EP1592081B1 - Mikrostreifenleiter-Hohlleiterübergang für in einer Mehrschichtleiterplatte gebildete Millimeterplatte - Google Patents

Mikrostreifenleiter-Hohlleiterübergang für in einer Mehrschichtleiterplatte gebildete Millimeterplatte Download PDF

Info

Publication number
EP1592081B1
EP1592081B1 EP04425300A EP04425300A EP1592081B1 EP 1592081 B1 EP1592081 B1 EP 1592081B1 EP 04425300 A EP04425300 A EP 04425300A EP 04425300 A EP04425300 A EP 04425300A EP 1592081 B1 EP1592081 B1 EP 1592081B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
transition
microstrip
multilayer
windows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04425300A
Other languages
English (en)
French (fr)
Other versions
EP1592081A1 (de
Inventor
Antonio Cifelli
Angelo Giuseppe Milani
Marco Polini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Solutions and Networks SpA
Original Assignee
Nokia Solutions and Networks SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Solutions and Networks SpA filed Critical Nokia Solutions and Networks SpA
Priority to EP04425300A priority Critical patent/EP1592081B1/de
Priority to AT04425300T priority patent/ATE449434T1/de
Priority to ES04425300T priority patent/ES2334566T3/es
Priority to DE602004024169T priority patent/DE602004024169D1/de
Publication of EP1592081A1 publication Critical patent/EP1592081A1/de
Application granted granted Critical
Publication of EP1592081B1 publication Critical patent/EP1592081B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions

Definitions

  • the present invention relates to the field of microwave circuits and apparatuses and more precisely to a microstrip to waveguide transition for millimetric waves embodied in a multilayer printed circuit board.
  • the invention is referred both to a method for manufacturing the transition and the transition itself.
  • Microstrip to waveguide transitions embodied with high-loss dielectric substrates for PCB manufacturing are known in the art.
  • the Applicant of the present invention filed on 30-5-2002 an European patent application indicated as Ref.[1] in the REFERENCES listed at the end of the description.
  • Ref.[1] the operating frequency range of the transition was extending until to 35 GHz on fibre reinforced glass (FR4) substrates.
  • the multilayer board made use of a thick copper layer as second layer of the build-up wafer structure to provide mechanical stiffness to the FR4 substrate for the connection of a rectangular waveguide on the bottom face.
  • the copper layer was milled to lay bare the dielectric window of a slot transition and obtain in the meanwhile a sort of flange around it for mounting the waveguide.
  • the optimistic value of 80 GHz had been calculated for the only wave propagation along the microstrip without taking into due consideration the effects of microstrip to waveguide transitions.
  • Fig.1a shows a metallic layout laid down on the upper face of a dielectric FR4 substrate belonging to a multilayer structure.
  • the layout includes a microstrip which extends along the longitudinal symmetry axis of the substrate and terminates with a metal patch.
  • the microstrip and the remaining circuitry are encircled by a shielding metallic layout delimiting a rectangular unmetallized window, corresponding to a dielectric window, entered by the patched microstrip.
  • the perimetrical metallization of the dielectric window is shaped as a rectangular frame with four unmetallized circle at the four corners in correspondence of threaded holes through the multilayer structure.
  • Fig.1b shows a thick copper layer glued to the bottom face of the dielectric substrate to form a metal core giving stiffness to the multilayer structure and constituting a ground plane for the upper microstrip.
  • the metal core is milled and completely removed to lay bare the dielectric substrate in correspondence of the dielectric window, so that the patch is visible from the rear due to the semitransparency of the FR4 layer.
  • Fig.2a is a cross-section along the axis A-A of fig.1a .
  • the figure shows the structure of the multilayer including three dielectric substrates, and the metal core.
  • the upper and the lower dielectric substrates are metallized wile the interposed one is used as insulator.
  • the end of a rectangular waveguide joins the rectangular window milled in the metal core in correspondence of the dielectric window of the upper substrate, so that the opening in the metal core is a continuation of the waveguide to the dielectric window of the substrate.
  • a metallic lid placed upon the frame of the upper face is fixed to the multilayer structure by means of four screws at the corner of the frame penetrating into the upper dielectric substrate, the metal core (flange) and the walls of the rectangular waveguide.
  • the metallic lid is a hollow body with a rectangular recess faced to the unmetallized window. In operation, the patched end of the microstrip which comes into the dielectric window acts as an electromagnetic probe for radiating into the closed space around it.
  • the dimensions of the patch are calculate so as to transfer the energy from the feeding microstrip to the waveguide efficiently.
  • the screwed metallic lid is used as a reflector to prevent propagation from the patch in the opposite direction to the waveguide. To this aim the recess of metallic lid acts as a back short for the signal. From the above considerations it can be conclude that the probe and the dielectric window in communication with the waveguide constitute a microstrip to waveguide transition that transforms the "quasi-TEM" propagation mode of the microstrip into the TE 10 mode of the rectangular waveguide.
  • the electromagnetic properties of the transitions are reciprocal, so that the same structure used by the RF transmitter for conveying inside the waveguide a transmission signal from the microstrip is also used by the receiver for conveying a RF reception signal from the waveguide to the microstrip.
  • Fig.2b shows a series of metallized through holes (via-holes visible in Fig.2a ) regularly spaced along the frame.
  • These via-holes around the transition zone have been introduced successively the filing of Ref.[1] to the aim of improving the performances of the transition at the higher frequencies (35.5 GHz) of the operating range. This statement is possible because the transition at Ref.[1] and the transition of the present invention are both developed in the laboratories of the same Applicant.
  • the via-holes supply to the lack of continuity of the waveguide through the thickness of the dielectric substrate around the zone of the transition.
  • Fig.3 is a photography of the layout of the transceiver which depicts the real arrangement of via-holes; as it can be noticed, several rows of metallized holes are needed to a satisfactory operation in the SHF range (not in the EHF).
  • the European patent application indicated in Ref.[5] discloses a high-frequency package comprising a dielectric substrate, a high-frequency element that operates in a high-frequency region and is mounted in a cavity formed on said dielectric substrate, and a microstrip line formed on the surface or in an inner portion of said dielectric substrate and electrically connected to said high-frequency element, wherein a signal transmission passage of a waveguide is connected to a linear conducting passage or to a ground layer constituting the microstrip line.
  • an end of the linear conducting passage is electromagnetically opened, so that the end portion works as a monopole antenna inside the waveguide that is connected.
  • the aforementioned high-frequency package has been designed to operate at millimetric waves using costly and rigid substrate materials having a low dielectric constant and small losses (e.g. alumina).
  • the complicated structure makes the sealing of the multilayer to the waveguide and the application of an upper closing lid both difficult to obtain. Another difficult arises in correctly terminating the irradiating microstrip inside the waveguide.
  • the main object of the present invention is that to overcome the drawbacks of the known art and indicate a microstrip to waveguide transition obtainable on PCBs arranged for operating at the microwaves with good performances in the nearest EHF range (up to 80 GHz)
  • the invention achieves said object by providing a method to manufacture a microstrip to waveguide transition, as disclosed in the method claims.
  • Another object of the invention is a microstrip to waveguide transition obtained according to the method, as disclosed in the device claims.
  • the transition disclosed at Ref.[1] is now completely redesigned in order to remove almost completely the former dielectric diaphragm from the space of the transition.
  • Another fundamental difference from the prior art is that the waveguide now penetrates the dielectric substrate to connect the metallic lid, without breaking the continuity of the metallic walls, except for the two grooves whose effect is completely marginal.
  • the frame of via-holes is completely unnecessary to confine the electromagnetic field, and also the drawbacks highlighted at points 1 and 2 are overcome.
  • the waveguide part of the transition and the other mechanic part of the transceiver can be obtained by means of numerical control manufacturing techniques starting from a rough metal block.
  • Microstrip to waveguide transitions for rectangular waveguides according to the present invention are the easiest to obtain, but the same approach is applicable to obtain transitions for circular or elliptic waveguides.
  • a microstrip to waveguide transition, and vice versa, used to connect both the transmitter and the receiver amplifiers to the same antenna by means of a duplexer, is the only part of the transceiver the present invention is concerned with.
  • the substrate 1 gives support to a metallic layout including among other things a microstrip 2 placed along the axis of longitudinal symmetry of the figure.
  • the microstrip 2 terminates with a small patch 3 nearby the centre of a stripe 4 placed between two symmetric rectangular windows 5 and 6 obtained from the removal of the multilayer by milling (or drilling and sawing) according to the known techniques.
  • the area of the two windows 5 and 6 prevails with respect to the area of the central stripe 4 so that the space of the transition is filled prevalently with air.
  • a metallization 7 encircles, as a frame, the two symmetric windows 5 and 6 and the central stripe 4, leaving a short passage free for the microstrip 2, but having a finger 7a covering the stripe 4 for a short tract opposite to the patch 3.
  • Several metallized thorough holes 8 are regularly spaced along the perimeter of the frame 7. The only purpose of these holes is that of avoiding possible detachments of the upper dielectric layer from the metal core (plate) as a consequence of the milling operation for opening the windows 5 and 6, because of the not perfect physical compatibility at the interface between the two layers.
  • a partial top view of the mechanical part 9 of the transceiver is depicted.
  • the mechanic is manufactured in a way to include the end of a rectangular waveguide 10.
  • the internal cavity 11 of the metallic waveguide10 is filled up with air.
  • Two rectangular grooves 12 and 13 are milled for all the thickness of the two longer walls at the extremity of the waveguide 10, along the symmetry axis.
  • Four threaded holes 14 are visible at the four corners of the mechanical part 9.
  • the dimensions of the two windows 5 and 6 and the width of the stripe 4 are set to accommodate at the same time the stripe 4 into the grooves 12 and 13 at the edge of the waveguide 10 and the edge of the waveguide 10 inside the windows 5 and 6, as far as the depth of the grooves 12 and 13 allows it.
  • Fig.4c and fig.4d show the metal core before and after removal, respectively.
  • An indication of the real placement of the internal cross-section 11 of the waveguide 10 is added with dashed line in fig.4d . It can be appreciated that the stripe 4 is free from metal in correspondence of the cavity of the microwave 10, so that the tract of the patched microstrip 2, 3 penetrating the cavity 11 is free to radiate as a probe inside the waveguide 10.
  • Fig.5a shows a top view of the assembly constituted by the multilayer of fig.4a superimposed to the mechanic of fig.4b so as they can interpenetrate.
  • Two axes A-A and B-B are indicated in the figure as reference planes for the cross-sections reported in the successive figure.
  • Fig.5b shows the cross-section along the longitudinal symmetry axis A-A of fig.5a .
  • the edge of the waveguide 10 emerges from the openings 5 and 6 and a metallic lid 16 is leant on it.
  • the lid 16 is fastened to the waveguide 10 by means of screws 17 penetrating the four threaded holes 14 ( fig.4b ).
  • the lid 16 includes a central hollow 18 shaped as a very short tract of waveguide 10 closed at the end.
  • the lid 16 is now connected to the waveguide without any interposed dielectric layer, so that the metallic continuity of the walls of the waveguide 10 is never interrupted across the transition until the lid is reached. In this way the back currents reflected from the lid reach the ground directly and, as a consequence, via-holes around the transition as in fig.2b are unneeded for the reasons stated before.
  • Grooves 12 and 13 have different depths, the first one (12) is deeper than second one (13) to also include the copper finger 15a ( fig.4d ).
  • the microstrip 2 stops to be a as such only at the end of the groove 12, whose depth is calculated accordingly.
  • the depth of both the grooves 12 and 13 shall be calculated to assure a certain free space between the end of the waveguide 10 and the microstrip 2, and considering that a certain tolerance on the width of the grooves 12 and 13 is foreseen for the insertion of the stripe 4 without problems, as visible in fig.5a , the substrate 1 has to be fixed to the mechanic 1.
  • the transition has been designed to operate in the range of 55-60 GHz in accordance with the market request for the transceiver apparatuses.
  • the mechanic is worked by a numerical control machine so as to obtain a WR15 (1.88 x 3.76 mm) waveguide.
  • the planar circuitry is obtained starting form a multilayer including a dielectric substrate 0.1 mm thick glued to a copper metal plate (core) 2 mm thick is used.
  • the electromagnetic coupling between the microstrip 2 and the waveguide 10 is obtained by means of a probe laying on the E-plane of the rectangular waveguide 10 and terminating with the small patch 3. This probe has been obtained as continuation of the microstrip 2 inside the cavity 11 of the waveguide 10 after having removed the ground plane below.
  • the edge of the waveguide 10 emerges from the multilayer in the zone of the transition, as far as the depth of grooves 12 and 13 allows it, and joins the edge of the lid 16.
  • the top wall of lid 16 acts as a short circuit reflecting back the signal toward the patch 3. The latter has to see an open circuit on its plane for the reflected signal in order to keep it matched to the waveguide 10.
  • the required impedance transformation is obtained by milling the length of tract 18 in a way that the distance of the plane of the patch 3 from the short circuit plane internal to lid 16 is about ⁇ /4.
  • a first design of the 55-60 GHz transition has been performed roughly calculating the dimensions of its relevant parts with the help of two canonical books cited at Ref.[3] and Ref.[4].
  • the design has been refined successively by several simulation sessions performed by means of the electromagnetic simulator 3D AgilentTM HFSS operating on the model shown in fig.6a .
  • the goal is that to optimize the probe dimensions, inclusive of patch 3, for operating in the desired band maintaining the bandwidth and matching conditions as far as possible unaffected by mechanical and assembly tolerances.
  • fig.6a we see the model including the dielectric stripe 4 leant on the edge of the waveguide 10 transversally to its rectangular cavity 11.
  • This model also includes the slot comprised between groove 12 and lid 16, containing the relevant tract of microstrip 2.
  • the terminal part of the probe with the patch 3 is modelled inside the cavity 11 and represented with greater details in fig.6b .
  • fig.6b we see the microstrip 2 and patch 3 shaped as a T .
  • the base of the rectangular patch 3 perpendicular to the microstrip 2 has a length c greater than the height b , but this is not a general rule.
  • Labels w and h indicate respectively the longer and the shorter dimensions of the rectangular cavity 11, while label a indicates the length of the microstrip 2 (without copper below) inside the cavity 11 from the internal sidewall 12 to the base of the patch 3; i.e.: the length of the line which carries the signal to the patch 3.
  • the simulation results have confirmed that the central frequency of the transition depends on the ratio (a+b)/w, while the adaptation level at the input and the output ports depends on the ratio c/b inside the considered bandwidth.
  • the greater the ratio (a+b)/w i.e. the patch nearer to the centre of the cavity) the lower is the central frequency fo of the transition.
  • the insertion loss parameter S 21 reported in fig.11 is strongly influenced by the central microstrip which interconnect the two transitions.
  • the 20 mm length (about 7 ⁇ ) of the microstrip causes losses of about 1.5 dB, as a consequence each transition contributes to the measure with about 1.25 dB.
  • Fig.12 shows a top view of a microstrip to circular waveguide transition, without the upper lid, the embodiment of which is directly achievable from the preceding description of the microstrip to rectangular waveguide transition. The same applies for a microstrip to elliptic waveguide transition (not represented in the figure).

Landscapes

  • Waveguides (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Claims (16)

  1. Verfahren zum Herstellen eines Mikrostreifenleiter-Hohlleiter-Übergangs, wobei der Übergang Folgendes umfasst:
    - eine Mehrschichtstruktur, die mindestens ein dielektrisches Substrat (1) von dem Typ umfasst, der in der Technologie der gedruckten Leiterplatten verwendet werden kann;
    - wobei das Mehrschichtsubstrat auf einer starren Metallplatte (15) bereitgestellt wird;
    - ein metallisches Layout (2, 3, 7) von dem dielektrischen Substrat (1) gestützt wird;
    - wobei das metallische Layout (2, 3, 7) Folgendes enthält: einen Mikrostreifenleiter (2), der mit einem Patch (3) endet, das als eine Sonde dient zum Koppeln des Mikrostreifenleiters (2) an einen Hohlleiter (10) durch das dielektrische Substrat (1); und zwei Fenster (5, 6), die symmetrisch zu einer Längsachse des metallischen Layouts (2, 3, 7) sind, voneinander durch einen die Sonde tragenden zentralen Streifen (4) getrennt;
    wobei das Verfahren die folgenden Schritte beinhaltet:
    - Entfernen der Mehrfachschicht (1), der starren Metallplatte (15) und des metallischen Layouts (2, 3, 7) entsprechend den beiden Fenstern (5, 6);
    - Entfernen der unter dem Streifen (4) platzierten starren Metallplatte mindestens in dem Gebiet zwischen den Fenstern; Fräsen von zwei rechteckigen Nuten (12, 13) mit gegebener Tiefe für die ganze Dicke von zwei gegenüberliegenden Wänden an dem Endpunkt des Hohlleiters (10) entlang der Symmetrieachse;
    - die Abmessungen der beiden Fenster (5, 6) und die Breite des Streifens (4) sind derart eingestellt, dass gleichzeitig der Streifen (4) in die Nuten (12, 13) an einer Kante des Hohlleiters (10) aufgenommen wird und die Kante des Hohlleiters (10) innerhalb der Fenster (5, 6) soweit wie die Tiefe der Nuten (12, 13) dies gestattet;
    - Befestigen eines metallischen Deckels (16) an der Kante des Hohlleiters (10), aus den beiden Seiten (5, 6) des Streifens (4) auftauchend, um die von der Sonde (3) in der entgegengesetzten Richtung abgestrahlte Leistung zurück zum Hohlleiter (10) zu reflektieren.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der ganze Bereich der beiden Fenster (5, 6) auf den beiden Seiten des Streifens (4) bezüglich des Bereichs des zentralen Streifens (4) überwiegt, so dass der Raum des Übergangs überwiegend mit Luft gefüllt ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es den Schritt des Ausrichtens des metallischen Layouts (2, 3, 7) bezüglich des Hohlleiters (10) und des Befestigens der Mehrfachschicht an einen metallischen Trägerkörper (9), der bearbeitet worden ist, um den Hohlleiter (10) zu erhalten, beinhaltet.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es den Schritt des Entfernens der starren Metallplatte (15) von dem Streifen (4) mindestens entsprechend dem Hohlraum (11) des Hohlleiters (10), der von dem Streifen (4) gekreuzt wird, beinhaltet.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass es den Schritt beinhaltet, in dem Körper des Deckels (16) eine zentrale Aushöhlung (18) zu fräsen, die als ein kurzer Teil des Hohlleiters (10) mit einer Tiefe von etwa λ/4 geformt ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass vor dem Öffnen der Fenster (5, 6) in der Mehrfachschicht (1, 15) ein Bohr- und ein Metallisierungsschritt durchgeführt werden, um die Fenster (5, 6) und den Streifen (4) mit metallisierten Durchgangslöchern (7, 8) zu umgeben, um mögliche Ablösungen zwischen der dielektrischen Schicht (1) und der starren Metallplatte (15) zu vermeiden.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die in der Mehrfachschicht (1, 15) geöffneten Fenster (5, 6) eine rechteckige Gestalt aufweisen.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es den Schritt des Einstellens der Mittenfrequenz des Übergangs durch Fixieren eines entsprechenden Werts des Verhältnisses (a+b)/w beinhaltet,
    wobei w die längere Hohlraumabmessung eines rechteckigen Hohlleiters ist, dessen kürzere Abmessung das bekannte Verhältnis mit w enthält, a die Länge der Leitung ist, die das Signal zu dem Patch (3) trägt, und b die Basis des Patch (3) ist, als ein Rechteck senkrecht zum Mikrostreifenleiter (2) ausgebildet.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass es den Schritt des Optimierens der Adaptation der Eingangs- und Ausgangsports innerhalb des gewünschten Frequenzbandes durch Fixieren des Verhältnisses c/b beinhaltet, wobei c die Höhe des rechteckigen Patch innerhalb der betrachteten Bandbreite ist; wobei das gewünschte Frequenzband 55 bis 60 GHz überspannt; wobei eine dielektrische Schicht (1) mit einer relativen Dielektrizitätskonstante εr von etwa 3,54 verwendet wird und wobei die Dicke etwa 100 µm beträgt, der Wert (a+b)/w etwa 0,18 beträgt und der Wert von c/b etwa 2,22 beträgt.
  10. Mit dem Verfahren nach einem der Ansprüche 1 bis 9 hergestellter Mikrowellen-zu-Hohlleiter-Übergang.
  11. Übergang nach Anspruch 10, dadurch gekennzeichnet, dass die beiden gegenüberliegenden Nuten (12, 13) unterschiedliche Tiefen aufweisen und die tiefere den Mikrostreifenhohlleiter (2) einschließlich der starren Metallplatte (15) enthält.
  12. Übergang nach Anspruch 11, dadurch gekennzeichnet, dass die beiden gegenüberliegenden Nuten (12, 13) Querabmessungen derart aufweisen, dass sie sich als zwei hinterschnittene Hohlleiter in dem gewünschten Frequenzbereich des Übergangs verhalten, die in der Lage sind, das elektromagnetische Feld in dem Volumen des Übergangs zu begrenzen.
  13. Übergang nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass der Hohlleiter (10) rechteckig ist.
  14. Übergang nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass der Hohlleiter (10) kreisförmig ist.
  15. Übergang nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass der Hohlleiter (10) elliptisch ist.
  16. Übergang nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, dass er eine Krone aus metallisierten Durchgangslöchern (7, 8) enthält, die die Kante des Hohlleiters (10) an den beiden Seiten des Streifens (4) enthält, um mögliche Ablösungen zwischen der dielektrischen Schicht (1) und der starren Metallplatte (15) zu vermeiden.
EP04425300A 2004-04-29 2004-04-29 Mikrostreifenleiter-Hohlleiterübergang für in einer Mehrschichtleiterplatte gebildete Millimeterplatte Expired - Lifetime EP1592081B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04425300A EP1592081B1 (de) 2004-04-29 2004-04-29 Mikrostreifenleiter-Hohlleiterübergang für in einer Mehrschichtleiterplatte gebildete Millimeterplatte
AT04425300T ATE449434T1 (de) 2004-04-29 2004-04-29 Mikrostreifenleiter-hohlleiterübergang für in einer mehrschichtleiterplatte gebildete millimeterplatte
ES04425300T ES2334566T3 (es) 2004-04-29 2004-04-29 Transicion de microcinta a guia de onda para ondas milimetricas incorporadas en una tarjeta de circuitos impresos multicapas.
DE602004024169T DE602004024169D1 (de) 2004-04-29 2004-04-29 Mikrostreifenleiter-Hohlleiterübergang für in einer Mehrschichtleiterplatte gebildete Millimeterplatte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04425300A EP1592081B1 (de) 2004-04-29 2004-04-29 Mikrostreifenleiter-Hohlleiterübergang für in einer Mehrschichtleiterplatte gebildete Millimeterplatte

Publications (2)

Publication Number Publication Date
EP1592081A1 EP1592081A1 (de) 2005-11-02
EP1592081B1 true EP1592081B1 (de) 2009-11-18

Family

ID=34932465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04425300A Expired - Lifetime EP1592081B1 (de) 2004-04-29 2004-04-29 Mikrostreifenleiter-Hohlleiterübergang für in einer Mehrschichtleiterplatte gebildete Millimeterplatte

Country Status (4)

Country Link
EP (1) EP1592081B1 (de)
AT (1) ATE449434T1 (de)
DE (1) DE602004024169D1 (de)
ES (1) ES2334566T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2557472C1 (ru) * 2014-01-21 2015-07-20 Общество с ограниченной ответственностью "КВЧ-Комплекс" Волноводный переход от металлического волновода к диэлектрическому
CN112736394A (zh) * 2020-12-22 2021-04-30 电子科技大学 一种用于太赫兹频段的h面波导探针过渡结构

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752911B2 (en) 2005-11-14 2010-07-13 Vega Grieshaber Kg Waveguide transition for a fill level radar
KR100846872B1 (ko) 2006-11-17 2008-07-16 한국전자통신연구원 유전체 도파관 대 전송선의 밀리미터파 천이 장치
WO2008060047A1 (en) * 2006-11-17 2008-05-22 Electronics And Telecommunications Research Institute Apparatus for transitioning millimeter wave between dielectric waveguide and transmission line
JP4648292B2 (ja) * 2006-11-30 2011-03-09 日立オートモティブシステムズ株式会社 ミリ波帯送受信機及びそれを用いた車載レーダ
JP4365852B2 (ja) 2006-11-30 2009-11-18 株式会社日立製作所 導波管構造
JP5115026B2 (ja) * 2007-03-22 2013-01-09 日立化成工業株式会社 トリプレート線路−導波管変換器
CN104485500B (zh) * 2009-02-27 2018-11-06 三菱电机株式会社 波导微带线转换器
US9496593B2 (en) 2011-02-21 2016-11-15 Siklu Communication ltd. Enhancing operation of laminate waveguide structures using an electrically conductive fence
US9270005B2 (en) 2011-02-21 2016-02-23 Siklu Communication ltd. Laminate structures having a hole surrounding a probe for propagating millimeter waves
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
CN112310587B (zh) * 2020-10-27 2022-02-01 华东光电集成器件研究所 一种波导输出承载装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592402A (ja) * 1982-06-28 1984-01-09 Hitachi Ltd 導波管−マイクロストリツプ線路変換器
JPH10126114A (ja) * 1996-10-23 1998-05-15 Furukawa Electric Co Ltd:The 給電線変換器
DE69835633T2 (de) 1997-04-25 2007-08-23 Kyocera Corp. Hochfrequenzbaugruppe
JP2001177312A (ja) * 1999-12-15 2001-06-29 Hitachi Kokusai Electric Inc 高周波接続モジュール
DE60131643T2 (de) 2001-07-26 2009-04-30 Siemens S.P.A. Leiterplatte und entsprechendes Herstellungsverfahren zur Installation von Mikrowellenchips bis zu 80 Ghz
EP1367668A1 (de) 2002-05-30 2003-12-03 Siemens Information and Communication Networks S.p.A. Breitbandiger Mikrostreifenleiter-Hohlleiterübergang auf einer Mehrschichtleiterplatte

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2557472C1 (ru) * 2014-01-21 2015-07-20 Общество с ограниченной ответственностью "КВЧ-Комплекс" Волноводный переход от металлического волновода к диэлектрическому
CN112736394A (zh) * 2020-12-22 2021-04-30 电子科技大学 一种用于太赫兹频段的h面波导探针过渡结构
CN112736394B (zh) * 2020-12-22 2021-09-24 电子科技大学 一种用于太赫兹频段的h面波导探针过渡结构

Also Published As

Publication number Publication date
DE602004024169D1 (de) 2009-12-31
ES2334566T3 (es) 2010-03-12
ATE449434T1 (de) 2009-12-15
EP1592081A1 (de) 2005-11-02

Similar Documents

Publication Publication Date Title
Rajo-Iglesias et al. Gap waveguide technology for millimeter-wave antenna systems
EP1677382B1 (de) Wellenleiter- Leiterplatte Verbindung
EP2079127B1 (de) Wellenleiterverbindungsstruktur
KR101158559B1 (ko) 도파로와 마이크로스트립 라인 사이의 무접점 전이 요소
US7479842B2 (en) Apparatus and methods for constructing and packaging waveguide to planar transmission line transitions for millimeter wave applications
CN1694304B (zh) 波导和微带线之间的无接触过渡元件
EP1744395A1 (de) Leistungsteiler/Leistungskombinierer auf einem Substrat mit hohem dielektrischen Verlust.
EP1501152B1 (de) Signalübergangsvorrichtung für Millimeterwellenbereich
US6127901A (en) Method and apparatus for coupling a microstrip transmission line to a waveguide transmission line for microwave or millimeter-wave frequency range transmission
EP1592081B1 (de) Mikrostreifenleiter-Hohlleiterübergang für in einer Mehrschichtleiterplatte gebildete Millimeterplatte
EP1923950A1 (de) SMT-fähiges Mikrowellenbauteil mit Wellenleiterschnittstelle
Belenguer et al. Empty SIW technologies: A major step toward realizing low-cost and low-loss microwave circuits
EP1367668A1 (de) Breitbandiger Mikrostreifenleiter-Hohlleiterübergang auf einer Mehrschichtleiterplatte
US7336141B2 (en) Junction with stepped structures between a microstrip line and a waveguide
US20110037530A1 (en) Stripline to waveguide perpendicular transition
US11303004B2 (en) Microstrip-to-waveguide transition including a substrate integrated waveguide with a 90 degree bend section
US7355496B2 (en) Finline type microwave band-pass filter
Simon et al. A novel coplanar transmission line to rectangular waveguide transition
Jakob et al. WR12 to planar transmission line transition on organic substrate
US7535314B2 (en) Line transition device, high-frequency module, and communication apparatus
CN115207589A (zh) 耦合装置及制造方法、波导天线、雷达、终端、pcb
CN115207588A (zh) 一种转接装置、电子设备、终端和转接装置的制备方法
Buoli et al. A broadband microstrip to waveguide transition for FR4 multilayer PCBs up to 50 GHz.
CN115764219A (zh) 一种Ka频段微带波导转换装置
RU2780558C1 (ru) Встраиваемая в печатную плату антенна передачи/приема данных

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20060421

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS S.P.A.

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060628

17Q First examination report despatched

Effective date: 20060628

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOKIA SIEMENS NETWORKS S.P.A.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004024169

Country of ref document: DE

Date of ref document: 20091231

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2334566

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20091118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100318

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100429

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091118

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: NOKIA SIEMENS NETWORKS ITALIA S.P.A., IT

Effective date: 20130426

Ref country code: FR

Ref legal event code: CA

Effective date: 20130426

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20130613 AND 20130619

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: NOKIA SOLUTIONS AND NETWORKS ITALIA S.P.A. (NSN IT

Effective date: 20140317

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170419

Year of fee payment: 14

Ref country code: FR

Payment date: 20170419

Year of fee payment: 14

Ref country code: GB

Payment date: 20170419

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170510

Year of fee payment: 14

Ref country code: IT

Payment date: 20170424

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004024169

Country of ref document: DE

Owner name: PROVENANCE ASSET GROUP LLC, PITTSFORD, US

Free format text: FORMER OWNER: NOKIA SIEMENS NETWORKS S.P.A., CASSINA DE' PECCHI, MILANO, IT

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004024169

Country of ref document: DE

Representative=s name: FISCHER, MICHAEL, DR., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004024169

Country of ref document: DE

Owner name: NOKIA SOLUTIONS AND NETWORKS ITALIA S.P.A., CA, IT

Free format text: FORMER OWNER: NOKIA SIEMENS NETWORKS S.P.A., CASSINA DE' PECCHI, MILANO, IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004024169

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190124 AND 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004024169

Country of ref document: DE

Representative=s name: FISCHER, MICHAEL, DR., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004024169

Country of ref document: DE

Owner name: PROVENANCE ASSET GROUP LLC, PITTSFORD, US

Free format text: FORMER OWNER: NOKIA SOLUTIONS AND NETWORKS ITALIA S.P.A., CASSINA DE' PECCHI, MILANO, IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180429

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430