CN115207588A - 一种转接装置、电子设备、终端和转接装置的制备方法 - Google Patents

一种转接装置、电子设备、终端和转接装置的制备方法 Download PDF

Info

Publication number
CN115207588A
CN115207588A CN202110381645.4A CN202110381645A CN115207588A CN 115207588 A CN115207588 A CN 115207588A CN 202110381645 A CN202110381645 A CN 202110381645A CN 115207588 A CN115207588 A CN 115207588A
Authority
CN
China
Prior art keywords
substrate
waveguide
plate surface
cavity
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110381645.4A
Other languages
English (en)
Inventor
彭杰
陶骏
唐传康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202110381645.4A priority Critical patent/CN115207588A/zh
Priority to EP22783893.5A priority patent/EP4322322A1/en
Priority to PCT/CN2022/083119 priority patent/WO2022213826A1/zh
Publication of CN115207588A publication Critical patent/CN115207588A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/082Transitions between hollow waveguides of different shape, e.g. between a rectangular and a circular waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本申请提供了一种转接装置、电子设备、终端和转接装置的制备方法,涉及射频领域,例如雷达等传感器的天线结构,以解决微带线和波导之间的连接问题。本申请提供的转接装置包括基板、耦合腔和谐振腔;基板具有贯穿第一板面和第二板面的通槽,通槽的内壁具有导电层;耦合腔设置在基板的第一板面,且耦合腔与通槽的第一端耦合;波导可以与通槽的第二端耦合,以使耦合腔和波导之间可以通过通槽进行耦合;谐振腔设置在基板的第一板面,且谐振腔具有至少一个缝隙和连接端;其中,缝隙与耦合腔耦合,且谐振腔的连接端与微带线连接;通过通槽,电磁信号可以在基板的第一板面和第二板面之间进行传输,从而实现异面传输效果。

