EP1611333B1 - Procede de reglage de vitesse - Google Patents

Procede de reglage de vitesse Download PDF

Info

Publication number
EP1611333B1
EP1611333B1 EP04725901A EP04725901A EP1611333B1 EP 1611333 B1 EP1611333 B1 EP 1611333B1 EP 04725901 A EP04725901 A EP 04725901A EP 04725901 A EP04725901 A EP 04725901A EP 1611333 B1 EP1611333 B1 EP 1611333B1
Authority
EP
European Patent Office
Prior art keywords
engine speed
ramp
time
ist
time period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04725901A
Other languages
German (de)
English (en)
Other versions
EP1611333A1 (fr
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP1611333A1 publication Critical patent/EP1611333A1/fr
Application granted granted Critical
Publication of EP1611333B1 publication Critical patent/EP1611333B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness

Definitions

  • the invention relates to a method for speed control of an internal combustion engine-generator unit according to the preamble of claim 1.
  • An intended as a generator drive internal combustion engine is usually supplied by the manufacturer to the end customer without a clutch and generator.
  • the coupling and the generator are only installed at the end customer.
  • the internal combustion engine is operated in a speed control loop.
  • the speed of the crankshaft is detected as a control variable and compared with a target speed, the reference variable.
  • the resulting control deviation is converted via a speed controller into a manipulated variable for the internal combustion engine, for example, a desired injection quantity.
  • the electronic control unit Since the manufacturer before delivery of the internal combustion engine often no reliable data on the coupling properties and the generator inertia, the electronic control unit with a robust controller parameter set, the so-called standard parameter set delivered.
  • a problem with a speed control circuit is that torsional vibrations superimposed on the control variable can be amplified by the speed controller. Particularly critical are the low-frequency vibrations caused by the internal combustion engine, for example the torsional vibrations of the 0.5th and the 1st order. When starting the engine-generator unit, the amplitudes of the torsional vibrations by the gain of the speed controller can become so large that a limit speed is exceeded and the engine is turned off.
  • the problem of instability is countered by a speed filter in the feedback loop of the speed control loop.
  • the controller parameters of the speed controller are changed, ie the proportional, integral or differential component.
  • Such a method for switching the filter and a method for adapting the controller parameters is shown, for example, in the unpublished DE 102 21 681.9. The problem is that these measures only become effective if an unstable behavior of the internal combustion engine-generator unit already exists and is detected.
  • a speed run-up ramp or its slope is stored for the starting process.
  • this parameter is set to a large value, eg. B. 550 revolutions / second.
  • a large deviation between the target ramp-up ramp and the actual ramp-up can result.
  • This control deviation of the actual speed to the setpoint speed causes a significant increase in the desired injection quantity.
  • the significant increase in the target injection quantity favors black smoke formation.
  • the significant increase in the desired injection quantity additionally causes a non-optimal determination of the start of injection and the desired rail pressure, since both variables are calculated from the desired injection quantity. For the manufacturer of the internal combustion engine, this means that a service technician on site must adapt the run-up ramp to the conditions. This is time consuming and expensive.
  • the invention is based on the object to improve the starting process of an internal combustion engine-generator unit.
  • the invention provides that a time period is determined which requires the actual rotational speed for passing through a rotational speed range.
  • the speed range is below the starting speed, which in practice z. B. is 600 revolutions.
  • the speed range is defined by a limit and the start speed.
  • the limit value in turn is slightly higher in practice than the starter speed selected, z. B. 300 revolutions.
  • the ramp-up ramp and the controller parameters of the speed controller are then selected.
  • the characterizing parameters are thus determined predictively. For this purpose, corresponding characteristics are provided.
  • each engine start is effected with the optimum ramp-up ramp.
  • Altered environmental conditions are taken into account, z. B. the cooling water temperature.
  • the invention ensures a stable engine operation already during startup. Instabilities are effectively prevented for the entire operation.
