EP1590308B1 - Procedes de cimentation a mettre en oeuvre dans des formations souterraines utilisant de compositions de ciment renfermant des billes creuses souples - Google Patents
Procedes de cimentation a mettre en oeuvre dans des formations souterraines utilisant de compositions de ciment renfermant des billes creuses souples Download PDFInfo
- Publication number
- EP1590308B1 EP1590308B1 EP04700724.0A EP04700724A EP1590308B1 EP 1590308 B1 EP1590308 B1 EP 1590308B1 EP 04700724 A EP04700724 A EP 04700724A EP 1590308 B1 EP1590308 B1 EP 1590308B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- beads
- cement
- flexible
- cement composition
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011324 bead Substances 0.000 title claims description 127
- 239000004568 cement Substances 0.000 title claims description 124
- 239000000203 mixture Substances 0.000 title claims description 63
- 238000000034 method Methods 0.000 title claims description 35
- 230000015572 biosynthetic process Effects 0.000 title claims description 13
- 238000005755 formation reaction Methods 0.000 title description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 34
- 239000012530 fluid Substances 0.000 claims description 28
- 239000004094 surface-active agent Substances 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 12
- 239000004793 Polystyrene Substances 0.000 claims description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 8
- 229920002223 polystyrene Polymers 0.000 claims description 8
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 7
- 229920001577 copolymer Polymers 0.000 claims description 6
- 239000011396 hydraulic cement Substances 0.000 claims description 6
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 5
- 239000000440 bentonite Substances 0.000 claims description 5
- 229910000278 bentonite Inorganic materials 0.000 claims description 5
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 5
- 239000013530 defoamer Substances 0.000 claims description 5
- 229920001897 terpolymer Polymers 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 229910021487 silica fume Inorganic materials 0.000 claims description 4
- 239000011780 sodium chloride Substances 0.000 claims description 4
- LGXVIGDEPROXKC-UHFFFAOYSA-N 1,1-dichloroethene Chemical compound ClC(Cl)=C LGXVIGDEPROXKC-UHFFFAOYSA-N 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000013536 elastomeric material Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000008346 aqueous phase Substances 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims 2
- 239000003570 air Substances 0.000 claims 1
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 239000005011 phenolic resin Substances 0.000 claims 1
- 229920001568 phenolic resin Polymers 0.000 claims 1
- 239000003340 retarding agent Substances 0.000 claims 1
- 239000002002 slurry Substances 0.000 description 35
- 230000000052 comparative effect Effects 0.000 description 22
- 230000005484 gravity Effects 0.000 description 10
- 238000006073 displacement reaction Methods 0.000 description 9
- 238000005553 drilling Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000000654 additive Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000011398 Portland cement Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 229920006248 expandable polystyrene Polymers 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920006329 Styropor Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- -1 defoamers Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 239000004794 expanded polystyrene Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000246 remedial effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000009044 synergistic interaction Effects 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/02—Treatment
- C04B20/04—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/08—Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/08—Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
- C04B16/082—Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons other than polystyrene based, e.g. polyurethane foam
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/0016—Granular materials, e.g. microballoons
- C04B20/002—Hollow or porous granular materials
- C04B20/0032—Hollow or porous granular materials characterised by the gas filling pores, e.g. inert gas or air at reduced pressure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/46—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/46—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
- C09K8/467—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
- C09K8/473—Density reducing additives, e.g. for obtaining foamed cement compositions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Definitions
- This invention generally relates to cementing in subterranean formations penetrated by well bores.
- Well cementing is a process used in penetrating subterranean zones (also known as subterranean formations) to recover subterranean resources such as gas, oil, minerals, and water.
- a well bore is drilled while a drilling fluid is circulated through the well bore.
- the circulation of the drilling fluid is then terminated, and a string of pipe, e.g., casing, is run in the well bore.
- the drilling fluid in the well bore is conditioned by circulating it downwardly through the interior of the pipe and upwardly through the annulus, which is located between the exterior of the pipe and the walls of the well bore.
- primary cementing is typically performed whereby a slurry of cement and water is placed in the annulus and permitted to set into a hard mass (i.e., sheath) to thereby attach the string of pipe to the walls of the well bore and seal the annulus.
- a hard mass i.e., sheath
- Low density or lightweight cement compositions are commonly used in wells that extend through weak subterranean formations to reduce the hydrostatic pressure exerted by the cement column on the weak formation.
- Conventional lightweight cement compositions are made by adding more water to reduce the slurry density.
- Other materials such as bentonite, diatomaceous earth, and sodium metasilicate may be added to prevent the solids in the slurry from separating when the water is added.
- this method has the drawback that the addition of more water increases the cure time and reduces the strength of the resulting cement.
- Lightweight cement compositions containing hollow spheres have been developed as a better alternative to the cement compositions containing large quantities of water.
- the hollow spheres are typically cenospheres, glass hollow spheres, or ceramic hollow spheres.
- Cenospheres are hollow spheres primarily comprising silica (SiO 2 ) and alumina (Al 2 O 3 ) and are filled with gas. Cenospheres are a naturally occurring by-product of the burning process of a coal-fired power plant. Their size may vary from about 10 to 350 ⁇ m.
- These hollow spheres reduce the density of the cement composition such that less water is required to form the cement composition. The curing time of the cement composition is therefore reduced.
- the resulting cement has superior mechanical properties as compared to cement formed by adding more water. For example, the tensile and compressive strengths of the cement are greater.
- cementing compositions and applications of such compositions in subterranean formations are described in FR 2787441 , US 5779787 and GB 2354236 .
- the cement sheath is subjected to detrimental cyclical stresses due to pressure and temperature changes resulting from operations such as pressure testing, drilling, fracturing, cementing, and remedial operations.
- Conventional hollow spheres suffer from the drawback of being brittle and fragile and thus often cannot sustain those cyclical stresses.
- the present disclosure relates to cement compositions that can withstand the cyclical stresses that occur during the life of the well.
- the present invention relates to a method for cementing a well bore in a subterranean formation using cement compositions comprising hydraulic cement, water and one or more flexible beads: wherein the flexible beads are hollow, having an elastomeric, flexible outer wall and filled with a fluid, wherein in response to changes in pressure, temperature or both, the fluid expands or contracts thereby causing the elastomeric, flexible outer wall of the bead to likewise expand or contract. More specifically, the present invention relates to a method of cementing in a subterranean formation comprising the steps of:
- a relatively lightweight cement composition is formed by combining flexible, compressible beads with a hydraulic cement and a fluid such as water.
- Any suitable flexible, compressible bead that may expand and contract and that is compatible with a cement (i.e., chemically stable over time upon incorporation into the cement) may be combined with the cement to reduce its density.
- Flexible bead as used herein refers to a bead that may expand and contract without adverse effect to the structure of the bead in response to changes in pressure and/or temperature.
- Preferred flexible, compressible beads are substantially hollow objects filled with fluid (preferably gas), preferably spherical or substantially spherical in shape, and having a flexiblen outer wall.
- Preferred flexible, compressible beads have a diameter of about 6 to 150 micrometers at 25°C and atmospheric pressure.
- the fluid inside the flexible, compressible beads is air, carbon dioxide, an inert gas such as nitrogen, or an organic liquid with a low boiling point such as n-butane, isobutane or pentane.
- the flexible, compressible beads have a substantially uniform, flexible outer wall comprising of one or more elastomeric materials or polymers.
- the temperature at which the elastomeric material melts or becomes so soft that it loses its ability to contain the fluid and/or expand and contract is desirably higher than the temperature in the well bore, which may range from about 120°F (49°C) to about 400°F (204°C).