Description

一种转接装置、电子设备、终端和转接装置的制备方法
技术领域
本申请涉及射频领域,尤其涉及一种转接装置、电子设备、终端和转接装置的制备方法,例如雷达以及雷达的天线结构。
背景技术
波导天线与传统的PCB(Printed Circuit Board)印刷天线相比,在低损耗、高带宽等方面具有明显优势,因而易于实现高效率、远距离覆盖和高距离分辨率等特性。此外,波导天线的水平波束带宽更宽,能提供更大的可视范围(Field of View)和展宽探测范围。因此,波导天线逐渐被广泛应用。
在波导天线的实际应用中,需要与芯片等器件进行连接。但是,由于芯片等器件的出线一般为微带线,而波导天线的接口为标准波导结构,因此不能直接进行能量传输。为了能够实现波导天线和芯片等器件之间的信号传输,需要转接装置来桥接波导和微带线。其中,转接装置的主要作用是实现微带线和波导中不同模式电磁能量的转换,并且减少不同模式能量转换过程中的能量损耗。
但是,目前没有一种转接装置能够实现高效的能量转换和传输。
发明内容
本申请提供了一种能够有效避免能量在传输过程中的泄漏,并实现高效的能量转换和传输的转接装置、电子设备、终端和转接装置的制备方法。
一方面,本申请实施例提供了一种转接装置,包括基板、耦合腔和谐振腔。基板具有第一板面和第二板面,且基板具有贯穿第一板面和第二板面的通槽,通槽的内壁具有导电层,以使电磁信号能够在通槽内进行高效传输。耦合腔设置在基板的第一板面,且耦合腔与通槽的第一端耦合。波导可以与通槽的第二端耦合,以使耦合腔和波导之间可以通过通槽进行耦合。谐振腔设置在基板的第一板面,且谐振腔具有至少一个缝隙和连接端。其中,缝隙与耦合腔耦合,且谐振腔的连接端与微带线连接。需要说明的是,耦合表示的是电磁信号或能量在两个部件之间的有效传输,而并不是对两个部件之间机械结构连接关系的限定。在实际应用时,为了实现两个部件之间的耦合,在机械结构上,可以采用多种不同类型的方式来实现。在本申请实施例提供的转接装置中,通过通槽,电磁信号可以在基板的第一板面和第二板面之间进行传输,从而实现异面传输效果。也能够避免电磁信号在穿过基板时造成额外插损,有利于提升信号的传输效率。谐振腔通过缝隙与耦合腔进行耦合,有利于降低转接装置的整体尺寸。另外,还能够将谐振腔中的电磁信号高效的传输至耦合腔内。或者,耦合腔内的电磁信号也可以高效的传输至谐振腔中,从而有利于提升信号的传输效率。
在一些实现方式中,转接装置还可以包括设置在第一板面的微带线,微带线可以包括渐变过渡结构,谐振腔的连接端用于通过渐变过渡结构与微带线连接。
在一些实现方式中,耦合腔的结构可以为朝基板的第一板面的方向开口的阶梯状结构。通过阶梯状的结构设计,能够有效提升耦合腔的带宽,且能够保证工作性能的稳定性。
将耦合腔固定在第一板面上时,耦合腔开口的边缘可以与基板的第一板面焊接。从而保证耦合腔与基板之间的连接效果,防止能量的泄漏。
另外,为了保证耦合腔与基板之间的相对位置精度。在具体实施时,耦合腔可以具有第一定位结构,其中,第一定位结构用于将耦合腔定位在基板的目标位置。
在一些实施方式中,通槽的截面形状与波导的截面形状可以相同或者相似,以防止信号在波导与基板通槽之间传播时产生插损、阻抗失配等不良影响。这里需要说明的是,上述形状相同是一种理想的情况,基于具体的产品设计和制造中,上述通槽和波导的截面形状可能会存在一定偏差,或者,上述通槽和波导的截面形状的差异并不会导致性能产生太大的偏差。因此,本申请并不严格限定上述截面形状完全相同,也可以相似或者存在一定差异。
在一些实现方式中,谐振腔可以包括基片集成波导。基片集成波导的第一端可以包含连接端,基片集成波导的第二端可以设置电壁,以使集成波导内的电磁信号能够高效的通过缝隙向外传输。其中,缝隙可以开设在基片集成波导背离基板的表面。
在具体实施时,缝隙的长度可以为0.5λg;其中,λg为电磁波在第一介质中传播的波长。可选的设计中,所述第一介质可以为基板、谐振腔或者空气。可以理解的是,在具体实施时,缝隙的数量、形状、尺寸等参数可以根据实际情况进行合理设置,本申请对此不作限定。
在一些实现方式中,转接装置还可以包括波导,波导的第一端的断面可以设置凸缘,凸缘的顶面与基板的第二板面贴合。通过凸缘的结构设计,便于将凸缘的顶面制作成平整度较高的平面,因此,有利于提升波导与基板11的下板面之间的贴合性,防止信号产生泄漏等不良情况。
另外,为了保证波导与基板之间的定位精度,在波导中可以设置第二定位结构,在基板的第二板面设置第三定位结构。在进行装配时,可以使第二定位结构与第三定位结构相互配合,以保证波导与基板之间的相对位置。最后,可以通过焊接、螺钉、卡扣、粘接等连接方式实现波导与基板之间的固定连接。
另一方面,本申请实施例还提供了一种电子设备,包括芯片和波导天线,还包括上述任一种转接装置。芯片可以通过微带线与谐振腔的连接端连接,波导天线可以通过波导与通槽的第二端连接。
在具体应用时,电子设备也可以是雷达、基站、探测器等。其中,电子设备的具体类型本申请不作限制。
另一方面,本申请实施例还提供了一种终端,包括上述的电子设备。其中,终端可以是无人机、智能家居、智能制造设备、测绘设备等。其中,本申请对转接装置以及配备有转接装置的电子设备的应用范围不作限制。
另一方面,本申请实施例还提供了一种制备方法,包括:在具有第一板面和第二板面的基板中开设通槽,并在通槽的内壁设置导电层,其中,通槽的第一端贯穿至第一板面,通槽的第二端贯穿至第二板面。将耦合腔设置在第一板面,且耦合腔与通槽的第一端耦合。将谐振腔设置在第一板面。其中,谐振腔具有至少一个缝隙和连接端,缝隙与耦合腔耦合,连接端用于连接微带线。
在具体实施时,该方法还可以包括:将微带线设置在第一板面。其中,微带线包括渐变过渡结构,连接端用于通过渐变过渡结构与微带线连接。
在一些实施方式中,该方法还可以包括在耦合腔设置第一定位结构。通过辅助工装将耦合腔定位在基板的目标位置,该辅助工装具有用于与第一定位结构相配合的固定结构。
