulaires ou rondes et dont les dimensions caractéristiques peuvent aller de quelques centimètres à plusieurs dizaines de centimètres. Les cellules sont de préférence des cellules carrées dont le côté est compris entre 8cm et 30cm.
L'invention n'est pas limitée aux modes particuliers de réalisation décrits et représentés ci-dessus. En particulier, les bandes de pâte d'argent peuvent être déposées sur la face interne de la plaque avant. L'invention s'applique à tout type de cellules photovoitaïques, non seulement à des cellules photovoitaïques au silicium, monocristallin ou polycristailin, mais également à des cellules en arséniure de gallium, à des cellules formées par des rubans de silicium, à des cellules à billes de silicium formées par un réseau de billes de silicium insérées dans des feuilles conductrices, ou à des cellules photovoitaïques formées par dépôt et gravure d'un couche mince de silicium, de cuivre/indium/sélénium ou de cadmium/tellure sur une plaque en verre ou de céramique.

Claims

Revendications
1. Module photovoltaïque comportant un assemblage de cellules photovoitaïques (1), disposées côte à côte entre des plaques avant (2) et arrière (3), et un joint de scellement (4) disposé entre les plaques (2 et 3) et délimitant un volume intérieur étanche (5), maintenu à une pression inférieure à la pression atmosphérique, dans lequel sont disposées les cellules photovoitaïques (1), module caractérisé en ce que le joint de scellement (4) est un joint organique élastique.
2. Module selon la revendication 1 , caractérisé en ce que le joint de scellement (4) est de nature thermoplastique.
3. Module selon la revendication 2, caractérisé en ce que le joint de, scellement (4) fait partie de la famille des poly-butylènes.
4. Module selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comporte un système renforçant (8) disposé autour du joint de scellement (4).
5. Module selon l'une quelconque des revendication 1 à 4, caractérisé en ce que, la plaque avant (2) étant en verre, la plaque arrière (3) est constituée par un verre ou une feuille en matériau plastique ou en métal traité en surface.
6. Module selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le module comporte une substance (10) absorbant le rayonnement infrarouge et ultraviolet et émettant un rayonnement dans une bande spectrale visible correspondant sensiblement au maximum de la bande d'absorption des cellules photovoltaïquës.(1).
7. Module selon la revendication 6, caractérisé en ce que la substance (10) comporte au moins un matériau choisi parmi le poly-méthacrylale de méthyle (PMMA), les sels métalliques, les composés contenant principalement des oxydes mixtes de terres rares, de métaux alcalins ou de métaux alcanino- terreux.
8. Module selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comporte des conducteurs d'interconnexion (15), constitués par un matériau rigide, reliant les cellules photovoitaïques (1) entre-elles et ayant une forme profilée, de manière à obtenir un effet de ressort entre les cellules photovoitaïques (1) et la plaque (2, 3) correspondante.
9. Module selon la revendication 8, caractérisé en ce que, un conducteur d'interconnexion (15) reliant une face avant d'une première cellule (1 a) et une face arrière d'une seconde cellule adjacente (1 b), une première extrémité (16a) du conducteur d'interconnexion (15) est disposée entre la face avant de la première cellule (1a) et la face interne de la plaque avant (2) et une seconde extrémité (16b) du conducteur d'interconnexion (15) est disposée entre la face arrière de la seconde cellule (1b) et la face interne de la plaque arrière (3), au moins une des extrémités étant ondulée.
10. Procédé de fabrication d'un module photovoltaïque selon l'une quelconque des revendications 1 à 9, procédé caractérisé en ce qu'il comporte le dépôt du joint de scellement (4) organique et en ce que la dépression est formée par aspiration.
11. Procédé selon la revendication 10, caractérisé en ce qu'il comporte successivement l'assemblage du module et, dans une enceinte étanche, un balayage par gaz neutres, l'établissement de la dépression par aspiration et le scellement des plaques avant (2) et arrière (3) par compression du joint de scellement (4).
12. Procédé selon la revendication 10, caractérisé en ce qu'il comporte successivement l'assemblage et le scellement partiel du module, de manière à laisser deux ouvertures dans le joint de scellement (4), un balayage par gaz neutres du volume intérieur par l'intermédiaire des deux ouvertures, l'établissement de la dépression par aspiration et le bouchage des ouvertures.
13. Procédé selon la revendication 10, caractérisé en ce que la dépression à l'intérieur du volume intérieur étanche (5) est formée, après scellement du module, par aspiration par l'intermédiaire d'un outil de perforation traversant le joint organique.
14. Procédé selon l'une quelconque des revendications 10 à 13, caractérisé en ce qu'il comporte le contrôle de l'atmosphère et de la composition de gaz à l'intérieur du volume intérieur étanche (5).
15. Procédé selon l'une quelconque des revendications 10 à 14, caractérisé en ce qu'il comporte une étape de compression du module, destinée à contrôler l'épaisseur du module.
16. Procédé selon l'une quelconque des revendications 10 à 15, caractérisé en ce que, avant assemblage des plaques (2 et 3), les cellules photovoitaïques (1) et des conducteurs d'interconnexion (15) reliant les cellules photovoitaïques (1) entre-elles sont fixés sur une des plaques (3).
17. Procédé selon la revendication 16, caractérisé en ce que, avant assemblage, les cellules photovoitaïques (1) et les conducteurs d'interconnexion (15) sont fixés sur une des plaques (3) par l'intermédiaire d'une colle organique sans solvant.
18. Procédé selon la revendication 17, caractérisé en ce que la colle organique sans solvant comporte un dérivé des familles des polyvinyles et des poly- butylènes.
19. Procédé selon l'une quelconque des revendication 10 à 18, caractérisé en ce que, la plaque avant (2) étant en verre, le procédé comporte, avant assemblage, une étape de traitement chimique de la plaque de verre avant (2), de manière à rendre rugueuse une face interne de la plaque de verre avant (2).
20. Procédé selon l'une quelconque des revendication 10 à 19, caractérisé en ce que, les cellules photovoitaïques (1) ayant chacune des pôles positif et négatif disposés d'un même côté de la cellule, le procédé comporte, avant la mise en place des cellules (1), le dépôt, sur une face interne d'une seule des plaques (3), d'au moins une bande métallique (11), reliant un pôle positif d'une cellule (1 a) à un pôle négatif de la cellule (1 b) adjacente, de manière à connecter les cellules en série.
21. Procédé selon la revendication 20, caractérisé en ce que la bande métallique est constituée par une bande de pâte d'argent (11) disposée sur une zone reliant des emplacements de deux cellules (1 a,1 b) adjacentes.
EP04742507A 2003-04-16 2004-04-14 MODULE PHOTOVOLTAIQUE ET PROCEDE DE FABRICATION D’UN TEL MODULE Withdrawn EP1614165A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0304729A FR2853993B1 (fr) 2003-04-16 2003-04-16 Procede de realisation d'un module photovoltaique et module photovoltaique realise par ce procede
FR0313489A FR2862427B1 (fr) 2003-11-18 2003-11-18 Procede de fabrication d'un module photovoltaique et module obtenu
PCT/FR2004/000925 WO2004095586A2 (fr) 2003-04-16 2004-04-14 Module photovoltaique et procede de fabrication d’un tel module

