EP1590563B1 - Procede de commande de l'injection directe d'un moteur a combustion - Google Patents

Procede de commande de l'injection directe d'un moteur a combustion Download PDF

Info

Publication number
EP1590563B1
EP1590563B1 EP04701940A EP04701940A EP1590563B1 EP 1590563 B1 EP1590563 B1 EP 1590563B1 EP 04701940 A EP04701940 A EP 04701940A EP 04701940 A EP04701940 A EP 04701940A EP 1590563 B1 EP1590563 B1 EP 1590563B1
Authority
EP
European Patent Office
Prior art keywords
crankshaft
sensor
signal
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04701940A
Other languages
German (de)
English (en)
Other versions
EP1590563A1 (fr
Inventor
Johannes Beer
Achim Koch
Harry SCHÜLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1590563A1 publication Critical patent/EP1590563A1/fr
Application granted granted Critical
Publication of EP1590563B1 publication Critical patent/EP1590563B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0092Synchronisation of the cylinders at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop

Definitions

  • the invention relates to a method for controlling a direct injection of an internal combustion engine during a restart of the internal combustion engine.
  • the internal combustion engine can be switched off for a short time and put back into operation. This is particularly advantageous when the vehicle is at a red light and saved by turning off the engine fuel and exhaust gases.
  • motor / generator combinations are used, which can be used depending on the operating condition of the engine either as an electric motor for starting the engine or as a generator for obtaining electrical energy by the internal combustion engine.
  • a drive of a motor vehicle which supports a start-stop operation of the internal combustion engine and causes by the use of an electric motor rapid self-running of the internal combustion engine.
  • the crankshaft is brought into a predetermined starting position via an electrical machine connected in engine operation, which is coupled non-positively to the crankshaft of the internal combustion engine.
  • the electric machine outputs torque to the crankshaft.
  • a method for starting an internal combustion engine with direct fuel injection and spark ignition has a braking device with which the crankshaft of the internal combustion engine is stopped when stopping the internal combustion engine in a predetermined angular position.
  • the predetermined angular position corresponds to a working stroke of a piston of the internal combustion engine, so that the internal combustion engine can be started by injecting fuel and igniting the fuel in the cylinder of the piston, which is in the power stroke, without additional assistance.
  • No. 4,766,865 A describes an arrangement with which the angular position of the crankshaft in relation to the cylinders can be detected.
  • a signal generator is provided on the crankshaft whose circumference is equal to the number in the cylinder of the internal combustion engine in N / 2 Signal areas is divided. Each signal area has an identification feature.
  • a signal generator is arranged on the camshaft whose angle range is likewise subdivided into N / 2 equal signal ranges. Due to this arrangement, it is possible to detect the position of the crankshaft with respect to the cylinders of the internal combustion engine immediately after the start of the internal combustion engine.
  • US 3 418 989 A describes an electronic ignition system in which a shaft position sensor is used to generate a shaft position signal and a time signal used for ignition.
  • the shaft position sensor has n-position encoder signals, wherein 2 n is equal to the number of cylinders of the internal combustion engine.
  • n is equal to the number of cylinders of the internal combustion engine.
  • three position indicator lines are provided, which are required to detect eight possible combinations of the position of the cylinders of the internal combustion engine can.
  • the object of the invention is to provide an improved method for starting an internal combustion engine.
  • the object of the invention is achieved by the method according to claim 1 and by the internal combustion engine according to claim 8.
  • An advantage of the method according to the invention is that in addition to a sensor for the crankshaft, which detects only a single position of the crankshaft during a revolution of the crankshaft, an absolute encoder arrangement is provided, with the absolute angular position of the Camshaft or crankshaft is detected. Depending on the signal of the absolute encoder arrangement, the injection and / or the ignition of the internal combustion engine is controlled after the start of the internal combustion engine until a more accurate signal for the position of the crankshaft has been detected by the crankshaft sensor. If the crankshaft sensor detects the position of the crankshaft, the injection and ignition are controlled depending on the signal from the crankshaft sensor.
  • the absolute encoder arrangement basically provides an inaccurate signal for the position of the piston in the internal combustion engine compared to the crankshaft sensor.
  • the accuracy of this signal for a start operation is sufficient to determine, depending on the signal of the absolute encoder arrangement, a piston which is either in the intake stroke or in the compression stroke.
  • fuel is injected into a combustion chamber whose piston is in the compression stroke when the internal combustion engine is started.
  • This method is used when the pressure of the fuel is higher than the compression pressure prevailing in the combustion chamber at the compression stroke.
  • the fuel is provided in direct fuel injection internal combustion engines from a fuel reservoir that holds the fuel at a variable, relatively high pressure. This method has the advantage that within a very short time after the starting process of the internal combustion engine, ie after moving the Crankshaft, a combustion process takes place and thus the internal combustion engine is driven by the combustion processes. This minimizes the time in which the starter must drive the engine.
  • start-stop function makes it possible to stop the engine automatically when the vehicle stops and to automatically restart when the brake is released before the driver presses the accelerator pedal. Thus, there is no noticeable delay in the starting process for the driver.
  • the synchronization required between the phasing of the pistons and the ignition or the ignition required for the starting process is made available earlier by the use of the signal of the absolute encoder than would be possible by the signal of the sensor of the crankshaft.
  • an absolute encoder for the camshaft is provided as absolute encoder arrangement.