  • an error monitoring is provided.
  • the time span is compared with a limit value. Too long a period indicates that z. B. too low a fuel pressure in the injection system is present.
  • a follow-up reaction it is provided that a diagnosis entry takes place when the error is set and an emergency stop is activated.
  • FIG. 1 shows a system diagram of the entire system of an internal combustion engine-generator unit 1.
  • An internal combustion engine 2 drives a generator 4 via a shaft with a transmission member 3.
  • the transmission member 3 may include a clutch.
  • the fuel is injected via a common rail system. This includes the following components: Pumps 7 with suction throttle to promote the Fuel from a fuel tank 6, a rail 8 for storing the fuel and injectors 10 for injecting the fuel from the rail 8 into the combustion chambers of the internal combustion engine. 2
  • the operation of the internal combustion engine 2 is controlled by an electronic control unit (EDC) 5.
  • the electronic control unit 5 includes the usual components of a microcomputer system, such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM). In the memory modules relevant for the operation of the internal combustion engine 2 operating data in maps / curves are applied. About this calculates the electronic control unit 5 from the input variables, the output variables.
  • the following input variables are shown by way of example in FIG. 1: an actual rail pressure pCR (IST), which is measured by means of a rail pressure sensor 9, an actual rotational speed signal nM (IST) of the internal combustion engine 2, an input variable E and a signal START for start setting.
  • the start default is activated by the operator. Under the input E, for example, the charge air pressure of a turbocharger and the temperatures of the coolant / lubricant and the fuel are subsumed.
  • a signal ADV for controlling the pumps 7 with suction throttle and an output variable A are shown as output variables of the electronic control device 5.
  • the output variable A is representative of the further control signals for controlling and regulating the internal combustion engine 2, for example the start of injection SB and the injection duration SD.
  • FIG. 2 is a block diagram for calculating the start of injection SB, the setpoint pressure pCR (SW) and the Injection duration SD shown.
  • a rotational speed controller 11 calculates a nominal injection quantity QSW1. This is limited by a limit 12 to a maximum value.
  • the output quantity, corresponding to the desired injection quantity QSW, represents the input variable of the characteristic maps 13 to 15.
  • the injection start SB is calculated via the map 13 as a function of the desired injection quantity QSW and the actual rotational speed nM (IST).
  • the target rail pressure pCR (SW) is calculated in dependence on the target injection quantity QSW and the actual rotational speed nM (IST).
  • the injection duration SD is determined in dependence on the target injection quantity QSW and the actual rail pressure pCR (IST).
  • a long-lasting large control deviation leads to a significant increase in the nominal injection quantity QSW1.
  • This significant increase is limited by the limit 12 to a maximum value.
  • This maximum value of the desired injection quantity QSW causes a non-optimal injection start SB and a non-optimal target rail pressure pCR (SW), the target injection pressure, to be calculated.
  • the desired injection quantity QSW is representative of a power-determining signal QP.
  • a power-determining signal QP can also be understood to mean a desired control rod travel or a desired torque.
  • FIG. 3 shows the starting process for an internal combustion engine-generator unit according to the prior art.
  • the abscissa shows the time.
  • the rotational speed nM of the internal combustion engine is plotted.
  • nM As a solid line nM (IST1) is the starting process with a generator that is a small Moment of inertia, shown.
  • nM As a solid line nM (IST2), the starting process for the same internal combustion engine with a generator having a large moment of inertia is shown.
  • the dashed line shows the setpoint speed nM (SW), ie the reference variable of the speed control loop.
  • the straight line with the points AB corresponds to the ramp-up ramp HLR1.
  • the straight line between the points C and D corresponds to the ramp-up ramp HLR2.
  • the slope Phi of both ramp-up ramps is identical, e.g. B. 550 revolutions / second.
  • the starter After pressing the start button, the starter spurts and the engine starts to rotate. This initially increases up to a starter speed nAN, z. B. 120 turns.
  • fuel is injected into the combustion chambers.