将耦合腔固定在第一板面上时,可以采用表贴、激光焊等方式将耦合腔焊接在第一板面,以实现耦合腔与基板之间的固定连接。
另外,该方法还可以包括:将波导的第一端的端面具有的凸缘的顶面与第二板面贴合。
在一些实施方式中,可以在波导设置第二定位结构,在基板的第二板面设置第三定位机构。将第二定位结构与第三定位结构进行配合,以将波导定位在第二板面。最后,可以采用焊接的工艺或通过螺钉等紧固件实现波导与基板之间的固定连接。
附图说明
图1为本申请实施例提供的一种转接装置的透视结构示意图;
图2为本申请实施例提供的一种转接装置的剖面结构示意图;
图3为本申请实施例提供的一种耦合腔的立体结构示意图;
图4为本申请实施例提供的一种耦合腔的剖面结构示意图;
图5为本申请实施例提供的另一种耦合腔的剖面结构示意图;
图6为本申请实施例提供的一种基板的平面结构示意图;
图7为本申请实施例提供的一种谐振腔的立体结构示意图;
图8为本申请实施例提供的另一种谐振腔的立体结构示意图;
图9为本申请实施例提供的另一种转接装置的剖面结构示意图;
图10为本申请实施例提供的一种波导的立体结构示意图;
图11为本申请实施例提供的一种基板的立体结构示意图;
图12为本申请实施例提供的一种波导的结构示意图;
图13为本申请实施例提供的一种转接装置的信号数据仿真图;
图14为本申请实施例提供的一种转接装置的电场强度分布图;
图15为本申请实施例提供的一种转接装置的制备方法的流程图;
图16为本申请实施例提供的另一种转接装置的制备方法的流程图;
图17为本申请实施例提供的一种雷达的剖面结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
为了方便理解本申请实施例提供的转接装置,下面首先介绍一下其应用场景。
本申请提供的转接装置可以应用在波导和微带线之间,用于实现波导和微带线之间的高效连接。
例如,在一些车辆中通常会配备车载天线。目前的车载天线通常采用较为传统的PCB(Printed circuit board)印刷天线。在实际应用中,PCB印刷天线可以通过微带线与芯片等器件进行连接,以实现信号的传输。但是,随着对于天线性能需求的不断提升,车载天线逐渐朝着低损耗、宽带宽以及大阵面的方向发展。因此,传统的PCB印刷天线已不能满足需求。
相较于PCB印刷天线,波导天线在低损耗、宽带宽方面有着明显的优势,波导天线逐渐被广泛应用。
然而在实际应用中,由于波导天线的信号传输结构一般为波导,而芯片等器件的信号传输结构一般为微带线。因此,波导天线(或波导)与芯片(或微带线)之间需要通过相应的转接装置进行连接,以实现信号的高效传输。但是,目前的转接装置仍存在诸多不足,且难以实现异面传输的效果,因此不能够实现高效的信号转换和传输。
为此,本申请提供了一种能够有效避免信号在传输过程中的泄漏,并实现高效的信号转换和传输的转接装置。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图和具体实施例对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
在本申请提供的一种转接装置中,转接装置可以包括:基板,具有第一板面和第二板面,且基板具有通槽,通槽的第一端贯穿至第一板面,通槽的第二端贯穿至第二板面,且通槽的内壁具有导电层;耦合腔,设置在第一板面,且耦合腔与通槽的第一端耦合;以及谐振腔,设置在第一板面,谐振腔具有至少一个缝隙和连接端,缝隙与耦合腔耦合,连接端用于连接微带线。
具体的,如图1和图2所示,在本申请提供的一个实施例中,转接装置10包括基板11、耦合腔12和谐振腔13。基板11具有第一板面(图中的上板面)和第二板面(图中的下板面)。且基板11具有贯穿第一板面和第二板面的通槽111,通槽111的内壁具有导电层(图中未示出),以使电磁信号能够在通槽11内进行高效传输。耦合腔12设置在基板11的上板面,且耦合腔12与通槽111的上端耦合。波导01可以与通槽111的下端耦合,以使耦合腔12和波导01之间可以通过通槽111进行耦合。谐振腔13设置在基板11的上板面,且谐振腔13具有缝隙131和连接端(图中未示出)。其中,缝隙131与耦合腔12耦合,且谐振腔13的连接端通过渐变过渡结构021与微带线02连接。需要说明的是,耦合表示的是电磁信号或能量在两个部件之间的有效传输,而并不是对两个部件之间机械结构连接关系的限定。在实际应用时,为了实现两个部件之间的耦合,在机械结构上,可以采用多种不同类型的方式来实现。
在本申请实施例提供的转接装置10中,通过通槽111,电磁信号可以在基板11的上板面和下板面之间进行传输,从而实现异面传输效果。也能够避免电磁信号在穿过基板11时造成额外插损,有利于提升信号的传输效率。谐振腔13通过缝隙131与耦合腔12进行耦合,有利于降低转接装置10的整体尺寸。另外,还能够将谐振腔13中的电磁信号高效的传输至耦合腔12内。或者,耦合腔12内的电磁信号也可以高效的传输至谐振腔13中,从而有利于提升信号的传输效率。
具体的,转接装置10还可以包含设置在第一板面的微带线02,微带线02可以包含渐变过渡结构021。其中,谐振腔13的连接端用于通过渐变过渡结构021与微带线02连接。
为便于理解本申请技术方案,下面首先对信号的处理流程进行具体说明。
请继续参阅图1和图2。当信号由微带线02传输至波导01时。微带线02中的电信号可以通过渐变过渡结构021进行转换。例如,微带线02中的准TEM波(TransverseElectromagnetic Wave)可以通过渐变过渡结构021转变为能够在谐振腔13内进行传输的TE波(Transverse Electric Wave)。TE波在谐振腔内13进行传播,并通过缝隙131与耦合腔12进行耦合。耦合腔12受缝隙131激励发生谐振,并将能量转为TE10波。耦合腔12与通槽111的上端耦合,且通槽111的下端与波导01耦合。因此,TE10波能够通过通槽111传输至波导01中。从而实现微带线02至波导01的整个能量传输过程。其中,TEM波指的是电磁波的电场和磁场都在垂直于传播方向的平面上的一种电磁波。TE波指的是电场矢量垂直于传播方向,且磁场矢量的分量中既有与传播方向垂直,也有与传播方向平行的电磁波。TE10波指的是沿传播方向有磁场分量而没有电场分量的标准波导中的电磁波。