  • the absolute encoder detects immediately at the start of the internal combustion engine, the absolute angular position of the camshaft.
  • the absolute angular position of the camshaft can be used approximately to determine the phase position of the pistons at the start. For this purpose, corresponding diagrams and / or tables are stored.
  • an angular range sensor for the camshaft and a second absolute encoder for the crankshaft are provided as the absolute encoder arrangement.
  • the angle range sensor detects after the start, in which of two angular ranges, the camshaft is during one revolution.
  • the second absolute encoder detects the absolute angular position of the crankshaft at the start. From a combination of the two signals, the phase position of the piston is determined. For this purpose, corresponding diagrams and / or tables are stored.
  • a combustion chamber of a piston is selected as a function of the signal of the absolute encoder arrangement, which is just in the start of the internal combustion engine in the intake stroke. In the combustion chamber of the selected piston, fuel is injected during the intake stroke. The injection of fuel into a combustion chamber, the piston is in the intake stroke, has the advantage that the injected fuel is swirled with the intake air and relatively clean combustion is achieved by the following ignition.
  • an ignition process for the combustion chamber is also started depending on the signal of the absolute encoder arrangement, in which the fuel was injected.
  • the ignition timing for the selected combustion chamber is determined depending on the signal of the absolute encoder arrangement.
  • the ignition process can be determined relatively accurately by the signal of the absolute encoder arrangement, although no synchronization has yet taken place via the crankshaft.
  • a sensor for the crankshaft which detects the position of the crankshaft at two positions during one revolution of the crankshaft, so that in a shorter time a synchronization of the injection and the ignition can be performed depending on the position of the crankshaft.
  • the time that must be bridged by the signal of the absolute encoder is reduced on average.
  • Fig. 1 shows a schematic representation of an internal combustion engine 1 with a crankshaft 2, which is connected via connecting rods 7 with four pistons 3.
  • the pistons 3 are movably guided in cylinders 4.
  • a piston 3 defines in a cylinder 4 a combustion chamber 6, in which a fuel-air mixture is introduced and ignited.
  • the crankshaft 2 is rotatably mounted in a housing of the internal combustion engine and communicates with a starter generator 5 in connection.
  • Two pistons 3 are in the same phase. In the illustrated example, the two outer cylinders 3 are near top dead center and the two inner cylinders 3 are near bottom dead center.
  • the starter generator 5 is activated.
  • the starter generator 5 causes the crankshaft 2 to rotate, thereby displacing the cylinders 3 up and down in the cylinders 4.
  • crankshaft 2 Between the starter generator 5 and the crankshaft 2, a freewheel is arranged, so that when incipient combustion in the combustion chambers 6, the crankshaft 2 can rotate independently of the rotation of the starter generator 5. After the starting process, the starter generator 5 is switched off again and the internal combustion engine 1 drives the crankshaft 2 through the burns in the combustion chambers 6.
  • the crankshaft 2 is in communication with a drive train, not shown, and provides for a corresponding drive of a motor vehicle.
  • the cylinder 4 has a cylinder head, in which an inlet valve 8 and an outlet valve 9 are arranged.
  • the intake valve 8 and the exhaust valve 9 are operatively connected to a camshaft 10.
  • the camshaft 10 has drive cams that open and close the intake valve 8 and the exhaust valve 9 at predetermined times.
  • the camshaft 10 is rotatably mounted in the internal combustion engine 1 and is driven by the crankshaft 2, for example via a chain.
  • the inlet valve 8 is assigned to an inlet opening, via which the combustion chamber 6 communicates with an intake channel 11.
  • a throttle valve 12 is arranged, which determines the amount of air that is sucked in an intake stroke of a piston 3 in the combustion chamber 6.
  • the outlet valve 9 is arranged in an outlet opening, via which the combustion chamber 6 can be connected to an exhaust gas channel 13.
  • a spark plug 14 and an injection valve 15 are still arranged in the cylinder head.
  • the injection valve 15 is connected via a fuel line 16 with a fuel tank 17 in connection.
  • the fuel accumulator 17 is supplied with fuel by a fuel pump. In the fuel accumulator 17 fuel is kept at a variable pressure, which can reach in a gasoline engine with direct fuel injection up to 180 bar depending on operating parameters of the internal combustion engine.
  • the crankshaft 2 is associated with an encoder 18 which detects a single position of the crankshaft 2 during one revolution of the crankshaft 2.
  • an encoder 18 which detects a single position of the crankshaft 2 during one revolution of the crankshaft 2.
  • the crankshaft 2 a gear 35 having 60 teeth, with a gap is provided, which is as wide as two teeth ((60-2) gear).
  • a Hall sensor is provided, which is arranged in the region of the row of teeth of the gear wheel and detects the passage of the tooth gap and thus an absolute rotational position of the crankshaft during one revolution of the crankshaft 2.
  • the encoder 18 is connected to a control unit 19 in connection.
  • the control unit 19 is further connected to the throttle valve 12, the injection valve 15, an ignition system 20 and the starter generator 5 in connection.
  • the ignition system 20 is in turn connected to the spark plug 14 via an ignition line.
  • the control unit 19 has an interface 21 and a central control unit 22.
  • a pressure sensor 36 is provided on the fuel accumulator 17, which is connected via a signal line to the control unit 19. Via the interface 21, a data exchange between the sensors and the actuators to be controlled, such as the starter generator 5 and the ignition system 20, allows.
  • the control unit 19 is also connected to other sensors, such as an accelerator pedal sensor, which detects the accelerator pedal position and thus the driver's request in connection.
  • the read-only memory 23 stores start parameters, methods and characteristic curves with which the control unit 19 can control injection processes and ignition processes for the cylinders 4 as a function of operating parameters of the internal combustion engine, such as the load and the rotational speed.
  • variable parameters are stored, with which an optimized control of the injection and the ignition of the combustion processes can be achieved.
  • the camshaft 10 is assigned an absolute encoder 25 which detects the absolute position of the camshaft 10 when the internal combustion engine is started.
  • the absolute encoder 25 detects the absolute angular position of the camshaft during one revolution of the camshaft, ie an angle value of 0 ° to 360 ° camshaft angle.
  • the absolute encoder 25 is connected to the control unit 19.
  • the control unit 19 controls the position of the throttle valve 12, the amount of fuel to be injected by the injection valve 15 and the ignition timing at which the spark plug 14 is to emit a spark. Furthermore, the control unit 19, the fuel pump, not shown, is controlled, so that there is a desired fuel pressure in the fuel tank 17.
  • the internal combustion engine 1 controls the injection as a function of load and rotational speed, ie the injection timing, the injection duration and the ignition, ie the ignition timing.
  • the control unit 19 checks whether a stop situation exists. A stop situation is detected when the vehicle is longer than 1 second when the brake is applied. If no stop situation is detected at program point 55, the program branches back to program point 50. If, however, the control unit 19 detects a stop situation at program point 55, a branch is made to program point 60. At program point 60, the control unit 19 terminates injection and ignition processes.
  • the control unit 19 monitors whether the driver issues a start signal.
  • a start signal may be that the operation of the brake is released and the accelerator pedal is depressed. If a start signal is detected at program point 65, the program branches to program point 70.
  • the control unit 19 starts the operation of the internal combustion engine 1 according to the inventive method 1.
  • the starter generator 5 is first controlled, so that the crankshaft 2 is set in a rotational movement.
  • control unit 19 detects the absolute angular position of the camshaft 10. At the same time, the control unit 19 monitors the encoder 18 and waits for the recognition of the tooth gap, which indicates to the control unit 19 the exact angular position of the crankshaft 2.
  • the control unit 19 does not yet know the angular position of the crankshaft 2, so that in the initial time only the signal of the absolute encoder 25 provides information about the phase position of the pistons 3.
  • the angular position of the camshaft 10 is a less accurate information about the piston 3 again, since the pistons 3 are not directly connected to the camshaft 10 in phase.
  • the signal of the absolute encoder 25 is sufficient to determine an approximate phase angle of the pistons 3.
  • the inaccuracy of the information is accepted and depending on the signal of the absolute encoder 25, the injection of fuel and the ignition of the fuel controlled by the control unit 19.
  • control unit 19 uses the angular position of the crankshaft 2 for further injection and / or ignition processes in order to determine the phase position of the pistons 3.
  • Both for the angle of the camshaft and for the angular position of the crankshaft diagrams and / or tables are stored [in the read-only memory 23], based on which the phase angles of the pistons can be determined by the control unit.
  • the exact angular position of the crankshaft 2 defines the phase angles of all pistons 3 of the internal combustion engine 1 precisely. If the control unit 19 now knows the current angular position of the crankshaft 2, then the control unit 19 also knows the current phase position of the pistons 3. The pistons 3 are fixed in the phase relative to the crankshaft 2 via the connecting rod 7. The control unit 19 required for the precise determination of the injection timing and the Injection duration and for the precise determination of the ignition timing, the precise phase angle of the corresponding piston. 3
  • FIGS. 4 to 6 Various embodiments of the method according to the invention will be explained in more detail with reference to the following FIGS. 4 to 6.
  • FIG. 4 shows a first diagram in which, depending on the time t, the signal of the absolute encoder 25, a synchronization signal Synch of the control unit 19, the signal of the transmitter 18 and the phase positions of four pistons 3 are shown.
  • the absolute encoder 25 outputs an angle signal W, which indicates the angular position of 0 ° to 360 ° of the camshaft 10 over a revolution.
  • One revolution of the camshaft 10 covers all four working strokes of a piston during two revolutions of the crankshaft 2.
  • a first phase diagram 31 of a first piston of the internal combustion engine is shown directly below the signal of the transmitter 18.
  • phase diagram 33 of a third piston of the internal combustion engine is shown.
  • phase diagram 34 of a fourth piston of the internal combustion engine is shown.
  • second phase diagram 32 of a second piston of the internal combustion engine is shown over time. For the representation of the phase states, the same symbols are used for the four pistons.
  • the phase diagram begins with a thick solid line representing a stroke of a Inlet valve 8 symbolizes. While the intake valve 8 is opened, air is drawn via the intake valve 8 into the combustion chamber 6 of the third cylinder of the third piston.
  • the third piston is located in an intake stroke A.
  • a compression stroke V begins, which is shown in the third phase diagram 33 following the intake stroke in the form of a steeply rising pressure characteristic P.
  • the pressure characteristic represents the pressure in the combustion chamber of the third cylinder.
  • the compression stroke V goes to a top dead center OT, which is shown as a dotted vertical line in the third phase diagram 33. In the area of top dead center OT, ignition takes place, which is shown schematically in the form of a lightning bolt.
  • a combustion cycle VT follows. During the combustion cycle, shortly after the top dead center OT, the pressure in the combustion chamber 6 continues to increase, as shown in the third phase diagram 33. However, the third piston moves back down, so that after a high point, the pressure in the combustion chamber decreases again.
  • a drive train of the internal combustion engine 1 is driven via the crankshaft 2.
  • an exhaust stroke AT during which the exhaust gas generated in the combustion chamber 6 at the combustion stroke VT is discharged.
  • the outlet valve 9 is closed again and the inlet valve 8 is opened. Thus, air is sucked in an intake stroke A again.
  • the phases of the four pistons are all the same, but the phases of the individual pistons are half a crankshaft revolution offset from each other.
  • the crankshaft is rotated by two full revolutions.
  • the camshaft 10 is rotated only one revolution.
  • the internal combustion engine 1 is in a first position P1.