Publications (1)

Publication Number Publication Date
EP1614165A2 true EP1614165A2 (fr) 2006-01-11

Family

ID=33312269

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04742507A Withdrawn EP1614165A2 (fr) 2003-04-16 2004-04-14 MODULE PHOTOVOLTAIQUE ET PROCEDE DE FABRICATION D’UN TEL MODULE

Country Status (6)

Country Link
US (2) US20060272699A1 (fr)
EP (1) EP1614165A2 (fr)
JP (1) JP2006523946A (fr)
AU (1) AU2004231893A1 (fr)
CA (1) CA2522405A1 (fr)
WO (1) WO2004095586A2 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070215195A1 (en) * 2006-03-18 2007-09-20 Benyamin Buller Elongated photovoltaic cells in tubular casings
DE102006031300A1 (de) * 2006-06-29 2008-01-03 Schmid Technology Systems Gmbh Verfahren zur Dotierung von Siliziummaterial für Solarzellen, entsprechend dotiertes Siliziummaterial und Solarzelle
EP1959502A1 (fr) * 2007-02-14 2008-08-20 Imphy Alloys Module photovoltaïque et modules de production d'énergie ou de lumière
WO2008141878A1 (fr) * 2007-05-24 2008-11-27 International Business Machines Corporation Procédé pour mettre en contact des modules photovoltaïques
FR2917899B1 (fr) * 2007-06-21 2010-05-28 Apollon Solar Module photovoltaique comprenant un film polymere et procede de fabrication d'un tel module
DE102008013522B4 (de) * 2008-03-07 2015-02-19 Hanwha Q.CELLS GmbH Solarmodul mit Glas-Substrat, Polymer-Versiegelungselement und im Substratrandbereich angeordneter Dichtungseinrichtung
DE102008031279A1 (de) * 2008-07-02 2010-05-27 Reis Robotics Gmbh & Co. Maschinenfabrik Anlage und Verfahren zur Herstellung eines Solarzellenmoduls
US20110315187A1 (en) * 2008-12-24 2011-12-29 Fuji Electric Co., Ltd. Photovoltaic module
DE102009009036A1 (de) 2009-02-16 2010-08-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photovoltaisches Modul und Verfahren zu dessen Herstellung
DE102009016735A1 (de) * 2009-04-09 2010-10-21 Schott Ag Photovoltaikmodule mit reduziertem Gewicht
DE102009036458A1 (de) * 2009-08-06 2011-02-10 Yamaichi Electronics Deutschland Gmbh Solarmodul und Verfahren zur Herstellung desselben
WO2011041806A2 (fr) * 2009-10-05 2011-04-14 Inova Lisec Technologiezentrum Gmbh Élément sous vide et procédé de production
FR2953993B1 (fr) * 2009-12-15 2012-06-15 Commissariat Energie Atomique Dispositif electrique et/ou electronique a element elastique de contact
DE102010007131A1 (de) * 2010-02-05 2011-08-11 Reinhausen Plasma GmbH, 93057 Solarzellenstring und Verfahren zu dessen Herstellung
DE102010010870A1 (de) * 2010-03-10 2011-09-15 Ife Eriksen Ag Solarmodul mit vorder- und rückseitiger Glasabdeckung
FR2968458B1 (fr) 2010-12-02 2013-08-16 Apollon Solar Module photovoltaïque a dépression contrôlée, utilisation d'un getter d'oxygène dans un module photovoltaïque et procédé de fabrication d'un tel module
ITMI20111987A1 (it) 2011-11-03 2013-05-04 Getters Spa Getters compositi perfezionati
KR101758197B1 (ko) 2012-02-27 2017-07-14 주성엔지니어링(주) 태양전지 및 그 제조방법
DE202012100789U1 (de) 2012-03-06 2013-03-08 Sitec Solar Gmbh Photovoltaisches Modul
EP2831924A1 (fr) * 2012-03-30 2015-02-04 Saint-Gobain Glass France Module photovoltaïque doté d'un dispositif refroidisseur