  • a first time t1 is set when the actual speed nM (IST1) exceeds a threshold value GW, e.g. B. 300 revolutions.
  • the starter is deactivated so that it spits out. Due to the injection, the actual rotational speed nM (IST1) increases until it exceeds the starting rotational speed nST.
  • a second time t2 is set.
  • the excessively small slope of the ramp-up ramp HLR1 causes the actual rotational speed nM (IST1) in the case of a generator with a very low moment of inertia to overshoot significantly above the ramp-up ramp, then settles on the ramp-up ramp HLR1 and ramps up to the nominal rotational speed nNN.
  • the rated speed nNN is reached at point B, time t4.
  • the actual speed nM (IST1) oscillates beyond the setpoint speed nM (SW).
  • the actual speed runs according to the solid line nM (IST2).
  • the ramp-up ramp HLR2 starts to run, time t3. Due to the large moment of inertia, however, the actual rotational speed nM (IST2) runs below the ramp-up ramp HLR 2. This leads to a sharp increase in the injection quantity and thus to black smoke formation. In order to avoid black smoke formation, it is therefore necessary in this case to use a run-up ramp with a smaller pitch.
  • FIG. 4 shows a starting process for an internal combustion engine-generator unit according to the invention.
  • the dashed line shows the setpoint speed nM (SW).
  • SW setpoint speed
  • Their course including the ramp-up ramps between the points AB and CD is identical to the course of FIG. 3.
  • the further explanation is made in conjunction with FIG. 5.
  • the course of the actual rotational speed nM (IST1) is identical to the course of FIG. 3 until time t2. If the actual rotational speed nM (IST1) exceeds the limit value GW, the first time t1 is set. In point A, the actual speed nM (IST1) exceeds the starting speed nST. The time t2 is set. From the difference of the two times t1 / t2, a time span dt is determined. This period dt is largely determined by the moment of inertia of the generator used. Depending on the time span dt, a ramp-up ramp is determined via a characteristic curve 16 (see FIG. 5).
  • the characteristic curve 16 is designed such that a short period of time dt defines a ramp-up ramp with a large gradient Phi1.
  • the actual rotational speed nM (IST1) as a result runs along the new ramp-up ramp HLR3 with the points AE.
  • this points AB with a significantly greater gradient.
  • Characteristic curve 17 assigns a reset time TN to time span dt.
  • the characteristic curve 17 is designed in such a way that a long reset time TN is assigned to a long time span dt. Generators with a large moment of inertia require a larger reset time TN than generators with a small moment of inertia.
  • the characteristic curve 18 is used to assign a proportional coefficient kp to the measured time interval dt.
  • the characteristic curve 18 is designed in such a way that a large proportional coefficient kp is assigned to a long time span dt. Generators with a large moment of inertia can be operated on the basis of better damping with a larger proportional factor kp as generators with a small moment of inertia.
  • FIG. 6 shows a program flow chart of the invention.
  • S1 it is checked whether the actual rotational speed nM (IST) is greater than the limit value GW. If this is not the case, then S2 will go through a waiting loop. If the actual rotational speed nM (IST) has already exceeded the limit value GW, the first time t1 is set at S3. With S4 it is checked whether the actual speed nM (IST) is greater than the starting speed nST. If this is not yet the case, then S5 will go through a waiting loop. When the start speed nST is exceeded, the second time t2 is set at S6. Thereafter, at S7, the time span dt is calculated from the difference between the two times t1 / t2.
  • an error is queried by checking whether the time span dt is smaller than a limit value dtGW. If the time span dt is greater than or equal to the permissible limit value dtGW, a diagnostic entry is made at S9 and an emergency stop is triggered. If the query at S8 reveals that the time span dt lies within the permissible range, the ramp-up ramp HLR, the reset time TN and the proportional coefficient kp are determined at S10 as a function of the time span dt. This completes the program schedule.
  • the holding pattern S5 is explained in greater detail by the reference symbols S5a, S5b and S5c.
  • S5a a difference dtR is formed from the current time t to the time t1.
  • S5b it is checked whether the difference dtR is less than a limit dtGW. If this is the case, the system branches to point A.
  • the program sequence is then continued as described above with S4. If it is determined at S5b that the limit value dtGW is reached or exceeded, a diagnostic entry is made at S5c and an emergency stop is triggered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