  • the first position P1 is shortly after passing through the tooth gap of the gear 35 by the encoder 18.
  • the internal combustion engine 1 starts in the first position P1
  • the controller 19 additionally compares the pressure of the fuel in the fuel accumulator 17 and recognizes that the pressure in the fuel accumulator 17 is less than the pressure that occurs in a compression by the third piston. Thus, there is a low pressure situation. In a low-pressure situation, the control unit 19 gives a control command to the injection valve 15 which is associated with the combustion chamber of the third piston, so that even during the intake stroke in a first time T1 fuel is injected into the combustion chamber of the third cylinder.
  • the injection process at the first time T1 is shown in the third phase diagram 33 in the form of a rectangular area.
  • the controller 19 is at a second time T2 a signal to the ignition system 20, so that at the second time T2 ignition in the combustion chamber of the third piston is triggered.
  • the second time T2 is in the region of the top dead center of the third piston.
  • the control unit 19 has no further information about the exact phase position of the piston, since the encoder 18 has not yet recognized the tooth gap.
  • the fuel burns in the combustion chamber of the third cylinder during the combustion stroke VT.
  • the exhaust gas is output via the exhaust valve 9 via an exhaust stroke AT.
  • the control unit recognizes that the fourth cylinder of the fourth piston, whose phase position is shown in the fourth phase diagram 34, is in an intake stroke A from a third point in time T3. Consequently, the controller 19 outputs a signal to the injection valve 15 associated with the fourth cylinder of the fourth piston to start an injection operation at a fourth time T4.
  • the fourth time T4 is still within the intake stroke A of the fourth cylinder.
  • the encoder 18 detects the tooth gap of the gear 35, so that a synchronization signal Synch to the control unit 19 is dispensed.
  • the control unit 19 controls all further operations on the phase angle of the crankshaft 2.
  • the ignition for the fourth cylinder which takes place at a later sixth time T6, depending on the synchronization signal of the encoder 18 at the sixth time T6 by the control unit 19 controlled. All further processes for further injections or ignition processes are controlled by the control unit 19 as a function of the synchronization signal of the transmitter 18.
  • the information about the angular position of the crankshaft 2 has the advantage that the phase positions of the piston can be determined precisely with respect to the rotational position of the crankshaft 2.
  • the advantage of the method according to the invention is that at a start of the internal combustion engine in the time ranges in which no synchronization signal of the encoder 18 has been detected, the injection and / or the ignition depending on the signal of the absolute encoder 25 are controlled by the control unit 19.
  • the absolute encoder 25 outputs a signal for the angular position of the camshaft 10, which detects an angle value over two crankshaft revolutions.
  • the phase angle of the individual cylinders of the internal combustion engine can be determined on the basis of the signal of the absolute encoder 25.
  • the camshaft 10 is connected, for example via a drive chain in the phase with the crankshaft 2 and thus with the phase angles of the pistons.
  • the phase angle of the piston by the angle signal of the absolute encoder 25 can be determined relatively accurately.
  • the control unit 19 recognizes on the basis of the signal of the absolute encoder 25, that the first piston whose phase position is shown in the first phase diagram 31, in a combustion stroke VT, the third piston whose phase position is shown in the third phase diagram 33, in a compression stroke V, the fourth piston whose phase position in the fourth phase diagram 34 is shown, in an intake stroke A and the second piston whose phase position is shown in the second phase diagram 32, is located in an exhaust stroke AT.
  • the controller 19 selects the fourth cylinder of the fourth piston to inject fuel into the combustion chamber of the fourth cylinder via the injector 15 at a fourth time T4.
  • the fuel / air mixture in the fourth cylinder is ignited by the control unit 19 as a function of the synchronization signal Synch, which was detected at the fifth time T5.
  • a starting method for an internal combustion engine is described with reference to FIG. 5, in which the fuel in the fuel accumulator 17 has a higher pressure than that generated during the compression in the compression stroke in the combustion chambers 6.
  • the control unit 19 recognizes, on the basis of the signal from the absolute encoder 25, that the third piston, whose phase position is shown in the third phase diagram 33, is in an intake stroke A.
  • the control unit 19 selects the third cylinder of the third piston and injects fuel into the combustion chamber of the third piston during a subsequent compression stroke V via the injection valves 15 at a seventh time T7. Since the fuel has a higher pressure than the compression pressure, the fuel during the compression stroke V at the seventh time T7 be injected.
  • the injection is again shown in the form of a rectangle.
  • T8 ignites the controller 19 due to the signal of the absolute encoder in the region of the top dead center in the transition from the compression stroke V to the combustion stroke VT, the air / fuel mixture in the combustion chamber of the third cylinder.
  • the control unit 19 recognizes, on the basis of the signal from the absolute encoder 25, that the fourth piston whose phase is shown in the fourth phase diagram 34 is in an intake stroke A.
  • the control unit thus controls an injection into the combustion chamber of the fourth piston during a compression stroke at a following tenth time T10.
  • the tenth time T10 is after the ninth time T9, at which a synchronization signal from the encoder 18 has been sent to the control unit 19.
  • the tenth time T10 is so close to the ninth time T9 that it is no longer possible to calculate the injection timing based on the synchronization signal of the encoder 18 and to control.
  • FIG. 6 shows a further embodiment of the method according to the invention, in which one encoder 18 with a second one Gear is used, which has two tooth gaps, which are offset by 180 ° from each other.
  • the encoder 18 detects two tooth spaces during a single revolution of the crankshaft 2.
  • the maximum distance between the start of the internal combustion engine 1 and the receipt of a synchronization signal Synch is limited to 180 ° crankshaft angle. Consequently, in this embodiment, a reliable signal for controlling the injection and the ignition is obtained within a shorter time.
