EP1605182A1 - Temperature compensated hairspring-balance oscillator - Google Patents
Temperature compensated hairspring-balance oscillator Download PDFInfo
- Publication number
- EP1605182A1 EP1605182A1 EP04405355A EP04405355A EP1605182A1 EP 1605182 A1 EP1605182 A1 EP 1605182A1 EP 04405355 A EP04405355 A EP 04405355A EP 04405355 A EP04405355 A EP 04405355A EP 1605182 A1 EP1605182 A1 EP 1605182A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spiral
- balance
- mechanical oscillator
- oscillator according
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010453 quartz Substances 0.000 claims abstract description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 229910000831 Steel Inorganic materials 0.000 claims description 6
- 230000007547 defect Effects 0.000 claims description 6
- 239000010959 steel Substances 0.000 claims description 6
- 229910001369 Brass Inorganic materials 0.000 claims description 5
- 239000010951 brass Substances 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 5
- 229910001374 Invar Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910000646 Glucydur Inorganic materials 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 241001080024 Telles Species 0.000 description 2
- 241000897276 Termes Species 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910000952 Be alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/066—Manufacture of the spiral spring
Definitions
- the present invention relates to mechanical oscillators in general and concerns, more particularly, oscillators mechanical watches which comprise a set consisting of a spiral and a balance, compensated in temperature.
- the pendulum must also be compensated heat; what can be achieved, for example, by using a "glucydur” type alloy (alloy of copper and beryllium, also called “glucinium”) or other alloys having a very low coefficient of thermal expansion.
- glucydur alloy of copper and beryllium, also called “glucinium”
- This method is also complicated and no more than the others more traditional methods, does not allow to get rid of others isochronism defects such as those due, for example, to various friction in the oscillator, an imbalance of the balance, a offset of the center of mass of the spiral etc.
- the present invention aims to overcome the disadvantages previous techniques by proposing a hairspring, for oscillator timepiece, whose behavior with respect to variations thermal is such that it allows to maintain the balance-spiral assembly as little as possible of the said variations thermal. More specifically, the spiral of the invention is no only self-compensated but it can be realized in such a way also compensate for the heat drifts of the balance.
- Another object of the invention is to be able to compensate also isochronism defects inherent in the construction the balance-spring.
- the spiral of the invention is made in a crystalline quartz substrate whose cut is chosen so that the whole, constituted by the balance spring and the pendulum, is compensated thermally.
- the shape of the spiral is chosen to compensate for the defects of anisochronism of the balance-spiral assembly.
- the thermal behavior of the quartz spiral springs is essentially related to the inclination of the section with respect to the optical axis Z of the quartz crystal.
- the plane of the hairspring can be identified by a double rotation ZY / ⁇ / ⁇ (notation according to the IEEE standards), where ⁇ is the longitude and ⁇ the colatitude (inclination of the axis of the hairspring relative to to the optical axis Z of the crystal).
- the rigidities of the crystals usually have a nearby thermal inversion point 0 ° K with a negative curvature. They stiffen at low temperature. Their first temperature coefficient at temperature ambient temperature, ie 25 ° C, is therefore generally negative with a negative curvature. It varies from a few tens to a few hundreds of ppm / ° C. Quartz is one of the few crystals allowing, at room temperature, to cancel the first coefficient thermal rigidity by means of the cut, that is to say the orientation of the structure, and even, to make it positive a few tens of ppm / ° C.
- the quartz spiral does not require a pendulum compensated glucydur type. It compensates for the drift thermal of most low-end current balances in stainless steel and, even, to make it, in some ways, more favorable than that of the 32 kHz quartz tuning fork.
- FIGS. 3a to 3.c show the level lines of the graphs of FIG. 2. Considering, in particular, FIG.
- the spirals made in a plate of this type will have maximum elastic symmetry, namely a symmetry with respect to the X plane and a symmetry with respect to the axis of the spiral (Z axis after rotation). These spirals will therefore be better balanced elastically than those made in a double rotation plate and without having a limitation of their heat compensation capacity. It should be noted that the simple rotation can also be performed around the Y axis.
- Figures 5.a to 5.b show the variation, as a function of the angle ⁇ , of the thermal coefficients ⁇ , ⁇ and ⁇ of the stiffness, respectively, for a hairspring having a single rotation cut X / ⁇ .
- the thermal drift of the pendulum depends on the material in which it is made.
- common stainless steels have a thermal coefficient of expansion varying typically between 10 and 15 ppm / ° C, whereas for brass the value of this coefficient is 17 ppm / ° C.
- Figure 6 shows some examples of achievable thermal compensation, for different balance materials, with X / ⁇ single-turn cutting spirals .
- the curves C1 to C3 show the thermal drifts of the frequency of oscillators comprising steel rockers of different types, while the curve C4 corresponds to that of an oscillator with a brass balance.
- the quartz hairspring also makes it possible to compensate for isochronism defects of the oscillator.
- One of the main sources of anisochronism is the variation in the amplitude of the oscillations of the pendulum.
- the variation of the anisochronism can be of the order of several ppm / degree of angle, typically 2 ppm / degree of angle with a typical angle variation of ⁇ 25%.
- a known method to compensate for anisochronism is to act on the curvature of the end of the hairspring near the peak P. This method requires an adjustment step by specially trained persons; which is not optimal in terms of industrialization.
- it is proposed to act on the local stiffness of the turn by modulating the width of its section.
- the modulation has the effect of reinforcing the inertia and the local rigidity of the coil in the opposite sector to the peak.
- the width modulation function of the section is, for example, of the type k .cos ( ⁇ m - ⁇ ), where k is a coefficient of proportionality, ⁇ represents the polar angle in the section considered and ⁇ m the value from the polar angle to the peak.
- k a coefficient of proportionality
- ⁇ represents the polar angle in the section considered
- ⁇ m the value from the polar angle to the peak.
- the anisochronism compensation is about 1 ppm / degree of angle.
- Figure 7 shows a spiral having such a modulation of the width of its section.
- the modulation of the width of the section of the turns may be accompanied by a modulation of the pitch between the turns so that the interval between them at rest remains constant. This last modulation, not shown, avoids sticking between turns during large amplitudes of oscillation.
- the spiral described above may be manufactured by any means known to those skilled in the art for the machining of quartz, such as wet attack means (chemical etching) or dry (plasma attack).
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Oscillators With Electromechanical Resonators (AREA)
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
- Springs (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Electric Clocks (AREA)
- Percussion Or Vibration Massage (AREA)
Abstract
Description
La présente invention se rapporte aux oscillateurs mécaniques en général et concerne, plus particulièrement, les oscillateurs mécaniques pour montre qui comportent un ensemble, formé d'un spiral et d'un balancier, compensé en température.The present invention relates to mechanical oscillators in general and concerns, more particularly, oscillators mechanical watches which comprise a set consisting of a spiral and a balance, compensated in temperature.
Les oscillateurs mécaniques, encore appelés organes
régulateurs, des pièces d'horlogerie se composent d'un volant
d'inertie, appelé balancier, et d'un ressort en spirale, appelé spiral
ou ressort spiral, fixé sur l'axe du balancier, d'une part, et sur un
pont dans lequel pivote l'axe du balancier, d'autre part. Le balancier-spiral
oscille autour de sa position d'équilibre à une fréquence qui
doit être maintenue aussi constante que possible car elle détermine
la marche de la pièce d'horlogerie. Pour un spiral homogène et
uniforme, la période d'oscillation de tels oscillateurs est donnée par
l'expression:
Plus récemment, dans sa demande de brevet européen No. EP 02026147.5, la demanderesse a décrit une méthode de compensation thermique de la constante de rappel d'un ressort spiral consistant à oxyder thermiquement un spiral réalisé dans un substrat en silicium. Comme pour les spiraux en acier de type invar (par exemple, l'alliage de la maison Nivarox-FAR S.A.), les ressorts spiraux en silicium oxydé permettent de réguler le comportement thermique du ressort lui-même, éventuellement avec une légère surcompensation de quelques ppm/°C. Cette limitation de la surcompensation est due à l'épaisseur maximum d'oxyde réalisable pratiquement (actuellement inférieure à 4µm) et à la largeur minimum tolérable de la section du spiral en silicium (supérieure à 40µm). En conséquence, le balancier doit également être compensé thermiquement; ce qui peut être obtenu, par exemple, en utilisant un alliage de type "glucydur" (alliage de cuivre et de béryllium, également appelé "glucinium") ou encore d'autres alliages présentant un très faible coefficient de dilatation thermique. Cette méthode est également compliquée et, pas plus que les autres méthodes plus traditionnelles, ne permet de s'affranchir d'autres défauts d'isochronisme tels que ceux dus, par exemple, à divers frottements dans l'oscillateur, un déséquilibrage du balancier, un excentrage du centre de masse du spiral etc.More recently, in his European Patent Application No. EP 02026147.5, the applicant has described a method of thermal compensation of the spring constant of a spring spiral consisting of thermally oxidizing a spiral made in a silicon substrate. As for invar type steel spirals (for example, the alloy of the house Nivarox-FAR S.A.), the springs Oxidized silicon spirals help to regulate the behavior thermal spring itself, possibly with a slight overcompensation of a few ppm / ° C. This limitation of the overcompensation is due to the maximum achievable oxide thickness practically (currently less than 4μm) and width tolerable minimum of the silicon spiral section (greater than 40 .mu.m). As a result, the pendulum must also be compensated heat; what can be achieved, for example, by using a "glucydur" type alloy (alloy of copper and beryllium, also called "glucinium") or other alloys having a very low coefficient of thermal expansion. This method is also complicated and no more than the others more traditional methods, does not allow to get rid of others isochronism defects such as those due, for example, to various friction in the oscillator, an imbalance of the balance, a offset of the center of mass of the spiral etc.
La présente invention a pour but de pallier les inconvénients des techniques antérieures en proposant un spiral, pour oscillateur de pièce d'horlogerie, dont le comportement vis-à-vis des variations thermiques est tel qu'il permet de maintenir l'ensemble balancier-spiral aussi peu dépendant que possible desdites variations thermiques. Plus précisément, le spiral de l'invention est non seulement auto-compensé mais il peut être réalisé de manière à compenser également les dérives thermiques du balancier.The present invention aims to overcome the disadvantages previous techniques by proposing a hairspring, for oscillator timepiece, whose behavior with respect to variations thermal is such that it allows to maintain the balance-spiral assembly as little as possible of the said variations thermal. More specifically, the spiral of the invention is no only self-compensated but it can be realized in such a way also compensate for the heat drifts of the balance.
Un autre but de l'invention est de pouvoir compenser également des défauts d'isochronisme inhérents à la construction du balancier-spiral.Another object of the invention is to be able to compensate also isochronism defects inherent in the construction the balance-spring.
Ces buts sont atteints avec l'oscillateur présentant les caractéristiques définies dans les revendications.These goals are achieved with the oscillator presenting the features defined in the claims.