L'invention concerne un procédé permettant de régler la vitesse d'une unité moteur à combustion-génératrice (1). Selon ce procédé, un premier moment est fixé lorsque la vitesse réelle (nM(IST)) dépasse une valeur limite et un second moment est fixé lorsque la vitesse réelle (nM(IST)) dépasse une vitesse de démarrage. Un intervalle est ensuite calculé à partir de ces deux moments, puis une rampe d'accélération et les paramètres de réglage d'un régulateur de vitesse sont sélectionnés en fonction de cet intervalle.

Claims (8)

  1. Procédé de régulation de la vitesse de rotation d'une unité (1) moteur à combustion interne-générateur pendant un processus de démarrage, selon lequel une vitesse de rotation de consigne (nM(SW)) est prescrite au moyen d'une rampe d'accélération (HLR) qui débute avec une vitesse de rotation de démarrage (nST) et se termine avec une vitesse de rotation nominale (nNN), un écart de régulation est déterminé à partir d'une comparaison consigne/réel des vitesses de rotation (nM(SW), nM(IST)), et un signal (QP) déterminant la puissance est calculé à partir de l'écart de régulation, au moyen d'un régulateur (11) de vitesse de rotation, afin de réguler la vitesse de rotation réelle (nM(IST)), caractérisé en ce qu'un premier instant (t1) est posé lorsque la vitesse de rotation réelle (nM(IST)) dépasse une valeur limite (GW) (nM(IST) > GW), un deuxième instant (t2) est posé lorsque la vitesse de rotation réelle (nM(IST)) dépasse la vitesse de rotation de démarrage (nST) (nM(IST) > nST), un intervalle de temps (dt) est calculé à partir de la différence des deux instants (t1, t2), et la rampe d'accélération (HLR) et les paramètres du régulateur (11) de vitesse de rotation sont sélectionnés en fonction de l'intervalle de temps (dt).
  2. Procédé de régulation de vitesse de rotation selon la revendication 1, caractérisé en ce que, à partir de l'intervalle de temps (dt), la rampe d'accélération (HLR) est déterminée au moyen d'une première courbe caractéristique (16) et les paramètres du régulateur au moyen d'autres courbes caractéristiques (17, 18).
  3. Procédé de régulation de vitesse de rotation selon la revendication 2, caractérisé en ce que les paramètres du régulateur correspondent à un temps de réajustement (TN) et à un coefficient proportionnel (kp).
  4. Procédé de régulation de vitesse de rotation selon la revendication 3, caractérisé en ce qu'au moyen des autres courbes caractéristiques (17, 18), on associe à un long intervalle de temps (dt), un long temps de réajustement (TN) et un grand coefficient proportionnel (kp).
  5. Procédé de régulation de vitesse de rotation selon la revendication 2, caractérisé en ce qu'on associe à un long intervalle de temps (dt) une rampe d'accélération (HLR) de faible pente (Phi).
  6. Procédé de régulation de vitesse de rotation selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on pose une erreur si l'intervalle de temps (dt) atteint ou dépasse une valeur limite (dtGW) (dt ≥ dtGW).
  7. Procédé de régulation de vitesse de rotation selon la revendication 1, caractérisé en ce qu'on détermine un intervalle de temps (dtR) allant de l'instant actuel (t) au premier instant (t1) (dtR = t - t1), et on pose une erreur si l'intervalle de temps (dtR) atteint ou dépasse une valeur limite (dtGW) (dtR ≥ dtGW).
  8. Procédé de régulation de vitesse de rotation selon la revendication 6 ou 7, caractérisé en ce que la pose de l'erreur s'accompagne de l'exécution d'une entrée de diagnostic et de l'activation d'un arrêt d'urgence.
EP04725901A 2003-04-08 2004-04-06 Procede de reglage de vitesse Expired - Fee Related EP1611333B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10315881A DE10315881B4 (de) 2003-04-08 2003-04-08 Verfahren zur Drehzahl-Regelung
PCT/EP2004/003620 WO2004090310A1 (fr) 2003-04-08 2004-04-06 Procede de reglage de vitesse

Publications (2)

Publication Number Publication Date
EP1611333A1 EP1611333A1 (fr) 2006-01-04
EP1611333B1 true EP1611333B1 (fr) 2006-09-13

Family

ID=33154105

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04725901A Expired - Fee Related EP1611333B1 (fr) 2003-04-08 2004-04-06 Procede de reglage de vitesse

Country Status (4)

Country Link
US (1) US7207305B2 (fr)
EP (1) EP1611333B1 (fr)
DE (2) DE10315881B4 (fr)
WO (1) WO2004090310A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004023993B4 (de) * 2004-05-14 2007-04-12 Mtu Friedrichshafen Gmbh Verfahren zur Drehzahl-Regelung einer Brennkraftmaschinen-Generator-Einheit
GB2416600B (en) * 2004-07-23 2008-06-04 Ford Global Tech Llc System and method for starting a vehicle
DE102004037129B4 (de) * 2004-07-30 2016-02-11 Robert Bosch Gmbh Vorrichtung und Verfahren zur Steuerung einer Brennkraftmaschine bei einem Start
DE102004037167A1 (de) * 2004-07-30 2006-03-23 Robert Bosch Gmbh Vorrichtung und Verfahren zur Steuerung einer Brennkraftmaschine
DE102005029138B3 (de) * 2005-06-23 2006-12-07 Mtu Friedrichshafen Gmbh Steuer- und Regelverfahren für eine Brennkraftmaschine mit einem Common-Railsystem
JP4192939B2 (ja) * 2005-10-21 2008-12-10 トヨタ自動車株式会社 ハイブリッド動力装置
DE102007037037B3 (de) * 2007-08-06 2009-02-12 Mtu Friedrichshafen Gmbh Verfahren zur Regelung einer Brennkraftmaschine
US8037966B2 (en) * 2008-06-25 2011-10-18 Caterpillar Inc. Roof-mounted muffler for system for generating electric power
GB2463022B (en) * 2008-08-28 2012-04-11 Gm Global Tech Operations Inc A method for correcting the cylinder unbalancing in an internal combustion engine
GB2474447B (en) 2009-10-13 2014-12-10 Mtu Friedrichshafen Gmbh Generating set preloader
JP5141673B2 (ja) 2009-12-04 2013-02-13 株式会社デンソー 内燃機関のアイドルストップ制御装置
US9404461B2 (en) * 2013-05-08 2016-08-02 Ford Global Technologies, Llc Method and system for engine starting
DE102014208932B4 (de) * 2014-05-12 2024-02-08 Rolls-Royce Solutions GmbH Verfahren zum Betreiben einer Brennkraftmaschine, Steuergerät für eine Brennkraftmaschine, Brennkraftmaschine sowie Anlage
CN105888864B (zh) * 2016-05-25 2018-11-30 海华电子企业(中国)有限公司 一种高压共轨柴油发动机自动电子调速装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3340202B2 (ja) * 1993-08-13 2002-11-05 株式会社小松製作所 ディーゼルエンジンの始動制御方法
DE19830341C1 (de) * 1998-07-07 2000-03-30 Siemens Ag Verfahren zum Betreiben einer Regelungseinrichtung und Vorrichtung zur Durchführung des Verfahrens
US6366049B1 (en) * 2000-05-10 2002-04-02 Ecostar Electric Drive Systems L.L.C. Motor starter and speed controller system
DE10122517C1 (de) * 2001-05-09 2002-06-20 Mtu Friedrichshafen Gmbh Drehzahl-Filter
DE10221681B4 (de) * 2002-05-16 2005-12-08 Mtu Friedrichshafen Gmbh Verfahren zur Regelung einer Brennkraftmaschinen-Generator-Einheit
DE10252399B4 (de) * 2002-11-12 2006-04-27 Mtu Friedrichshafen Gmbh Verfahren zur Regelung einer Brennkraftmaschinen-Generator-Einheit
US7028657B2 (en) * 2004-05-14 2006-04-18 General Motors Corporation Multi-stage compression ignition engine start

Also Published As

Publication number Publication date
DE10315881B4 (de) 2005-07-21
DE502004001492D1 (de) 2006-10-26
EP1611333A1 (fr) 2006-01-04
US7207305B2 (en) 2007-04-24
US20060278191A1 (en) 2006-12-14
DE10315881A1 (de) 2004-11-11
WO2004090310A1 (fr) 2004-10-21

Similar Documents

Publication Publication Date Title
EP1611333B1 (fr) Procede de reglage de vitesse
DE10162989C1 (de) Schaltungsanordnung zum Regeln einer regelbaren Kraftstoffpumpe, Verfahren zum Regeln einer Förderleistung und Verfahren zum Überprüfen der Funktionsfähigkeit einer regelbaren Kraftstoffpumpe
EP2006521B1 (fr) Procédé de réglage de la pression du rail lors d'un processus de démarrage
EP1568874A2 (fr) Procédé et système de commande de débit volumétrique dans un système d'injection de carburant d' un moteur à combustion interne
WO2009092466A1 (fr) Procédé pour démarrer un moteur à combustion interne avec fonction d'arrêt et de redémarrage
DE4343353A1 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102004023993B4 (de) Verfahren zur Drehzahl-Regelung einer Brennkraftmaschinen-Generator-Einheit
DE4423241C2 (de) Verfahren zur Einstellung der Zusammensetzung des Betriebsgemisches für eine Brennkraftmaschine
EP1561937A1 (fr) Procédé de command d'un injecteur de moteur à combustion interne
DE19836845A1 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Kraftfahrzeugs
EP3608185B1 (fr) Procédé de fonctionnement d'un dispositif d'entraînement hybride pour un véhicule automobile ainsi que dispositif d'entraînement hybride correspondant
DE102004008261B3 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschinen-Generator-Einheit
EP1504521B1 (fr) Procede de regulation d'une unite generateur/moteur a combustion interne
EP2358988B1 (fr) Procédé de commande et de régulation d'un moteur à combustion interne équipé d'un système à rampe commune
EP1444431B1 (fr) Procede pour la commande et la regulation du fonctionnement au demarrage d'un moteur a combustion interne
DE3924953A1 (de) Vorrichtung zum steuern der kraftstoffversorgung fuer eine brennkraftmaschine
DE10252399B4 (de) Verfahren zur Regelung einer Brennkraftmaschinen-Generator-Einheit
DE10248633B4 (de) Verfahren zur Drehzahl-Regelung einer Antriebseinheit
DE19537381B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1278949B1 (fr) Procede d'utilisation d'un systeme d'alimentation de carburant destine a un moteur a combustion interne d'un vehicule en particulier
EP3526456B1 (fr) Procédé permettant de démarrer un moteur à combustion interne
DE102008054757A1 (de) Verfahren zum Adaptieren eines Schleppmoments oder eines Verlustmoments eines Antriebsmotors
DE102004015973B3 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschinen-Generator-Einheit
EP1739296A1 (fr) Méthode pour optimiser un paramètre de fonctionnement d'un moteur à combustion, et moteur à combustion
DE19740699C2 (de) Verfahren zum Aufheizen eines Katalysators beim Start einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004001492

Country of ref document: DE

Date of ref document: 20061026

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061220

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070614

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004001492

Country of ref document: DE

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220420

Year of fee payment: 19

Ref country code: FR

Payment date: 20220420

Year of fee payment: 19

Ref country code: DE

Payment date: 20220420

Year of fee payment: 19

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004001492

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230406

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231103