  • the controller recognizes 19 due to the signal of the absolute encoder, that the third piston whose phase position in third phase diagram 33 is shown in an intake stroke A is located.
  • the controller injects fuel at a twentieth time T20 in the intake stroke into the combustion chamber 6 of the third cylinder of the third piston.
  • the injection process is shown symbolically in the form of a rectangle.
  • the control unit 19 has not yet received a synchronization signal.
  • the control unit 19 detects a synchronization signal Synch from the encoder 18.
  • the ignition taking place at a 23rd time T23 is controlled by the control unit 19 as a function of the synchronization signal Synch of the transmitter 18 and thus dependent on the rotational position of the crankshaft 2.
  • the control unit 19 detects at the start of the internal combustion engine at the first position P1 that the third piston is in an intake phase. Due to the high pressure of the fuel, the controller 19 controls the injection at a 22nd time T22 during the following compression phase of the third piston.
  • the 22nd time T22 is temporally shortly after the 21st time T21, at which the synchronization signal of the encoder 18 was generated. Due to the small distance, however, it is no longer possible to carry out the control of the injection depending on the synchronization signal. Thus, in this case, the injection is controlled by the controller 19 at the 22nd time T22 depending on the signal of the absolute encoder.
  • the following ignition which is carried out at a 23rd time T23 near the top dead center of the third piston, is controlled by the control unit 19 in dependence on the synchronization signal Synch of the transmitter 18.
  • the control unit 19 controls an injection into the combustion chamber 6 of the fourth piston during the same intake stroke on the basis of the signal from the absolute encoder 25.
  • the injection is shown schematically in the form of a rectangle.
  • the ignition performed at a subsequent 25th time T25 near the following top dead center OT from the controller 19 becomes dependent on the synchronization signal Synch, which was obtained at a 26th time T26 from the encoder 18.
  • the control unit 19 detects on the basis of the signal from the absolute encoder 25 that the fourth piston is in the intake stroke. However, since the pressure of the fuel is above the compression pressure, injection is not performed until the following compression stroke of the fourth piston at a 27th time T27.
  • the 27th time T27 is shortly after the 26th time T26, at which the transmitter 18 transmits a synchronization signal Synch to the control unit 19.
  • the time interval between the synchronization signal Synch and the 27th time T27 i. the injection timing, too low, so that no recalculation due to the synchronization signal is possible and therefore the controller 19 performs the injection at the 27th time T27 depending on the signal of the absolute encoder 25.
  • the control unit 19 After receipt of the synchronization signal, the control unit 19 checks whether the remaining time until a control process, such as an injection or an ignition, is greater than a specified computing time. If the time interval is shorter than the specified computing time, the process to be carried out is carried out depending on the signal of the absolute encoder 25, although a synchronization signal is present. However, if the time interval between the receipt of the synchronization signal and the time of the control to be executed is greater than the computing time, the control unit 19 calculates the time the action to be performed as a function of the synchronization signal. This ensures that after receipt of the synchronization signal all controls to be executed by the control unit 19 are calculated and executed as a function of the more precise synchronization signal Synch.
  • a control process such as an injection or an ignition
  • FIG. 7 shows a further embodiment of an internal combustion engine in which an angular range sensor 37 and a second absolute encoder 38 are provided as the absolute encoder arrangement.
  • the arrangement according to FIG. 7 substantially corresponds to the arrangement according to FIG. 2, but instead of the absolute encoder 25, an angular range sensor 37 is assigned to the camshaft 10 and, in addition, the second absolute encoder 38 is assigned to the crankshaft 2.
  • the angle range sensor 37 detects when starting the internal combustion engine one of two angular ranges of one revolution of the camshaft 10. One revolution of the camshaft 10 is divided into a first angular range of 0 to 180 ° and a second angular range of 180 to 360 °. If the internal combustion engine is started, the angular range sensor 37 immediately recognizes whether the camshaft 10 is in the first angular range or in the second angular range.
  • the second absolute encoder 38 detects when starting the internal combustion engine, the absolute angular position of the crankshaft 2. Both the angular range sensor 37 and the second absolute encoder 38 are connected to the control unit 19. In the embodiment shown in Fig. 7, a second gear 39 is provided, the 58 gears (60-2-2 gear) and two offset by 180 ° tooth gaps, whose width corresponds to a width of two teeth. Instead of the embodiment shown in Fig. 7 with the second gear 39 and a gear 35 according to the embodiment of Fig. 2 can be used.
  • FIG. 8 shows in a fourth diagram the signals of the angular range sensor 37, the signal of the second absolute encoder 38, the signal of the encoder 18 with the second gear 39 and the corresponding synchronization signal.
  • the further phase diagrams for the first, second, third and fourth pistons are arranged analogously to the diagrams of FIGS. 4, 5, 6, but are not shown explicitly for the sake of simplicity.
  • the control unit 19 detects the start of the internal combustion engine via the evaluation of the signal WB of the angular range sensor 37 and the signal of the second absolute encoder 38, the corresponding phase angles of the four pistons.
  • the control unit 19 can determine the phase position of the four pistons. For this purpose, corresponding tables and diagrams, as shown in FIGS. 4 to 6, are stored in the read-only memory 23. In the selection of the cylinder into which injected and then the injected fuel to be ignited, the control unit 19 proceeds according to the same rules, as already explained with reference to FIGS. 4 to 6.
  • the Control unit 19 detects the phase angle of the piston in response to the signal of the angular range sensor 37 and in response to the signal of the second absolute encoder 38.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (10)

  1. Procédé pour commander une injection directe de carburant dans une chambre de combustion (6) d'un moteur à combustion interne (1), le moteur à combustion interne (1) comprenant plusieurs chambres de combustion (6) délimitées chacune par un piston mobile (3), les pistons mobiles (3) étant reliés à un vilebrequin (2), des soupapes d'admission et d'échappement (8, 9) commandées par un arbre à cames (10) étant disposés sur les chambres de combustion (6), une seule position du vilebrequin (2) étant saisie par un capteur (18) au cours d'une révolution complète du vilebrequin (2), une position de phase des pistons (3) étant déterminée en fonction du signal du capteur (18) quand la position du vilebrequin (2) avait été captée, l'injection et/ou un allumage étant commandés après la saisie de la position du vilebrequin (2) en fonction de la position du vilebrequin (2), un ensemble de transmetteur absolu (25, 37, 38) étant prévu qui est associé à l'arbre à cames (10) ou au vilebrequin (2), l'ensemble de transmetteur absolu (25, 37, 38) transmettant la position de phase du piston (4) lors du démarrage du moteur à combustion interne, une injection étant commandée en fonction du signal de l'ensemble de transmetteur absolu (25, 37, 38) avant la saisie de la position du vilebrequin par le capteur (18),
    caractérisé en ce qu'on vérifie si la pression du carburant est plus grande que la pression de compression, et qu'une chambre de compression (6) est choisie en fonction du signal de l'ensemble de transmetteur absolu (25) dont le piston (4) se trouve le premier dans la phase de compression après le démarrage lorsque la pression du carburant dépasse la pression de compression, et que du carburant est injecté dans la chambre de compression choisie (6) au cours de la phase de compression.
  2. Procédé selon la revendication 1, caractérisé en ce qu'un transmetteur absolu (25) est prévu qui saisit une position angulaire de l'arbre à cames (10), et
    que, lors d'un démarrage du moteur à combustion interne (1) avant la saisie de la position du vilebrequin (2), le signal du transmetteur absolu (25) est utilisé pour commander l'injection.
  3. Procédé selon la revendication 1, caractérisé en ce qu'un capteur de champ angulaire (37) est prévu à l'aide duquel l'un de deux champs angulaires de l'arbre à cames (10) est saisi,
    qu'un deuxième transmetteur absolu (38) est prévu à l'aide duquel une position absolue du vilebrequin (2) est saisie,
    que les positions de phase des pistons (3) sont déterminées en fonction du champ angulaire de l'arbre à cames (10) et de la position angulaire du vilebrequin (2), et qu'une injection est commandée aussi longtemps que la position du vilebrequin (2) n'a pas encore été saisie par le capteur (18).
  4. Procédé selon la revendication 1, caractérisé en ce qu'une chambre de combustion (6) est choisie lors du démarrage en fonction du signal provenant de l'ensemble de transmetteur absolu (25), chambre de combustion dont le piston (3) se trouve dans la phase d'admission, et que du carburant est injecté dans la chambre de combustion choisie (6).
  5. Procédé selon la revendication 1, caractérisé en ce qu'un allumage est déclenché en fonction du signal provenant de l'ensemble de transmetteur absolu (25, 37, 38).
  6. Procédé selon la revendication 1, caractérisé en ce que le capteur (18) saisit deux positions du vilebrequin (2) au cours d'une révolution du vilebrequin (2), et que les deux positions sont décalées l'une par rapport à l'autre de préférence de 180° par rapport à une révolution du vilebrequin.
  7. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'injection et/ou l'allumage sont calculés en fonction de la position du vilebrequin (2) après la saisie de la position du vilebrequin lorsque le moment d'injection ou d'allumage est situé plus tard qu'un temps de calcul suivant la saisie de la position du vilebrequin (2) à l'aide du capteur (18).
  8. Moteur à combustion interne (1) comportant plusieurs cylindres (4) avec pistons (3) qui délimitent des chambres de combustion (6), comprenant en outre des soupapes d'injection (15) ; des soupapes d'admission et d'échappement (8, 9) entraînées par un arbre à cames (10) ; un vilebrequin (2) auquel sont liés les pistons (3) ; un capteur (18) pour saisir une position angulaire du vilebrequin (2) ; un appareil de commande (19) qui commande l'injection, un ensemble de transmetteur absolu (25, 37, 38) étant prévu qui sert à la détermination de la position de phase des pistons (3) lors du démarrage du moteur à combustion interne (1), l'ensemble de transmetteur absolu étant connecté à l'appareil de commande (19), l'appareil de commande (19) actionnant l'injection en fonction du signal fourni par le dispositif transmetteur absolu (25, 37, 38) jusqu'à ce que le capteur (18) aura saisi la position angulaire du vilebrequin (2), l'appareil de commande (19) actionnant l'injection après la saisie de la position du vilebrequin (2) à l'aide du capteur (18) en fonction du signal fourni par le capteur (18),
    caractérisé en ce que l'appareil de commande (19) vérifie si la pression du carburant est plus grande que la pression de compression, et que l'appareil de commande (19) choisit une chambre de compression (6) en fonction du signal de l'ensemble de transmetteur absolu (25) dont le piston (3) se trouve le premier dans la phase de compression après le démarrage et lorsque la pression du carburant dépasse la pression de compression, et que du carburant est injecté à l'aide de l'appareil de commande (19) dans la chambre de compression choisie (6) au cours de la phase de compression.
  9. Moteur à combustion interne selon la revendication 8, caractérisé en ce qu'un transmetteur absolu (25) est prévu, que le transmetteur absolu (25) est associé à l'arbre à cames (10) et saisit la position angulaire de l'arbre à cames (10), que l'appareil de commande (19) actionne l'injection lors d'un démarrage du moteur à combustion interne (1) en fonction du signal provenant du transmetteur absolu (25) jusqu'à ce que le capteur (18) aura saisi la position angulaire du vilebrequin (2), et que l'appareil de commande (19) actionne l'injection en fonction du signal fourni par le capteur (18) après la saisie de la position du vilebrequin (2) par le capteur (18).
  10. Moteur à combustion interne selon la revendication 8, caractérisé en ce que l'ensemble de transmetteur absolu comprend un capteur de champ angulaire (37) ainsi qu'un deuxième transmetteur absolu (38),
    que le capteur de champ angulaire (37) est associé à l'arbre à cames (10) et saisit l'un de deux champs angulaires au cours d'une révolution de l'arbre à cames (10),
    que le deuxième transmetteur absolu (38) est associé au vilebrequin (2) et saisit une position angulaire absolue du vilebrequin (2),
    que le capteur de champ angulaire (37) et le deuxième transmetteur absolu (38) sont connectés à l'appareil de commande (19),
    que l'appareil de commande (19) détermine une position de la phase des pistons (3) lors du démarrage du moteur à combustion interne (1) à partir du signal du capteur de * champ angulaire (37) et du signal du deuxième transmetteur absolu (38) et commande une injection aussi longtemps que le capteur (18) n'a pas encore saisi une position du vilebrequin (2).
EP04701940A 2003-02-04 2004-01-14 Procede de commande de l'injection directe d'un moteur a combustion Expired - Fee Related EP1590563B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10304449 2003-02-04
DE10304449A DE10304449B4 (de) 2003-02-04 2003-02-04 Verfahren zur Steuerung einer direkten Einspitzung einer Brennkraftmaschine
PCT/EP2004/000220 WO2004070184A1 (fr) 2003-02-04 2004-01-14 Procede de commande de l'injection directe d'un moteur a combustion

Publications (2)

Publication Number Publication Date
EP1590563A1 EP1590563A1 (fr) 2005-11-02
EP1590563B1 true EP1590563B1 (fr) 2006-11-22

Family

ID=32747545

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04701940A Expired - Fee Related EP1590563B1 (fr) 2003-02-04 2004-01-14 Procede de commande de l'injection directe d'un moteur a combustion

Country Status (6)

Country Link
US (1) US7182062B2 (fr)
EP (1) EP1590563B1 (fr)
JP (1) JP2006514222A (fr)
KR (1) KR101020321B1 (fr)
DE (2) DE10304449B4 (fr)
WO (1) WO2004070184A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037167A1 (de) * 2004-07-30 2006-03-23 Robert Bosch Gmbh Vorrichtung und Verfahren zur Steuerung einer Brennkraftmaschine
JP4581586B2 (ja) * 2004-09-17 2010-11-17 トヨタ自動車株式会社 内燃機関システム及びこれを搭載する自動車並びに内燃機関の始動方法
JP2006207575A (ja) * 2004-12-28 2006-08-10 Nissan Motor Co Ltd 内燃機関及びその制御方法
DE102005016067B4 (de) * 2005-04-07 2007-06-21 Siemens Ag Verfahren zur Erhöhung der Start-Reproduzierbarkeit bei Start-Stopp-Betrieb einer Brennkraftmachine
DE102005019378B4 (de) * 2005-04-26 2007-05-24 Siemens Ag Verfahren zur Bestimmung der Einspritzdauer bei einem automatischen Start einer Brennkraftmaschine
JP4472588B2 (ja) * 2005-06-23 2010-06-02 日立オートモティブシステムズ株式会社 内燃機関の気筒判別装置
DE102007027709A1 (de) * 2006-12-27 2008-07-03 Robert Bosch Gmbh Verfahren zum Start einer Brennkraftmaschine
US8875969B2 (en) * 2007-02-09 2014-11-04 Tricord Solutions, Inc. Fastener driving apparatus
DE102007014322A1 (de) * 2007-03-26 2008-10-02 Audi Ag Verfahren zum Durchführen eines Start-Stopp-Betriebs einer Brennkraftmaschine eines Fahrzeugs
US7966869B2 (en) * 2007-07-06 2011-06-28 Hitachi, Ltd. Apparatus and method for detecting cam phase of engine
FR2934646B1 (fr) * 2008-07-31 2011-04-15 Peugeot Citroen Automobiles Sa Procede et dispositif de detection de la rotation du vilebrequin d'un moteur a combustion
JP5287977B2 (ja) * 2009-03-19 2013-09-11 トヨタ自動車株式会社 内燃機関の制御装置
JP6082215B2 (ja) * 2012-09-19 2017-02-15 日立オートモティブシステムズ株式会社 可変バルブタイミング機構の制御装置
USD689502S1 (en) 2013-01-18 2013-09-10 Swift Distribution, Inc. Device support apparatus
JP6421672B2 (ja) * 2015-03-26 2018-11-14 株式会社デンソー 可変バルブシステム
JP6409645B2 (ja) * 2015-03-26 2018-10-24 株式会社デンソー 可変バルブシステム
TWI595155B (zh) * 2016-04-27 2017-08-11 三陽工業股份有限公司 具一體式啟動發電機之引擎之曲軸角計算方法
KR102518658B1 (ko) 2018-07-30 2023-04-06 현대자동차주식회사 차량의 시동성능 향상 제어 방법 및 이를 포함하는 차량
US11639859B2 (en) * 2020-05-22 2023-05-02 Deere & Company Method for determining rotational position of a rotating camshaft on a reciprocating engine using a target with a pattern of teeth and a collection of detection algorithms
CN112780426B (zh) * 2021-01-05 2023-07-18 潍柴动力股份有限公司 一种发动机启动方法、装置、车辆及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3418989A (en) 1967-05-17 1968-12-31 Harvey F. Silverman Electronic ignition system
DE3608321A1 (de) 1986-03-13 1987-09-17 Pierburg Gmbh & Co Kg Einrichtung zum erfassen der zylinderbezogenen kurbelwellenstellung
DE4304163A1 (de) * 1993-02-12 1994-08-25 Bosch Gmbh Robert Einrichtung zur Steuerung der Kraftstoffeinspritzung bei einer Brennkraftmaschine
US5410253A (en) 1993-04-08 1995-04-25 Delco Electronics Corporation Method of indicating combustion in an internal combustion engine
US6098585A (en) 1997-08-11 2000-08-08 Ford Global Technologies, Inc. Multi-cylinder four stroke direct injection spark ignition engine
DE19741294A1 (de) 1997-09-19 1999-03-25 Bosch Gmbh Robert Antrieb eines Kraftfahrzeuges
DE19827609A1 (de) * 1998-06-20 1999-12-23 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19913407A1 (de) * 1999-03-25 2000-09-28 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
DE10032332B4 (de) * 2000-07-04 2014-05-22 Robert Bosch Gmbh Verfahren zur Ermittlung der Winkellage einer Nockenwelle einer Brennkraftmaschine
DE10039948A1 (de) * 2000-08-16 2002-02-28 Siemens Ag Verfahren zum Starten einer Brennkraftmaschine
DE10242227A1 (de) * 2002-09-12 2004-03-25 Daimlerchrysler Ag Verfahren zum Betrieb einer Brennkraftmaschine mit Kraftstoffdirekteinspritzung
JP2005127169A (ja) * 2003-10-22 2005-05-19 Hitachi Ltd 内燃機関の制御方法
JP4135643B2 (ja) * 2004-01-19 2008-08-20 日産自動車株式会社 直噴火花点火式内燃機関の制御装置
JP4581586B2 (ja) * 2004-09-17 2010-11-17 トヨタ自動車株式会社 内燃機関システム及びこれを搭載する自動車並びに内燃機関の始動方法

Also Published As

Publication number Publication date
WO2004070184A1 (fr) 2004-08-19
KR20050095642A (ko) 2005-09-29
DE10304449A1 (de) 2004-08-26
EP1590563A1 (fr) 2005-11-02
JP2006514222A (ja) 2006-04-27
DE10304449B4 (de) 2007-10-25
US7182062B2 (en) 2007-02-27
KR101020321B1 (ko) 2011-03-08
US20060144363A1 (en) 2006-07-06
DE502004002087D1 (de) 2007-01-04

Similar Documents

Publication Publication Date Title
EP1590563B1 (fr) Procede de commande de l'injection directe d'un moteur a combustion
EP1151194B1 (fr) Procede pour le demarrage d'un moteur a combustion interne, notamment d'un vehicule automobile
EP1301706B1 (fr) Procede pour demarrer un moteur a combustion interne a plusieurs cylindres
DE19743492B4 (de) Verfahren zum Starten einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP1301705B1 (fr) Procede pour demarrer un moteur a combustion interne a plusieurs cylindres
DE102006043678B4 (de) Vorrichtung und Verfahren zum Betreiben einer Brennkraftmaschine
WO2001048373A1 (fr) Dispositif et procede pour arreter, de maniere controlee, un moteur a combustion interne
DE10111928A1 (de) Verfahren zum anlasserfreien Starten einer mehrzylindrigen Brennkraftmaschine
DE10328834A1 (de) Steuervorrichtung für eine Brennkraftmaschine und Steuerungsverfahren
DE10050170A1 (de) Vorrichtung zum Starten einer Brennkraftmaschine
DE10335016B4 (de) Verfahren zum Starten einer mehrzylindrigen Brennkraftmaschine
EP1457652B1 (fr) Procédé et dispositif de commande pour commander le fonctionnement marche-arrêt d'un moteur à combustion interne
DE102008010053B3 (de) Verfahren zum Synchronisieren eines Einspritzsystems und Verbrennungsmotor
DE19746119A1 (de) Verfahren zum Starten einer Brennkraftmaschine
DE10342703B4 (de) Verfahren zum Starten einer mehrzylindrigen Brennkraftmaschine sowie Brennkraftmaschine
WO2009086957A1 (fr) Procédé pour démarrer un moteur à combustion interne, dispositif et appareil de commande
WO2013083366A1 (fr) Procédé permettant de connaître une durée de commande minimale de soupapes d'injection d'un moteur à combustion interne
DE102016203237A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1336041B1 (fr) Procede d'injection de carburant pendant la phase de demarrage d'un moteur a combustion interne
DE102008005154A1 (de) Verfahren und Vorrichtung zur Überwachung einer Motorsteuereinheit
DE102013205023B4 (de) Verfahren zur steuerung eines nockenwellenphasenstellers
DE102017210561B3 (de) Verfahren, Steuereinrichtung und System zum Start eines Verbrennungsmotors
DE102006016889A1 (de) Verfahren zum Direktstart einer mehrzylindrigen Kolben-Brennkraftmaschine
WO2001025624A1 (fr) Procede pour faire demarrer un moteur a combustion interne
DE10341279B4 (de) Verfahren zur Durchführung eines Hochdruckstarts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004002087

Country of ref document: DE

Date of ref document: 20070104

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061214

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090122

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090127

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090115

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100114

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180131

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004002087

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004002087

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE