EP1593437A1 - Verfahren und Vorrichtung zum Kaltgasspritzen - Google Patents

Verfahren und Vorrichtung zum Kaltgasspritzen Download PDF

Info

Publication number
EP1593437A1
EP1593437A1 EP05009467A EP05009467A EP1593437A1 EP 1593437 A1 EP1593437 A1 EP 1593437A1 EP 05009467 A EP05009467 A EP 05009467A EP 05009467 A EP05009467 A EP 05009467A EP 1593437 A1 EP1593437 A1 EP 1593437A1
Authority
EP
European Patent Office
Prior art keywords
particles
nozzle
energy
microwave waveguide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05009467A
Other languages
English (en)
French (fr)
Other versions
EP1593437B1 (de
Inventor
Peter Heinrich
Prof. Dr. Heinrich Kreye
Dr. Thorsten Stoltenhoff
Tobias Schmidt
Ralf Borchert
Reinhard Ballhorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1593437A1 publication Critical patent/EP1593437A1/de
Application granted granted Critical
Publication of EP1593437B1 publication Critical patent/EP1593437B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the invention relates to a method for cold gas spraying, wherein particles in a Gas jet are accelerated and the particles at high speed on a Impact the workpiece, and the gas jet by relaxation in a nozzle is accelerated and cools down. Furthermore, the invention relates to a device for cold gas spraying comprising a nozzle which converges in a convergent Nozzle section and a nozzle outlet divided.
  • a gas in a de Laval nozzle becomes supersonic accelerated.
  • the coating material is used as a powder before or after Nozzle neck injected into the gas jet and accelerated towards the substrate.
  • the on High speed particles form a dense and firm on impact adhesive layer. For this, the particles must deform.
  • a heating up of the Gas jet increases the flow velocity of the gas and thus also the Particle velocity.
  • the associated associated heating of the particles favors deformation on impact.
  • the gas temperature is clearly below the melting temperature of the coating material, so that a Melting of the particles in the gas jet can not take place.
  • Melt-related disadvantages such as oxidation and other phase transformations avoid.
  • the method of cold gas spraying includes, for example, EP 484 533.
  • a method with acceleration close to speeds Speed of sound includes, for example, DE 101 19 288.
  • a Laval nozzle is divided into a convergent section that ends in the nozzle throat, and in an am Nozzle throat beginning divergent section.
  • a nozzle in which gas is almost on Speed of sound is divided into a convergent section, which ends in the nozzle throat and a subsequent to the nozzle throat section, the conical or cylindrical is designed.
  • the invention has for its object to provide a method and a device, the comparatively high temperature of the particles upon impact with the Substrate enable.
  • the particles Energy is supplied via microwave technology.
  • microwave technology supplied energy the particles are heated. Deform warmer particles when hitting the workpiece better than colder particles, because next to the kinetic energy and the thermal energy of the particles for layer formation is available. This improves the quality of the coating in relation on layer properties and adhesion to the substrate.
  • the increase in the Available energy leads to an improvement in the adhesion of the particles the background and the particles with each other.
  • Process is the loss of heat that the particles due to at the Experience acceleration of the gas jet sinking of the gas temperature, compensated, at least in part.
  • the heat loss through the Energy input via the microwave technology not only caught, but the particles are heated above the outlet temperature in front of the nozzle throat. Since the heat favors the plastic deformability, the stronger the particles heated, the easier it is to deform the particles on impact. As long as the temperature of the heated particles is below the melting point of the particles is formed, forms a coating or a molding, which in their properties for the cold gas spraying is typical. Are used in heating temperatures above the Melting point of the particles reached, the particles are melted or melted. One Melting of the particles changes the properties of the coating, especially in Relation to the stress conditions in the coating. However, in In various cases, coatings made from or remelted Be formed particles, be beneficial.
  • the particles are supplied with the energy in the nozzle.
  • Loss of heat which the particles in the nozzle by the cooling of the gas jet is partially compensated, fully compensated or overcompensates, where the cooling of the particles takes place on the acceleration the gas in the nozzle and the associated cooling is due.
  • the Temperature of the particles therefore drops only slightly and extreme fluctuations are avoided.
  • the particles are supplied with the energy after they have reached the nozzle have left.
  • the time available for heating is particularly long. This is advantageous if the particles are to be heated very strongly or can be heated very badly or if the microwave technology only one low power delivers.
  • the particles only after the energy leaving the nozzle is supplied.
  • the advantage here is that the Microwave waveguide does not need to surround the nozzle and also not in his Properties influenced by the nozzle.
  • metallic particles or non-metallic Particles that absorb microwaves used. Absorb the particles Microwave radiation, the particles are through a direct interaction with the Heated microwaves. Metallic particles absorb microwaves and are suitable as Coating material. Of the non-metallic, microwave absorbing Particles are in particular silicon carbides and zirconium oxides as Coating material.
  • the particles meet at a temperature of 10 to 800 ° C, preferably from 20 to 500 ° C, more preferably from 100 to 400 ° C on the Substrate. If the temperature of the spray particles is between about room temperature and the given values in the range of a few hundred degrees Celsius are the Particles are well heated so that they deform slightly on impact, but usually not yet melted, so that for the cold gas spraying typical coatings arise.
  • Microwave radiation of these ISM frequencies are particularly easy to handle and are suitable for heating the particles.
  • the nozzle is at least partially surrounded by a microwave waveguide (6) and / or one / Microwave waveguide (6) at least partially the spray free jet between Nozzle outlet (3) and substrate encloses.
  • the nozzle is thus at least partially surrounded by a microwave waveguide and / or to the Nozzle outlet closes either directly or at a distance Microwave waveguide on.
  • At least a portion of the nozzle outlet from a Ceramics, preferably made of alumina.
  • the microwave waveguide advantageously surrounds at least the ceramic section of the nozzle outlet.
  • the microwaves penetrate the ceramic section is particularly low-loss and are made of particles in the Düseninnem absorbed, whereby the particles heat up.
  • the nozzle outlet is divergent or cylindrical or tapered designed. Such nozzle geometries are particularly suitable Way to cold gas spraying.
  • Figures 1 and 2 include a nozzle 1 with a convergent nozzle portion 2 and a nozzle outlet 3 and a ceramic section 4 and a substrate 5 and a microwave waveguide 6 with a connection 7 to a microwave source.
  • the nozzle 1 is divided into the convergent nozzle section 2, which merges into the nozzle outlet 3 at the nozzle neck.
  • the nozzle is inserted into the microwave waveguide 6.
  • the microwave waveguide 6 is connected via a connection 7 to the microwave source.
  • the metallic material from which nozzles normally made be replaced by a ceramic In part of the Nozzle, which includes the majority of the nozzle outlet 3 and to the nozzle end ranges, is the metallic material from which nozzles normally made be replaced by a ceramic.
  • the metallic material of the nozzle outlet 4 now penetrate the microwaves of the microwave waveguide 6 in the nozzle, while the metallic material of the nozzle shields the microwaves.
  • the microwaves are absorbed by the particles and the particles heat up yourself. The heated particles hit the substrate 5 and form there Coating off.
  • the metallic material is only in a small area at the end of the nozzle outlet 3 replaced by a ceramic.
  • This ceramic section 4 roughly and almost the entire path that the particles between nozzle exit and substrate 5 as spray free jet cover, is of the Microwave waveguide 6 surrounded. The particles are thus on the last piece in the nozzle and after the nozzle exit to just before the substrate 5 is heated.
  • a microwave waveguide used which is designed as a rectangular microwave waveguide.
  • Microwave waveguide are used to transmit microwaves over short distances. Particles that move in the microwave waveguide absorb the microwaves and heat up.
  • the rectangular microwave waveguide forms a standing wave which is particularly suitable for energy transfer.
  • this operated with ISM frequencies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nozzles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Kaltgasspritzen. Erfindungsgemäß wird den Partikeln mit Mikrowellentechnik Energie zugeführt. Dazu ist die Düse (1), in welcher Gasstrahl und Partikeln beschleunigt werden, von einem Mikrowellenhohlleiter (6) umgeben oder/und ein/der Mikrowellenhohlleiter (6) umschließt zumindest teilweise den Spritzfreistrahl zwischen Düsenauslauf (3) und Substrat. Vorteilhafterweise ist ein Abschnitt des Düsenauslaufs (3) aus einer Keramik (4) gefertigt. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Kaltgasspritzen, wobei Partikel in einem Gasstrahl beschleunigt werden und die Partikel mit hoher Geschwindigkeit auf ein Werkstück auftreffen, und wobei der Gasstrahl durch Entspannung in einer Düse beschleunigt wird und sich dabei abkühlt. Ferner betrifft die Erfindung eine Vorrichtung zum Kaltgasspritzen umfassend eine Düse, die sich in einen konvergent zulaufenden Düsenabschnitt und einen Düsenauslauf gliedert.
Beim Kaltgasspritzen wird ein Gas in einer de Lavaldüse auf Überschallgeschwindigkeit beschleunigt. Der Beschichtungswerkstoff wird als Pulver vor oder nach dem Düsenhals in den Gasstrahl injiziert und auf das Substrat hin beschleunigt. Die auf hohe Geschwindigkeit gebrachten Partikel bilden beim Aufprall eine dichte und fest haftende Schicht. Dazu müssen sich die Partikel verformen. Ein Aufheizen des Gasstrahls erhöht die Strömungsgeschwindigkeit des Gases und somit auch die Partikelgeschwindigkeit. Die damit ebenfalls verbundene Erwärmung der Partikel begünstigt das Verformen beim Aufprall. Die Gastemperatur liegt aber deutlich unterhalb der Schmelztemperatur des Beschichtungswerkstoffs, so dass ein Schmelzen der Partikel im Gasstrahl nicht stattfinden kann. Im Vergleich zu den Verfahren des thermischen Spritzens lassen sich beim Kaltgasspritzen die mit dem Schmelzen verbundenen Nachteile wie Oxidation und andere Phasenumwandlungen vermeiden.
Das Verfahren des Kaltgasspritzens beinhaltet beispielsweise die EP 484 533. In jüngster Zeit hat sich gezeigt, dass dichte und fest haftende Schichten nicht nur dann entstehen, wenn das Gas in einer Lavaldüse auf Überschallgeschwindigkeit sondern auch wenn das Gas nur auf Geschwindigkeiten nahe an der Schallgeschwindigkeit beschleunigt wird. Ein Verfahren mit Beschleunigung auf Geschwindigkeiten nahe der Schallgeschwindigkeit beinhaltet beispielsweise die DE 101 19 288. Eine Lavaldüse gliedert sich in einen konvergenten Abschnitt, der im Düsenhals endet, und in einen am Düsenhals beginnenden divergenten Abschnitt. Eine Düse, in der Gas auf nahezu Schallgeschwindigkeit beschleunigt wird, gliedert sich in einen konvergenten Abschnitt, der im Düsenhals endet und einen sich am Düsenhals anschließenden Abschnitt, der konisch oder zylindrisch gestaltet ist.
Von Vorteil für die Schicht ist, wenn die Partikel beim Aufprall auf das Substrat warm (aber nicht angeschmolzen) sind, da dies die plastische Verformung unterstützt. Ein Anschmelzen der Partikel kann die Eigenschaften der Beschichtung zu ihren Ungunsten verändern. Die Praxis hat gezeigt, dass sich die Partikel in dem heißen Gasstrahl gut erwärmen und Temperaturen nahe der Gastemperatur erreichen. In dem zweiten Abschnitt der Düse, dem Düsenauslauf, sowie im Spritzfreistrahl zwischen Düsenaustritt und Substrat kühlen die Partikel sehr schnell wieder ab. Damit fehlt beim Aufprall Wärme, welche die plastische Verformbarkeit begünstigt. Dies kann sich nachteilig auf die Schichteigenschaften auswirken. Die Abkühlung ist darauf zurückzuführen, dass im Düsenauslauf die Gasbeschleunigung stattfindet und die Gasbeschleunigung mit einer Abkühlung des Gases einhergeht. Bei manchen Düsengeometrien liegt die Gastemperatur am Düsenaustritt weit unter dem Gefrierpunkt. Da die Partikel mit dem Gasstrahl sehr gut wechselwirken, sinkt auch die Temperatur der Partikel stark ab.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung anzugeben, die eine vergleichsweise hohe Temperatur der Partikel beim Aufprall auf das Substrat ermöglichen.
Die Aufgabe wird für das Verfahren erfindungsgemäß dadurch gelöst, dass den Partikeln über Mikrowellentechnik Energie zugeführt wird. Durch die mit Hilfe der Mikrowellentechnik zugeführte Energie werden die Partikel erwärmt. Wärmere Partikel verformen sich beim Auftreffen auf das Werkstück besser als kältere Partikel, da neben der kinetischen Energie auch die thermische Energie der Partikel zur Schichtausbildung zur Verfügung steht. Dies verbessert die Qualität der Beschichtung in Bezug auf Schichteigenschaften und Haftung auf dem Untergrund. Die Erhöhung der zur Verfügung stehenden Energie führt zu einer Verbesserung der Haftung der Partikel auf dem Untergrund und der Partikel untereinander. Mit dem erfindungsgemäßen Verfahren wird der Verlust an Wärme, den die Partikel aufgrund des bei der Beschleunigung des Gasstrahls erfolgenden Sinkens der Gastemperatur erfahren, zumindest zu einem Teil kompensiert. Bevorzugt wird der Wärmeverlust durch den Energieeintrag über die Mikrowellentechnik nicht nur aufgefangen, sondern die Partikel werden über die vor dem Düsenhals vorliegende Ausgangstemperatur hinaus erwärmt. Da die Wärme die plastische Verformbarkeit begünstigt, gilt: je stärker die Partikel erwärmt werden, desto leichter lassen sich die Partikel beim Aufprall verformen. Solange die Temperatur der erwärmten Partikel unter dem Schmelzpunkt der Partikel liegt, bildet sich eine Beschichtung oder ein Formteil aus, die in ihren Eigenschaften für das Kaltgasspritzen typisch ist. Werden bei der Erwärmung Temperaturen über dem Schmelzpunkt der Partikel erreicht, werden die Partikel an- oder aufgeschmolzen. Ein Schmelzen der Partikel ändert die Eigenschaften der Beschichtung, insbesondere in Bezug auf die Spannungsverhältnisse in der Beschichtung. Jedoch können in verschiedenen Fällen auch Beschichtungen, die aus an- oder durchgeschmolzenen Partikel gebildet werden, von Vorteil sein.
Mit besonderem Vorteil wird den Partikeln die Energie in der Düse zugeführt. Der Verlust an Wärme, welchen die Partikel in der Düse durch die Abkühlung des Gasstrahls erfahren, wird dort teilweise kompensiert, vollständig kompensiert oder überkompensiert, wo die Abkühlung der Partikel erfolgt, die auf die Beschleunigung des Gases in der Düse und der damit verbundenen Abkühlung zurückzuführen ist. Die Temperatur der Partikel sinkt deshalb nur wenig ab und extreme Schwankungen werden vermieden.
Vorteilhafterweise wird den Partikeln die Energie zugeführt, nachdem sie die Düse verlassen haben. Hierzu gibt es zwei mögliche Ausgestaltungen: Bei der ersten wird den Partikeln Energie in der Düse und nach dem Verlassen der Düse zugeführt. In diesem Fall ist die Zeitspanne, die zur Erwärmung zur Verfügung steht besonders lang. Von Vorteil ist dies, wenn die Partikel sehr stark erwärmt werden sollen beziehungsweise sich sehr schlecht erwärmen lassen oder wenn die Mikrowellentechnik nur eine geringe Leistung liefert. Bei der zweiten Ausgestaltung wird den Partikeln nur nach dem Verlassen der Düse Energie zugeführt. Von Vorteil ist hierbei, dass der Mikrowellenhohlleiter nicht die Düse umgeben muss und auch nicht in seinen Eigenschaften von der Düse beeinflusst wird.
In vorteilhafter Ausgestaltung werden metallische Partikel oder nichtmetallische Partikel, die Mikrowellen absorbieren, verwendet. Absorbieren die Partikel die Mikrowellenstrahlung, werden die Partikel durch eine direkte Wechselwirkung mit den Mikrowellen erwärmt. Metallische Partikel absorbieren Mikrowellen und eignen sich als Beschichtungsmaterial. Von den nichtmetallischen, Mikrowellen absorbierenden Partikeln eignen sich insbesondere Siliziumkarbide und Zirkonoxide als Beschichtungsmaterial.
Vorteilhafterweise treffen die Partikel mit einer Temperatur von 10 bis 800 °C, vorzugsweise von 20 bis 500 °C, besonders bevorzugt von 100 bis 400 °C auf das Substrat. Liegt die Temperatur der Spritzpartikel zwischen in etwa Raumtemperatur und den angegeben Werten im Bereich von einigen hundert Grad Celsius sind die Partikel gut erwärmt, so dass sie sich bei Aufprall leicht verformen, aber in der Regel noch nicht aufgeschmolzen, so dass für das Kaltgasspritzen typische Beschichtungen entstehen.
Mit besonderem Vorteil wird die Energie mit einer Frequenz von 915 MHz, 2,45 GHz oder/und 5,8 GHz zugeführt. Mikrowellenstrahlung dieser ISM-Frequenzen sind besonders gut handhabbar und eignen sich zur Erwärmung der Partikel.
Die Aufgabe wird für die Vorrichtung erfindungsgemäß dadurch gelöst, dass die Düse zumindest teilweise von einem Mikrowellenhohlleiter (6) umgeben ist oder/und ein/der Mikrowellenhohlleiter (6) zumindest teilweise den Spritzfreistrahl zwischen Düsenaustritt (3) und Substrat umschließt. Erfindungsgemäß ist die Düse somit zumindest teilweise von einem Mikrowellenhohlleiter umgeben oder/und an den Düsenauslauf schließt sich entweder direkt oder mit Abstand ein/der Mikrowellenhohlleiter an. Die erfindungsgemäße Vorrichtung weist somit die vorgenannten Vorteile aus.
In vorteilhafter Ausgestaltung ist zumindest ein Abschnitt des Düsenauslaufs aus einer Keramik, vorzugsweise aus Aluminiumoxid, gefertigt.
Weiterhin umgibt der Mikrowellenhohlleiter vorteilhafterweise zumindest den keramischen Abschnitt des Düsenauslaufs. Die Mikrowellen durchdringen den keramischen Abschnitt besonders verlustarm und werden von den Partikeln im Düseninnem absorbiert, wobei sich die Partikeln erwärmen.
In vorteilhafter Ausgestaltung ist der Düsenauslauf divergierend oder zylindrisch oder konisch zulaufend gestaltet. Derartige Düsengeometrien eignen sich in besonderer Weise zum Kaltgasspritzen.
Im Folgenden wird die Erfindung in zwei beispielhaften Ausgestaltungen mit Hilfe von Figuren näher erläutert. Hierzu zeigt
Figur 1
eine beispielhafte Ausgestaltung, in welcher die Düse zu einem großen Teil von einem Mikrowellenhohlleiter umgeben ist, und
Figur 2
eine beispielhafte Ausgestaltung, in welcher ein Teil des Düseauslaufs und der Weg der Partikel von der Düse bis in die Nähe des Substrats von einem Mikrowellenhohlleiter umgeben ist.
Figur 1 und 2 beinhalten eine Düse 1 mit einem konvergenten Düsenabschnitt 2 und einem Düsenauslauf 3 und einem keramischen Abschnitt 4 sowie ein Substrat 5 und einen Mikrowellenhohlleiter 6 mit einem Anschluss 7 an eine Mikrowellenquelle.
In der beispielhaften Ausgestaltung gemäß Figur 1 gliedert sich die Düse 1 in den konvergenten Düsenabschnitt 2, der am Düsenhals in den Düsenauslauf 3 übergeht. Die Düse ist in den Mikrowellenhohlleiter 6 eingeführt. Der Mikrowellenhohlleiter 6 ist über einen Anschluss 7 an die Mikrowellenquelle angeschlossen. Bei einem Teil der Düse, der hier den Großteil des Düsenauslaufs 3 umfasst und bis zum Düsenende reicht, ist der metallische Werkstoff, aus welchem Düsen normalerweise gefertigt werden, durch eine Keramik ersetzt. In diesen keramischen Abschnitt des Düsenauslaufs 4 dringen nun die Mikrowellen des Mikrowellenhohlleiters 6 in die Düse ein, während der metallische Werkstoff der Düse die Mikrowellen abschirmt. Im Inneren der Düse werden die Mikrowellen von den Partikeln absorbiert und die Partikel erwärmen sich. Die erwärmten Partikel treffen auf das Substrat 5 und bilden dort die Beschichtung aus.
In der beispielhaften Ausgestaltung gemäß Figur 2 ist der metallische Werkstoff nur in einem kleinen Bereich am Ende des Düsenauslaufs 3 durch eine Keramik ersetzt. Dieser keramische Abschnitt 4 in etwa und nahezu der gesamte Weg, den die Partikel zwischen Düsenaustritt und Substrat 5 als Spritzfreistrahl zurücklegen, wird von dem Mikrowellenhohlleiter 6 umgeben. Die Partikel werden somit auf dem letzten Stück in der Düse und nach dem Düsenaustritt bis kurz vor das Substrat 5 erwärmt.
Bei diesen beispielhaften Ausgestaltungen wird mit Vorteil ein Mikrowellenhohlleiter verwendet, der als Rechteckmikrowellenhohlleiter ausgestaltet ist. Mikrowellenhohlleiter werden eingesetzt, um Mikrowellen über kurze Distanzen zu übertragen. Partikel, die sich im Mikrowellenhohlleiter bewegen absorbieren die Mikrowellen und erwärmen sich dadurch. Im Rechteckmikrowellenhohlleiter bildet sich eine Stehwelle aus, welche sich besonders gut zur Energieübertragung eignet. Vorteilhafterweise wird dieser mit ISM-Frequenzen betrieben.
Bezugszeichenliste
1
Düse
2
konvergenter Düsenabschnitt
3
Düsenauslauf
4
keramischer Abschnitt des Düsenauslaufs
5
Substrat
6
Mikrowellenhohlleiter
7
Anschluss des Mikrowellenhohlleiter an die Mikrowellenquelle

Claims (10)

  1. Verfahren zum Kaltgasspritzen, wobei Partikel in einem Gasstrahl beschleunigt werden und die Partikel mit hoher Geschwindigkeit auf ein Substrat (5) auftreffen, und wobei der Gasstrahl durch Entspannung in einer Düse (1) beschleunigt wird und sich dabei abkühlt, dadurch gekennzeichnet, dass den Partikeln über Mikrowellentechnik (6, 7) Energie zugeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass den Partikeln die Energie in der Düse zugeführt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass den Partikeln die Energie zugeführt wird, nachdem sie die Düse verlassen haben.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass metallische Partikel oder nichtmetallische Partikel, die Mikrowellen absorbieren, verwendet werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Partikel mit einer Temperatur von 10 bis 800 °C, vorzugsweise von 20 bis 500 °C, besonders bevorzugt von 100 bis 400 °C auf das Substrat auftreffen.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Energie mit einer Frequenz von 915 MHz, 2,45 GHz oder/und 5,8 GHz zugeführt wird.
  7. Vorrichtung zum Kaltgasspritzen umfassend eine Düse (1), die sich in einen konvergent zulaufenden Düsenabschnitt (2) und einen Düsenauslauf (3) gliedert, dadurch gekennzeichnet, dass die Düse zumindest teilweise von einem Mikrowellenhohlleiter (6) umgeben ist oder/und ein/der Mikrowellenhohlleiter (6) zumindest teilweise den Spritzfreistrahl zwischen Düsenaustritt (3) und Substrat (5) umschließt.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass zumindest ein Abschnitt des Düsenauslaufs aus einer Keramik (4), vorzugsweise aus Aluminiumoxid, gefertigt ist.
  9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Mikrowellenhohlleiter (6) zumindest den keramischen Abschnitt (4) des Düsenauslaufs (3) umgibt.
  10. Vorrichtung nach einem Ansprüche 7 bis 9, dadurch gekennzeichnet, dass der Düsenauslauf (3) divergierend oder zylindrisch oder konisch zulaufend gestaltet ist.
EP05009467A 2004-05-04 2005-04-29 Verfahren und Vorrichtung zum Kaltgasspritzen Active EP1593437B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004021846 2004-05-04
DE102004021846 2004-05-04
DE102004029354A DE102004029354A1 (de) 2004-05-04 2004-06-17 Verfahren und Vorrichtung zum Kaltgasspritzen
DE102004029354 2004-06-17

Publications (2)

Publication Number Publication Date
EP1593437A1 true EP1593437A1 (de) 2005-11-09
EP1593437B1 EP1593437B1 (de) 2006-10-25

Family

ID=34935968

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05009467A Active EP1593437B1 (de) 2004-05-04 2005-04-29 Verfahren und Vorrichtung zum Kaltgasspritzen

Country Status (4)

Country Link
US (1) US20060027687A1 (de)
EP (1) EP1593437B1 (de)
AT (1) ATE343431T1 (de)
DE (2) DE102004029354A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007009600A1 (de) 2007-02-26 2008-08-28 Linde Ag Verfahren zum Substratbeschichten durch thermisches oder kinetisches Spritzen

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2434073C9 (ru) * 2005-05-05 2012-12-27 Х.К. Штарк Гмбх Способ покрытия поверхности субстрата и продукт с нанесенным покрытием
WO2008037237A1 (de) * 2006-09-29 2008-04-03 Siemens Aktiengesellschaft Verfahren und vorrichtung zur abscheidung einer nichtmetallischen beschichtung mittels kaltgas-spritzen
US20080078268A1 (en) 2006-10-03 2008-04-03 H.C. Starck Inc. Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof
CN101730757B (zh) * 2006-11-07 2015-09-30 H.C.施塔克有限公司 涂覆基材表面的方法和经过涂覆的产品
US20080145688A1 (en) 2006-12-13 2008-06-19 H.C. Starck Inc. Method of joining tantalum clade steel structures
US8197894B2 (en) 2007-05-04 2012-06-12 H.C. Starck Gmbh Methods of forming sputtering targets
DE102007023444B4 (de) * 2007-05-16 2009-04-09 Xtreme Technologies Gmbh Einrichtung zur Erzeugung eines Gasvorhangs für plasmabasierte EUV-Strahlungsquellen
JP5171125B2 (ja) * 2007-06-25 2013-03-27 プラズマ技研工業株式会社 コールドスプレー用のノズル及びそのコールドスプレー用のノズルを用いたコールドスプレー装置
US8246903B2 (en) * 2008-09-09 2012-08-21 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
US8192799B2 (en) * 2008-12-03 2012-06-05 Asb Industries, Inc. Spray nozzle assembly for gas dynamic cold spray and method of coating a substrate with a high temperature coating
US20120010645A1 (en) * 2009-03-20 2012-01-12 Proarc Medical Ltd. Methods and devices for urethral treatment
WO2013049274A2 (en) 2011-09-29 2013-04-04 H.C. Starck, Inc. Large-area sputtering targets and methods of manufacturing large-area sputtering targets
DE102012000816A1 (de) 2012-01-17 2013-07-18 Linde Aktiengesellschaft Verfahren und Vorrichtung zum thermischen Spritzen
US9335296B2 (en) 2012-10-10 2016-05-10 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
DE102016217367A1 (de) 2016-09-13 2018-03-15 Robert Bosch Gmbh Verfahren zur Herstellung eines Aktivmaterials für eine Elektrode einer Batteriezelle, Anordnung zur Herstellung eines Aktivmaterials für eine Elektrode einer Batteriezelle und Batteriezelle
DE102018209937A1 (de) 2018-06-20 2019-12-24 Robert Bosch Gmbh Verfahren zur Herstellung eines Polymerverbundwerkstoffs für eine elektrochemische Zelle mittels eines gequollenen Polymers
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
JP7440621B2 (ja) 2019-09-19 2024-02-28 ウェスティングハウス エレクトリック カンパニー エルエルシー コールドスプレー堆積物のその場付着試験を行うための装置及びその使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484533A1 (de) * 1990-05-19 1992-05-13 Anatoly Nikiforovich Papyrin Beschichtungsverfahren und -vorrichtung
DE10119288A1 (de) * 2001-04-20 2002-10-24 Georg Koppenwallner Verfahren und Einrichtung zur gasdynamischen Beschichtung von Oberflächen mit Schalldüsen
DE10207525A1 (de) * 2002-02-22 2003-09-04 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484533A1 (de) * 1990-05-19 1992-05-13 Anatoly Nikiforovich Papyrin Beschichtungsverfahren und -vorrichtung
DE10119288A1 (de) * 2001-04-20 2002-10-24 Georg Koppenwallner Verfahren und Einrichtung zur gasdynamischen Beschichtung von Oberflächen mit Schalldüsen
DE10207525A1 (de) * 2002-02-22 2003-09-04 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007009600A1 (de) 2007-02-26 2008-08-28 Linde Ag Verfahren zum Substratbeschichten durch thermisches oder kinetisches Spritzen

Also Published As

Publication number Publication date
US20060027687A1 (en) 2006-02-09
ATE343431T1 (de) 2006-11-15
EP1593437B1 (de) 2006-10-25
DE502005000149D1 (de) 2006-12-07
DE102004029354A1 (de) 2005-12-01

Similar Documents

Publication Publication Date Title
EP1593437B1 (de) Verfahren und Vorrichtung zum Kaltgasspritzen
EP1999297B1 (de) Kaltgasspritzpistole
EP1791645B1 (de) Verfahren zum kaltgasspritzen und kaltgasspritzpistole mit erhöhter verweildauer des pulvers im gasstrahl
EP1390152B1 (de) Verfahren und vorrichtung zum kaltgasspritzen
EP2108051B1 (de) Verfahren und vorrichtung zum kaltgasspritzen von partikeln unterschiedlicher festigkeit und/oder duktilität
EP1888803B1 (de) Verfahren zum gasdynamischen aufbringen von beschichtungen und beschichtungsverfahren
EP2298962B1 (de) Kaltgasspritzen von oxydhaltigen Schutzschichten
DE102008051872A1 (de) Zweistoffdüse
DE102005053731A1 (de) Vorrichtung zur Hochdruckgaserhitzung
DE102006044612A1 (de) Verfahren zum Kaltgasspritzen
WO2015139948A1 (de) Kühlvorrichtung für eine spritzdüse bzw. spritzdüsenanordnung mit einer kühlvorrichtung für das thermische spritzen
EP2260119B1 (de) Kaltgasspritzanlage
DE102009005528A1 (de) Zweistoffdüse
WO2006034777A1 (de) Verfahren und vorrichtung zum kaltgasspritzen mit mehrfacher gasheizung
EP1854547A1 (de) Kaltgasspritzpistole
EP2714963B1 (de) Kaltgasspritzverfahren mit verbesserter haftung und verringerter schichtporosität
DE112016005061T5 (de) Vorrichtung und Verfahren für Kalt-Sprüh- und Beschichtungs-Verarbeitung
EP2127759A1 (de) Kaltgasspritzanlage und Verfahren zum Kaltgasspritzen
EP2503026A1 (de) Verfahren zum Reparieren einer Schicht auf einem Substrat
EP2617868B1 (de) Verfahren und Vorrichtung zum thermischen Spritzen
DE3247414C2 (de) Verfahren zur Herstellung einer von einer Matte durchsetzten Ablationsschicht
DE10119288B4 (de) Verfahren und Einrichtung zur gasdynamischen Beschichtung von Oberflächen mittels Schalldüsen
DE102009052970A1 (de) Kaltgasspritzdüse und Kaltgasspritzvorrichtung mit einer derartigen Spritzdüse
EP2830843B1 (de) Faserverbund-fertigungsanlage
WO2021104876A1 (de) Kaltgas-spritzanlage mit einer heizgasdüse und verfahren zum beschichten eines substrats

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20060321

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005000149

Country of ref document: DE

Date of ref document: 20061207

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070125

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070205

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20070430

Year of fee payment: 3

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070612

Year of fee payment: 3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070411

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070429

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090428

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070426

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090429

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080430

Year of fee payment: 4