可以理解的是,当信号由波导01传输至微带线02时。信号的整个传输过程与上述的相反,在此不作赘述。
在具体实施时,基板11可以是印制电路板(Printed circuit boards,PCB)或柔性电路板(Flexible printed circuit,FPC),也可以是其他类型的板体结构。其中,基板11可以是单层板也可以是多层板。其中,基板11的具体类型、层数和形状本申请不作限制。可以理解的是,当基板11为多层板时,第一板面指的是位于最上层的板体的上板面,第二板面指的是位于最下层的板体的下板面。
在具体应用时,微带线02可以是独立的线体结构。
或者,如图1所示,微带线02也可以采用涂覆、蚀刻等工艺直接成型在基板11的上板面。另外,在本申请提供的实施例中,为了提升电信号在微带线02中的传输效果,防止受电磁干扰等不良影响。在微带线02的长度方向上,其两侧均设有成排的金属通孔022。可以理解的是,在其他的实施方式中,金属通孔022也可以替换成类似于微带线的结构形式,或则会省略设置,对此本申请对此不作限定。
另外,在具体实施时,耦合腔12的具体结构类型也可以是多样的。
例如,如图3和图4所示,在本申请提供的一个实施例中,耦合腔12的结构为朝基板的方向开口的阶梯状结构。例如,朝基板11的第一板面的方向开口。
具体来说,耦合腔12包括前腔121和背腔122。前腔121包括不等高的第一腔体1211和第二腔体1212。其中,第一腔体1211的高度略大于第二腔体1212的高度。在本申请提供的耦合腔12中,通过阶梯状的结构设计,能够有效提升耦合腔12的带宽,且能够保证工作性能的稳定性。
可以理解的是,在另外的实施方式中,耦合腔12也可以是非阶梯状结构。
例如,如图5所示,在本申请提供的另一个实施例中,耦合腔12的腔体为矩形。当然,在其他的实施方式中,耦合腔12的腔体也可以是椭圆形、圆形等其他形状的结构。其中,耦合腔12的具体形状本申请不作限制。
另外,如图2所示。将耦合腔12安装到基板11上时,为了提升耦合腔12与基板11之间的相对位置精度。耦合腔12可以设置第一定位结构123。在进行装配时,可以通过辅助工装(图中未示出)对耦合腔12进行位置定位,以将耦合腔12精准的安装在基板11的目标位置。随后可以采用焊接(如表贴、激光焊等)工艺将耦合腔12固定在基板11的上板面,以实现耦合腔12和基板11之间的固定连接。
具体来说,如图2所示,在本申请提供的实施例中,第一定位结构123包括定位孔。辅助工装(图中未示出)可以包括定位柱。
在具体实施时,定位孔的截面可以是圆形、椭圆形、矩形或其他的多边形结构。相应的,定位柱的截面可以是圆形、椭圆形、矩形或其他的多边形结构。
另外,定位孔与定位柱之间可以采用间隙配合的方式进行适配。即当定位柱插入到定位孔内后,定位柱与定位孔之间可以保持一定的间隙,以使定位柱能够较为顺畅的插入定位孔内。另外,将耦合腔12固定安装在基板11上后,也便于对辅助工装进行拆卸。或者,定位柱和定位孔之间也可以采用过盈配合的方式进行适配。即当定位柱插入到定位孔内后,定位柱与定位孔之间可以实现较为紧密的配合,以防止定位柱和定位孔之间产生松动,从而能提升耦合腔12和辅助工装之间的稳定性。
在具体设置时,定位孔和定位柱的设置数量可以是一个也可以是多个。例如,定位柱的设置数量可以是两个。相应的,定位孔的设置数量也可以是两个。通过多个定位柱和定位孔,可以有效提升耦合腔和辅助工装之间的相对位置,以使耦合腔12能够更加精准的安装在基板11上。在具体设置时,定位柱的设置数量与定位孔的设置数量可以保持一致。即一个定位柱与对应的一个定位孔进行对应适配。
另外,将耦合腔12固定在基板11上时,耦合腔12和基板11之间可以采用焊接的方式实现固定连接。
例如,可以采用表贴工艺将耦合腔12焊接在基板11的上板面。
请结合参阅图2和图3,具体来说,可以将耦合腔12开口的边缘120与基板11的上板面进行焊接。在具体实施时,耦合腔12开口边缘120的厚度可以尽可能的减小,以有效减小耦合腔12与基板11之间的焊接面积。从而可以避免因大面积焊接导致基板11翘曲等问题。另外,在一定程度上还能减小因加工误差所引发的不良问题。
可以理解的是,在另外的实施方式中,耦合腔12和基板11之间也可以采用其他的方式进行固定连接。例如,耦合腔12和基板11之间可以通过焊接、螺钉、卡扣、粘接等连接方式进行固定连接。其中,耦合腔12和基板11之间的固定连接方式本申请不作限制。
在对谐振腔13进行具体设置时,谐振腔13的具体类型和结构也可以是多样的。
例如,如图6所示,在本申请提供的一个实施例中,谐振腔13包括基片集成波导(Substrate integrated waveguide,SIW)。
具体来说,如图7所示,基片集成波导是一种微波传输线形式的结构,其利用金属通孔在介质基片上实现波导的场传播模式。在结构上,基片集成波导主要包括介质基片132,且介质基片132的上板面设有上金属层133,下板面设有下金属层134。多个金属通孔135成排的设置在介质基片132中,且贯穿至上金属层133和下金属层134。另外,为了使得基片集成波导内的电磁波能够通过缝隙131与耦合腔进行耦合,基片集成波导的一端(图中的左端)设有电壁136。电壁136能够对集成波导内的电磁波形成有效的阻挡作用,从而使得电磁波能够通过缝隙131与耦合腔进行耦合。
在本申请提供的实施例中,电壁131由一排间隔排列的金属通孔所构成。可以理解的是,在其他的实施方式中,电壁131也可以由嵌设在介质基片132内的金属件或设置在介质基片132左端的金属层构成。本申请对电壁131的设置方式本申请不作限制。
其中,介质基片132可以是基板11的组成部分。例如,当基板11为多层板时,介质基片132可以是位于基板11中最上层的板体结构。或者,基片集成波导也可以是独立的整体,最后采用表贴等工艺固定在基板11的上板面。在具体应用时,基片集成波导与基板11之间可以是一体结构,也可以是分体结构,本申请对此不作具体限定。
在具体应用时,缝隙131可以开设在谐振腔13背离基板11的表面。
具体来说,如图7所示。缝隙131可以开设在上金属层133的表面,且缝隙131贯穿上金属层133的厚度,以使谐振腔13的电磁信号能够通过缝隙向外传输。
请结合参阅图2。由于在实际应用时,耦合腔12也会设置在基板11的上板面,因此,为了使得从缝隙131透出的电磁信号能够高效的传输至耦合腔12内,缝隙131可以开设在谐振腔13背离基板11的表面。另外,在具体应用时,缝隙131可以位于第二腔体1212的投影范围内,也可以位于背腔122的投影范围内。其中,谐振腔13的缝隙131与耦合腔12之间的相对位置关系本申请不作限定。
另外,在具体设置时,谐振腔13除了可以采用基片集成波导以外,还可以采用如图8所示的矩形谐振腔。或者,也可以理解为,将基片集成波导中的两排金属通孔135以及电壁136替换为金属层,从而可以构成类似于矩形谐振腔的结构。
可以理解的是,在另外的实施方式中,谐振腔13也可以采用圆柱形谐振腔等类型。其中,本申请对谐振腔13的具体类型不作限制。
在对谐振腔13进行具体设置时,谐振腔13可以直接成型在基板11的第一板面,也可以是将制作成型后的谐振腔13固定在基板11的第一板面。其中,谐振腔11的具体成型方式本申请不作限制。
另外,在具体应用时,缝隙131的长度可以控制在0.5λg左右,以使转接装置能够实现宽带特性。其中,λg为电磁波在介质中传播的波长。该介质指的是基板11、谐振腔13或者空气。需要说明的是,电磁波在谐振腔13中传播的波长可以理解为电磁波在谐振腔13的材料介质中传播的波长,或者是电磁波在谐振腔13的空腔中传播的波长。可以理解的是,在其他的实施方式中,缝隙131的长度和宽度也可以根据不同需求进行对应设置,本申请对缝隙131的尺寸不作限制。另外,在实际应用中,缝隙131也可以开设两个、三个甚至更多个。其中,多个缝隙可以相互平行设置,也可以交叉设置。本申请对缝隙131的开设数量、位置排布不作限制。
对于渐变过渡结构021,如图6所示。其主要功能是实现谐振腔13和微带线02之间的阻抗变换,并实现TE波和TEM波之间的转换。
渐变过渡结构021的主体为一段微带线渐变线。其中,微带线渐变线的形式有很多中。例如,微带线渐变线可以是弧形渐变线、直线形渐变线、折线形渐变线等。
例如,如图6所示,在本申请提供的实施例中,渐变过渡结构021的微带线渐变线(即渐变过渡结构边缘的轮廓)为弧形渐变线。可以理解的是,在具体应用时,微带线渐变线的形式可以根据实际情况进行合理选择,本申请对此不作限定。
另外,在具体设置时,为了提升波导01与基板11之间的连接效果,波导01的结构也可以进行适应性设计。
例如,如图9和图10所示,在本申请提供的一个实施例中,波导01一端(图中的上端)的端面设有凸缘011,该凸缘011的顶面用于与基板11的下板面贴合。具体来说,通过凸缘011的结构设计,便于将凸缘011的顶面制作成平整度较高的平面,因此,有利于提升波导01与基板11的下板面之间的贴合性,防止信号产生泄漏等不良情况。
在具体实施时,凸缘011的形状轮廓可以根据波导01中腔体010的截面形状进行适应性设置。例如,当波导01中腔体011的截面形状为矩形时,凸缘011也可以设置为矩形的形状。当波导01中腔体010的截面形状为椭圆形时,凸缘011也可以设置为椭圆形的形状。
概括来说,凸缘011可以位于波导01中腔体010开口处的边缘,从而能够有效防止信号从腔体010的开口处泄漏。
另外,为了提升基板11与波导01之间的信号传输效率。通槽111的截面形状与腔体010的截面形状可以相同,以防止信号在波导01与基板11的通槽111之间传播时产生插损、阻抗失配等不良影响。
另外,将波导01安装到基板11的下侧时,为了提升波导01与基板11之间的相对位置精度。波导01和基板11可以设置相配合的定位结构,保证波导01和基板11之间的相对位置。
具体来说,如图11和图12所示,在本申请提供的实施例中,波导01的上侧设有第二定位结构012,基板11的下侧设有第三定位结构112。其中,第二定位结构012包括定位柱。第三定位结构112包括的定位孔。
首先需要说明的是,在图11中,基板11中包括多个阵列设置的通槽111(图中示出有24个,仅作为一种示例,不限制具体数目)。在图12中,波导01中包括多个阵列设置的腔体010。当基板11与波导01之间完成装配后,通槽111和腔体010一一对应耦合。通过这种方式可以同时实现多个通槽111和腔体010之间的耦合,以有效提升转接装置10的容量,同时也便于进行制作、简化装配工序。
可以理解的是,在实际应用时,在基板11的上板面,仍需要设置多个(如24个)耦合腔12和谐振腔13等相关结构,以实现多条微带线02与多个腔体010之间的桥接。
在其他的实施方式中,在单个基板11中所设置的通槽111的数量以及设置位置可以根据不同需求进行合理调整。相应的,在单个波导01中所设置的腔体010的数量以及设置位置也可以根据不同需求进行合理调整,本申请对此不作具体限定。
另外,在本申请提供的实施例中,为了提升基板11与波导01之间的连接效果。第二定位结构012包括两个帽状的定位柱,且分别设置在波导01的两个对角处。第三定位结构112包括两个定位孔,且分别设置在基板11的两个对角处。
在对基板11和波导01进行装配时,通过第二定位结构012和第三定位结构112可以实现基板11和波导01之间稳定的连接效果。
可以理解的是,在具体实施时,定位孔的截面可以是圆形、椭圆形、矩形或其他的多边形结构。相应的,定位柱的截面可以是圆形、椭圆形、矩形或其他的多边形结构。其中,定位孔和定位柱的设置数量以及设置位置可以根据实际需求进行合理调整,本申请对此不作限定。
另外,在进行装配时,为了提升波导01与基板11之间的连接强度,波导01与基板11之间可以采用紧固件的方式进行固定连接。
例如,如图11和图12所示,在本申请提供的一个实施例中,波导01具有多个通孔013(图中示出有24个),基板11的下板面具有多个螺纹孔113(图中示出有24个),且多个通孔013与多个螺纹孔113一一对应设置。将螺钉穿过波导01的通孔013后与基板11中的螺纹孔113进行螺接,便可实现波导01与基板11之间的固定连接。通过螺钉的方式,能够保证波导01与基板11之间的连接强度。另外,也便于实现可拆卸式连接,从而具有较高的灵活性。
可以理解的是,在其他的实施方式中,基板11和波导01之间也可以采用其他的方式实现固定连接,本申请对此不作具体限定。
在对转接装置进行制作时,可以采用如下方法:
具体来说,请结合参与图9和图15,该方法可以包括以下步骤:
S1、在基板11中开设通槽111,并在通槽111的内壁设置导电层。其中,通槽111的第一端(上端)贯穿至第一板面(上板面),通槽111的第二端(下端)贯穿至第二板面(下板面)。
S2、将耦合腔12设置在第一板面。以使耦合腔12与通槽111的第一端耦合。
S3、将谐振腔13设置在第一板面。其中,谐振腔13具有至少一个缝隙131和连接端(图中未示出),缝隙131与耦合腔12耦合,连接端用于连接微带线02。
在具体制作时,在基板11中开设通槽111可以采用切割或数控机床加工等工艺。其中,本申请对通槽111的开设方式不作具体限制。在通槽111的内壁设置导电层时,可以采用电镀、气象沉淀等工艺将导电材料(如铜、银或合金)直接成型在通槽111的内壁。其中,本申请对导电层的材料和制备工艺不作具体限制。
对于谐振腔13,可以直接成型在基板111的第一板面。或者,也可以先对谐振腔13进行制作,然后将成型后的谐振腔13采用表贴等工艺固定在第一板面。其中,谐振腔13的成型方式,以及谐振腔13与基板11之间的装配工艺本申请不作限制。
在一些制备方法中,也可以将微带线02设置在基板11的第一板面。
例如,如图16所示,在本申请实施例提供的制备方法中,还包括:
S4、将微带线02设置在第一板面。其中,微带线02包括渐变过渡结构021,谐振腔13的连接端用于通过渐变过渡结构021与微带线02连接。另外,在具体制作时,可以采用涂覆、蚀刻等工艺将微带线02直接成型在基板11的第一板面。
将耦合腔12设置在第一板面上时,耦合腔12与基板11之间可以采用焊接的方式实现固定连接。或者,耦合腔12与基板11之间也可以采用螺钉、卡扣等连接件实现固定连接。
另外,为了提升耦合腔12与基板11之间的相对位置精度,在进行装配时,可以通过辅助工装将耦合腔设置在第一板面的目标位置。
具体来说,该方法还可以包括:
S5、通过辅助工装将耦合腔定位在基板的目标位置。其中,耦合腔12具有第一定位结构123,辅助工装具有用于与第一定位结构123相配合的固定结构。
在进行装配时,可以使第一定位结构123与固定结构相配合,以实现耦合腔12与辅助工装之间的相对固定,然后通过辅助工装将耦合腔12转移到基板11的第一板面,以将耦合腔12精准的安装在基板11的目标位置。随后可以采用焊接(如表贴、激光焊等)工艺将耦合腔12固定在基板11的上板面,以实现耦合腔12和基板11之间的固定连接。
对于波导01,可以将波导01设置在基板11的第二板面,并实现波导01与基板11之间的固定连接。
在进行制作时,采用的方法可以包括:
S6、将波导的第一端的端面具有的凸缘011的顶面与第二板面贴合。
通过凸缘011的结构设计,便于将凸缘011的顶面制作成平整度较高的平面,因此,有利于提升波导01与基板11的下板面之间的贴合性,防止信号产生泄漏等不良情况。
另外,为了提升波导01与基板11之间的相对位置精度,在进行制作时,该方法还可以包括:
S7、在波导01中设置第二定位结构(图9中未示出),在基板11的第二板面设置第三定位结构(图9中未示出)。
在进行装配时,可以使第二定位结构与第三定位结构相互配合,以保证波导01与基板11之间的相对位置。最后,可以通过螺钉、卡扣等连接件实现波导01与基板11之间的固定连接。
可以理解的是,在对转接装置10进行制作时,也可以采用其他的方法或工艺流程,本申请对转接装置10的制备方法不作具体限定。
下面将结合实验数据对本申请实施例提供转接装置的有益效果进行具体说明。
如图13所示,为转接装置10的信号数据仿真图。
图中,横坐标表示频率;纵坐标表示反射/传输功率。实线L1表示插损;虚线M1表示转接装置10中其中端口的回波虚线M2表示转接装置10中另一个端口的回波。
从图13中可以看出,该转接装置10能够实现-20dB带宽范围约为:71.7-81.41GHz;插损约为-2.36dB。即本申请实施例提供的转接装置10能够实现宽带宽范围,且低插损的效果。
如图14所示,为转接装置10的电场强度分布图。
从图14中可以看出。较强电场主要分布在A区域(即耦合腔的一个拐角)和B区域(即通槽的一个拐角)。基板底部与波导接触的位置已形成稳定电场,无强电场分布。因此,整个转接装置对底部波导容差不敏感。并且,在引入安装误差的情况下,仍能够实现较低的插损。
在实际应用中,转接装置可以应用在多种不同类型的电子设备中,以实现微带线和波导之间的耦合。
例如,如图17所示,以电子设备为车载雷达为例。在车载雷达中,可以包括芯片03和波导天线04。其中,芯片可以设置在基板11的上板面,并通过微带线02的渐变过渡结构021与转接装置10进行连接。波导天线可以设置在基板11的下侧,并与波导01的下端耦合。即通过转接装置10可以实现芯片与波导天线之间的桥接。
在上述的实施例中,仅以车载雷达为例进行了具体说明。在具体应用时,电子设备也可以是基站、探测器等。其中,电子设备的具体类型本申请不作限制。
在具体实施时,上述配备有转接装置的电子设备还可以应用到无人机、智能家居、智能制造设备、测绘设备等多种类型的终端中。其中,本申请对转接装置以及配备有转接装置的电子设备的应用范围不作限制。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (23)

1.一种转接装置,其特征在于,所述转接装置包括:
基板,具有第一板面和第二板面,所述基板具有通槽,所述通槽的第一端贯穿至所述第一板面,所述通槽的第二端贯穿至所述第二板面,且所述通槽的内壁具有导电层;
耦合腔,设置在所述第一板面,且所述耦合腔与所述通槽的第一端耦合;
谐振腔,设置在所述第一板面,所述谐振腔具有至少一个缝隙和连接端,所述缝隙与所述耦合腔耦合,所述连接端用于连接微带线。
2.根据权利要求1所述的转接装置,其特征在于,所述转接装置还包含设置在所述第一板面的所述微带线,所述微带线包含渐变过渡结构;
其中,所述连接端用于通过所述渐变过渡结构与所述微带线连接。
3.根据权利要求1或2所述的转接装置,其特征在于,所述通槽的第二端用于与波导连接。
4.根据权利要求1至3中任一所述的转接装置,其特征在于,所述耦合腔的结构为朝所述基板的第一板面的方向开口的阶梯状结构。
5.根据权利要求4所述的转接装置,其特征在于,所述开口的边缘与所述基板的第一板面焊接。
6.根据权利要求1至5中任一所述的转接装置,其特征在于,所述耦合腔具有第一定位结构;
其中,所述第一定位结构用于将所述耦合腔定位在所述基板的目标位置。
7.根据权利要求1至6中任一所述的转接装置,其特征在于,所述通槽的截面形状与所述波导的截面形状相同或者相似。
8.根据权利要求1至7中任一所述的转接装置,其特征在于,所述谐振腔包括基片集成波导;
所述基片集成波导的第一端包含所述连接端,所述基片集成波导的第二端设有电壁;
其中,所述缝隙开设在所述基片集成波导背离所述基板的表面。
9.根据权利要求1至8中任一所述的转接装置,其特征在于,所述基板的第二板面连接波导的第一端。
10.根据权利要求1至9中任一所述的转接装置,其特征在于,所述缝隙的长度为0.5λg;
其中,λg为电磁波在第一介质中传播的波长,所述第一介质为所述基板、所述谐振腔或者空气。
11.根据权利要求1-10任一项所述的转接装置,其特征在于,所述转接装置还包含波导,所述波导的第一端的端面具有凸缘,所述凸缘的顶面与所述第二板面贴合。
12.根据权利要求11所述的转接装置,其特征在于,所述波导具有第二定位结构,所述基板的第二板面具有与所述第二定位结构相适配的第三定位结构。
13.一种电子设备,其特征在于,包括芯片和波导天线,还包括如权利要求1至12中任一所述的转接装置;
所述芯片通过微带线与所述谐振腔的连接端连接,所述波导天线通过所述波导与所述通槽的第二端连接。
14.根据权利要求13所述的电子设备,其特征在于,所述电子设备为雷达。
15.一种终端,其特征在于,包含权利要求13或14所述的电子设备。
16.一种制备方法,其特征在于,包括:
在具有第一板面和第二板面的基板中开设通槽,并在通槽的内壁设置导电层,其中,所述通槽的第一端贯穿至所述第一板面,所述通槽的第二端贯穿至所述第二板面;
将耦合腔设置在所述第一板面,且所述耦合腔与所述通槽的第一端耦合;
将谐振腔设置在所述第一板面;
其中,所述谐振腔具有至少一个缝隙和连接端,所述缝隙与所述耦合腔耦合,所述连接端用于连接微带线。
17.根据权利要求16所述的制备方法,其特征在于,所述方法还包括:
将所述微带线设置在所述第一板面,
其中,所述微带线包括渐变过渡结构,所述连接端用于通过所述渐变过渡结构与所述微带线连接。
18.根据权利要求16或17所述的制备方法,其特征在于,所述方法还包括:将所述通槽的第二端与波导进行连接。
19.根据权利要求16至18中任一项所述的制备方法,其特征在于,所述耦合腔的结构为朝所述基板的第一板面的方向开口的阶梯状结构。
20.根据权利要求19所述的制备方法,其特征在于,所述方法还包括:将所述开口的边缘与所述基板的第一板面进行焊接。
21.根据权利要求16至20中任一项所述的制备方法,其特征在于,所述耦合腔具有第一定位结构;
所述方法还包括:
通过辅助工装将所述耦合腔定位在所述基板的目标位置,所述辅助工装具有用于与所述第一定位结构相配合的固定结构。
22.根据权利要求16至21中任一项所述的制备方法,其特征在于,所述方法还包括:
将波导的第一端的端面具有的凸缘的顶面与所述第二板面贴合。
23.根据权利要求22所述的制备方法,其特征在于,所述方法还包括:
在所述波导设置第二定位结构,在所述基板的第二板面设置第三定位结构;
将所述第二定位结构与所述第三定位结构进行配合,以将所述波导定位在所述第二板面。
CN202110381645.4A 2021-04-09 2021-04-09 一种转接装置、电子设备、终端和转接装置的制备方法 Pending CN115207588A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110381645.4A CN115207588A (zh) 2021-04-09 2021-04-09 一种转接装置、电子设备、终端和转接装置的制备方法
EP22783893.5A EP4322322A1 (en) 2021-04-09 2022-03-25 Adapting apparatus, electronic device, terminal, and adapting apparatus manufacturing method
PCT/CN2022/083119 WO2022213826A1 (zh) 2021-04-09 2022-03-25 一种转接装置、电子设备、终端和转接装置的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110381645.4A CN115207588A (zh) 2021-04-09 2021-04-09 一种转接装置、电子设备、终端和转接装置的制备方法

Publications (1)

Publication Number Publication Date
CN115207588A true CN115207588A (zh) 2022-10-18

Family

ID=83545038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110381645.4A Pending CN115207588A (zh) 2021-04-09 2021-04-09 一种转接装置、电子设备、终端和转接装置的制备方法

Country Status (3)

Country Link
EP (1) EP4322322A1 (zh)
CN (1) CN115207588A (zh)
WO (1) WO2022213826A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115763446A (zh) * 2023-02-10 2023-03-07 湖北九峰山实验室 射频集成化设备及制备方法、包含其的收发机芯片

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187224A (ja) * 2002-12-06 2004-07-02 Toko Inc 誘電体導波管共振器の入出力結合構造
FR2850793A1 (fr) * 2003-01-31 2004-08-06 Thomson Licensing Sa Transition entre un circuit micro-ruban et un guide d'onde et unite exterieure d'emission reception incorporant la transition
US8912858B2 (en) * 2009-09-08 2014-12-16 Siklu Communication ltd. Interfacing between an integrated circuit and a waveguide through a cavity located in a soft laminate
US9306264B2 (en) * 2011-10-18 2016-04-05 Telefonaktiebolaget L M Ericsson (Publ) Transition between a microstrip protruding into an end of a closed waveguide having stepped sidewalls
EP2916384B1 (en) * 2012-11-02 2019-05-08 NEC Corporation Semiconductor package and mounting structure thereof
CN103515682B (zh) * 2013-07-24 2015-07-29 中国电子科技集团公司第五十五研究所 多层阶梯式基片集成波导实现微带至波导的垂直过渡结构
RU2600506C1 (ru) * 2015-10-02 2016-10-20 Общество с ограниченной ответственностью "Радио Гигабит" Волноводно-микрополосковый переход
CN105514556A (zh) * 2015-12-29 2016-04-20 大连楼兰科技股份有限公司 微带线与金属矩形波导间的转换装置与方法
WO2019162856A1 (en) * 2018-02-21 2019-08-29 Mohammad Hossein Mazaheri Kalahrudi Wideband substrate integrated waveguide slot antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115763446A (zh) * 2023-02-10 2023-03-07 湖北九峰山实验室 射频集成化设备及制备方法、包含其的收发机芯片
CN115763446B (zh) * 2023-02-10 2023-04-18 湖北九峰山实验室 射频集成化设备及制备方法、包含其的收发机芯片

Also Published As

Publication number Publication date
EP4322322A1 (en) 2024-02-14
WO2022213826A1 (zh) 2022-10-13

Similar Documents

Publication Publication Date Title
US11495871B2 (en) Waveguide device having multiple layers, where through going empty holes are in each layer and are offset in adjoining layers for leakage suppression
EP1677382B1 (en) Waveguide - printed wiring board (PWB) interconnection
EP2079127B1 (en) Waveguide connection structure
CN101496279B (zh) 一种过渡设备
US20110050356A1 (en) Waveguide converter and manufacturing method for the same
CN114784489B (zh) 波导天线组件、雷达、终端和波导天线组件的制备方法
CN1619331A (zh) 毫米波信号转换装置
CN215119195U (zh) 一种k波段窄面插入磁耦合波导微带过渡结构
CN112840506A (zh) 非接触式微带到波导过渡器
US20230223671A1 (en) Multi-layer waveguide with metasurface, arrangement, and method for production thereof
KR20150125262A (ko) 다층 기판 및 다층 기판의 제조 방법
EP1592081B1 (en) Microstrip to waveguide transition for millimetric waves embodied in a multilayer printed circuit board
US11803022B2 (en) Circuit board structure with waveguide and method for manufacturing the same
CN115207588A (zh) 一种转接装置、电子设备、终端和转接装置的制备方法
US20230268632A1 (en) Waveguide interface arrangement
CN110957574A (zh) 一种带状线馈电的宽带毫米波天线单元
WO2023016024A1 (zh) 电路板、天线结构及电子设备
CN210926321U (zh) 一种带状线馈电的宽带毫米波天线单元
CN115207589A (zh) 耦合装置及制造方法、波导天线、雷达、终端、pcb
US20230016951A1 (en) Waveguide arrangement
Khan et al. Aperture coupled stacked patch thin film antenna for automotive radar at 77 GHz
CN220324682U (zh) 射频信号传输结构
CN114497948B (zh) 一种毫米波转换结构
CN214378786U (zh) 一种波导到带状线过渡结构
RU2386206C1 (ru) Волноводный усилитель мощности

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination