EP1594596A1 - Mehrlagiger keramikverbund - Google Patents

Mehrlagiger keramikverbund

Info

Publication number
EP1594596A1
EP1594596A1 EP03815521A EP03815521A EP1594596A1 EP 1594596 A1 EP1594596 A1 EP 1594596A1 EP 03815521 A EP03815521 A EP 03815521A EP 03815521 A EP03815521 A EP 03815521A EP 1594596 A1 EP1594596 A1 EP 1594596A1
Authority
EP
European Patent Office
Prior art keywords
layer
substrate
layers
ceramic composite
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03815521A
Other languages
English (en)
French (fr)
Inventor
Frank Ehlen
Olaf Binkle
Ralph Nonninger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Itn Nanovation AG
Original Assignee
Itn Nanovation AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itn Nanovation AG filed Critical Itn Nanovation AG
Publication of EP1594596A1 publication Critical patent/EP1594596A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00413Inorganic membrane manufacture by agglomeration of particles in the dry state by agglomeration of nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • C04B2237/586Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different densities
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/68Forming laminates or joining articles wherein at least one substrate contains at least two different parts of macro-size, e.g. one ceramic substrate layer containing an embedded conductor or electrode
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles

Definitions

  • Ceramic membranes usually consist of a multi-layer system made of porous ceramic, the individual layers of which have different pore sizes.
  • the actual filtering layer (functional layer) is usually the thinnest and most porous of the system. This is located on a substrate of the system that has a coarser porous structure. At the same time, the substrate takes on the mechanical support function of the overall system and often also forms filtrate collection structures.
  • the multilayer filter is produced by first molding, drying and sintering the substrate, then applying the functional layer and sintering it onto the substrate.
  • a layer that contains ceramic particles but is not yet sintered is called a green layer, a body made of this material corresponding to green bodies.
  • the sintering of a ceramic composite is a manufacturing process in the course of which a green body is transformed into a porous binder-free solid or into a more or less one highly compacted binder-free solids are transferred with a corresponding increase in mechanical strength, or the compression of an already sintered body.
  • the starting body during sintering can be seen as a dense packing of spherical particles, which are slightly connected at contact points, ie they touch each other with adhesion in so-called "necks".
  • the spaces between the particles form the pores of the starting body.
  • the original pores are complex structures of different geometries.
  • the sintering process takes place in two stages at elevated temperature. In the first stage, the overall porosity is essentially retained.
  • the centers of the particles remain approximately the same distance apart. Nevertheless, a gain in surface energy is achieved because the shape of the cavities, ie the pores, from the complicated structures of the initial state to the simple spherical shape. Thus, the lowest surface is achieved for a given porosity.
  • the particles touch in the "necks", which become thicker in the first stage of sintering due to mass transport , The pores round off, whereby the smallest pore surface is achieved. This mass transfer is also called grain boundary diffusion.
  • the pores are then gradually closed. The material is compacted by removing empty spaces to the inner and outer surface (volume diffusion). Due to the compression of the sintered body, the overall porosity is reduced. The pores are filled via grain boundary diffusion and volume diffusion. In this step, the centers of the original powder particles move together. This causes the sintered body to compact or shrink.
  • the extent of a grain boundary diffusion can be determined via the capillary pressure that arises in the pores.
  • the shape of the pores is changed by mass transfer, which is initiated by different radii of curvature becomes.
  • the substance is transported from the "bellies" of the particles to the "necks" of the particles.
  • the atoms are more firmly bound on an inwardly curved surface (concave) than on an outwardly curved surface (convex).
  • the capillary pressure which initiates the sintering of the ceramic green body, depends not only on the temperature and the type of particle, but also on the size of the particles used, since the convex radius of curvature increases with decreasing particle size.
  • the temperature at which the sintering of a ceramic green body begins (assuming the same packing density in the green body) thus decreases with decreasing particle size of the starting particles.
  • the object of the present invention is therefore to provide a method with which a defect-free ceramic layer can be applied to a sintered ceramic substrate.
  • this object is achieved by a method for producing a multilayer porous ceramic composite by sintering, in which one or more layers are applied to the surface of a sintered substrate, at least one layer containing nanoscale particles with a particle size of x ⁇ 100 nm, the roughness depth the surface of the substrate is smaller than the layer thickness s of the nanoscale particles applied to the surface of the substrate and the layer thickness s of the applied nanoscale particles after a sintering process with the substrate at temperatures between 500 ° C. and 1300 ° C. a layer thickness of s ⁇ 2 , 5 ⁇ m.
  • the minimum thickness of the functional layer is determined by the roughness depth of the sintered substrate. The roughness depth must not exceed the layer thickness of the functional layer.
  • the ceramic materials used are preferably derived from metal (mixed) oxides and carbides, nitrides, borides, silicides and carbonitrides from metals and non-metals. Examples of this are A1 2 0 3 , partially and fully stabilized Zr0 2 , mullite, cordierite, perovskite, spinels, for example BaTi0 3 , PZT, PLZT, and SiC, Si 3 N 4 , B 4 C, BN, MoSi 2 , TiB 2 , TiN, TiC and Ti (C, N). It goes without saying that this list is not exhaustive. Mixtures of oxides or non-oxides and mixtures of oxides and non-oxides can of course also be used.
  • two layers are applied to the sintered substrate, at least one of the layers containing the nanoscale particles.
  • the filter property of the porous ceramic composite can be influenced in a targeted manner by means of several layers of different porosity. Particularly good filtration results can be achieved if one of the layers is defect-free.
  • more than two layers are applied to the sintered substrate, at least two layers comprising the nanoscale particles. This measure allows a multilayer porous ceramic composite to be built up which has good filter properties.
  • nanoscale particles have a particle size of x ⁇ 20 nm, preferably x ⁇ 10 nm, grain boundary sliding can be triggered with a low activation energy. This enables the use of low sintering temperatures at sintering voltages of around 200MPa.
  • nanoscale particles are applied to the sintered substrate by spraying, dipping, flooding or film casting. If the nanoscale particles are contained in a suspension, they can be applied to the sintered substrate in a particularly simple manner by the process steps mentioned. In particular, these measures enable the layer thickness of the green layer that is applied to the sintered substrate, and thus the sintered functional layer, to be controlled and adjusted particularly well.
  • an intermediate layer in particular an organic intermediate layer
  • An organic binder can compensate for unevenness in the surface of the sintered substrate and / or the organic binder prevents the infiltration of the nanoparticles forming the functional layer into the surface of the coarse-porous substrate.
  • the organic binder can block and / or smear the pores on the surface of the substrate, so that penetration of the nanoparticles forming the functional layer into the surface of the substrate is prevented.
  • the substrate can be processed into a suitable carrier structure using an organic binder.
  • the organic intermediate layer evaporates during the sintering process, so that the filter properties of the finished ceramic composite are not influenced by the organic binder.
  • the object is also achieved by a multilayer porous ceramic composite which has a sintered substrate and a defect-free functional layer sintered from nanoscale particles, which has a layer thickness s ⁇ 2.5 ⁇ m.
  • a porous ceramic composite has a particularly high-quality filter layer, since it is defect-free.
  • the ceramic composite has three layers, one layer having the nanoscale particles.
  • the material properties of the layers can be coordinated with one another in such a way that at least one filter layer is defect-free and a high-quality filter is produced.
  • the ceramic composite has more than three layers, at least two layers having nanoscale particles. This measure allows the filter effect to be gradually increased within the ceramic composite, at least two layers being provided which are particularly fine-pored and free of defects.
  • multilayer conductor track structures can be constructed in which the defect-free layer made of nanoscale particles is an insulator. As a result, conductor tracks can be arranged electrically insulated at a short distance from one another.
  • a green layer is applied to an already sintered ceramic substrate and is coated with the already sintered substrate. strat sintered at temperatures between 500 ° C and 1300 ° C, the green layer having only ceramic particles with a particle size x 100 nm and the sintered green layer having a layer thickness s ⁇ 2.5 microns.
  • the layer produced in this process is defect-free and fine-pored and is therefore particularly well suited for filtration processes and can be used as a catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Filtering Materials (AREA)

Abstract

Bei einem Verfahren zur Herstellung eines porösen Keramikverbunds wird eine grüne Schicht auf ein bereits gesintertes Ke­ramiksubstrat aufgebracht und mit dem bereits gesinterten Substrat bei Temperaturen zwischen 500°C und 1300°C gesintert, wobei die grüne Schicht ausschließlich Keramikteilchen mit einer Teilchengröße x <&lowbar; 100 nm aufweist und die gesinterte grüne Schicht als Funktionsschicht eine Schichtdicke s < 2,5 µm aufweist. Die in diesem Verfahren hergestellte Funktionsschicht ist defektfrei und feinporigund somit besonders gut für Filtrationsvorgänge geeign et.

Description

Bezeichnung der Erfindung:
Mehrlagiger Keramikverbund
BESCHREIBUNG
Stand der Technik
Die Erfindung betrifft ein Verfahren zur Herstellung eines mehrlagigen porösen Keramikverbunds durch Sintern. Mehrlagige poröse Keramikverbunde können beispielsweise in der Filtertechnik und in der Elektronik zum Aufbau von Leiterbahnstrukturen zum Einsatz kommen. Keramische Mehrschichtfilter werden beispielsweise zur Trennung von Öl-Wasser-Emulsionen bei der spanabhebenden Fertigung, zur Klärung von Bier, zur Gasreinigung, zur Gastrennung oder zur Trennung von Flüssig- Feststoff-Gemischen eingesetzt werden. Keramische Filtermaterialien sind üblicherweise aus miteinander versinterten Partikeln aufgebaut, deren Zwischenräume die Poren bilden. Für Filtrationszwecke ist es erforderlich, einen möglichst hohen Anteil an Porenvolumen und eine möglichst gleichmäßig und eng verteilte Porengrößenverteilung zu erhalten. Daher werden zur Herstellung keramischer Filtermaterialien vorzugsweise keramische Pulver mit eng verteilter Korngrößenverteilung verwendet.
Üblicherweise bestehen keramische Membranen aus einem Mehrschichtensystem aus poröser Keramik, dessen einzelne Schichten unterschiedliche Porenweiten aufweisen. Die eigentlich filtrierende Schicht (Funktionsschicht) ist in der Regel die dünnste und feinporöseste des Systems. Diese befindet sich auf einem Substrat des Systems, das eine grobporösere Struktur aufweist. Das Substrat übernimmt gleichzeitig die mechanische Trägerfunktion des Gesamtsystems und bildet häufig auch Filt- ratsammelstrukturen aus. Die Herstellung der Mehrschichtfilter erfolgt, indem zuerst das Substrat geformt, getrocknet und gesintert wird, danach wird die Funktionsschicht aufgebracht und auf das Substrat gesintert. Eine Schicht, die Keramikteilchen enthält, aber noch nicht gesintert ist, nennt man grüne Schicht, einen Körper aus diesem Material entsprechend Grünkörper.
Mit Sintern eines Keramikverbundes bezeichnet man ein Fertigungsverfahren, in dessen Verlauf ein Grünkörper in einen porösen binderfreien Festkörper bzw. in einen mehr oder weniger stark verdichteten binderfreien Festkörper überführt wird unter entsprechender Zunahme der mechanischen Festigkeit, bzw. die Verdichtung eines bereits gesinterten Körpers. Idealisiert kann man den Ausgangskörper beim Sintern als eine dichte Packung kugelförmiger Teilchen sehen, die an Kontaktstellen geringfügig verbunden sind, d.h. sich unter Adhäsion in sogenannten „Hälsen" berühren. Die Zwischenräume zwischen den Teilchen bilden die Poren des Ausgangskörpers . Die ursprünglichen Poren sind komplizierte Gebilde unterschiedlichster Geometrien. Der Sintervorgang läuft bei erhöhter Temperatur in zwei Stufen ab. In der ersten Stufe bleibt die Gesamtporosität im Wesentlichen erhalten. Die Mittelpunkte der Teilchen bleiben etwa gleich weit voneinander entfernt. Trotzdem wird ein Gewinn an Oberflächenenergie erzielt, da die Form der Hohlräume, d.h. der Poren, von den komplizierten Gebilden des An- fangszustandes in die einfache Kugelform übergeht. Somit wird für eine gegebene Porosität die geringste Oberfläche erreicht. Die Teilchen berühren sich in den „Hälsen", die im ersten Stadium des Sinterns aufgrund von Stofftransport dicker werden. Dabei runden sich die Poren ab, wodurch die geringste Porenoberfläche erzielt wird. Man nennt diesen Stofftransport auch Korngrenzendiffusion. In der zweiten Stufe werden die Poren dann allmählich geschlossen. Das Material verdichtet sich, indem Leerstellen zur inneren und äußeren Oberfläche abtransportiert werden (Volumendiffusion) . Aufgrund der Verdichtung des Sinterkörpers erfolgt eine Verringerung der Gesamtporosität. Das Auffüllen der Poren geschieht über Korngrenzendiffusion und Volumendiffusion. In diesem Schritt rücken die Mittelpunkte der ursprünglichen Pulverteilchen zusammen. Dies bewirkt eine Verdichtung oder Schrumpfung des Sinterkörpers.
Das Ausmaß einer stattfindenden Korngrenzendiffusion lässt sich über den in den Poren entstehenden Kapillardruck erfassen. Die Formänderung der Poren erfolgt über einen Stofftransport, der durch unterschiedliche Krümmungsradien initiiert wird. Insbesondere erfolgt ein Stofftransport von den „Bäuchen" der Teilchen zu den „Hälsen" der Teilchen. An einer nach innen gewölbten Oberfläche (konkav) sind die Atome im Mittel fester eingebunden als an einer nach außen gewölbten Oberfläche (konvex) . An den „Bäuchen" der Teilchen herrscht ein positiver, an den „Hälsen" der Teilchen ein negativer Kapillardruck. Diese Druckdifferenz ist die Triebkraft des Stofftransports. Der Kapillardruck, der das Sintern des keramischen Grünkörpers einleitet, ist neben der Temperatur und der Teilchenart auch von der Größe der verwendeten Teilchen abhängig, da der konvexe Krümmungsradius mit abnehmender Teilchengröße zunimmt. Somit sinkt die Temperatur, bei der das Sintern eines keramischen Grünkörpers beginnt (eine gleiche Packungsdichte im Grünkörper vorausgesetzt) mit abnehmender Teilchengröße der Ausgangsteilchen.
Bei bekannten Verfahren, bei denen eine Teilchenschicht auf ein gesintertes Substrat aufgebracht wird und anschließend der gesamte Keramikverbund nochmals gesintert wird, verdichten sich aufgrund der oben beschriebenen Vorgänge das Substrat und der Grünkörper unterschiedlich. Dadurch kommt es zu Spannungen zwischen den beiden Materialschichten, die wiederum zu Defekten in den Materialschichten und/oder an den Schichtübergängen führen. Derartige Defektstellen sind insbesondere in Filterschichten unerwünscht.
Aufgabe der Erfindung
Aufgabe der vorliegenden Erfindung ist es deshalb, ein Verfahren bereitzustellen, mit dem eine defektfreie Keramikschicht auf ein gesintertes Keramiksubstrat aufgebracht werden kann. Gegenstand der Erfindung
Erfindungsgemäß wird diese Aufgabe durch ein Verfahren zur Herstellung eines mehrlagigen porösen Keramikverbundes durch Sintern gelöst, bei dem auf die Oberfläche eines gesinterten Substrats eine oder mehrere Schichten aufgebracht werden, wobei mindestens eine Schicht nanoskalige Teilchen mit einer Teilchengröße von x < 100 nm enthält, die Rautiefe der Oberfläche des Substrats kleiner ist als die Schichtdicke s der auf die Oberfläche des Substrats aufgebrachten nanoskaligen Teilchen und die Schichtdicke s der aufgebrachten nanoskaligen Teilchen nach einem erfolgten Sinterprozess mit dem Substrat bei Temperaturen zwischen 500°C und 1300°C eine Schichtdicke von s < 2,5 μm aufweist.
Mit dem erfindungsgemäßen Verfahren kann eine dünne defektfreie Funktionsschicht auf ein gesintertes Substrat aufgebracht werden. Während bei normalen Sinterprozessen die Verdichtung des Grünkörpers über Korngrenzendiffusion und/oder Volumendiffusion erfolgt, kann durch die erfindungsgemäße Wahl einer Teilchengröße von x < 100 nm und einer maximalen Schichtdicke s < 2,5 μm der Verdichtungsprozess derart beeinflusst werden, dass ein Korngrenzengleiten, welches bisher bei keramischen Körpern nicht beobachtet wurde, ausgelöst wird. Durch das Korngrenzengleiten können Spannungen zwischen dem gesinterten Substrat und der grünen Schicht, die die Funktionsschicht bildet, vermieden werden. Dadurch erfolgt bis zu einer Dicke von ca. s = 2,5 μm die Sinterung der Funktionsschicht und die mehr oder weniger starke Verdichtung ohne Defektausbildung. Mit dem erfindungsgemäßen Verfahren ist es möglich, eine defektfreie Funktionsschicht und eine defektfreie Anbin- dung der Funktionsschicht an das Substrat herzustellen, das aus stofflich anderen Keramikteilchen aufgebaut ist als die Funktionsschicht, die sich während oder nach dem Sintern nicht vom Substrat ablöst. Eine derartige Funktionsschicht eignet sich zur Erzielung besonders guter Filtrationsergebnisse.
Die minimale Dicke der Funktionsschicht wird durch die Rautiefe des gesinterten Substrats bestimmt. Die Rautiefe darf die Schichtdicke der Funktionsschicht nicht überschreiten.
Die nanoskaligen Teilchen können verschiedene Gestalten aufweisen, zum Beispiel können sie sphärisch, plättchenförmig o- der faserförmig ausgebildet sein. Die Teilchengröße bezieht sich jeweils auf die längste Abmessung dieser Teilchen, die zum Beispiel im Falle von kugelförmigen Teilchen dem Durchmesser entspricht.
Die eingesetzten keramischen Werkstoffe sind vorzugsweise von Metall (misch) oxiden und Carbiden, Nitriden, Boriden, Siliciden und Carbonitriden von Metallen und Nichtmetallen abgeleitet. Beispiele hierfür sind A1203, teil- und vollstabilisiertes Zr02, Mullit, Cordierit, Perowskite, Spinelle, zum Beispiel BaTi03, PZT, PLZT, sowie SiC, Si3N4, B4C, BN, MoSi2, TiB2, TiN, TiC und Ti(C,N). Es versteht sich, dass diese Aufzählung nicht vollständig ist. Selbstverständlich können auch Mischungen von 0- xiden bzw. Nichtoxiden und Mischungen aus Oxiden und Nichtoxi- den eingesetzt werden.
Bei einer vorteilhaften Ausgestaltung des Verfahrens werden auf das gesinterte Substrat zwei Schichten aufgebracht, wobei mindestens eine der Schichten die nanoskalige Teilchen enthält. Durch mehrere Schichten unterschiedlicher Porosität kann die Filtereigenschaft des porösen Keramikverbundes gezielt be- einflusst werden. Besonders gute Filtrationsergebnisse lassen sich erreichen, wenn eine der Schichten defektfrei ausgebildet ist. Bei einer alternativen Verfahrensvariante werden auf das gesinterte Substrat mehr als zwei Schichten aufgebracht, wobei mindestens zwei Schichten die nanoskaligen Teilchen aufweisen. Durch diese Maßnahme kann ein mehrlagiger poröser Keramikverbund aufgebaut werden, der gute Filtereigenschaften aufweist.
Wenn die nanoskaligen Teilchen eine Teilchengroße von x < 20 nm, vorzugsweise von x < 10 nm aufweisen, kann ein Korngrenzengleiten bei einer niedrigen Aktivierungsenergie ausgelöst werden. Dies ermöglicht den Einsatz niedriger Sintertemperaturen bei Sinterspannungen von etwa 200MPa.
Eine vorteilhafte Verfahrensvariante besteht darin, dass die nanoskaligen Teilchen durch Sprühen, Tauchen, Fluten oder Foliengießen auf das gesinterte Substrat aufgebracht werden. Sind die nanoskaligen Teilchen in einer Suspension enthalten, so können sie durch die genannten Verfahrensschritte besonders einfach auf das gesinterte Substrat aufgebracht werden. Insbesondere kann durch diese Maßnahmen die Schichtdicke der grünen Schicht, die auf das gesinterte Substrat aufgebracht wird, und damit der gesinterten Funktionsschicht besonders gut kontrolliert und eingestellt werden.
Besonders bevorzugt ist es, wenn eine Zwischenschicht, insbesondere eine organische Zwischenschicht, auf das gesinterte Substrat aufgebracht wird, ehe die nanoskaligen Teilchen aufgebracht werden. Durch einen organischen Binder können Unebenheiten der Oberfläche des gesinterten Substrats ausgeglichen werden und/oder der organische Binder verhindert die Infiltration der die funktioneile Schicht aufbauender Nanoteilchen in die Oberfläche des grobporösen Substrats. So kann der organische Binder die Poren an der Oberfläche des Substrats blockieren und/oder verschmieren, so dass ein in die Oberfläche des Substrats unzulässiges Hineinpenetrieren der die Funktionsschicht bildenden Nanoteilchen verhindert wird. Insbesondere kann durch einen organischen Binder das Substrat zu einer geeigneten Trägerstruktur aufbereitet werden. Die organische Zwischenschicht verflüchtigt sich während des Sintervorgangs, so dass die Filtereigenschaften des fertig gestellten Keramikverbunds durch den organischen Binder nicht beeinflusst wird.
Die Aufgabe wird außerdem gelöst durch einen mehrlagigen porösen Keramikverbund, der ein gesintertes Substrat und eine aus nanoskaligen Teilchen gesinterte defektfreie Funktionsschicht aufweist, die eine Schichtdicke s < 2,5 μm aufweist. Ein derartiger poröser Keramikverbund weist eine besonders hochwertige Filterschicht auf, da sie defektfrei ist.
Bei einer bevorzugten Ausführungsform weist der Keramikverbund drei Schichten auf, wobei eine Schicht die nanoskaligen Teilchen aufweist. Die Materialeigenschaften der Schichten können so aufeinander abgestimmt werden, dass zumindest eine Filterschicht defektfrei ausgebildet ist und ein hochwertiger Filter entsteht .
Bei einer alternativen Ausführungsform weist der Keramikverbund mehr als drei Schichten auf, wobei mindestens zwei Schichten nanoskalige Teilchen aufweisen. Durch diese Maßnahme kann innerhalb des Keramikverbundes schrittweise die Filterwirkung erhöht werden, wobei mindestens zwei Schichten vorgesehen sind, die besonders feinporig und defektfrei ausgebildet sind. Außerdem können mehrlagige Leiterbahnstrukturen aufgebaut werden, bei denen die defektfreie, aus nanoskaligen Teilchen aufgebaute Schicht einen Isolator darstellt. Dadurch können Leiterbahnen in geringem Abstand zueinander elektrisch isoliert angeordnet werden.
Bei einem Verfahren zur Herstellung eines porösen Keramikverbunds wird eine grüne Schicht auf ein bereits gesintertes Keramiksubstrat aufgebracht und mit dem bereits gesinterten Sub- strat bei Temperaturen zwischen 500°C und 1300°C gesintert, wobei die grüne Schicht ausschließlich Keramikteilchen mit einer Teilchengröße x 100 nm aufweist und die gesinterte grüne Schicht eine Schichtdicke s < 2,5μm aufweist. Die in diesem Verfahren hergestellte Schicht ist defektfrei und feinporig und somit besonders gut für Filtrationsvorgänge geeignet und kann als Katalysator eingesetzt werden.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Ansprüchen. Die einzelnen Merkmale können je einzeln für sich oder zu mehreren in beliebiger Kombination bei einer Variante der Erfindung verwirklicht sein.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines mehrlagigen porösen Keramikverbunds durch Sintern bei dem auf die Oberfläche eines gesinterten Substrats eine oder mehrere Schichten aufgebracht werden, wobei mindestens eine Schicht nanoskalige Teilchen mit einer Teilchengröße von x < lOOnm enthält, die Rautiefe der Oberfläche des Substrats kleiner ist als die Schichtdicke s der auf das Substrat aufgebrachten mindestens einen nanoskalige Teilchen enthaltenden Schicht und die Schichtdicke s der aufgebrachten mindestens einen nanoskalige Teilchen enthaltenden Schicht nach einem erfolgten Sinterprozess mit dem Substrat bei Temperaturen zwischen 500°C und 1300°C eine Schichtdicke von s < 2,5μm aufweist .
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass auf das gesinterte Substrat zwei Schichten aufgebracht werden, wobei mindestens eine der Schichten die nanoskaligen Teilchen enthält.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass auf das gesinterte Substrat mehr als zwei Schichten aufgebracht werden, wobei mindestens zwei Schichten die nanoskaligen Teilchen aufweisen.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nanoskalige Teilchen mit einer Teilchengroße von x < 20nm, vorzugsweise von x ≤ 10 nm verwendet werden.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die nanoskaligen Teilchen durch Sprühen, Tauchen oder Fluten auf das gesinterte Substrat aufgebracht werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Zwischenschicht, insbesondere eine organische Zwischenschicht, auf das gesinterte Substrat aufgebracht wird, bevor die nanoskaligen Teilchen auf das gesinterte Substrat aufgebracht werden.
7. Mehrlagiger poröser Keramikverbund, hergestellt in einem Verfahren nach einem der vorhergehenden Ansprüche, der ein gesintertes Substrat und eine aus nanoskaligen Teilchen gesinterte defektfreie Funktionsschicht aufweist, die eine Schichtdicke s < 2,5 μm aufweist.
8. Keramikverbund nach Anspruch 7, dadurch gekennzeichnet, dass der Keramikverbund drei Schichten aufweist, wobei eine Schicht aus nanoskaligen Teilchen gebildet ist.
9. Keramikverbund nach Anspruch 7, dadurch gekennzeichnet, dass der Keramikverbund mehr als drei Schichten aufweist, wobei mindestens zwei Schichten nanoskalige Teilchen aufweisen.
10. Verwendung eines mehrlagigen porösen Keramikverbunds, hergestellt nach einem der Ansprüche 1 bis 6, als Filtermaterial und/oder Katalysator.
EP03815521A 2003-01-30 2003-11-19 Mehrlagiger keramikverbund Withdrawn EP1594596A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10303897 2003-01-30
DE10303897A DE10303897A1 (de) 2003-01-30 2003-01-30 Mehrlagiger Keramikverbund
PCT/DE2003/003833 WO2004067154A1 (de) 2003-01-30 2003-11-19 Mehrlagiger keramikverbund

Publications (1)

Publication Number Publication Date
EP1594596A1 true EP1594596A1 (de) 2005-11-16

Family

ID=32695109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03815521A Withdrawn EP1594596A1 (de) 2003-01-30 2003-11-19 Mehrlagiger keramikverbund

Country Status (6)

Country Link
US (1) US20060231988A1 (de)
EP (1) EP1594596A1 (de)
CN (1) CN100337728C (de)
AU (1) AU2003300488A1 (de)
DE (1) DE10303897A1 (de)
WO (1) WO2004067154A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009001970A1 (ja) * 2007-06-27 2010-08-26 日本碍子株式会社 分離膜複合体及び分離膜複合体の製造方法
CN101215190B (zh) * 2007-12-29 2010-10-06 中国科学院广州能源研究所 表面具有透明热反射涂层的陶瓷制品及其制备方法
US7892435B2 (en) * 2008-05-21 2011-02-22 Honeywell International Inc. System and method for recycling using nanoceramics
CN101429052B (zh) * 2008-12-05 2012-09-12 株洲阳光电瓷有限责任公司 一种电瓷产品外观的修补方法
US8461462B2 (en) * 2009-09-28 2013-06-11 Kyocera Corporation Circuit substrate, laminated board and laminated sheet
JP2012152727A (ja) * 2011-01-28 2012-08-16 Tokyo Electron Ltd 濾過用フィルタ及び濾過用フィルタの製造方法
US20130043067A1 (en) * 2011-08-17 2013-02-21 Kyocera Corporation Wire Substrate Structure
WO2015064668A1 (ja) * 2013-10-29 2015-05-07 京セラ株式会社 配線基板、これを用いた実装構造体および積層シート
US9649690B2 (en) 2014-02-25 2017-05-16 General Electric Company System having layered structure and method of making the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327687A3 (de) * 1987-12-11 1989-11-15 Norton Company Ultrafiltrationsmembranen
US4968426A (en) * 1987-12-11 1990-11-06 Norton Company Fine alpha alumina ultrafiltration membranes
DE68928924T2 (de) * 1988-05-27 1999-07-01 Ngk Insulators Ltd Verfahren zur Herstellung einer porösen anorganischen Kompositmembran
JPH03143535A (ja) * 1989-10-26 1991-06-19 Toto Ltd セラミックス製非対称膜及びその製造方法
FR2678524B1 (fr) * 1991-07-01 1993-09-17 Centre Nat Rech Scient Membrane filtrante minerale a permeabilite amelioree, et sa preparation.
CA2074634A1 (en) * 1991-07-25 1993-01-26 Patricia Ann Beauseigneur Pore impregnated catalyst device
FR2693921B1 (fr) * 1992-07-24 1994-09-30 Tech Sep Support monolithe céramique pour membrane de filtration tangentielle.
FR2722115B1 (fr) * 1994-07-08 1996-09-20 Centre Nat Rech Scient Element filtrant a membrane en oxyde d'hafnium, sa preparation et son utilisation.
DE10119538C2 (de) * 2001-04-21 2003-06-26 Itn Nanovation Gmbh Verfahren zur Beschichtung von Substraten und deren Verwendungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004067154A1 *

Also Published As

Publication number Publication date
AU2003300488A1 (en) 2004-08-23
WO2004067154A1 (de) 2004-08-12
DE10303897A1 (de) 2004-08-12
CN100337728C (zh) 2007-09-19
CN1744941A (zh) 2006-03-08
US20060231988A1 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
EP0817723B1 (de) Verfahren zur herstellung von schwindungsangepassten keramik-verbundwerkstoffen
DE3612280C2 (de)
DE102008054596B4 (de) Offenzellige Keramik- und/oder Metallschaumkörper mit rauer umhüllender Oberfläche und Verfahren zu ihrer Herstellung
EP3981493A1 (de) Partikelfilter
DE10015614A1 (de) Gesinterter Formkörper mit poröser Schicht auf der Oberfläche sowie Verfahren zu seiner Herstellung
DE10305864B4 (de) Verfahren zur Herstellung eines mehrlagigen porösen Keramikverbundes
EP1594596A1 (de) Mehrlagiger keramikverbund
EP0651698B1 (de) Verbundsysteme mit mindestens zwei anorganischen keramischen schichten und verfahren zu deren herstellung
EP1144089B1 (de) Keramische flachmembran und verfahren zu ihrer herstellung
DE19652223C2 (de) Formkörper aus einem Werkstoffverbund, Verfahren zu seiner Herstellung und Verwendung
EP0750597B1 (de) Verfahren zur herstellung von keramischen verbundkörpern
DE3840137C1 (de)
DE19857591A1 (de) Keramische Mehrschichtenfilter und Verfahren zu deren Herstellung
EP3173392B1 (de) Verfahren zur herstellung von keramikteilen
DE19730742C2 (de) Verfahren zur Herstellung eines Silizium enthaltenden nichtoxidischen Keramikformkörpers oder einer solchen Schicht
EP1601449B1 (de) Anorganische schichtenstapel und verfahren zu seiner herstellung
DE102006022600B4 (de) Herstellungsverfahren eines Piezoaktors
DE19716595C1 (de) Dünne, feinporige, metallische Innenschicht eines Rohres
DE102012020829A1 (de) Pulvergemisch für die Herstellung metallischer und/oder keramischer Bauteile, Verfahren zur Herstellung des Pulvergemischs sowie Verfahren zur Herstellung von Bauteilen
WO2005000446A1 (de) Keramischer flachmembranstapel und verfahren zur herstellung eines solchen
DE10217670A1 (de) Keramiksuspension und Verwendung der Suspension
EP1188728A1 (de) Nanoskalige Teilchen enthaltende keramische Schicht, keramischer Schichtkörper mit derartigen Schichten und Verfahren zu deren Herstellung
DE2323921A1 (de) Keramischer, dielektrischer oder isolierender koerper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050830

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: NONNINGER, RALPH

Inventor name: BINKLE, OLAF

Inventor name: EHLEN, FRANK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ITN NANOVATION AG

17Q First examination report despatched

Effective date: 20090408

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091015