Plus précisément, le spiral de l'invention est réalisé dans un substrat de quartz cristallin dont la coupe est choisie de telle sorte que l'ensemble, constitué par le spiral et le balancier, soit compensé thermiquement.More specifically, the spiral of the invention is made in a crystalline quartz substrate whose cut is chosen so that the whole, constituted by the balance spring and the pendulum, is compensated thermally.
Selon une autre caractéristique de l'invention, la forme du spiral est choisie de manière à compenser les défauts d'anisochronisme de l'ensemble balancier-spiral.According to another characteristic of the invention, the shape of the spiral is chosen to compensate for the defects of anisochronism of the balance-spiral assembly.
Le comportement thermique des ressorts spiraux en quartz est essentiellement lié à l'inclinaison de la coupe par rapport à l'axe optique Z du cristal de quartz. Comme représenté à la figure 1, le plan du spiral peut être repéré par une double rotation ZY// (notation selon les normes IEEE), où est la longitude et la colatitude (inclinaison de l'axe du spiral par rapport à l'axe optique Z du cristal). The thermal behavior of the quartz spiral springs is essentially related to the inclination of the section with respect to the optical axis Z of the quartz crystal. As shown in FIG. 1, the plane of the hairspring can be identified by a double rotation ZY / / (notation according to the IEEE standards), where is the longitude and the colatitude (inclination of the axis of the hairspring relative to to the optical axis Z of the crystal).
Les rigidités des cristaux, tant d'allongement que de
cisaillement, ont généralement un point d'inversion thermique voisin
de 0°K avec une courbure négative. Ils se rigidifient à basse
température. Leur premier coefficient thermique à température
ambiante, c'est-à-dire 25°C, est donc généralement négatif avec
une courbure négative. Il varie de quelques dizaines à quelques
centaines de ppm/°C. Le quartz est l'un des rares cristaux
permettant, à température ambiante, d'annuler le premier coefficient
thermique de la rigidité au moyen de la coupe, c'est-à-dire
l'orientation de la structure, et même, de le rendre positif de
quelques dizaines de ppm/°C.The rigidities of the crystals, both elongation and
shear, usually have a nearby
Contrairement aux spiraux en silicium oxydé ou en acier de type invar, le spiral en quartz ne nécessite pas un balancier compensé de type glucydur. Il permet de compenser la dérive thermique de la plupart des balanciers courants bas de gamme en acier inox et, même, de la rendre, à certains égards, plus favorable que celle du diapason à quartz 32 kHz.Unlike spirals made of oxidized silicon or steel invar type, the quartz spiral does not require a pendulum compensated glucydur type. It compensates for the drift thermal of most low-end current balances in stainless steel and, even, to make it, in some ways, more favorable than that of the 32 kHz quartz tuning fork.
L'oscillateur balancier-spiral selon l'invention possède encore toutes ou certaines des caractéristiques énoncées ci-après:
- le spiral est réalisé dans un substrat de quartz dont la coupe est à double rotation ZY//;
- le spiral est réalisé dans un substrat de quartz dont la coupe est à simple rotation X/;
- le spiral est réalisé dans un substrat de quartz dont la coupe est à simple rotation Y/;
- l'angle est tel que le coefficient thermique du premier ordre α dudit spiral compense la dérive thermique du balancier;
- l'angle est tel que la courbe représentant la dérive thermique de l'ensemble balancier-spiral reste contenue à l'intérieur du gabarit horloger;
- l'épaisseur et, éventuellement, le pas du spiral sont modulés de manière à compenser les défauts d'isochronisme du balancier.
- the hairspring is made in a quartz substrate whose cut is double rotation ZY / / ;
- the hairspring is made in a quartz substrate whose section is a single rotation X / ;
- the hairspring is made in a quartz substrate whose cut is a single rotation Y / ;
- the angle is such that the thermal coefficient of the first order α of said balance compensates for the thermal drift of the balance;
- the angle is such that the curve representing the thermal drift of the sprung balance assembly remains contained within the watchmaker's jig;
- the thickness and, optionally, the pitch of the hairspring are modulated so as to compensate for the isochronism defects of the balance.
D'autres objets, caractéristiques et avantages de la présente invention apparaítront à la lecture de la description suivante faite à titre d'exemple non limitatif et en relation avec les dessins annexés dans lesquels:
- la figure 1 montre une plaque de quartz présentant une double rotation ZY// par rapport aux axes du cristal;
- les figures 2.a à 2.b montrent les comportements des premier α , deuxième β et troisième γ coefficients thermiques de la rigidité d'un spiral réalisé dans une plaque telle que celle de la figure 1 en fonction des angles et ;
- les figures 3.a à 3.c montrent le courbes de niveau de ces mêmes coefficients thermiques ;
- la figure 4 montre une plaque de quartz présentant une seule rotation autour de l'axe X;
- les figures 5.a à 5.c montrent les variations des coefficients thermiques α, β et γ de la rigidité pour un spiral réalisé dans la plaque de la figure 4;
- la figure 6 représente la dérive thermique de la fréquence avec adaptation de la coupe X/ du spiral au coefficient α du balancier; et
- la figure 7 montre un exemple de réalisation d'un spiral avec compensation de l'anisochronisme.
