EP1605182A1 - Temperature compensated hairspring-balance oscillator - Google Patents

Temperature compensated hairspring-balance oscillator Download PDF

Info

Publication number
EP1605182A1
EP1605182A1 EP04405355A EP04405355A EP1605182A1 EP 1605182 A1 EP1605182 A1 EP 1605182A1 EP 04405355 A EP04405355 A EP 04405355A EP 04405355 A EP04405355 A EP 04405355A EP 1605182 A1 EP1605182 A1 EP 1605182A1
Authority
EP
European Patent Office
Prior art keywords
spiral
balance
mechanical oscillator
oscillator according
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04405355A
Other languages
German (de)
French (fr)
Other versions
EP1605182B8 (en
EP1605182B1 (en
Inventor
Claude Bourgeois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Suisse dElectronique et Microtechnique SA CSEM
Original Assignee
Centre Suisse dElectronique et Microtechnique SA CSEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE602004027471T priority Critical patent/DE602004027471D1/en
Application filed by Centre Suisse dElectronique et Microtechnique SA CSEM filed Critical Centre Suisse dElectronique et Microtechnique SA CSEM
Priority to AT04405355T priority patent/ATE470086T1/en
Priority to EP04405355A priority patent/EP1605182B8/en
Priority to PCT/EP2005/052520 priority patent/WO2005124184A1/en
Priority to US11/628,831 priority patent/US7682068B2/en
Priority to CNB2005800233744A priority patent/CN100564927C/en
Priority to JP2007526416A priority patent/JP2008501967A/en
Publication of EP1605182A1 publication Critical patent/EP1605182A1/en
Priority to HK07111842.0A priority patent/HK1106570A1/en
Application granted granted Critical
Publication of EP1605182B1 publication Critical patent/EP1605182B1/en
Publication of EP1605182B8 publication Critical patent/EP1605182B8/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring

Definitions

  • the present invention relates to mechanical oscillators in general and concerns, more particularly, oscillators mechanical watches which comprise a set consisting of a spiral and a balance, compensated in temperature.
  • the pendulum must also be compensated heat; what can be achieved, for example, by using a "glucydur” type alloy (alloy of copper and beryllium, also called “glucinium”) or other alloys having a very low coefficient of thermal expansion.
  • glucydur alloy of copper and beryllium, also called “glucinium”
  • This method is also complicated and no more than the others more traditional methods, does not allow to get rid of others isochronism defects such as those due, for example, to various friction in the oscillator, an imbalance of the balance, a offset of the center of mass of the spiral etc.
  • the present invention aims to overcome the disadvantages previous techniques by proposing a hairspring, for oscillator timepiece, whose behavior with respect to variations thermal is such that it allows to maintain the balance-spiral assembly as little as possible of the said variations thermal. More specifically, the spiral of the invention is no only self-compensated but it can be realized in such a way also compensate for the heat drifts of the balance.
  • Another object of the invention is to be able to compensate also isochronism defects inherent in the construction the balance-spring.
  • the spiral of the invention is made in a crystalline quartz substrate whose cut is chosen so that the whole, constituted by the balance spring and the pendulum, is compensated thermally.
  • the shape of the spiral is chosen to compensate for the defects of anisochronism of the balance-spiral assembly.
  • the thermal behavior of the quartz spiral springs is essentially related to the inclination of the section with respect to the optical axis Z of the quartz crystal.
  • the plane of the hairspring can be identified by a double rotation ZY / ⁇ / ⁇ (notation according to the IEEE standards), where ⁇ is the longitude and ⁇ the colatitude (inclination of the axis of the hairspring relative to to the optical axis Z of the crystal).
  • the rigidities of the crystals usually have a nearby thermal inversion point 0 ° K with a negative curvature. They stiffen at low temperature. Their first temperature coefficient at temperature ambient temperature, ie 25 ° C, is therefore generally negative with a negative curvature. It varies from a few tens to a few hundreds of ppm / ° C. Quartz is one of the few crystals allowing, at room temperature, to cancel the first coefficient thermal rigidity by means of the cut, that is to say the orientation of the structure, and even, to make it positive a few tens of ppm / ° C.
  • the quartz spiral does not require a pendulum compensated glucydur type. It compensates for the drift thermal of most low-end current balances in stainless steel and, even, to make it, in some ways, more favorable than that of the 32 kHz quartz tuning fork.
  • FIGS. 3a to 3.c show the level lines of the graphs of FIG. 2. Considering, in particular, FIG.
  • the spirals made in a plate of this type will have maximum elastic symmetry, namely a symmetry with respect to the X plane and a symmetry with respect to the axis of the spiral (Z axis after rotation). These spirals will therefore be better balanced elastically than those made in a double rotation plate and without having a limitation of their heat compensation capacity. It should be noted that the simple rotation can also be performed around the Y axis.
  • Figures 5.a to 5.b show the variation, as a function of the angle ⁇ , of the thermal coefficients ⁇ , ⁇ and ⁇ of the stiffness, respectively, for a hairspring having a single rotation cut X / ⁇ .
  • the thermal drift of the pendulum depends on the material in which it is made.
  • common stainless steels have a thermal coefficient of expansion varying typically between 10 and 15 ppm / ° C, whereas for brass the value of this coefficient is 17 ppm / ° C.
  • Figure 6 shows some examples of achievable thermal compensation, for different balance materials, with X / ⁇ single-turn cutting spirals .
  • the curves C1 to C3 show the thermal drifts of the frequency of oscillators comprising steel rockers of different types, while the curve C4 corresponds to that of an oscillator with a brass balance.
  • the quartz hairspring also makes it possible to compensate for isochronism defects of the oscillator.
  • One of the main sources of anisochronism is the variation in the amplitude of the oscillations of the pendulum.
  • the variation of the anisochronism can be of the order of several ppm / degree of angle, typically 2 ppm / degree of angle with a typical angle variation of ⁇ 25%.
  • a known method to compensate for anisochronism is to act on the curvature of the end of the hairspring near the peak P. This method requires an adjustment step by specially trained persons; which is not optimal in terms of industrialization.
  • it is proposed to act on the local stiffness of the turn by modulating the width of its section.
  • the modulation has the effect of reinforcing the inertia and the local rigidity of the coil in the opposite sector to the peak.
  • the width modulation function of the section is, for example, of the type k .cos ( ⁇ m - ⁇ ), where k is a coefficient of proportionality, ⁇ represents the polar angle in the section considered and ⁇ m the value from the polar angle to the peak.
  • k a coefficient of proportionality
  • represents the polar angle in the section considered
  • ⁇ m the value from the polar angle to the peak.
  • the anisochronism compensation is about 1 ppm / degree of angle.
  • Figure 7 shows a spiral having such a modulation of the width of its section.
  • the modulation of the width of the section of the turns may be accompanied by a modulation of the pitch between the turns so that the interval between them at rest remains constant. This last modulation, not shown, avoids sticking between turns during large amplitudes of oscillation.
  • the spiral described above may be manufactured by any means known to those skilled in the art for the machining of quartz, such as wet attack means (chemical etching) or dry (plasma attack).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Springs (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Electric Clocks (AREA)
  • Percussion Or Vibration Massage (AREA)

Abstract

The oscillator has a balance and a hairspring that is made of quartz substrate whose cut is determined in order to compensate thermal drifts of the hairspring, where the thickness of spring coils is modulated. The modulation of the thickness is linearly varied from the center of the hairspring to a balance-spring stud. The cut of the substrate is a cut with single or double rotation.

Description

La présente invention se rapporte aux oscillateurs mécaniques en général et concerne, plus particulièrement, les oscillateurs mécaniques pour montre qui comportent un ensemble, formé d'un spiral et d'un balancier, compensé en température.The present invention relates to mechanical oscillators in general and concerns, more particularly, oscillators mechanical watches which comprise a set consisting of a spiral and a balance, compensated in temperature.

Les oscillateurs mécaniques, encore appelés organes régulateurs, des pièces d'horlogerie se composent d'un volant d'inertie, appelé balancier, et d'un ressort en spirale, appelé spiral ou ressort spiral, fixé sur l'axe du balancier, d'une part, et sur un pont dans lequel pivote l'axe du balancier, d'autre part. Le balancier-spiral oscille autour de sa position d'équilibre à une fréquence qui doit être maintenue aussi constante que possible car elle détermine la marche de la pièce d'horlogerie. Pour un spiral homogène et uniforme, la période d'oscillation de tels oscillateurs est donnée par l'expression: T =2π J b .L s E s .I s dans laquelle:

  • J b est le moment d'inertie total du balancier-spiral,
  • L s représente la longueur active du spiral,
  • E s est le module d'élasticité du spiral,
  • I s est le moment quadratique de section du spiral.
  • Une variation de la température entraíne une variation de la période d'oscillation telle que, au premier ordre:
    Figure 00010001
       soit: un effet de dilatation sur J b , L s , et I s , et de thermo-élasticité sur E s . Avec une augmentation de la température, les 3 premiers termes sont généralement positifs (dilatation du balancier, allongement du spiral et diminution du module d'Young) et occasionnent un retard, tandis que le dernier terme est négatif (augmentation de la section du spiral) et occasionne une avance. Dans le passé, plusieurs méthodes de compensation de la dérive en température de la fréquence ont été proposées pour pallier ce problème. On peut, notamment, citer les méthodes de compensation par la modification thermique du moment d'inertie du balancier (par exemple, balancier bimétallique en acier et en laiton) ou par l'utilisation d'un alliage spécial (par exemple, l'invar) pour spiraux à très faible coefficient thermo-élastique. Ces méthodes restent complexes, difficiles à mettre en oeuvre et, par conséquent, coûteuses.Mechanical oscillators, also called regulating organs, timepieces consist of a flywheel, called balance, and a spiral spring, called spiral or spiral spring, fixed on the axis of the balance, d on the one hand, and on a bridge in which the axis of the balance pivots, on the other hand. The sprung balance oscillates around its equilibrium position at a frequency which must be kept as constant as possible because it determines the running of the timepiece. For a homogeneous and uniform spiral, the oscillation period of such oscillators is given by the expression: T = 2π J b .L s E s .I s in which:
  • J b is the moment of total inertia of the sprung balance,
  • L s represents the active length of the hairspring,
  • E s is the modulus of elasticity of the spiral,
  • I s is the quadratic moment of section of the spiral.
  • A variation of the temperature causes a variation of the oscillation period such that, at the first order:
    Figure 00010001
    either: a dilation effect on J b , L s , and I s , and thermoelasticity on E s . With an increase in temperature, the first 3 terms are generally positive (pendulum expansion, spiral lengthening and Young's modulus decrease) and cause a delay, while the last term is negative (increase of the section of the spiral) and causes an advance. In the past, several methods of compensating for temperature drift in the frequency have been proposed to overcome this problem. We can, in particular, mention the methods of compensation by the thermal modification of the moment of inertia of the balance (for example, bimetallic balance of steel and brass) or by the use of a special alloy (for example, the invar ) for spirals with a very low thermo-elastic coefficient. These methods remain complex, difficult to implement and therefore expensive.

    Plus récemment, dans sa demande de brevet européen No. EP 02026147.5, la demanderesse a décrit une méthode de compensation thermique de la constante de rappel d'un ressort spiral consistant à oxyder thermiquement un spiral réalisé dans un substrat en silicium. Comme pour les spiraux en acier de type invar (par exemple, l'alliage de la maison Nivarox-FAR S.A.), les ressorts spiraux en silicium oxydé permettent de réguler le comportement thermique du ressort lui-même, éventuellement avec une légère surcompensation de quelques ppm/°C. Cette limitation de la surcompensation est due à l'épaisseur maximum d'oxyde réalisable pratiquement (actuellement inférieure à 4µm) et à la largeur minimum tolérable de la section du spiral en silicium (supérieure à 40µm). En conséquence, le balancier doit également être compensé thermiquement; ce qui peut être obtenu, par exemple, en utilisant un alliage de type "glucydur" (alliage de cuivre et de béryllium, également appelé "glucinium") ou encore d'autres alliages présentant un très faible coefficient de dilatation thermique. Cette méthode est également compliquée et, pas plus que les autres méthodes plus traditionnelles, ne permet de s'affranchir d'autres défauts d'isochronisme tels que ceux dus, par exemple, à divers frottements dans l'oscillateur, un déséquilibrage du balancier, un excentrage du centre de masse du spiral etc.More recently, in his European Patent Application No. EP 02026147.5, the applicant has described a method of thermal compensation of the spring constant of a spring spiral consisting of thermally oxidizing a spiral made in a silicon substrate. As for invar type steel spirals (for example, the alloy of the house Nivarox-FAR S.A.), the springs Oxidized silicon spirals help to regulate the behavior thermal spring itself, possibly with a slight overcompensation of a few ppm / ° C. This limitation of the overcompensation is due to the maximum achievable oxide thickness practically (currently less than 4μm) and width tolerable minimum of the silicon spiral section (greater than 40 .mu.m). As a result, the pendulum must also be compensated heat; what can be achieved, for example, by using a "glucydur" type alloy (alloy of copper and beryllium, also called "glucinium") or other alloys having a very low coefficient of thermal expansion. This method is also complicated and no more than the others more traditional methods, does not allow to get rid of others isochronism defects such as those due, for example, to various friction in the oscillator, an imbalance of the balance, a offset of the center of mass of the spiral etc.

    La présente invention a pour but de pallier les inconvénients des techniques antérieures en proposant un spiral, pour oscillateur de pièce d'horlogerie, dont le comportement vis-à-vis des variations thermiques est tel qu'il permet de maintenir l'ensemble balancier-spiral aussi peu dépendant que possible desdites variations thermiques. Plus précisément, le spiral de l'invention est non seulement auto-compensé mais il peut être réalisé de manière à compenser également les dérives thermiques du balancier.The present invention aims to overcome the disadvantages previous techniques by proposing a hairspring, for oscillator timepiece, whose behavior with respect to variations thermal is such that it allows to maintain the balance-spiral assembly as little as possible of the said variations thermal. More specifically, the spiral of the invention is no only self-compensated but it can be realized in such a way also compensate for the heat drifts of the balance.

    Un autre but de l'invention est de pouvoir compenser également des défauts d'isochronisme inhérents à la construction du balancier-spiral.Another object of the invention is to be able to compensate also isochronism defects inherent in the construction the balance-spring.

    Ces buts sont atteints avec l'oscillateur présentant les caractéristiques définies dans les revendications.These goals are achieved with the oscillator presenting the features defined in the claims.

    Plus précisément, le spiral de l'invention est réalisé dans un substrat de quartz cristallin dont la coupe est choisie de telle sorte que l'ensemble, constitué par le spiral et le balancier, soit compensé thermiquement.More specifically, the spiral of the invention is made in a crystalline quartz substrate whose cut is chosen so that the whole, constituted by the balance spring and the pendulum, is compensated thermally.

    Selon une autre caractéristique de l'invention, la forme du spiral est choisie de manière à compenser les défauts d'anisochronisme de l'ensemble balancier-spiral.According to another characteristic of the invention, the shape of the spiral is chosen to compensate for the defects of anisochronism of the balance-spiral assembly.

    Le comportement thermique des ressorts spiraux en quartz est essentiellement lié à l'inclinaison de la coupe par rapport à l'axe optique Z du cristal de quartz. Comme représenté à la figure 1, le plan du spiral peut être repéré par une double rotation ZY// (notation selon les normes IEEE), où  est la longitude et la colatitude (inclinaison de l'axe du spiral par rapport à l'axe optique Z du cristal). The thermal behavior of the quartz spiral springs is essentially related to the inclination of the section with respect to the optical axis Z of the quartz crystal. As shown in FIG. 1, the plane of the hairspring can be identified by a double rotation ZY / / (notation according to the IEEE standards), where  is the longitude and the colatitude (inclination of the axis of the hairspring relative to to the optical axis Z of the crystal).

    Les rigidités des cristaux, tant d'allongement que de cisaillement, ont généralement un point d'inversion thermique voisin de 0°K avec une courbure négative. Ils se rigidifient à basse température. Leur premier coefficient thermique à température ambiante, c'est-à-dire 25°C, est donc généralement négatif avec une courbure négative. Il varie de quelques dizaines à quelques centaines de ppm/°C. Le quartz est l'un des rares cristaux permettant, à température ambiante, d'annuler le premier coefficient thermique de la rigidité au moyen de la coupe, c'est-à-dire l'orientation de la structure, et même, de le rendre positif de quelques dizaines de ppm/°C.The rigidities of the crystals, both elongation and shear, usually have a nearby thermal inversion point 0 ° K with a negative curvature. They stiffen at low temperature. Their first temperature coefficient at temperature ambient temperature, ie 25 ° C, is therefore generally negative with a negative curvature. It varies from a few tens to a few hundreds of ppm / ° C. Quartz is one of the few crystals allowing, at room temperature, to cancel the first coefficient thermal rigidity by means of the cut, that is to say the orientation of the structure, and even, to make it positive a few tens of ppm / ° C.

    Contrairement aux spiraux en silicium oxydé ou en acier de type invar, le spiral en quartz ne nécessite pas un balancier compensé de type glucydur. Il permet de compenser la dérive thermique de la plupart des balanciers courants bas de gamme en acier inox et, même, de la rendre, à certains égards, plus favorable que celle du diapason à quartz 32 kHz.Unlike spirals made of oxidized silicon or steel invar type, the quartz spiral does not require a pendulum compensated glucydur type. It compensates for the drift thermal of most low-end current balances in stainless steel and, even, to make it, in some ways, more favorable than that of the 32 kHz quartz tuning fork.

    L'oscillateur balancier-spiral selon l'invention possède encore toutes ou certaines des caractéristiques énoncées ci-après:

    • le spiral est réalisé dans un substrat de quartz dont la coupe est à double rotation ZY//;
    • le spiral est réalisé dans un substrat de quartz dont la coupe est à simple rotation X/;
    • le spiral est réalisé dans un substrat de quartz dont la coupe est à simple rotation Y/;
    • l'angle  est tel que le coefficient thermique du premier ordre α dudit spiral compense la dérive thermique du balancier;
    • l'angle  est tel que la courbe représentant la dérive thermique de l'ensemble balancier-spiral reste contenue à l'intérieur du gabarit horloger;
    • l'épaisseur et, éventuellement, le pas du spiral sont modulés de manière à compenser les défauts d'isochronisme du balancier.
    The balance-balance oscillator according to the invention still has all or some of the characteristics listed below:
    • the hairspring is made in a quartz substrate whose cut is double rotation ZY / / ;
    • the hairspring is made in a quartz substrate whose section is a single rotation X / ;
    • the hairspring is made in a quartz substrate whose cut is a single rotation Y / ;
    • the angle  is such that the thermal coefficient of the first order α of said balance compensates for the thermal drift of the balance;
    • the angle  is such that the curve representing the thermal drift of the sprung balance assembly remains contained within the watchmaker's jig;
    • the thickness and, optionally, the pitch of the hairspring are modulated so as to compensate for the isochronism defects of the balance.

    D'autres objets, caractéristiques et avantages de la présente invention apparaítront à la lecture de la description suivante faite à titre d'exemple non limitatif et en relation avec les dessins annexés dans lesquels:

    • la figure 1 montre une plaque de quartz présentant une double rotation ZY// par rapport aux axes du cristal;
    • les figures 2.a à 2.b montrent les comportements des premier α , deuxième β et troisième γ coefficients thermiques de la rigidité d'un spiral réalisé dans une plaque telle que celle de la figure 1 en fonction des angles  et ;
    • les figures 3.a à 3.c montrent le courbes de niveau de ces mêmes coefficients thermiques ;
    • la figure 4 montre une plaque de quartz présentant une seule rotation autour de l'axe X;
    • les figures 5.a à 5.c montrent les variations des coefficients thermiques α, β et γ de la rigidité pour un spiral réalisé dans la plaque de la figure 4;
    • la figure 6 représente la dérive thermique de la fréquence avec adaptation de la coupe X/ du spiral au coefficient α du balancier; et
    • la figure 7 montre un exemple de réalisation d'un spiral avec compensation de l'anisochronisme.
    Other objects, features and advantages of the present invention will become apparent on reading the following description given by way of nonlimiting example and with reference to the appended drawings, in which:
    • Figure 1 shows a quartz plate having a double rotation ZY / / with respect to the axes of the crystal;
    • Figures 2.a to 2.b show the behavior of the first α, second β and third γ thermal coefficients of the stiffness of a spiral made in a plate such as that of Figure 1 according to the angles  and ;
    • Figures 3.a to 3.c show the contour of these same thermal coefficients;
    • Figure 4 shows a quartz plate having a single rotation about the X axis;
    • Figures 5.a to 5.c show the variations of the thermal coefficients α , β and γ of the stiffness for a spiral made in the plate of Figure 4;
    • FIG. 6 represents the thermal drift of the frequency with adaptation of the X /  section of the spiral to the coefficient α of the balance; and
    • Figure 7 shows an embodiment of a spiral with compensation for anisochronism.

    Comme indiqué précédemment, le comportement thermique d'un spiral en quartz dépend essentiellement de la coupe de la plaque dans laquelle il est réalisé. Ainsi pour une coupe à double rotation ZY//, telle que représentée à la figure 1, les coefficients thermiques du premier ordre α, du deuxième ordre β et du troisième ordre γ de la rigidité du spiral sont représentés aux figures 2.a à 2.c, respectivement, pour une température de 25°C. L'axe vertical indique les valeurs de α, β et γ, respectivement en ppm/°C, en ppb/°C2 et ppt/°C3. Les figures 3.a à 3.c montrent les lignes de niveau des graphes des figures 2. Si l'on considère, en particulier, la figure 3.a, qui concerne le premier coefficient thermique α , on notera que la valeur de celui-ci ne dépend pratiquement pas de l'angle  mais varie en fonction de l'angle . Comme, par ailleurs, la contribution des coefficients thermiques de deuxième et troisième ordres s'avère négligeable, il s'ensuit qu'une coupe à simple rotation, par exemple X/ est suffisante pour réaliser un spiral selon l'invention, c'est-à-dire capable non seulement de compenser sa propre dérive thermique mais encore celle du balancier qui lui est associé. Une plaque possédant une telle coupe est représentée à la figure 4. Elle est obtenue par une simple rotation d'angle  autour de l'axe optique x du cristal. Les spiraux réalisés dans une plaque de ce type présenteront une symétrie élastique maximale, à savoir une symétrie par rapport au plan X et une symétrie par rapport à l'axe du spiral (axe Z' après rotation). Ces spiraux seront donc mieux équilibrés élastiquement que ceux réalisés dans une plaque à double rotation et ce, sans avoir une limitation de leur capacité de compensation thermique. Il convient de préciser que la simple rotation peut également être effectuée autour de l'axe Y.As indicated above, the thermal behavior of a quartz spiral depends essentially on the section of the plate in which it is made. Thus, for a double rotation cut ZY / / , as represented in FIG. 1, the thermal coefficients of the first order α, of the second order β and of the third order γ of the rigidity of the hairspring are represented in FIGS. at 2.c, respectively, for a temperature of 25 ° C. The vertical axis indicates the values of α, β and γ, respectively in ppm / ° C, in ppb / ° C 2 and ppt / ° C 3 . FIGS. 3a to 3.c show the level lines of the graphs of FIG. 2. Considering, in particular, FIG. 3a, which relates to the first thermal coefficient α, it will be noted that the value of that it hardly depends on the angle  but varies according to the angle . Since, moreover, the contribution of the second and third order thermal coefficients is negligible, it follows that a single-rotation cut, for example X / , is sufficient to produce a hairspring according to the invention. that is to say, capable not only of compensating for its own thermal drift but also of the pendulum associated with it. A plate having such a section is shown in Figure 4. It is obtained by a simple rotation angle  around the optical axis x of the crystal. The spirals made in a plate of this type will have maximum elastic symmetry, namely a symmetry with respect to the X plane and a symmetry with respect to the axis of the spiral (Z axis after rotation). These spirals will therefore be better balanced elastically than those made in a double rotation plate and without having a limitation of their heat compensation capacity. It should be noted that the simple rotation can also be performed around the Y axis.

    Les figures 5.a à 5.b représentent la variation, en fonction de l'angle , des coefficients thermiques α , β et γ de la rigidité, respectivement, pour un spiral présentant une coupe à simple rotation X/. Les coefficients sont pratiquement symétriques par rapport à l'axe  = 0. Si l'on ne considère que le premier coefficient α (les autres coefficients d'ordre plus élevé ayant une influence beaucoup plus faible et pouvant être négligés), on remarque que celui-ci est égal à zéro pour =±24.0° et qu'il est maximum pour = 0. En ce point, α est égal à 13.466 ppm/°C, ce qui correspond à la compensation thermique maximale qu'il est possible d'atteindre avec un spiral en quartz présentant une coupe X/0 =0. La dérive thermique du balancier dépend du matériau dans lequel il est réalisé. Ainsi les aciers inox courants ont un coefficient thermique de dilatation variant, typiquement, entre 10 et 15 ppm/°C, alors que pour le laiton la valeur de ce coefficient est de 17 ppm/°C. La figure 6 montre quelques exemples de compensation thermique réalisables, pour différents matériaux de balancier, avec des spiraux de coupe à simple rotation X/. Les courbes C1 à C3 montrent les dérives thermiques de la fréquence d'oscillateurs comportant des balanciers en acier de différents types, alors que la courbe C4 correspond à celle d'un oscillateur avec un balancier en laiton. On notera que par rapport au gabarit horloger (cadre R) imposé pour les montres-chronomètres (variation de fréquence inférieure à ± 8 sec/jour dans le domaine de températures 23°C ± 15°C), il est possible de trouver la coupe X/ du spiral de quartz permettant de compenser la dérive des balanciers les plus courants, tels les balanciers en acier. Pour un balancier en laiton (courbe C4), toutefois, la compensation maximale du spiral en quartz ne permet pas de satisfaire complètement aux exigences de ce gabarit horloger. Ainsi pour un matériau du balancier donné, est-il possible de déterminer l'angle , de la coupe du spiral en quartz, qui offre la meilleure compensation thermique possible de l'ensemble régulateur.Figures 5.a to 5.b show the variation, as a function of the angle , of the thermal coefficients α, β and γ of the stiffness, respectively, for a hairspring having a single rotation cut X / . The coefficients are practically symmetrical with respect to the axis  = 0. If we consider only the first coefficient α (the other higher order coefficients have a much weaker influence and can be neglected), we note that it is equal to zero for  = ± 24.0 ° and it is maximum for = 0. At this point, α is equal to 13.466 ppm / ° C, which corresponds to the maximum thermal compensation that it is possible to achieve with a quartz spiral having a cut X / 0 = 0. The thermal drift of the pendulum depends on the material in which it is made. Thus, common stainless steels have a thermal coefficient of expansion varying typically between 10 and 15 ppm / ° C, whereas for brass the value of this coefficient is 17 ppm / ° C. Figure 6 shows some examples of achievable thermal compensation, for different balance materials, with X / single-turn cutting spirals . The curves C1 to C3 show the thermal drifts of the frequency of oscillators comprising steel rockers of different types, while the curve C4 corresponds to that of an oscillator with a brass balance. It will be noted that compared to the watchmaker template (R-frame) imposed for chronometer watches (frequency variation of less than ± 8 sec / day in the temperature range 23 ° C ± 15 ° C), it is possible to find the cut X / quartz spiral to compensate for the drift of the most common balances, such as steel pendulums. For a brass balance (curve C4), however, the maximum compensation of the quartz spiral does not fully satisfy the requirements of this watchmaker template. Thus for a material of the given balance, is it possible to determine the angle  of the cup of the quartz spiral, which offers the best possible thermal compensation of the regulator assembly.

    Selon une autre caractéristique de l'invention, le spiral en quartz permet également de compenser des défauts d'isochronisme de l'oscillateur. L'une des sources principales d'anisochronisme est la variation de l'amplitude des oscillations du balancier. La variation de l'anisochronisme peut être de l'ordre de plusieurs ppm/degré d'angle, typiquement 2 ppm/degré d'angle avec une variation d'angle typique de ± 25%. Une méthode connue pour compenser l'anisochronisme consiste à agir sur la courbure de l'extrémité du spiral à proximité du piton P. Cette méthode demande une étape de réglage par des personnes spécialement formées; ce qui n'est pas optimum en matière d'industrialisation. Selon une variante de l'invention, il est proposé d'agir sur la rigidité locale de la spire en modulant la largeur de sa section. La modulation a pour effet de renforcer l'inertie et la rigidité locale de la spire dans le secteur opposé au piton. La fonction de modulation de la largeur de la section est, par exemple, du type k.cos( m -), où k est un coefficient de proportionnalité,  représente l'angle polaire dans la section considérée et m la valeur de l'angle polaire au piton. Lorsque k est égal à 0,4, la compensation d'anisochronisme est d'environ 1 ppm/degré d'angle. La valeur exacte de k pour un oscillateur donné peut être déterminée de manière empirique ou par le biais d'une simulation numérique. La figure 7 montre un spiral présentant une telle modulation de la largeur de sa section. La modulation de la largeur de la section des spires peut être accompagnée d'une modulation du pas entre les spires de manière à ce que l'intervalle entre ces dernières au repos reste constant. Cette dernière modulation, non représentée, permet d'éviter le collage entre spires lors de grandes amplitudes d'oscillation. Le spiral décrit précédemment peut être fabriqué par tout moyen connu de l'homme de métier pour l'usinage des quartz, tels les moyens d'attaque par voie humide (attaque chimique) ou par voie sèche (attaque par plasma).According to another characteristic of the invention, the quartz hairspring also makes it possible to compensate for isochronism defects of the oscillator. One of the main sources of anisochronism is the variation in the amplitude of the oscillations of the pendulum. The variation of the anisochronism can be of the order of several ppm / degree of angle, typically 2 ppm / degree of angle with a typical angle variation of ± 25%. A known method to compensate for anisochronism is to act on the curvature of the end of the hairspring near the peak P. This method requires an adjustment step by specially trained persons; which is not optimal in terms of industrialization. According to a variant of the invention, it is proposed to act on the local stiffness of the turn by modulating the width of its section. The modulation has the effect of reinforcing the inertia and the local rigidity of the coil in the opposite sector to the peak. The width modulation function of the section is, for example, of the type k .cos ( m - ), where k is a coefficient of proportionality,  represents the polar angle in the section considered and m the value from the polar angle to the peak. When k equals 0.4, the anisochronism compensation is about 1 ppm / degree of angle. The exact value of k for a given oscillator can be determined empirically or by numerical simulation. Figure 7 shows a spiral having such a modulation of the width of its section. The modulation of the width of the section of the turns may be accompanied by a modulation of the pitch between the turns so that the interval between them at rest remains constant. This last modulation, not shown, avoids sticking between turns during large amplitudes of oscillation. The spiral described above may be manufactured by any means known to those skilled in the art for the machining of quartz, such as wet attack means (chemical etching) or dry (plasma attack).

    Bien que la présente invention ait été décrite en relation avec des exemples de réalisation particuliers, on comprendra qu'elle est susceptible de modifications ou variantes sans pour autant sortir de son domaine. Par exemple, d'autres types de modulation de l'épaisseur des spires peuvent être envisagés, telle une variation linéaire de l'épaisseur de la spire depuis le centre du spiral vers le piton, que celle-ci soit ou non accompagnée d'une augmentation du pas des spires.Although the present invention has been described in connection with particular embodiments, it will be understood that it is subject to modifications or variations without departing from its field. For example, other types of modulation of the thickness of the turns can be considered, such a variation linear of the thickness of the coil from the center of the spiral to the whether or not accompanied by an increase in no turns.

    Claims (13)

    Oscillateur mécanique comportant un spiral et un balancier, caractérisé en ce que le spiral est réalisé dans un substrat de quartz dont la coupe est choisie de manière à compenser thermiquement les dérives du spiral et celles du balancier.Mechanical oscillator comprising a spiral and a balance, characterized in that the spiral is made in a quartz substrate whose cut is chosen so as to thermally compensate the drifts of the spiral and those of the balance. Oscillateur mécanique selon la revendication 1, caractérisé en ce que la coupe du substrat de quartz est une coupe à double rotation ZY//.Mechanical oscillator according to claim 1, characterized in that the section of the quartz substrate is a double rotation cut ZY / / . Oscillateur mécanique selon la revendication 1, caractérisé en ce que la coupe du substrat de quartz est une coupe à simple rotation X/.Mechanical oscillator according to claim 1, characterized in that the section of the quartz substrate is a single-rotation X /  section. Oscillateur mécanique selon la revendication 1, caractérisé en ce que la coupe du substrat de quartz est une coupe à simple rotation Y/.Mechanical oscillator according to claim 1, characterized in that the section of the quartz substrate is a Y / single-turn cut . Oscillateur mécanique selon la revendication 3 ou la revendication 4, caractérisé en ce que l'angle  est tel que le coefficient thermique de premier ordre α de la rigidité dudit spiral compense la dérive thermique du balancier qui lui est associé.Mechanical oscillator according to claim 3 or claim 4, characterized in that the angle  is such that the first-order thermal coefficient α of the rigidity of said balance compensates for the thermal drift of the balance associated therewith. Oscillateur mécanique selon l'une des revendications 3 à 5, caractérisé en ce que l'angle  est déterminé de manière que la courbe représentant la dérive thermique dudit oscillateur reste contenue à l'intérieur du gabarit horloger.Mechanical oscillator according to one of Claims 3 to 5, characterized in that the angle  is determined in such a way that the curve representing the thermal drift of said oscillator remains contained inside the watchmaking template. Oscillateur mécanique selon l'une des revendications 3 à 6, caractérisé en ce que le balancier est en acier et l'angle  a une valeur comprise entre 0° et ± 24°.Mechanical oscillator according to one of claims 3 to 6, characterized in that the balance is made of steel and the angle  has a value between 0 ° and ± 24 °. Oscillateur mécanique selon l'une des revendications 3 à 6, caractérisé en ce que le balancier est en laiton et l'angle  a une valeur de 0°. Mechanical oscillator according to one of Claims 3 to 6, characterized in that the balance is made of brass and the angle  has a value of 0 °. Oscillateur mécanique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'épaisseur des spires du spiral est modulée de manière à compenser les défauts d'isochronisme du balancier.Mechanical oscillator according to any one of the preceding claims, characterized in that the thickness of the coils of the spiral is modulated so as to compensate for the isochronism defects of the balance. Oscillateur mécanique selon la revendication 9, caractérisé en ce que ladite modulation d'épaisseur est une fonction périodique du type k.cos(m-), où k est un coefficient de proportionnalité, est l'angle polaire de la section considérée du spiral et m est l'angle polaire de la position du piton.Mechanical oscillator according to claim 9, characterized in that said thickness modulation is a periodic function of the type k. cos ( m- ), where k is a coefficient of proportionality, is the polar angle of the considered section of the spiral and m is the polar angle of the position of the peak. Oscillateur mécanique selon la revendication 10, caractérisé en ce que ledit coefficient de proportionnalité est égal à 0,4.Mechanical oscillator according to Claim 10, characterized in that the said coefficient of proportionality is equal to 0.4. Oscillateur mécanique selon la revendication 8, caractérisé en ce que ladite modulation d'épaisseur est une variation linéaire de cette dernière depuis le centre du spiral vers le piton.Mechanical oscillator according to claim 8, characterized in that said thickness modulation is a linear variation of the latter from the center of the spiral to the peak. Oscillateur mécanique selon la revendication 8 ou la revendication 11, caractérisé en ce que le pas des spires du spiral est tel que l'écart entre deux spires successives reste constant.Mechanical oscillator according to claim 8 or claim 11, characterized in that the pitch of the coils of the spiral is such that the distance between two successive turns remains constant.
    EP04405355A 2004-06-08 2004-06-08 Temperature compensated hairspring-balance oscillator Expired - Lifetime EP1605182B8 (en)

    Priority Applications (8)

    Application Number Priority Date Filing Date Title
    AT04405355T ATE470086T1 (en) 2004-06-08 2004-06-08 BALANCE SPRING OSCILLATOR WITH TEMPERATURE COMPENSATION
    EP04405355A EP1605182B8 (en) 2004-06-08 2004-06-08 Temperature compensated hairspring-balance oscillator
    DE602004027471T DE602004027471D1 (en) 2004-06-08 2004-06-08 Balance spring oscillator with temperature compensation
    US11/628,831 US7682068B2 (en) 2004-06-08 2005-06-02 Temperature-compensated balance wheel/hairspring oscillator
    PCT/EP2005/052520 WO2005124184A1 (en) 2004-06-08 2005-06-02 Temperature compensated balance-spiral oscillator
    CNB2005800233744A CN100564927C (en) 2004-06-08 2005-06-02 Escapement/hairspring the oscillator of band temperature correction
    JP2007526416A JP2008501967A (en) 2004-06-08 2005-06-02 Temperature-compensated roof / spring spring oscillator
    HK07111842.0A HK1106570A1 (en) 2004-06-08 2007-11-01 Temperature compensated balance-spiral oscillator

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP04405355A EP1605182B8 (en) 2004-06-08 2004-06-08 Temperature compensated hairspring-balance oscillator

    Publications (3)

    Publication Number Publication Date
    EP1605182A1 true EP1605182A1 (en) 2005-12-14
    EP1605182B1 EP1605182B1 (en) 2010-06-02
    EP1605182B8 EP1605182B8 (en) 2010-07-14

    Family

    ID=34932141

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP04405355A Expired - Lifetime EP1605182B8 (en) 2004-06-08 2004-06-08 Temperature compensated hairspring-balance oscillator

    Country Status (8)

    Country Link
    US (1) US7682068B2 (en)
    EP (1) EP1605182B8 (en)
    JP (1) JP2008501967A (en)
    CN (1) CN100564927C (en)
    AT (1) ATE470086T1 (en)
    DE (1) DE602004027471D1 (en)
    HK (1) HK1106570A1 (en)
    WO (1) WO2005124184A1 (en)

    Cited By (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2154583A1 (en) * 2008-07-29 2010-02-17 Rolex Sa Hairspring for sprung balance
    CH701846A1 (en) * 2009-09-21 2011-03-31 Rolex Sa Spiral for flat stick together of watches and stick-spiral.
    CH706087A1 (en) * 2012-02-01 2013-08-15 Piguet & Co Horlogerie Flat spiral for integration in control element of movement in timepiece, has series of turns formed by rolled plate, where outer end portion of spiral includes series of stiffened zones separated by flexible zones
    EP2703909A1 (en) * 2012-09-04 2014-03-05 The Swatch Group Research and Development Ltd. Paired balance wheel - hairspring resonator
    EP2717103A1 (en) * 2012-10-04 2014-04-09 The Swatch Group Research and Development Ltd. Luminour hairspring
    CN105738034A (en) * 2014-12-12 2016-07-06 天津海鸥表业集团有限公司 Balance measuring method for laser correction balance wheel gravity center shift and measuring cutting device
    EP3056948B1 (en) 2015-02-17 2019-02-20 Master Dynamic Limited Silicon hairspring

    Families Citing this family (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1818736A1 (en) * 2006-02-09 2007-08-15 The Swatch Group Research and Development Ltd. Shockproof collet
    EP2184653A1 (en) * 2008-11-06 2010-05-12 Montres Breguet S.A. Spiral with terminal curve elevation in micro-machinable material
    DE202010018420U1 (en) * 2009-02-06 2016-06-22 Damasko Gmbh Mechanical oscillating system for a watch and balance spring for one watch
    US10324419B2 (en) 2009-02-06 2019-06-18 Domasko GmbH Mechanical oscillating system for a clock and functional element for a clock
    EP2284629A1 (en) * 2009-08-13 2011-02-16 ETA SA Manufacture Horlogère Suisse Thermocompensated mechanical resonator
    EP2337221A1 (en) * 2009-12-15 2011-06-22 The Swatch Group Research and Development Ltd. Resonator thermocompensated at least to the first and second orders
    GB201001897D0 (en) * 2010-02-05 2010-03-24 Levingston Gideon Non magnetic mateial additives and processes for controling the thermoelastic modulus and spring stiffness within springs for precision instruments
    US8777195B2 (en) * 2011-09-23 2014-07-15 Adicep Technologies, Inc. Non-linear torsion spring assembly
    EP2590325A1 (en) * 2011-11-04 2013-05-08 The Swatch Group Research and Development Ltd. Thermally compensated ceramic resonator
    EP2597536A1 (en) * 2011-11-25 2013-05-29 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Improved spiral spring and method for manufacturing said spiral spring
    US9188956B2 (en) * 2012-12-28 2015-11-17 Seiko Instruments Inc. Balance, timepiece movement, timepiece and manufacturing method of balance
    DE102013106505B8 (en) * 2013-06-21 2014-08-21 Damasko Uhrenmanufaktur KG Oscillation system for mechanical movements
    WO2014203086A1 (en) 2013-06-21 2014-12-24 Damasko Uhrenmanufaktur KG Oscillating system for mechanical clockwork mechanisms, spiral spring and method for production thereof
    DE102013110090A1 (en) * 2013-09-13 2015-03-19 Damasko Uhrenmanufaktur KG Oscillation system for mechanical movements
    EP3159746B1 (en) * 2015-10-19 2018-06-06 Rolex Sa Heavily doped silicon hairspring for timepiece
    EP3214506B1 (en) * 2016-03-04 2019-01-30 ETA SA Manufacture Horlogère Suisse Compact hairspring with constant double cross-section
    WO2017163148A1 (en) * 2016-03-23 2017-09-28 Patek Philippe Sa Geneve Balance wheel oscillator for timepiece
    TWI796444B (en) * 2018-03-20 2023-03-21 瑞士商百達翡麗日內瓦股份有限公司 Method for manufacturing timepiece thermocompensated hairsprings of precise stiffness
    EP3667433B1 (en) * 2018-12-12 2023-02-01 Nivarox-FAR S.A. Spring and method for manufacturing same

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US209642A (en) * 1878-11-05 Improvement in balance-springs for time-keepers
    EP0732635A1 (en) * 1995-03-17 1996-09-18 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Micromechanical element and process for its manufacture
    US20030011119A1 (en) * 2000-02-07 2003-01-16 Masato Imai Quartz coil spring and method of producing the same
    EP1422436A1 (en) * 2002-11-25 2004-05-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Spiral watch spring and its method of production

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CH1060869A4 (en) * 1969-07-11 1971-06-30
    JPH06117470A (en) * 1992-10-07 1994-04-26 Yokogawa Electric Corp Spiral spring and electric indicating instrument
    EP0886195B1 (en) * 1997-06-20 2002-02-13 Montres Rolex Sa Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same
    US6536472B2 (en) * 2001-05-07 2003-03-25 Fisher Controls International, Inc. High performance fluid control valve
    EP1302821A3 (en) * 2001-10-10 2010-05-05 Franck Muller-Watchland SA Balance-spring for time measuring apparatus
    JP2004007420A (en) * 2002-03-26 2004-01-08 Seiko Epson Corp Piezoelectric vibration chip, piezoelectric vibrator, and piezoelectric device
    EP1445670A1 (en) * 2003-02-06 2004-08-11 ETA SA Manufacture Horlogère Suisse Balance-spring resonator spiral and its method of fabrication
    DE60333191D1 (en) * 2003-09-26 2010-08-12 Asulab Sa Spiral spring balance resonator with thermal compensation

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US209642A (en) * 1878-11-05 Improvement in balance-springs for time-keepers
    EP0732635A1 (en) * 1995-03-17 1996-09-18 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Micromechanical element and process for its manufacture
    US20030011119A1 (en) * 2000-02-07 2003-01-16 Masato Imai Quartz coil spring and method of producing the same
    EP1422436A1 (en) * 2002-11-25 2004-05-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Spiral watch spring and its method of production

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    ANONYMOUS: ""Good" Fundamental Material Constants for Chrystalline Quartz", INTERNET ARTICLE, 11 August 2003 (2003-08-11), XP002311434, Retrieved from the Internet <URL:http://web.archive.org/web/20030811155745/www.sawyerresearch.com/Misc/Qtz_Constants.pdf> [retrieved on 20041220] *

    Cited By (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2154583A1 (en) * 2008-07-29 2010-02-17 Rolex Sa Hairspring for sprung balance
    EP2523053A1 (en) * 2008-07-29 2012-11-14 Rolex S.A. Hairspring for sprung balance
    CH701846A1 (en) * 2009-09-21 2011-03-31 Rolex Sa Spiral for flat stick together of watches and stick-spiral.
    US8348497B2 (en) 2009-09-21 2013-01-08 Rolex S.A. Flat balance spring for horological balance and balance wheel/balance spring assembly
    CH706087A1 (en) * 2012-02-01 2013-08-15 Piguet & Co Horlogerie Flat spiral for integration in control element of movement in timepiece, has series of turns formed by rolled plate, where outer end portion of spiral includes series of stiffened zones separated by flexible zones
    EP2703910A3 (en) * 2012-09-04 2014-05-14 The Swatch Group Research and Development Ltd. Paired balance wheel - hairspring resonator
    EP2703909A1 (en) * 2012-09-04 2014-03-05 The Swatch Group Research and Development Ltd. Paired balance wheel - hairspring resonator
    US9030920B2 (en) 2012-09-04 2015-05-12 The Swatch Group Research And Development Ltd. Resonator with matched balance spring and balance
    EP2717103A1 (en) * 2012-10-04 2014-04-09 The Swatch Group Research and Development Ltd. Luminour hairspring
    WO2014053336A1 (en) * 2012-10-04 2014-04-10 The Swatch Group Research And Development Ltd Illuminated hairspring
    CN104704431A (en) * 2012-10-04 2015-06-10 斯沃奇集团研究和开发有限公司 Illuminated hairspring
    US9188958B2 (en) 2012-10-04 2015-11-17 The Swatch Group Research And Development Ltd Illuminated balance spring
    JP2015534071A (en) * 2012-10-04 2015-11-26 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Balance spring illuminated
    RU2596097C1 (en) * 2012-10-04 2016-08-27 Те Свотч Груп Рисерч Энд Дивелопмент Лтд Illuminated balancing spring
    CN105738034A (en) * 2014-12-12 2016-07-06 天津海鸥表业集团有限公司 Balance measuring method for laser correction balance wheel gravity center shift and measuring cutting device
    CN105738034B (en) * 2014-12-12 2018-05-22 天津海鸥表业集团有限公司 Balance measuring method for laser correction balance wheel gravity center shift and measuring cutting device
    EP3056948B1 (en) 2015-02-17 2019-02-20 Master Dynamic Limited Silicon hairspring

    Also Published As

    Publication number Publication date
    EP1605182B8 (en) 2010-07-14
    JP2008501967A (en) 2008-01-24
    ATE470086T1 (en) 2010-06-15
    HK1106570A1 (en) 2008-03-14
    DE602004027471D1 (en) 2010-07-15
    US20080008050A1 (en) 2008-01-10
    EP1605182B1 (en) 2010-06-02
    WO2005124184A1 (en) 2005-12-29
    CN100564927C (en) 2009-12-02
    US7682068B2 (en) 2010-03-23
    CN1985103A (en) 2007-06-20

    Similar Documents

    Publication Publication Date Title
    EP1605182B1 (en) Temperature compensated hairspring-balance oscillator
    EP2215531B1 (en) Mechanical oscillator having an optimized thermoelastic coefficient
    EP2514094B1 (en) Resonator thermocompensated at least to the first and second orders
    EP1422436B1 (en) Spiral watch spring and its method of production
    EP2102717B1 (en) Mechanical oscillator for timepiece
    EP1655642B1 (en) Balance-spring resonator spiral
    EP2090941B1 (en) Mechanical oscillator
    CH699780B1 (en) of self-compensating balance spring watch.
    WO2011026725A1 (en) Spiral spring
    EP1612627A1 (en) Bi-material autocompensating hairspring
    EP1519250A1 (en) Thermally compensated balance-hairspring resonator
    EP2690506A1 (en) Anti-tripping clock hairspring
    CH708067B1 (en) of self-compensating balance spring watch.
    EP2753985B1 (en) Clock movement having a balance-wheel and hairspring
    CH712726A2 (en) Pendulum oscillator-spiral clock with magnetic pivot.
    EP2703910A2 (en) Paired balance wheel - hairspring resonator
    CH710308A2 (en) Thermocompensated silicon resonator.
    EP3534222A1 (en) Method for producing a thermally compensated oscillator
    CH717283B1 (en) Watch assembly comprising an oscillating element and an escapement.
    CH701155B1 (en) Balance spiral type mechanical oscillator for e.g. wrist watch, has balance and spiral, which are made of non-magnetic material such as diamond, where material possesses very low thermal expansion coefficient
    CH702353A2 (en) Thermocompensated resonator i.e. hairspring, for timepiece, has body comprising core with material, where body comprises two coatings allowing resonator having thermal coefficients of first and second orders to be zero
    CH714706B1 (en) Angular return spring for thermo-compensated oscillator.
    CH714704B1 (en) Angular return spring for thermo-compensated oscillator
    WO2023242746A1 (en) Balance spring for a timepiece resonator
    CH714705A2 (en) Angular return spring for thermo-compensated oscillator.

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL HR LT LV MK

    17P Request for examination filed

    Effective date: 20060601

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

    17Q First examination report despatched

    Effective date: 20060911

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHN

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

    REF Corresponds to:

    Ref document number: 602004027471

    Country of ref document: DE

    Date of ref document: 20100715

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: VDEP

    Effective date: 20100602

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    Ref country code: SI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    BERE Be: lapsed

    Owner name: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECH

    Effective date: 20100630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    Ref country code: PL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100903

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    Ref country code: EE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20101004

    Ref country code: SK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    Ref country code: RO

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    Ref country code: CZ

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    26N No opposition filed

    Effective date: 20110303

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R097

    Ref document number: 602004027471

    Country of ref document: DE

    Effective date: 20110302

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100608

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    Ref country code: HU

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20101203

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100602

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100902

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20100913

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: GLN S.A., CH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROT, CH

    Free format text: FORMER OWNER: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHNIQUE S.A. - RECHERCHE ET DEVELOPPEMENT, CH

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: BOVARD SA NEUCHATEL CONSEILS EN PROPRIETE INTE, CH

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20230622

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20230620

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20230622

    Year of fee payment: 20

    Ref country code: CH

    Payment date: 20230702

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 602004027471

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20240607

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20240607