FR2998668B1 (fr) * 2012-11-23 2015-04-10 Apollon Solar Methode et installation de controle de la pression interne d'un module photovoltaique
CN103383972A (zh) * 2013-07-17 2013-11-06 上海太阳能科技有限公司 一种能够快速装卸的模块化轻质化光伏组件
CN104600158B (zh) * 2015-01-13 2017-08-15 福建铂阳精工设备有限公司 一种晶硅电池组件的互联方法
FR3109019A1 (fr) 2020-04-06 2021-10-08 Elixens Module photovoltaïque et procede de fabrication d’un tel module
US20240162848A1 (en) * 2022-11-16 2024-05-16 LightCell Inc. Apparatus and methods for efficient conversion of heat to electricity via emission of characteristic radiation

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2011557A (en) * 1933-12-07 1935-08-20 Frederick O Anderegg Window structure
FR2469806A1 (fr) * 1979-11-13 1981-05-22 Stone Platt Crawley Ltd Agencement de dispositifs photovoltaiques
US4301322A (en) * 1980-04-03 1981-11-17 Exxon Research & Engineering Co. Solar cell with corrugated bus
DE3263876D1 (en) * 1981-06-29 1985-07-04 Ver Glaswerke Gmbh Method of producing an insulated glazing unit with peripheral edge protection, device for carrying out the method, and glazing unit produced accordingly
JPS5853168U (ja) * 1981-10-07 1983-04-11 株式会社ほくさん 太陽電池モジユ−ル
GB2188924B (en) * 1986-04-08 1990-05-09 Glaverbel Matted glass, process of producing matted glass, photo-voltaic cell incorporating a glass sheet, and process of manufacturing such a cell
US4928448A (en) * 1988-05-02 1990-05-29 Enhanced Insulations, Inc. Thermally insulating window and method of forming
US5022930A (en) * 1989-06-20 1991-06-11 Photon Energy, Inc. Thin film photovoltaic panel and method
US5816238A (en) * 1994-11-28 1998-10-06 Minnesota Mining And Manufacturing Company Durable fluorescent solar collectors
JP3115790B2 (ja) * 1995-05-10 2000-12-11 シャープ株式会社 太陽電池の電極製造方法
ATA90695A (de) * 1995-05-30 1998-08-15 Lisec Peter Isolierglasscheibe mit fotovoltaischem element
EP0881694A1 (fr) * 1997-05-30 1998-12-02 Interuniversitair Micro-Elektronica Centrum Vzw Cellule solaire et méthode de fabrication
JPH1131834A (ja) * 1997-07-10 1999-02-02 Showa Shell Sekiyu Kk ガラスサンドイッチ型太陽電池パネル
US5951786A (en) * 1997-12-19 1999-09-14 Sandia Corporation Laminated photovoltaic modules using back-contact solar cells
US5972732A (en) * 1997-12-19 1999-10-26 Sandia Corporation Method of monolithic module assembly
AU756285B2 (en) * 1999-02-01 2003-01-09 Kurth Glas + Spiegel Ag Solar module
US6383580B1 (en) * 1999-11-12 2002-05-07 Guardian Industries Corp. Vacuum IG window unit with edge mounted pump-out tube
JP2001298208A (ja) * 2000-02-09 2001-10-26 Kanegafuchi Chem Ind Co Ltd 太陽光発電システム
JP2002151710A (ja) * 2000-11-15 2002-05-24 Kanegafuchi Chem Ind Co Ltd 薄膜太陽電池の裏面封止方法
JP4076742B2 (ja) * 2001-07-13 2008-04-16 シャープ株式会社 太陽電池モジュール
JP2003124491A (ja) * 2001-10-15 2003-04-25 Sharp Corp 薄膜太陽電池モジュール
US20030079772A1 (en) * 2001-10-23 2003-05-01 Gittings Bruce E. Sealed photovoltaic modules
FR2831714B1 (fr) * 2001-10-30 2004-06-18 Dgtec Assemblage de cellules photovoltaiques
WO2003038911A1 (fr) * 2001-10-30 2003-05-08 Solar, Appolon Assemblage de cellules photovoltaiques et procede de fabrication d'un tel assemblage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004095586A2 *

Also Published As

Publication number Publication date
US20080257401A1 (en) 2008-10-23
JP2006523946A (ja) 2006-10-19
AU2004231893A1 (en) 2004-11-04
CA2522405A1 (fr) 2004-11-04
US20060272699A1 (en) 2006-12-07
WO2004095586A3 (fr) 2005-10-06
WO2004095586A2 (fr) 2004-11-04

Similar Documents

Publication Publication Date Title
EP1614165A2 (fr) MODULE PHOTOVOLTAIQUE ET PROCEDE DE FABRICATION D’UN TEL MODULE
EP1550000B1 (fr) Procede de suppression des defauts ponctuels inclus au sein d'un dispositif electrochimique
EP2419787B1 (fr) Dispositif électrochrome à transparence contrôlée
EP1776612B1 (fr) Systeme electrochimique comportant au moins une zone de margeage partiel
FR2831714A1 (fr) Assemblage de cellules photovoltaiques
EP2212924B1 (fr) Perfectionnements apportés à un boîtier de connexion pour éléments capables de collecter de la lumière
FR2962818A1 (fr) Dispositif electrochimique a proprietes de transmission optique et/ou energetique electrocommandables.
EP2419788A1 (fr) Dispositif electrochrome a transparence controlee
EP2212258A2 (fr) Substrat verrier revetu de couches a resistivite amelioree
WO2006045968A1 (fr) Structure multicouche monolithique pour la connexion de cellules a semi-conducteur
EP2926388B1 (fr) Dispositif organique électronique ou optoélectronique laminé
EP2212925B1 (fr) Perfectionnements apportés à des joints pour des éléments capables de collecter de la lumière
EP2361232A1 (fr) Substrat verrier avec electrode notamment destine a un dispositif a diode electroluminescente organique
EP2981156A1 (fr) Panneau photovoltaïque et un procédé de fabrication d'un tel panneau
EP1440478A1 (fr) Assemblage de cellules photovoltaiques et procede de fabrication d un tel assemblage
FR2853993A1 (fr) Procede de realisation d'un module photovoltaique et module photovoltaique realise par ce procede
EP2721659A1 (fr) Delo encapsulée en colle pleine plaque avec un capot troué
FR2939788A1 (fr) Substrat a fonction verriere pour module photovoltaique
FR2850489A1 (fr) Procede de realisation d'un module photovoltaique et module photovoltaique realise par ce procede
FR2939966A1 (fr) Structure d'un module photovoltaique
FR2862427A1 (fr) Procede de fabrication d'un module photovoltaique et module obtenu
FR2838239A1 (fr) Structure et realisation d'un assemblage de cellules photovoltaiques
FR2977040A1 (fr) Procede de fabrication d'un dispositif electrochimique a proprietes de transmission optique et/ou energetique electrocommandables

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050912

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: BAMBERG, KLAUS

Inventor name: EINHAUS, ROLAND

Inventor name: LAUVRAY, HUBERT

Inventor name: BARET, GUY

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20140612