- Figure 1 shows a quartz plate having a double rotation ZY / / with respect to the axes of the crystal;
- Figures 2.a to 2.b show the behavior of the first α, second β and third γ thermal coefficients of the stiffness of a spiral made in a plate such as that of Figure 1 according to the angles and ;
- Figures 3.a to 3.c show the contour of these same thermal coefficients;
- Figure 4 shows a quartz plate having a single rotation about the X axis;
- Figures 5.a to 5.c show the variations of the thermal coefficients α , β and γ of the stiffness for a spiral made in the plate of Figure 4;
- FIG. 6 represents the thermal drift of the frequency with adaptation of the X / section of the spiral to the coefficient α of the balance; and
- Figure 7 shows an embodiment of a spiral with compensation for anisochronism.
Comme indiqué précédemment, le comportement thermique d'un spiral en quartz dépend essentiellement de la coupe de la plaque dans laquelle il est réalisé. Ainsi pour une coupe à double rotation ZY//, telle que représentée à la figure 1, les coefficients thermiques du premier ordre α, du deuxième ordre β et du troisième ordre γ de la rigidité du spiral sont représentés aux figures 2.a à 2.c, respectivement, pour une température de 25°C. L'axe vertical indique les valeurs de α, β et γ, respectivement en ppm/°C, en ppb/°C2 et ppt/°C3. Les figures 3.a à 3.c montrent les lignes de niveau des graphes des figures 2. Si l'on considère, en particulier, la figure 3.a, qui concerne le premier coefficient thermique α , on notera que la valeur de celui-ci ne dépend pratiquement pas de l'angle mais varie en fonction de l'angle . Comme, par ailleurs, la contribution des coefficients thermiques de deuxième et troisième ordres s'avère négligeable, il s'ensuit qu'une coupe à simple rotation, par exemple X/ est suffisante pour réaliser un spiral selon l'invention, c'est-à-dire capable non seulement de compenser sa propre dérive thermique mais encore celle du balancier qui lui est associé. Une plaque possédant une telle coupe est représentée à la figure 4. Elle est obtenue par une simple rotation d'angle autour de l'axe optique x du cristal. Les spiraux réalisés dans une plaque de ce type présenteront une symétrie élastique maximale, à savoir une symétrie par rapport au plan X et une symétrie par rapport à l'axe du spiral (axe Z' après rotation). Ces spiraux seront donc mieux équilibrés élastiquement que ceux réalisés dans une plaque à double rotation et ce, sans avoir une limitation de leur capacité de compensation thermique. Il convient de préciser que la simple rotation peut également être effectuée autour de l'axe Y.As indicated above, the thermal behavior of a quartz spiral depends essentially on the section of the plate in which it is made. Thus, for a double rotation cut ZY / / , as represented in FIG. 1, the thermal coefficients of the first order α, of the second order β and of the third order γ of the rigidity of the hairspring are represented in FIGS. at 2.c, respectively, for a temperature of 25 ° C. The vertical axis indicates the values of α, β and γ, respectively in ppm / ° C, in ppb / ° C 2 and ppt / ° C 3 . FIGS. 3a to 3.c show the level lines of the graphs of FIG. 2. Considering, in particular, FIG. 3a, which relates to the first thermal coefficient α, it will be noted that the value of that it hardly depends on the angle but varies according to the angle . Since, moreover, the contribution of the second and third order thermal coefficients is negligible, it follows that a single-rotation cut, for example X / , is sufficient to produce a hairspring according to the invention. that is to say, capable not only of compensating for its own thermal drift but also of the pendulum associated with it. A plate having such a section is shown in Figure 4. It is obtained by a simple rotation angle around the optical axis x of the crystal. The spirals made in a plate of this type will have maximum elastic symmetry, namely a symmetry with respect to the X plane and a symmetry with respect to the axis of the spiral (Z axis after rotation). These spirals will therefore be better balanced elastically than those made in a double rotation plate and without having a limitation of their heat compensation capacity. It should be noted that the simple rotation can also be performed around the Y axis.
Les figures 5.a à 5.b représentent la variation, en fonction de l'angle , des coefficients thermiques α , β et γ de la rigidité, respectivement, pour un spiral présentant une coupe à simple rotation X/. Les coefficients sont pratiquement symétriques par rapport à l'axe = 0. Si l'on ne considère que le premier coefficient α (les autres coefficients d'ordre plus élevé ayant une influence beaucoup plus faible et pouvant être négligés), on remarque que celui-ci est égal à zéro pour =±24.0° et qu'il est maximum pour = 0. En ce point, α est égal à 13.466 ppm/°C, ce qui correspond à la compensation thermique maximale qu'il est possible d'atteindre avec un spiral en quartz présentant une coupe X/0 =0. La dérive thermique du balancier dépend du matériau dans lequel il est réalisé. Ainsi les aciers inox courants ont un coefficient thermique de dilatation variant, typiquement, entre 10 et 15 ppm/°C, alors que pour le laiton la valeur de ce coefficient est de 17 ppm/°C. La figure 6 montre quelques exemples de compensation thermique réalisables, pour différents matériaux de balancier, avec des spiraux de coupe à simple rotation X/. Les courbes C1 à C3 montrent les dérives thermiques de la fréquence d'oscillateurs comportant des balanciers en acier de différents types, alors que la courbe C4 correspond à celle d'un oscillateur avec un balancier en laiton. On notera que par rapport au gabarit horloger (cadre R) imposé pour les montres-chronomètres (variation de fréquence inférieure à ± 8 sec/jour dans le domaine de températures 23°C ± 15°C), il est possible de trouver la coupe X/ du spiral de quartz permettant de compenser la dérive des balanciers les plus courants, tels les balanciers en acier. Pour un balancier en laiton (courbe C4), toutefois, la compensation maximale du spiral en quartz ne permet pas de satisfaire complètement aux exigences de ce gabarit horloger. Ainsi pour un matériau du balancier donné, est-il possible de déterminer l'angle , de la coupe du spiral en quartz, qui offre la meilleure compensation thermique possible de l'ensemble régulateur.Figures 5.a to 5.b show the variation, as a function of the angle , of the thermal coefficients α, β and γ of the stiffness, respectively, for a hairspring having a single rotation cut X / . The coefficients are practically symmetrical with respect to the axis = 0. If we consider only the first coefficient α (the other higher order coefficients have a much weaker influence and can be neglected), we note that it is equal to zero for = ± 24.0 ° and it is maximum for = 0. At this point, α is equal to 13.466 ppm / ° C, which corresponds to the maximum thermal compensation that it is possible to achieve with a quartz spiral having a cut X / 0 = 0. The thermal drift of the pendulum depends on the material in which it is made. Thus, common stainless steels have a thermal coefficient of expansion varying typically between 10 and 15 ppm / ° C, whereas for brass the value of this coefficient is 17 ppm / ° C. Figure 6 shows some examples of achievable thermal compensation, for different balance materials, with X / single-turn cutting spirals . The curves C1 to C3 show the thermal drifts of the frequency of oscillators comprising steel rockers of different types, while the curve C4 corresponds to that of an oscillator with a brass balance. It will be noted that compared to the watchmaker template (R-frame) imposed for chronometer watches (frequency variation of less than ± 8 sec / day in the temperature range 23 ° C ± 15 ° C), it is possible to find the cut X / quartz spiral to compensate for the drift of the most common balances, such as steel pendulums. For a brass balance (curve C4), however, the maximum compensation of the quartz spiral does not fully satisfy the requirements of this watchmaker template. Thus for a material of the given balance, is it possible to determine the angle of the cup of the quartz spiral, which offers the best possible thermal compensation of the regulator assembly.
Selon une autre caractéristique de l'invention, le spiral en quartz permet également de compenser des défauts d'isochronisme de l'oscillateur. L'une des sources principales d'anisochronisme est la variation de l'amplitude des oscillations du balancier. La variation de l'anisochronisme peut être de l'ordre de plusieurs ppm/degré d'angle, typiquement 2 ppm/degré d'angle avec une variation d'angle typique de ± 25%. Une méthode connue pour compenser l'anisochronisme consiste à agir sur la courbure de l'extrémité du spiral à proximité du piton P. Cette méthode demande une étape de réglage par des personnes spécialement formées; ce qui n'est pas optimum en matière d'industrialisation. Selon une variante de l'invention, il est proposé d'agir sur la rigidité locale de la spire en modulant la largeur de sa section. La modulation a pour effet de renforcer l'inertie et la rigidité locale de la spire dans le secteur opposé au piton. La fonction de modulation de la largeur de la section est, par exemple, du type k.cos( m -), où k est un coefficient de proportionnalité, représente l'angle polaire dans la section considérée et m la valeur de l'angle polaire au piton. Lorsque k est égal à 0,4, la compensation d'anisochronisme est d'environ 1 ppm/degré d'angle. La valeur exacte de k pour un oscillateur donné peut être déterminée de manière empirique ou par le biais d'une simulation numérique. La figure 7 montre un spiral présentant une telle modulation de la largeur de sa section. La modulation de la largeur de la section des spires peut être accompagnée d'une modulation du pas entre les spires de manière à ce que l'intervalle entre ces dernières au repos reste constant. Cette dernière modulation, non représentée, permet d'éviter le collage entre spires lors de grandes amplitudes d'oscillation. Le spiral décrit précédemment peut être fabriqué par tout moyen connu de l'homme de métier pour l'usinage des quartz, tels les moyens d'attaque par voie humide (attaque chimique) ou par voie sèche (attaque par plasma).According to another characteristic of the invention, the quartz hairspring also makes it possible to compensate for isochronism defects of the oscillator. One of the main sources of anisochronism is the variation in the amplitude of the oscillations of the pendulum. The variation of the anisochronism can be of the order of several ppm / degree of angle, typically 2 ppm / degree of angle with a typical angle variation of ± 25%. A known method to compensate for anisochronism is to act on the curvature of the end of the hairspring near the peak P. This method requires an adjustment step by specially trained persons; which is not optimal in terms of industrialization. According to a variant of the invention, it is proposed to act on the local stiffness of the turn by modulating the width of its section. The modulation has the effect of reinforcing the inertia and the local rigidity of the coil in the opposite sector to the peak. The width modulation function of the section is, for example, of the type k .cos ( m - ), where k is a coefficient of proportionality, represents the polar angle in the section considered and m the value from the polar angle to the peak. When k equals 0.4, the anisochronism compensation is about 1 ppm / degree of angle. The exact value of k for a given oscillator can be determined empirically or by numerical simulation. Figure 7 shows a spiral having such a modulation of the width of its section. The modulation of the width of the section of the turns may be accompanied by a modulation of the pitch between the turns so that the interval between them at rest remains constant. This last modulation, not shown, avoids sticking between turns during large amplitudes of oscillation. The spiral described above may be manufactured by any means known to those skilled in the art for the machining of quartz, such as wet attack means (chemical etching) or dry (plasma attack).
Bien que la présente invention ait été décrite en relation avec des exemples de réalisation particuliers, on comprendra qu'elle est susceptible de modifications ou variantes sans pour autant sortir de son domaine. Par exemple, d'autres types de modulation de l'épaisseur des spires peuvent être envisagés, telle une variation linéaire de l'épaisseur de la spire depuis le centre du spiral vers le piton, que celle-ci soit ou non accompagnée d'une augmentation du pas des spires.Although the present invention has been described in connection with particular embodiments, it will be understood that it is subject to modifications or variations without departing from its field. For example, other types of modulation of the thickness of the turns can be considered, such a variation linear of the thickness of the coil from the center of the spiral to the whether or not accompanied by an increase in no turns.
Claims (13)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT04405355T ATE470086T1 (en) | 2004-06-08 | 2004-06-08 | BALANCE SPRING OSCILLATOR WITH TEMPERATURE COMPENSATION |
EP04405355A EP1605182B8 (en) | 2004-06-08 | 2004-06-08 | Temperature compensated hairspring-balance oscillator |
DE602004027471T DE602004027471D1 (en) | 2004-06-08 | 2004-06-08 | Balance spring oscillator with temperature compensation |
US11/628,831 US7682068B2 (en) | 2004-06-08 | 2005-06-02 | Temperature-compensated balance wheel/hairspring oscillator |
PCT/EP2005/052520 WO2005124184A1 (en) | 2004-06-08 | 2005-06-02 | Temperature compensated balance-spiral oscillator |
CNB2005800233744A CN100564927C (en) | 2004-06-08 | 2005-06-02 | Escapement/hairspring the oscillator of band temperature correction |
JP2007526416A JP2008501967A (en) | 2004-06-08 | 2005-06-02 | Temperature-compensated roof / spring spring oscillator |
HK07111842.0A HK1106570A1 (en) | 2004-06-08 | 2007-11-01 | Temperature compensated balance-spiral oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04405355A EP1605182B8 (en) | 2004-06-08 | 2004-06-08 | Temperature compensated hairspring-balance oscillator |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1605182A1 true EP1605182A1 (en) | 2005-12-14 |
EP1605182B1 EP1605182B1 (en) | 2010-06-02 |
EP1605182B8 EP1605182B8 (en) | 2010-07-14 |
Family
ID=34932141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04405355A Expired - Lifetime EP1605182B8 (en) | 2004-06-08 | 2004-06-08 | Temperature compensated hairspring-balance oscillator |
Country Status (8)
Country | Link |
---|---|
US (1) | US7682068B2 (en) |
EP (1) | EP1605182B8 (en) |
JP (1) | JP2008501967A (en) |
CN (1) | CN100564927C (en) |
AT (1) | ATE470086T1 (en) |
DE (1) | DE602004027471D1 (en) |
HK (1) | HK1106570A1 (en) |
WO (1) | WO2005124184A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2154583A1 (en) * | 2008-07-29 | 2010-02-17 | Rolex Sa | Hairspring for sprung balance |
CH701846A1 (en) * | 2009-09-21 | 2011-03-31 | Rolex Sa | Spiral for flat stick together of watches and stick-spiral. |
CH706087A1 (en) * | 2012-02-01 | 2013-08-15 | Piguet & Co Horlogerie | Flat spiral for integration in control element of movement in timepiece, has series of turns formed by rolled plate, where outer end portion of spiral includes series of stiffened zones separated by flexible zones |
EP2703909A1 (en) * | 2012-09-04 | 2014-03-05 | The Swatch Group Research and Development Ltd. | Paired balance wheel - hairspring resonator |
EP2717103A1 (en) * | 2012-10-04 | 2014-04-09 | The Swatch Group Research and Development Ltd. | Luminour hairspring |
CN105738034A (en) * | 2014-12-12 | 2016-07-06 | 天津海鸥表业集团有限公司 | Balance measuring method for laser correction balance wheel gravity center shift and measuring cutting device |
EP3056948B1 (en) | 2015-02-17 | 2019-02-20 | Master Dynamic Limited | Silicon hairspring |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1818736A1 (en) * | 2006-02-09 | 2007-08-15 | The Swatch Group Research and Development Ltd. | Shockproof collet |
EP2184653A1 (en) * | 2008-11-06 | 2010-05-12 | Montres Breguet S.A. | Spiral with terminal curve elevation in micro-machinable material |
DE202010018420U1 (en) * | 2009-02-06 | 2016-06-22 | Damasko Gmbh | Mechanical oscillating system for a watch and balance spring for one watch |
US10324419B2 (en) | 2009-02-06 | 2019-06-18 | Domasko GmbH | Mechanical oscillating system for a clock and functional element for a clock |
EP2284629A1 (en) * | 2009-08-13 | 2011-02-16 | ETA SA Manufacture Horlogère Suisse | Thermocompensated mechanical resonator |
EP2337221A1 (en) * | 2009-12-15 | 2011-06-22 | The Swatch Group Research and Development Ltd. | Resonator thermocompensated at least to the first and second orders |
GB201001897D0 (en) * | 2010-02-05 | 2010-03-24 | Levingston Gideon | Non magnetic mateial additives and processes for controling the thermoelastic modulus and spring stiffness within springs for precision instruments |
US8777195B2 (en) * | 2011-09-23 | 2014-07-15 | Adicep Technologies, Inc. | Non-linear torsion spring assembly |
EP2590325A1 (en) * | 2011-11-04 | 2013-05-08 | The Swatch Group Research and Development Ltd. | Thermally compensated ceramic resonator |
EP2597536A1 (en) * | 2011-11-25 | 2013-05-29 | CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement | Improved spiral spring and method for manufacturing said spiral spring |
US9188956B2 (en) * | 2012-12-28 | 2015-11-17 | Seiko Instruments Inc. | Balance, timepiece movement, timepiece and manufacturing method of balance |
DE102013106505B8 (en) * | 2013-06-21 | 2014-08-21 | Damasko Uhrenmanufaktur KG | Oscillation system for mechanical movements |
WO2014203086A1 (en) | 2013-06-21 | 2014-12-24 | Damasko Uhrenmanufaktur KG | Oscillating system for mechanical clockwork mechanisms, spiral spring and method for production thereof |
DE102013110090A1 (en) * | 2013-09-13 | 2015-03-19 | Damasko Uhrenmanufaktur KG | Oscillation system for mechanical movements |
EP3159746B1 (en) * | 2015-10-19 | 2018-06-06 | Rolex Sa | Heavily doped silicon hairspring for timepiece |
EP3214506B1 (en) * | 2016-03-04 | 2019-01-30 | ETA SA Manufacture Horlogère Suisse | Compact hairspring with constant double cross-section |
WO2017163148A1 (en) * | 2016-03-23 | 2017-09-28 | Patek Philippe Sa Geneve | Balance wheel oscillator for timepiece |
TWI796444B (en) * | 2018-03-20 | 2023-03-21 | 瑞士商百達翡麗日內瓦股份有限公司 | Method for manufacturing timepiece thermocompensated hairsprings of precise stiffness |
EP3667433B1 (en) * | 2018-12-12 | 2023-02-01 | Nivarox-FAR S.A. | Spring and method for manufacturing same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US209642A (en) * | 1878-11-05 | Improvement in balance-springs for time-keepers | ||
EP0732635A1 (en) * | 1995-03-17 | 1996-09-18 | C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa | Micromechanical element and process for its manufacture |
US20030011119A1 (en) * | 2000-02-07 | 2003-01-16 | Masato Imai | Quartz coil spring and method of producing the same |
EP1422436A1 (en) * | 2002-11-25 | 2004-05-26 | CSEM Centre Suisse d'Electronique et de Microtechnique SA | Spiral watch spring and its method of production |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH1060869A4 (en) * | 1969-07-11 | 1971-06-30 | ||
JPH06117470A (en) * | 1992-10-07 | 1994-04-26 | Yokogawa Electric Corp | Spiral spring and electric indicating instrument |
EP0886195B1 (en) * | 1997-06-20 | 2002-02-13 | Montres Rolex Sa | Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same |
US6536472B2 (en) * | 2001-05-07 | 2003-03-25 | Fisher Controls International, Inc. | High performance fluid control valve |
EP1302821A3 (en) * | 2001-10-10 | 2010-05-05 | Franck Muller-Watchland SA | Balance-spring for time measuring apparatus |
JP2004007420A (en) * | 2002-03-26 | 2004-01-08 | Seiko Epson Corp | Piezoelectric vibration chip, piezoelectric vibrator, and piezoelectric device |
EP1445670A1 (en) * | 2003-02-06 | 2004-08-11 | ETA SA Manufacture Horlogère Suisse | Balance-spring resonator spiral and its method of fabrication |
DE60333191D1 (en) * | 2003-09-26 | 2010-08-12 | Asulab Sa | Spiral spring balance resonator with thermal compensation |
-
2004
- 2004-06-08 EP EP04405355A patent/EP1605182B8/en not_active Expired - Lifetime
- 2004-06-08 AT AT04405355T patent/ATE470086T1/en not_active IP Right Cessation
- 2004-06-08 DE DE602004027471T patent/DE602004027471D1/en not_active Expired - Lifetime
-
2005
- 2005-06-02 JP JP2007526416A patent/JP2008501967A/en active Pending
- 2005-06-02 CN CNB2005800233744A patent/CN100564927C/en active Active
- 2005-06-02 WO PCT/EP2005/052520 patent/WO2005124184A1/en active Application Filing
- 2005-06-02 US US11/628,831 patent/US7682068B2/en active Active
-
2007
- 2007-11-01 HK HK07111842.0A patent/HK1106570A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US209642A (en) * | 1878-11-05 | Improvement in balance-springs for time-keepers | ||
EP0732635A1 (en) * | 1995-03-17 | 1996-09-18 | C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa | Micromechanical element and process for its manufacture |
US20030011119A1 (en) * | 2000-02-07 | 2003-01-16 | Masato Imai | Quartz coil spring and method of producing the same |
EP1422436A1 (en) * | 2002-11-25 | 2004-05-26 | CSEM Centre Suisse d'Electronique et de Microtechnique SA | Spiral watch spring and its method of production |
Non-Patent Citations (1)
Title |
---|
ANONYMOUS: ""Good" Fundamental Material Constants for Chrystalline Quartz", INTERNET ARTICLE, 11 August 2003 (2003-08-11), XP002311434, Retrieved from the Internet <URL:http://web.archive.org/web/20030811155745/www.sawyerresearch.com/Misc/Qtz_Constants.pdf> [retrieved on 20041220] * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2154583A1 (en) * | 2008-07-29 | 2010-02-17 | Rolex Sa | Hairspring for sprung balance |
EP2523053A1 (en) * | 2008-07-29 | 2012-11-14 | Rolex S.A. | Hairspring for sprung balance |
CH701846A1 (en) * | 2009-09-21 | 2011-03-31 | Rolex Sa | Spiral for flat stick together of watches and stick-spiral. |
US8348497B2 (en) | 2009-09-21 | 2013-01-08 | Rolex S.A. | Flat balance spring for horological balance and balance wheel/balance spring assembly |
CH706087A1 (en) * | 2012-02-01 | 2013-08-15 | Piguet & Co Horlogerie | Flat spiral for integration in control element of movement in timepiece, has series of turns formed by rolled plate, where outer end portion of spiral includes series of stiffened zones separated by flexible zones |
EP2703910A3 (en) * | 2012-09-04 | 2014-05-14 | The Swatch Group Research and Development Ltd. | Paired balance wheel - hairspring resonator |
EP2703909A1 (en) * | 2012-09-04 | 2014-03-05 | The Swatch Group Research and Development Ltd. | Paired balance wheel - hairspring resonator |
US9030920B2 (en) | 2012-09-04 | 2015-05-12 | The Swatch Group Research And Development Ltd. | Resonator with matched balance spring and balance |
EP2717103A1 (en) * | 2012-10-04 | 2014-04-09 | The Swatch Group Research and Development Ltd. | Luminour hairspring |
WO2014053336A1 (en) * | 2012-10-04 | 2014-04-10 | The Swatch Group Research And Development Ltd | Illuminated hairspring |
CN104704431A (en) * | 2012-10-04 | 2015-06-10 | 斯沃奇集团研究和开发有限公司 | Illuminated hairspring |
US9188958B2 (en) | 2012-10-04 | 2015-11-17 | The Swatch Group Research And Development Ltd | Illuminated balance spring |
JP2015534071A (en) * | 2012-10-04 | 2015-11-26 | ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド | Balance spring illuminated |
RU2596097C1 (en) * | 2012-10-04 | 2016-08-27 | Те Свотч Груп Рисерч Энд Дивелопмент Лтд | Illuminated balancing spring |
CN105738034A (en) * | 2014-12-12 | 2016-07-06 | 天津海鸥表业集团有限公司 | Balance measuring method for laser correction balance wheel gravity center shift and measuring cutting device |
CN105738034B (en) * | 2014-12-12 | 2018-05-22 | 天津海鸥表业集团有限公司 | Balance measuring method for laser correction balance wheel gravity center shift and measuring cutting device |
EP3056948B1 (en) | 2015-02-17 | 2019-02-20 | Master Dynamic Limited | Silicon hairspring |
Also Published As
Publication number | Publication date |
---|---|
EP1605182B8 (en) | 2010-07-14 |
JP2008501967A (en) | 2008-01-24 |
ATE470086T1 (en) | 2010-06-15 |
HK1106570A1 (en) | 2008-03-14 |
DE602004027471D1 (en) | 2010-07-15 |
US20080008050A1 (en) | 2008-01-10 |
EP1605182B1 (en) | 2010-06-02 |
WO2005124184A1 (en) | 2005-12-29 |
CN100564927C (en) | 2009-12-02 |
US7682068B2 (en) | 2010-03-23 |
CN1985103A (en) | 2007-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1605182B1 (en) | Temperature compensated hairspring-balance oscillator | |
EP2215531B1 (en) | Mechanical oscillator having an optimized thermoelastic coefficient | |
EP2514094B1 (en) | Resonator thermocompensated at least to the first and second orders | |
EP1422436B1 (en) | Spiral watch spring and its method of production | |
EP2102717B1 (en) | Mechanical oscillator for timepiece | |
EP1655642B1 (en) | Balance-spring resonator spiral | |
EP2090941B1 (en) | Mechanical oscillator | |
CH699780B1 (en) | of self-compensating balance spring watch. | |
WO2011026725A1 (en) | Spiral spring | |
EP1612627A1 (en) | Bi-material autocompensating hairspring | |
EP1519250A1 (en) | Thermally compensated balance-hairspring resonator | |
EP2690506A1 (en) | Anti-tripping clock hairspring | |
CH708067B1 (en) | of self-compensating balance spring watch. | |
EP2753985B1 (en) | Clock movement having a balance-wheel and hairspring | |
CH712726A2 (en) | Pendulum oscillator-spiral clock with magnetic pivot. | |
EP2703910A2 (en) | Paired balance wheel - hairspring resonator | |
CH710308A2 (en) | Thermocompensated silicon resonator. | |
EP3534222A1 (en) | Method for producing a thermally compensated oscillator | |
CH717283B1 (en) | Watch assembly comprising an oscillating element and an escapement. | |
CH701155B1 (en) | Balance spiral type mechanical oscillator for e.g. wrist watch, has balance and spiral, which are made of non-magnetic material such as diamond, where material possesses very low thermal expansion coefficient | |
CH702353A2 (en) | Thermocompensated resonator i.e. hairspring, for timepiece, has body comprising core with material, where body comprises two coatings allowing resonator having thermal coefficients of first and second orders to be zero | |
CH714706B1 (en) | Angular return spring for thermo-compensated oscillator. | |
CH714704B1 (en) | Angular return spring for thermo-compensated oscillator | |
WO2023242746A1 (en) | Balance spring for a timepiece resonator | |
CH714705A2 (en) | Angular return spring for thermo-compensated oscillator. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20060601 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20060911 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHN |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 602004027471 Country of ref document: DE Date of ref document: 20100715 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 |
|
BERE | Be: lapsed |
Owner name: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECH Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100903 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101004 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 |
|
26N | No opposition filed |
Effective date: 20110303 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004027471 Country of ref document: DE Effective date: 20110302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100608 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100913 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: GLN S.A., CH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROT, CH Free format text: FORMER OWNER: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHNIQUE S.A. - RECHERCHE ET DEVELOPPEMENT, CH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BOVARD SA NEUCHATEL CONSEILS EN PROPRIETE INTE, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230622 Year of fee payment: 20 Ref country code: DE Payment date: 20230620 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230622 Year of fee payment: 20 Ref country code: CH Payment date: 20230702 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 602004027471 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240607 |