- the elastomeric material is preferably a styrenic polymer, more preferably a copolymer of methylmethacrylate and acrylonitrile or a terpolymer of methylmethacrylate, acrylonitrile, and vinylidene dichloride.
- Flexible, compressible beads composed of this copolymer and this terpolymer are commercially available from Akzo Nobel, Inc., which is located in Duluth, Georgia, under the tradename EXPANCEL.
- EXPANCEL Several grades of EXPANCEL beads are available and may be selected depending upon the degree of expansion, the physical state, and the temperature range for a given application.
- Suitable materials that may be used to form the flexible wall include, but are not limited to, a styrene-divinylbenzene copolymer and polystyrene.
- Hollow polystyrene beads are available from many polystyrene suppliers, such as Huntsman Corporation of Houston, Texas (sold as GRADE 27, GRADE 51, or GRADE 55) and BASF Corporation of North Mount Olive, New Jersey (sold under the tradename STYROPOR).
- the flexible, compressible beads are incorporated into the cement in a concentration of preferably from about 1% to about 200% by weight of the cement (bwoc), more preferably from about 2% to about 100%, and most preferably from about 5% to about 50%.
- the flexible, compressible beads may be expanded before mixing with the cement by heating the flexiblen, compressible beads to soften the wall of the bead and to increase the pressure of the fluid (e.g., gas) therein.
- Preferred flexible, compressible beads are capable of expanding up to 8 times their original diameters (i.e., the diameter at 255°C and atmospheric pressure).
- EXPANCEL beads having a diameter in the range of 6 to 40 microns, upon expansion increase to a diameter of 20 to 150 microns. When exposed to heat, the beads can expand up to forty times or greater their original volumes. The expansion of the beads is generally measured by the decrease in the specific gravity of the expanded material.
- the density of the beads decreases from 1,000 grams per liter for the unexpanded beads to about 30 grams per liter for the expanded beads.
- the temperature at which the flexible, compressible beads are heated depends on the polymer composition of the bead wall and the desired density of the cement composition, which is typically in a range of from about 6 (0.72) to about 23 (2.76) lb/gal (kg/L).
- the flexible, compressible beads may be added to the cement composition by dry blending with the cement before the addition of a fluid such as water, by mixing with the fluid to be added to the cement, or by mixing with the cement slurry consecutively with or after the addition of the fluid.
- the beads may be presuspended in water and injected into the cement mix fluid or into the cement slurry as an aqueous slurry.
- Surfactants may be added to the composition to water-wet the surface of the beads so that they will remain suspended in the aqueous phase even if the density of the beads is less than that of the water.
- the surfactant are preferably nanionic, with a Hydrophile-Lipophile Balance values in the range 9-18.
- the ability of a surfactant to emulsify two immiscible fluids, such as oil and water, is often described in terms of Hydrophile-Lipophile balance (HLB) values.
- HLB Hydrophile-Lipophile balance
- surfactants with higher HLB values are more hydrophilic than those with lower HLB values. As such, they are generally more soluble in water and are used in applications where water constitutes the major or external phase and a less polar organic fluid constitutes the minor or internal phase.
- surfactants with HLB values in the range 3-6 are suitable for producing water-in-oil emulsions, whereas those with HLB values in the 8-18 range are suitable for producing oil-in-water emulsions.
- HLB 20 ⁇ M H / M H + M L
- M H is the formula weight of the hydrophilic portion of the molecule
- M L is the formula weight of the lipophilic portion of the molecule.
- ⁇ 1 is the weight fraction of surfactant # 1 in the total mixture
- HLB 1 is the calculated HLB value of surfactant #1
- ⁇ 2 is the weight fraction of surfactant #2 in the total surfactant mixture
- HLB 2 is the calculated HLB value of the surfactant #2, and so on.
- a mixture of a preferentially oil-soluble surfactant and a preferentially water-soluble surfactant provides better and more stable emulsions.
- non-ionic ethoxylated surfactant mixtures containing from about 4 to about 14 moles of ethylene oxide.
- the HLB ratio for a single surfactant or a surfactant mixture employed in the present invention preferably ranges from about 7 to about 20, more preferably from about 8 to about 18.
- a cement slurry densified by using a lower water to cement ratio is lightened to a desired density by the addition of unexpanded or pre-expanded flexible, compressible beads in order to make the final cement less brittle.
- hollow, non-flexible beads are mixed with the cement and the flexible, compressible beads.
- Particularly suitable non-flexible beads are cenospheres, which are commercially available from, for example, PQ Corporation of Valley Forge, Philadelphia under the tradename EXTENDOSPHERES, from Halliburton Energy Services Inc. under the tradename SPHERELITE, and from Trelleborg Fillite Inc. of Atlanta, Georgia under the tradename FILLITE.
- the non-flexible beads may be glass beads or ceramic beads.
- the non-flexible beads, particularly the industrial waste product of the cenosphere type are relatively inexpensive as compared to the polymeric flexible, compressible beads. However, the non-flexible beads are more likely to break when subjected to downhole temperature and pressure changes and provide brittle cement compositions.
- the flexible, compressible beads protect the ensuing hardened cement from experiencing brittle failure during the life of the well even if some of the non-flexible beads collapse. That is, the flexible wall and the gas inside of each bead contracts under pressure and expands back to its original volume when the pressure is removed, thus providing a mechanism for absorbing the imposed stress.
- the absorption of energy by the flexible wall is expected to reduce the breakage of the more brittle beads when such compositions are used.
- the flexible wall and the enclosed fluid also expand when the temperature in the well bore increases, and they contract when the temperature decreases. Further, the flexible, compressible beads improve the mechanical properties of the ensuing cement, such as its ductility and resilience.
- Cement comprising flexible, compressible beads gains the following beneficial physical properties as compared to the same cement composition without the flexible, compressible beads: lower elastic (Young's) modulus, greater plastic deformation, increased tensile strength, and lower Poisson's ratio without significantly compromising other desirable properties such as compressive strength.
- the additional costs incurred by using the flexible, compressible beads should be weighed against the benefits provided by using the flexible, compressible beads.
- the amount of flexible, compressible beads added to the cement may be in the range of from about 2% bwoc to about 20% bwoc
- the amount of non-flexible beads in the cement may be in the range of from about 10% bwoc to about 100% bwoc.
- the cement utilized in the present invention is hydraulic cement, composed of calcium, aluminum, silicon, oxygen, and/or sulfur, which sets and hardens by reacting with water.
- suitable hydraulic cements are Portland cements, pozzolana cements, gypsum cements, high alumina content cements, silica cements, and high alkalinity cements.
- the cement is preferably a Portland cement, more preferably a class A, C, G, or H Portland cement, and most preferably a class A, G, or H Portland cement. A sufficient amount of fluid is also added to the cement to form a pumpable cementitious slurry.
- the fluid is preferably fresh water or salt water, i.e., an unsaturated aqueous salt solution or a saturated aqueous salt solution such as brine or seawater.
- the amount of water present may vary and is preferably selected to provide a cement slurry having a desired density.
- the amount of water in the cement slurry is preferably in a range of from about 30% bwoc to about 120% bwoc, and more preferably in a range of from about 36% bwoc to about 54% bwoc.
- additives may be added to the cement composition for improving or changing the properties of the ensuing hardened cement.
- additives include, but are not limited to, set retarders such as lignosulfonates, fluid loss control additives, defoamers, dispersing agents, set accelerators, and formation conditioning agents.
- set retarders such as lignosulfonates
- fluid loss control additives such as lignosulfonates
- defoamers such as lignosulfonates
- dispersing agents such as sodium sulfonates
- set accelerators such as sodium bicarbonate
- formation conditioning agents such as sodium bicarbonate, sodium bicarbonate, sodium bicarbonate
- a salt such as sodium chloride may be added to the cement composition when the drilling zone has a high salt content.
- a well cementing process is performed using the cement composition containing the flexible, compressible beads.
- the well cementing process includes drilling a well bore down to the subterranean zone while circulating a drilling fluid through the well bore.
- a string of pipe, e.g., casing, is then run in the well bore.
- the drilling fluid is conditioned by circulating it downwardly through the interior of the pipe and upwardly through the annulus, which is located between the exterior of the pipe and the walls of the well bore.
- the cement composition comprising flexible, compressible beads is then displaced down through the pipe and up through the annulus) where it is allowed to set into a hard mass.
- the cement composition may be used for other projects such as masonry or building construction.
- a cement slurry containing EXPANCEL flexible, compressible beads in accordance with the present invention was formed by mixing together the following components according to the procedure described in American Petroleum Institute (APT) Specification 10, 5th Edition, July 1, 1990 : class H cement, water (117.20% bwoc); SILICALITE silica fume (16.9% bwoc); bentonite (4.0% bwoc); HALAD-344 fluid loss additive available from Halliburton Energy Services (0.5% bwoc); SCR-100 cement set retarder available from Halliburton Energy Services (0.3% bwoc); sodium chloride (18% bwoc); and defoamer (0.025 gal/sk) (0.6mL/kg).
- API American Petroleum Institute
- a portion of the cement slurry was then poured into 2"x2"x2" (5.1cmx5.1cmx5.1cm) brass cube molds and cured at 135°F (57.2°C) in a pressure chamber under a pressure of 5,200 psi (35.82MNm/m 2 ).
- Another portion of the slurry was poured into 1"x2" (2.5cmx5.1cm) cylindrical steel molds and cured at the same temperature.
- the compressive strengths were measured on 2"x2"x2" (5.1cmx5.1cmx5.1cm) molds using strength testing equipment manufactured by Tinius Olsen of Willow Grove, Pennsylvania, according to American Society for Testing and Materials (ASTM) procedure C190-97.
- Example 1 The procedure of Example 1 was followed except that the EXPANCEL 53 beads were replaced with EXPANCEL 820 WU beads, which are composed of a terpolymer of methylmethacrylate, vinylidene bichloride, and acrylonitnie having a softening temperature above 167°F (75°C).
- Example 1 The procedure of Example 1 was followed except that the EXPANCEL 53 beads were replaced with EXPANCEL 551 WU beads, which are composed of a terpolymer of methylmethacrylate, vinylidene dichloride, and acrylonitrile having a softening temperature above 200°F (93°C).
- Example 1 Example 2
- Comparative Example 1 SPHERELITE Beads, % bwoc 55 55 55 65 EXPANCEL 53 Beads, % bwoc 10 - - - EXPANCEL 820 Beads, %bwoc - 10 - - EXPANCEL 551 Beads, % bwoc - - 10 - Slurry Density, ppg @ atm.
- the compressive strengths of the cements containing both flexible, compressible and non-flexible beads are greater than the compressive strengths of the cement containing only non-flexible beads (Comparative Example 1).
- the Young's Modulus values of the cements in Examples 1-3 are lower than the Young's modulus value of the cement in Comparative Example 1, indicating that replacement of a portion of the brittle beads with flexible, compressible beads decreased the brittleness and improved the resiliency of the composition. Young's Modulus measures the interparticle bonding forces and thus the stiffness of a material. As such, the cements in Examples 1-3 are less stiff than the cement in Comparative Example 1, which contains no flexible, compressible beads, and at the same time remain resilient up to higher stress levels.
- the radial strain values at yield (i.e., the elastic limit) for the cements in Examples 1-3 are much lower than the radial strain at yield for the cement in Comparative Example 1 due to the compressible nature of the flexible hollow beads under pressure.
- the axial strain to radial strain ratios of the cements in Examples 1-3 are higher than the axial strain to radial strain ratio of the cement in Comparative Example 1. Therefore, when axial pressure is imposed on the cement column in the well bore, the radial expansion is significantly less for the cements containing both flexible, compressible and non-flexiblen beads as compared to the cement containing only non-flexible beads because of the reduction in volume of the cements containing the compressible, flexible beads.
- a significant radial expansion under axial stress is expected for cements containing non-flexible beads such as those described in Comparative Example 1 or in cements where water is used to decrease the density.
- the Poisson's Ratio and Young's Modulus values at yield for the cements in Examples 1-3 tend to be lower than or comparable to those values at yield for the cement in Comparative Example 1, as shown in Table 2.
- the total area under a load vs displacement curve reflects the ability of a material to absorb the imposed stress in the direction of displacement. Comparing the areas under the radial curves for the cement compositions in Examples 1-3 and the cement compositions in Comparative Example 1 indicates the unique advantage the addition of flexible, compressible beads provides to the cement composition.
- the beads Due to their compressible nature, the beads absorb the axial stress without having to distribute the stress in a radial direction. As a result, the radial dissipation of imposed axial stress is significantly lower for the compositions in Examples 1-3 than for the compositions in Comparative Example 1. This result clearly indicates that during the life of the well, the imposed stresses will be primarily absorbed by the flexible, compressible beads without requiting changed dimensions to the cement columns.
- EXPANCEL 53 WU beads were suspended in three times the volume of water compared to that of the beads, and the resulting slurry was charged into a cylindrical stainless steel can provided with a lid to which a stirring paddle was connected.
- the slurry filled 1 ⁇ 4 the available volume in the can after the lid was fitted.
- the can was then inserted into a heated water bath of a HOWCO cement consistometer manufactured by Halliburton Energy Services.
- the motor in the consistometer was turned which rotated the metal can while holding the lid steady.
- the can was disassembled, and the expanded solid therein was filtered and dried in open air at ambient temperature. This procedure was repeated at different heating temperatures and times to obtain expanded beads of different specific gravities.
- a cement slurry having a density of 11.3 pounds per gallon (1.35 kg per Litre) was prepared according to the API procedure mentioned previously by mixing class C cement with water (57% bwoc), SILICALITE fumed silica (15% bwoc), CFR-3 dispersant supplied by Halliburton Energy Services (2% bwoc), the EXPANCEL 53 WU beads of specific gravity 0.3 pre-expanded as described above (9.8% bwoc), the EXPANCEL 53 WU beads of specific gravity 0.1 pre-expanded as described above (2.6% bwoc), and a defoamer (2% bwoc).
- the slurry was poured into cylindrical plastic containers of dimensions 2" x 4" (5.1cm x 10.2 cm), closed with lids, and cured at room temperature for 24 hours until the cement slurry solidified.
- the plastic containers were transferred to a water bath kept at 180°F (82.2°C) for 18 hours, and the samples were submitted to cyclical load/displacement studies using the equipment described in Example 1.
- the cyclic load/displacement studies were performed by measuring the force to break an initial sample, followed by cycling the loads of subsequent samples between 20% and 90% of the load force to break the initial sample. When the load force reached the maximum or minimum value, a two second resting time was maintained before the beginning of the next cycle.
- the axial and radial displacements were measured as a function of load force.
- the initial compressive strengths were measured either under no confining pressure, or a confining pressure of 1000 psi (6.89 MNm/m 2 ). The results are shown in Table 4.
- a cement slurry having a density of 12.02 pounds per gallon (1.41 kg/L) was prepared using the API procedure mentioned in Example 1 by mixing class H cement with water (54% bwoc), unexpanded hollow polystyrene beads of EPS (expandable polystyrene) grade, ethoxylated (10 moles) nonylphenol (0.04 gallon per sack of cement), and a defoamer.
- the slurry was poured into cubic molds as described in Example 1 and cured in an autoclave at 155°F (68.3°C) for 24 hours under a pressure of 3,000 psi (20.68 MNm/m 2 ).
- EPS grade hollow polystyrene beads of specific gravity 1.01 were heated in water to 170°F for 3 hours following the procedure described in Example 4. The expanded beads were filtered and dried. The specific gravity of the expanded beads was 0.1.
- a cement slurry having a 12.08 pounds per gallon (1.45 kg per Litre) density was prepared as described in Comparative Example 3 except that the unexpanded hollow polystyrene beads were replaced with the pre-expanded polystyrene beads of specific gravity of 0.1.
- the slurry was cured under the same conditions as described in Comparative Example 3.
- the density measured after curing under pressure was 14.9 pounds per gallon (1.79 kg per Litre), clearly indicating that pre-expansion of the beads made them flexible and compressible.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Claims (18)
- Procédé de cimentation dans une formation souterraine, comprenant les étapes suivantes :la préparation d'une composition de ciment contenant un ciment hydraulique, de l'eau et au moins une perle flexible ; les perles flexibles étant creuses, ayant une paroi externe flexible contenant au moins un matériau élastomère et étant remplies de fluide, moyennant quoi, en réponse aux variations de pression, de température ou des deux, le fluide se dilate ou se contracte, ce qui amène la paroi externe flexible de la perle à une expansion ou à une contraction ; etle placement de la composition de ciment dans la formation souterraine ; et le fait de laisser la composition de ciment prendre.
- Procédé selon la revendication 1, dans lequel le matériau élastromère est choisi dans l'ensemble constitué d'un copolymère de méthylméthacrylate et d'acrylonitrile ; d'un terpolymère de méthacrylate de méthyle, d'acrylonitrile et de dichlorure de vinylidène ; d'un copolymère de styrènedivinylbenzène ; de résines phénoliques ; et de polystyrène.
- Procédé selon la revendication 1, comprenant en outre l'introduction des perles dans de l'eau avant que les perles ne soient introduites dans la composition de ciment.
- Procédé selon la revendication 1, comprenant en outre l'introduction d'un tensioactif ou d'un mélange de tensioactifs dans la composition de ciment, ce qui amène les perles à être en suspension dans une phase aqueuse.
- Procédé selon la revendication 1, comprenant en outre l'expansion des perles avant l'introduction des perles dans la composition de ciment.
- Procédé selon la revendication 5, dans lequel l'expansion des perles comprend le chauffage des perles.
- Procédé selon la revendication 1, dans lequel au moins une perle flexible est à capable d'expansion jusqu'à 8 fois son diamètre initial.
- Procédé selon la revendication 1, dans lequel le fluide est un liquide.
- Procédé selon la revendication 1, dans lequel le fluide est un gaz.
- Procédé selon la revendication 9, dans lequel le gaz est choisi dans l'ensemble constitué d'air, de dioxyde de carbone, d'azote, de n-butane, d'isobutène, de pentane et de leurs combinaisons.
- Procédé selon la revendication 1, dans lequel les perles ont un diamètre compris entre environ 6 et environ 150 µm à une température de 25 °C et sous pression atmosphérique.
- Procédé selon la revendication 1, dans lequel les perles sont introduites dans la composition de ciment en quantité comprise entre 1 et 200 % en poids de ciment.
- Procédé selon la revendication 1, dans lequel les perles sont introduites dans la composition de ciment en quantité comprise entre 2 et 100 % en poids de ciment.
- Procédé selon la revendication 1, dans lequel les perles sont introduites dans la composition de ciment en quantité comprise entre 5 et 50 % en poids de ciment.
- Procédé selon la revendication 1, dans lequel la composition de ciment comprend en outre au moins soit des perles non flexibles, soit un tensioactif, soit de la fumée de silice, soit de la bentonite, soit un agent de perte de fluide, soit un retardateur de prise, soit du chlorure de sodium, soit un agent antimousse.
- Procédé selon la revendication 1, dans lequel la composition de ciment comprend en outre au moins soit des sphères de céramique, soit des sphères de verre, soit des cénosphères.
- Procédé selon la revendication 4, dans lequel le tensioactif ou le mélange de tensioactifs a un rapport HLB compris entre environ 7 et environ 20.
- Procédé selon la revendication 1, dans lequel la composition de ciment a une densité comprise entre 6 et 23 livres/gal (0,72 à 2,76 kg/L).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15192622.7A EP3012238B1 (fr) | 2003-01-24 | 2004-01-08 | Compositions de ciment renfermant des billes souples |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US350533 | 2003-01-24 | ||
US10/350,533 US7543642B2 (en) | 2003-01-24 | 2003-01-24 | Cement compositions containing flexible, compressible beads and methods of cementing in subterranean formations |
PCT/GB2004/000010 WO2004065321A1 (fr) | 2003-01-24 | 2004-01-08 | Compositions de ciment renfermant des billes souples et compressibles et procedes de cimentation a mettre en oeuvre dans des formations souterraines |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15192622.7A Division EP3012238B1 (fr) | 2003-01-24 | 2004-01-08 | Compositions de ciment renfermant des billes souples |
EP15192622.7A Division-Into EP3012238B1 (fr) | 2003-01-24 | 2004-01-08 | Compositions de ciment renfermant des billes souples |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1590308A1 EP1590308A1 (fr) | 2005-11-02 |
EP1590308B1 true EP1590308B1 (fr) | 2016-10-05 |
Family
ID=32735579
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15192622.7A Expired - Lifetime EP3012238B1 (fr) | 2003-01-24 | 2004-01-08 | Compositions de ciment renfermant des billes souples |
EP04700724.0A Expired - Lifetime EP1590308B1 (fr) | 2003-01-24 | 2004-01-08 | Procedes de cimentation a mettre en oeuvre dans des formations souterraines utilisant de compositions de ciment renfermant des billes creuses souples |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15192622.7A Expired - Lifetime EP3012238B1 (fr) | 2003-01-24 | 2004-01-08 | Compositions de ciment renfermant des billes souples |
Country Status (6)
Country | Link |
---|---|
US (2) | US7543642B2 (fr) |
EP (2) | EP3012238B1 (fr) |
AR (1) | AR042918A1 (fr) |
CA (1) | CA2513561C (fr) |
NO (1) | NO344261B1 (fr) |
WO (1) | WO2004065321A1 (fr) |
Families Citing this family (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7482309B2 (en) * | 2003-11-24 | 2009-01-27 | Halliburton Energy Services, Inc. | Methods of drilling wellbores using variable density fluids comprising coated elastic particles |
US7543642B2 (en) | 2003-01-24 | 2009-06-09 | Halliburton Energy Services, Inc. | Cement compositions containing flexible, compressible beads and methods of cementing in subterranean formations |
US7749942B2 (en) * | 2003-01-24 | 2010-07-06 | Halliburton Energy Services, Inc | Variable density fluids and methods of use in subterranean formations |
GB2407317B (en) * | 2003-10-20 | 2006-04-12 | Schlumberger Holdings | Cementing composition |
US7376148B1 (en) * | 2004-01-26 | 2008-05-20 | Cisco Technology, Inc. | Method and apparatus for improving voice quality in a packet based network |
WO2005077856A1 (fr) * | 2004-02-10 | 2005-08-25 | Zachary Rich | Systeme d'apport et de distribution en resine plastique pour adjuvants de beton fluides |
US7607482B2 (en) | 2005-09-09 | 2009-10-27 | Halliburton Energy Services, Inc. | Settable compositions comprising cement kiln dust and swellable particles |
US6902002B1 (en) * | 2004-03-17 | 2005-06-07 | Halliburton Energy Services, Inc. | Cement compositions comprising improved lost circulation materials and methods of use in subterranean formations |
US7607483B2 (en) * | 2004-04-19 | 2009-10-27 | Halliburton Energy Services, Inc. | Sealant compositions comprising colloidally stabilized latex and methods of using the same |
US20050241538A1 (en) * | 2004-04-28 | 2005-11-03 | Vargo Richard F Jr | Methods of making cement compositions using liquid additives containing lightweight beads |
US20050241545A1 (en) * | 2004-04-28 | 2005-11-03 | Vargo Richard F Jr | Methods of extending the shelf life of and revitalizing lightweight beads for use in cement compositions |
US8088716B2 (en) | 2004-06-17 | 2012-01-03 | Exxonmobil Upstream Research Company | Compressible objects having a predetermined internal pressure combined with a drilling fluid to form a variable density drilling mud |
WO2007145735A2 (fr) | 2006-06-07 | 2007-12-21 | Exxonmobil Upstream Research Company | Procédé de fabrication d'objets compressibles pour boue de forage à densité variable |
US7284611B2 (en) * | 2004-11-05 | 2007-10-23 | Halliburton Energy Services, Inc. | Methods and compositions for controlling lost circulation in subterranean operations |
US7219732B2 (en) * | 2004-12-02 | 2007-05-22 | Halliburton Energy Services, Inc. | Methods of sequentially injecting different sealant compositions into a wellbore to improve zonal isolation |
US20070111901A1 (en) * | 2005-11-11 | 2007-05-17 | Reddy B R | Method of servicing a wellbore with a sealant composition comprising solid latex |
US20070111900A1 (en) * | 2005-11-11 | 2007-05-17 | Reddy B R | Sealant compositions comprising solid latex |
US7488705B2 (en) | 2004-12-08 | 2009-02-10 | Halliburton Energy Services, Inc. | Oilwell sealant compositions comprising alkali swellable latex |
US20070181302A1 (en) * | 2004-12-30 | 2007-08-09 | Sun Drilling Products Corporation | Method for the fracture stimulation of a subterranean formation having a wellbore by using thermoset polymer nanocomposite particles as proppants, where said particles are prepared by using formulations containing reactive ingredients obtained or derived from renewable feedstocks |
CA2784248C (fr) | 2004-12-30 | 2015-02-10 | Sun Drilling Products Corporation | Particules nanocomposites thermodurcies, procede de production associe et utilisation dans des applications de forage de petrole et de gaz naturel |
US8258083B2 (en) * | 2004-12-30 | 2012-09-04 | Sun Drilling Products Corporation | Method for the fracture stimulation of a subterranean formation having a wellbore by using impact-modified thermoset polymer nanocomposite particles as proppants |
US7373981B2 (en) * | 2005-02-14 | 2008-05-20 | Halliburton Energy Services, Inc. | Methods of cementing with lightweight cement compositions |
US7390356B2 (en) * | 2005-03-11 | 2008-06-24 | Halliburton Energy Services, Inc. | Compositions for high temperature lightweight cementing |
US7398827B2 (en) * | 2005-03-11 | 2008-07-15 | Halliburton Energy Services, Inc. | Methods for high temperature lightweight cementing |
US7264053B2 (en) * | 2005-03-24 | 2007-09-04 | Halliburton Energy Services, Inc. | Methods of using wellbore servicing fluids comprising resilient material |
US20060217270A1 (en) * | 2005-03-24 | 2006-09-28 | Halliburton Energy Services, Inc. | Wellbore servicing fluids comprising resilient material |
WO2006135892A2 (fr) * | 2005-06-13 | 2006-12-21 | Sun Drilling Products Corporation | Particules thermodurcies a reticulation amelioree, leur traitement de production, et leur utilisation dans des applications de forage de petrole et de gaz naturel |
US7258738B2 (en) * | 2005-08-05 | 2007-08-21 | Halliburton Energy Services, Inc. | Cementing compositions including salts |
US7293941B2 (en) * | 2005-08-05 | 2007-11-13 | Halliburton Energy Services, Inc. | Methods for cementing using compositions containing salts |
US7273949B2 (en) * | 2005-08-05 | 2007-09-25 | Halliburton Energy Services, Inc. | Salts and methods for their preparation |
US7607484B2 (en) | 2005-09-09 | 2009-10-27 | Halliburton Energy Services, Inc. | Foamed cement compositions comprising oil-swellable particles and methods of use |
US7617870B1 (en) | 2008-05-14 | 2009-11-17 | Halliburton Energy Services, Inc. | Extended cement compositions comprising oil-swellable particles and associated methods |
US7913757B2 (en) * | 2005-09-16 | 2011-03-29 | Halliburton Energy Services. Inc. | Methods of formulating a cement composition |
DK1770073T3 (da) * | 2005-09-29 | 2009-12-14 | Schlumberger Technology Bv | Cementsammensætning til superkritiske carbondioxidomgivelser |
DE102005046681A1 (de) * | 2005-09-29 | 2007-04-05 | Construction Research & Technology Gmbh | Verwendung von polymeren Mikropartikeln in Baustoffmischungen |
US7650940B2 (en) * | 2005-12-29 | 2010-01-26 | Halliburton Energy Services Inc. | Cement compositions comprising particulate carboxylated elastomers and associated methods |
MY163703A (en) * | 2005-12-29 | 2017-10-13 | Halliburton Energy Services Inc | Cement compositions comprising particulate carboxylated elastomers and associated methods |
US7645817B2 (en) * | 2005-12-29 | 2010-01-12 | Halliburton Energy Services, Inc. | Cement compositions comprising particulate carboxylated elastomers and associated methods |
EP2038364A2 (fr) | 2006-06-07 | 2009-03-25 | ExxonMobil Upstream Research Company | Objets compressibles à garniture partielle en mousse combinés à un fluide de forage pour former une boue de forage à densité variable |
EP2041235B1 (fr) | 2006-06-07 | 2013-02-13 | ExxonMobil Upstream Research Company | Objets compressibles destinés à être combinés à un fluide de forage pour former une boue de forage à densité variable |
US7717180B2 (en) * | 2006-06-29 | 2010-05-18 | Halliburton Energy Services, Inc. | Swellable elastomers and associated methods |
MX2009002959A (es) * | 2006-09-20 | 2009-04-02 | Schlumberger Technology Bv | Composicion de cementacion que comprende dentro cemento sin reaccionar. |
US9194207B2 (en) | 2007-04-02 | 2015-11-24 | Halliburton Energy Services, Inc. | Surface wellbore operating equipment utilizing MEMS sensors |
US10358914B2 (en) | 2007-04-02 | 2019-07-23 | Halliburton Energy Services, Inc. | Methods and systems for detecting RFID tags in a borehole environment |
US9732584B2 (en) | 2007-04-02 | 2017-08-15 | Halliburton Energy Services, Inc. | Use of micro-electro-mechanical systems (MEMS) in well treatments |
US9822631B2 (en) | 2007-04-02 | 2017-11-21 | Halliburton Energy Services, Inc. | Monitoring downhole parameters using MEMS |
US9494032B2 (en) | 2007-04-02 | 2016-11-15 | Halliburton Energy Services, Inc. | Methods and apparatus for evaluating downhole conditions with RFID MEMS sensors |
US9879519B2 (en) | 2007-04-02 | 2018-01-30 | Halliburton Energy Services, Inc. | Methods and apparatus for evaluating downhole conditions through fluid sensing |
DE102008012084A1 (de) | 2007-04-02 | 2008-10-09 | Skumtech As | Brandschutz an Bauwerken |
US9200500B2 (en) | 2007-04-02 | 2015-12-01 | Halliburton Energy Services, Inc. | Use of sensors coated with elastomer for subterranean operations |
US20080280786A1 (en) * | 2007-05-07 | 2008-11-13 | Halliburton Energy Services, Inc. | Defoamer/antifoamer compositions and methods of using same |
US8586512B2 (en) | 2007-05-10 | 2013-11-19 | Halliburton Energy Services, Inc. | Cement compositions and methods utilizing nano-clay |
US9199879B2 (en) | 2007-05-10 | 2015-12-01 | Halliburton Energy Serives, Inc. | Well treatment compositions and methods utilizing nano-particles |
US9206344B2 (en) | 2007-05-10 | 2015-12-08 | Halliburton Energy Services, Inc. | Sealant compositions and methods utilizing nano-particles |
US9512351B2 (en) | 2007-05-10 | 2016-12-06 | Halliburton Energy Services, Inc. | Well treatment fluids and methods utilizing nano-particles |
US8476203B2 (en) | 2007-05-10 | 2013-07-02 | Halliburton Energy Services, Inc. | Cement compositions comprising sub-micron alumina and associated methods |
US8685903B2 (en) | 2007-05-10 | 2014-04-01 | Halliburton Energy Services, Inc. | Lost circulation compositions and associated methods |
US20090038801A1 (en) * | 2007-08-08 | 2009-02-12 | Ravi Krishna M | Sealant Compositions and Methods of Use |
US8276666B2 (en) * | 2007-08-08 | 2012-10-02 | Halliburton Energy Services Inc. | Sealant compositions and methods of use |
US7878245B2 (en) * | 2007-10-10 | 2011-02-01 | Halliburton Energy Services Inc. | Cement compositions comprising a high-density particulate elastomer and associated methods |
US8240377B2 (en) * | 2007-11-09 | 2012-08-14 | Halliburton Energy Services Inc. | Methods of integrating analysis, auto-sealing, and swellable-packer elements for a reliable annular seal |
US20090176667A1 (en) * | 2008-01-03 | 2009-07-09 | Halliburton Energy Services, Inc. | Expandable particulates and methods of their use in subterranean formations |
US7530396B1 (en) | 2008-01-24 | 2009-05-12 | Halliburton Energy Services, Inc. | Self repairing cement compositions and methods of using same |
US7740066B2 (en) * | 2008-01-25 | 2010-06-22 | Halliburton Energy Services, Inc. | Additives for high alumina cements and associated methods |
DE102008028147A1 (de) | 2008-06-14 | 2009-12-17 | Skumtech As | Wärmeisolierung im Bergbau |
US7740070B2 (en) | 2008-06-16 | 2010-06-22 | Halliburton Energy Services, Inc. | Wellbore servicing compositions comprising a density segregation inhibiting composite and methods of making and using same |
EP2350434A2 (fr) * | 2008-10-31 | 2011-08-03 | BP Corporation North America Inc. | Particules creuses élastiques pour l'atténuation de l'accumulation d'une pression annulaire |
US7934554B2 (en) * | 2009-02-03 | 2011-05-03 | Halliburton Energy Services, Inc. | Methods and compositions comprising a dual oil/water-swellable particle |
US20100212892A1 (en) * | 2009-02-26 | 2010-08-26 | Halliburton Energy Services, Inc. | Methods of formulating a cement composition |
CA2703604C (fr) * | 2009-05-22 | 2017-06-20 | Lafarge | Compositions cimentaires legeres |
US8807216B2 (en) * | 2009-06-15 | 2014-08-19 | Halliburton Energy Services, Inc. | Cement compositions comprising particulate foamed elastomers and associated methods |
US9708523B2 (en) * | 2009-10-27 | 2017-07-18 | Halliburton Energy Services, Inc. | Swellable spacer fluids and associated methods |
WO2011066024A1 (fr) | 2009-11-30 | 2011-06-03 | Exxonmobil Upstream Research Company | Systèmes et procédés pour former des objets compressibles haute performance |
KR101178873B1 (ko) | 2009-12-18 | 2012-09-03 | 노재호 | 차수 및 지반 보강용 친환경 가소성 시멘트 혼합조성물 |
US8691007B2 (en) | 2011-09-23 | 2014-04-08 | Georgia-Pacific Gypsum Llc | Low thermal transmission building material |
CN102504782B (zh) * | 2011-11-21 | 2013-11-06 | 中国石油集团川庆钻探工程有限公司长庆固井公司 | 一种固井用轻珠防漏失水泥浆及制备工艺 |
US9333685B2 (en) | 2012-04-19 | 2016-05-10 | AkzoNobel Chemicals International B.V. | Apparatus and system for expanding expandable polymeric microspheres |
US9365453B2 (en) | 2012-04-19 | 2016-06-14 | Construction Research & Technology Gmbh | Admixture and method for freeze-thaw damage resistance and scaling damage resistance of cementitious compositions |
CA2884015C (fr) | 2012-09-28 | 2019-04-23 | Halliburton Energy Services, Inc. | Procedes et compositions pour le traitement d'une formation souterraine a l'aide de coulis de ciment tolerant au sel |
US9388685B2 (en) | 2012-12-22 | 2016-07-12 | Halliburton Energy Services, Inc. | Downhole fluid tracking with distributed acoustic sensing |
US20140238676A1 (en) * | 2013-02-26 | 2014-08-28 | Schlumberger Technology Corporation | Cement slurry compositions and methods |
US9631132B2 (en) | 2013-07-11 | 2017-04-25 | Halliburton Energy Services, Inc. | Mitigating annular pressure buildup using temperature-activated polymeric particulates |
US10640422B2 (en) | 2013-12-06 | 2020-05-05 | Construction Research & Technology Gmbh | Method of manufacturing cementitious compositions |
US9463550B2 (en) * | 2014-02-19 | 2016-10-11 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Method of manufacturing chemical mechanical polishing layers |
US9463553B2 (en) * | 2014-02-19 | 2016-10-11 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Method of manufacturing chemical mechanical polishing layers |
WO2015199678A1 (fr) | 2014-06-25 | 2015-12-30 | Halliburton Energy Services, Inc. | Compositions d'obturation employant des additifs de verre gonflables |
WO2016039988A1 (fr) * | 2014-09-11 | 2016-03-17 | Schlumberger Canada Limited | Compositions de coulis de ciment et procédés |
US20170260105A1 (en) * | 2014-12-11 | 2017-09-14 | Construction Research & Technology Gmbh | Method for manufacturing a construction material |
EP3230229A1 (fr) * | 2014-12-11 | 2017-10-18 | Construction Research & Technology GmbH | Procédé de fabrication d'une composition cimentaire |
CA2970409A1 (fr) * | 2014-12-11 | 2016-06-16 | Construction Research & Technology Gmbh | Procede de fabrication de ciment |
US10315955B2 (en) * | 2016-06-27 | 2019-06-11 | Tony DiMillo | Annular fill compressible grout mix for use behind pre-cast concrete segment installed in time-dependent deformation tunnels |
US10316239B2 (en) * | 2016-06-27 | 2019-06-11 | Tony DiMillo | Compressible grout mix for use in absorbing compressive or deformation stresses of subterranean formations |
CN106244124B (zh) * | 2016-07-29 | 2018-12-25 | 中国石油集团渤海钻探工程有限公司 | 抗盐高密度早强防窜油井水泥浆 |
US10351750B2 (en) | 2017-02-03 | 2019-07-16 | Saudi Arabian Oil Company | Drilling fluid compositions with enhanced rheology and methods of using same |
CN107935440A (zh) * | 2017-12-13 | 2018-04-20 | 安东石油技术(集团)有限公司 | 一种新型油井水泥弹塑剂及其制备方法 |
CN110607168B (zh) * | 2019-09-28 | 2021-11-02 | 重庆威能钻井助剂有限公司 | 一种钻井液用降滤失剂及其制备方法 |
CN112012732B (zh) * | 2020-10-10 | 2021-04-23 | 西南石油大学 | 模拟深部煤层气开采压力震荡的装置及方法 |
CN116847948A (zh) * | 2020-12-22 | 2023-10-03 | Cmc材料有限责任公司 | 具有带有聚合物型外壳的成孔剂的化学-机械抛光副垫 |
CN114294052B (zh) * | 2022-01-04 | 2024-03-22 | 山东黄金矿业科技有限公司充填工程实验室分公司 | 一种改善矿山高浓度超细尾砂料浆输送性能的方法 |
Family Cites Families (128)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE958698C (de) * | 1951-03-15 | 1957-02-21 | Siemens Ag | Verfahren zur Herstellung einer biegsamen Glasfolie fuer elektrotechnische Zwecke |
DE964217C (de) * | 1952-03-23 | 1957-05-16 | Basf Ag | Verfahren zur Herstellung von Bauelementen mit niedrigem spezifischem Gewicht |
GB743866A (en) | 1953-05-11 | 1956-01-25 | James George Fife | Improvements in or relating to hollow particles |
US3044548A (en) * | 1957-02-27 | 1962-07-17 | Sinclair Oil & Gas Company | Method for selectively plugging a subterranean location in a well with liquid organic resin-forming material |
US3021291A (en) * | 1958-12-15 | 1962-02-13 | Koppers Co Inc | Preparation of concrete containing expanded polymeric particles |
US3021229A (en) * | 1960-05-26 | 1962-02-13 | Du Pont | Leader film |
US3214393A (en) * | 1963-02-20 | 1965-10-26 | Koppers Co Inc | Concrete mixture containing expanded polystyrene and a homogenizing agent |
DE1253131C2 (de) * | 1963-08-17 | 1973-05-03 | Basf Ag | Verfahren zum Verbinden von organischen Kunststoffen mit mineralischen Stoffen oder anorganischen hydraulischen Bindemitteln |
US3247294A (en) * | 1963-11-14 | 1966-04-19 | Bahidj B Sabouni | Concrete products and methods for making same |
US3306356A (en) * | 1964-03-23 | 1967-02-28 | Continental Oil Co | Catalytic polymerization method |
GB1118621A (en) * | 1964-05-14 | 1968-07-03 | Malcolm Jeffery | Improvements in cement or plaster mixes |
US3363689A (en) * | 1965-03-11 | 1968-01-16 | Halliburton Co | Well cementing |
DE1658436A1 (de) * | 1967-07-27 | 1971-04-15 | Basf Ag | Frostschutzschicht im Unterbau von Fahrbahnen |
US3766984A (en) * | 1968-05-20 | 1973-10-23 | Dow Chemical Co | Method for temporarily sealing a permeable formation |
US3869295A (en) * | 1970-03-30 | 1975-03-04 | Andrew D Bowles | Uniform lightweight concrete and plaster |
US3764357A (en) * | 1970-03-30 | 1973-10-09 | A Bowles | Method of preparing lightweight concrete and plaster and the lightweight concrete and plaster thus prepared |
US3649317A (en) * | 1970-11-12 | 1972-03-14 | Fuller Co | Shrinkage compensating cement |
US4010108A (en) * | 1972-01-24 | 1977-03-01 | Nuclear Engineering Company, Inc. | Radioactive waste disposal of water containing waste using urea-formaldehyde resin |
US3804958A (en) * | 1972-01-27 | 1974-04-16 | Goodmark Inc | Process for making pork sausage |
NL7204153A (fr) * | 1972-03-28 | 1973-10-02 | ||
US3804058A (en) * | 1972-05-01 | 1974-04-16 | Mobil Oil Corp | Process of treating a well using a lightweight cement |
JPS5332369B2 (fr) | 1974-03-26 | 1978-09-07 | ||
US4221697A (en) * | 1974-05-29 | 1980-09-09 | Imperial Chemical Industries Limited | Composite materials |
NL7505525A (nl) * | 1975-05-12 | 1976-11-16 | Akzo Nv | Werkwijze voor de bereiding van een vorstbesten- dig beton. |
US4063603A (en) * | 1976-09-02 | 1977-12-20 | Rayborn Jerry J | Drilling fluid lubricant |
DE2710548C2 (de) * | 1977-03-10 | 1982-02-11 | Rudolf 8019 Moosach Hinterwaldner | Lagerstabile härtbare Masse und Verfahren zu deren Härtung |
CH602511A5 (fr) * | 1977-05-23 | 1978-07-31 | Fresse Sa | |
AT359907B (de) * | 1977-12-30 | 1980-12-10 | Perlmooser Zementwerke Ag | Moertel- oder betonmischung |
US4306395A (en) * | 1978-06-01 | 1981-12-22 | Carpenter Orval R | Lightweight cementitious product and method for making same |
RO78647A (fr) * | 1978-08-08 | 1982-03-24 | Standard Oil Co,Us | Procede de cimentation des puits de sonde |
WO1980000426A1 (fr) | 1978-08-28 | 1980-03-20 | Leonard B Torobin | Methode et appareil de production de microspheres plastiques creuses |
US4304298A (en) * | 1979-05-10 | 1981-12-08 | Halliburton Company | Well cementing process and gasified cements useful therein |
US4340427A (en) * | 1979-05-10 | 1982-07-20 | Halliburton Company | Well cementing process and gasified cements useful therein |
US4234344A (en) * | 1979-05-18 | 1980-11-18 | Halliburton Company | Lightweight cement and method of cementing therewith |
US4303736A (en) * | 1979-07-20 | 1981-12-01 | Leonard Torobin | Hollow plastic microspheres |
US4303729A (en) * | 1979-07-20 | 1981-12-01 | Torobin Leonard B | Hollow plastic microspheres |
JPS5641859A (en) * | 1979-09-07 | 1981-04-18 | Teijin Ltd | Flexible glass film |
JPS5692153A (en) * | 1979-12-26 | 1981-07-25 | Japan Synthetic Rubber Co Ltd | Lightweight heattinsulating mortar composition |
US4302549A (en) * | 1980-04-18 | 1981-11-24 | Crowley Richard P | Method of preparing expandable polystyrene |
US4370166A (en) * | 1980-09-04 | 1983-01-25 | Standard Oil Company (Indiana) | Low density cement slurry and its use |
US4328038A (en) * | 1980-11-13 | 1982-05-04 | Bj-Hughes Inc. | Resin coated aluminum |
NL8201067A (nl) | 1981-03-16 | 1982-10-18 | Josef Herbert Bettendorf | Bouwmateriaal en daaruit vervaardigd element. |
GB2095227B (en) * | 1981-03-24 | 1985-05-01 | Cempol Sales | Making lightweight concrete |
US4367093A (en) * | 1981-07-10 | 1983-01-04 | Halliburton Company | Well cementing process and gasified cements useful therein |
US4498995A (en) * | 1981-08-10 | 1985-02-12 | Judith Gockel | Lost circulation drilling fluid |
US4460052A (en) * | 1981-08-10 | 1984-07-17 | Judith Gockel | Prevention of lost circulation of drilling muds |
US4768593A (en) * | 1983-02-02 | 1988-09-06 | Exxon Production Research Company | Method for primary cementing a well using a drilling mud composition which may be converted to cement upon irradiation |
US4760882A (en) * | 1983-02-02 | 1988-08-02 | Exxon Production Research Company | Method for primary cementing a well with a drilling mud which may be converted to cement using chemical initiators with or without additional irradiation |
US4450010A (en) * | 1983-04-29 | 1984-05-22 | Halliburton Company | Well cementing process and gasified cements useful therein |
US4450009A (en) * | 1983-04-29 | 1984-05-22 | Halliburton Company | Method of preparing a light weight cement composition from sea water |
JPS60246280A (ja) * | 1984-05-18 | 1985-12-05 | 宇部興産株式会社 | セメント組成物およびその製造方法 |
US4565578A (en) * | 1985-02-26 | 1986-01-21 | Halliburton Company | Gas generation retarded aluminum powder for oil field cements |
JPS62188999A (ja) | 1986-02-14 | 1987-08-18 | 三井建設株式会社 | 廃棄物の処理方法 |
US4703801A (en) * | 1986-05-13 | 1987-11-03 | Halliburton Company | Method of reducing fluid loss in cement compositions which may contain substantial salt concentrations |
US4676317A (en) * | 1986-05-13 | 1987-06-30 | Halliburton Company | Method of reducing fluid loss in cement compositions which may contain substantial salt concentrations |
US4816503A (en) * | 1986-06-04 | 1989-03-28 | The Dow Chemical Company | Polymer concrete having high bond strength and long working time |
JP2511437B2 (ja) | 1987-01-27 | 1996-06-26 | 松下電工株式会社 | 軽量セメント製品 |
US4700780A (en) * | 1987-03-27 | 1987-10-20 | Halliburton Services | Method of reducing fluid loss in cement compositions which may contain substantial salt concentrations |
US4806164A (en) * | 1987-03-27 | 1989-02-21 | Halliburton Company | Method of reducing fluid loss in cement compositions |
JPH01109551A (ja) * | 1987-10-23 | 1989-04-26 | Matsushita Electric Ind Co Ltd | 光カード |
JPH01157475A (ja) * | 1987-12-14 | 1989-06-20 | Alpha Home:Kk | 高断熱性軽量気泡コンクリート |
HUT51583A (en) | 1987-12-30 | 1990-05-28 | Karoly Kovacs | Process for producing heat-insulating foam-material with inorganic binding material |
US4828761A (en) * | 1988-05-04 | 1989-05-09 | The United States Of America As Represented By The United States Department Of Energy | Process for impregnating a concrete or cement body with a polymeric material |
US4986354A (en) * | 1988-09-14 | 1991-01-22 | Conoco Inc. | Composition and placement process for oil field chemicals |
HU209116B (en) | 1989-10-18 | 1994-03-28 | Kemikal Epitoeanyagipari Rt | Heat-isolating powder-compositions and masses for building purposes |
JPH0688823B2 (ja) * | 1990-01-23 | 1994-11-09 | ニチハ株式会社 | 無機質成形板およびその製造方法 |
US5124186A (en) * | 1990-02-05 | 1992-06-23 | Mpa Diversified Products Co. | Composite tubular door beam reinforced with a reacted core localized at the mid-span of the tube |
JP2918607B2 (ja) | 1990-03-06 | 1999-07-12 | 花王株式会社 | 吸放湿性建築材料 |
US5320851A (en) * | 1992-01-31 | 1994-06-14 | W. R. Grace & Co.-Conn. | Packaging and dispensing system for fluid and semi-fluid cement admixtures |
JPH05301786A (ja) | 1992-04-27 | 1993-11-16 | Kanegafuchi Chem Ind Co Ltd | 軽量コンクリート |
JP3207922B2 (ja) * | 1992-05-21 | 2001-09-10 | 鐘淵化学工業株式会社 | 軽量コンクリート |
JPH06313130A (ja) | 1993-04-30 | 1994-11-08 | New Oji Paper Co Ltd | 防滑性塗料組成物 |
US5456751A (en) * | 1993-09-03 | 1995-10-10 | Trustees Of The University Of Pennsylvania | Particulate rubber included concrete compositions |
JP3292578B2 (ja) | 1993-12-24 | 2002-06-17 | 株式会社小松製作所 | ウインチの速度制御システム |
FR2714408B1 (fr) | 1993-12-28 | 1996-02-02 | Lafarge Platres | Matériau à gâcher, et élément de construction obtenu avec ledit matériau. |
JPH07187858A (ja) | 1993-12-28 | 1995-07-25 | Toray Ind Inc | セメント系製品 |
US5447984A (en) * | 1994-03-28 | 1995-09-05 | Takemoto Yushi Kabushiki Kaisha | Curable polymer mortar or concrete compositions |
JPH07291760A (ja) | 1994-04-22 | 1995-11-07 | Kanegafuchi Chem Ind Co Ltd | 充填用軽量コンクリート及びその軽量硬化物 |
US5458195A (en) * | 1994-09-28 | 1995-10-17 | Halliburton Company | Cementitious compositions and methods |
FR2729150A1 (fr) * | 1995-01-06 | 1996-07-12 | Rhone Poulenc Chimie | Poudres redispersables dans l'eau de polymeres filmogenes a structure "coeur/ecorce" |
US5837739A (en) * | 1995-06-07 | 1998-11-17 | Mcdonnell Douglas Corporation | Loaded syntactic foam-core material |
JPH09116158A (ja) * | 1995-10-17 | 1997-05-02 | Hitachi Ltd | 軽量基板薄膜半導体装置および液晶表示装置 |
EG21132A (en) * | 1995-12-15 | 2000-11-29 | Super Graphite Co | Drilling fluid loss prevention and lubrication additive |
US5736594A (en) * | 1996-03-28 | 1998-04-07 | B J Services Company | Cementing compositions and methods using recycled expanded polystyrene |
US5839520A (en) * | 1996-10-03 | 1998-11-24 | Maillet; Bonnie Blue | Method of drilling well bores |
WO1998020389A1 (fr) * | 1996-11-08 | 1998-05-14 | Optical Coating Laboratory, Inc. | Films de verre souple pour couverture de terminaux a ecran de visualisation |
FR2762595A1 (fr) | 1997-04-23 | 1998-10-30 | Jacques Chollet | Enduit ininflammable, incombustible, non fibreux |
US20020039594A1 (en) * | 1997-05-13 | 2002-04-04 | Evan C. Unger | Solid porous matrices and methods of making and using the same |
US5900053A (en) * | 1997-08-15 | 1999-05-04 | Halliburton Energy Services, Inc. | Light weight high temperature well cement compositions and methods |
US5779787A (en) * | 1997-08-15 | 1998-07-14 | Halliburton Energy Services, Inc. | Well cement compositions containing rubber particles and methods of cementing subterranean zones |
JPH11268962A (ja) | 1998-03-20 | 1999-10-05 | Harima Ceramic Co Ltd | 断熱性キャスタブル耐火物 |
US6328038B1 (en) * | 1998-07-14 | 2001-12-11 | Fred Bruce Kessler | Nasal cannula retainer |
JP2953576B1 (ja) * | 1998-09-18 | 1999-09-27 | 鹿島建設株式会社 | コンクリート表面のひび割れ防止法 |
US6279652B1 (en) * | 1998-09-23 | 2001-08-28 | Halliburton Energy Services, Inc. | Heat insulation compositions and methods |
FR2784095B1 (fr) * | 1998-10-06 | 2001-09-21 | Dowell Schlumberger Services | Compositions de cimentation et application de ces compositions pour la cimentation des puits petroliers ou analogues |
EA002938B1 (ru) * | 1998-11-13 | 2002-10-31 | Софитек Н.В. | Цементирующая композиция и ее применение для цементирования нефтяных скважин или подобных сооружений |
FR2787441B1 (fr) | 1998-12-21 | 2001-01-12 | Dowell Schlumberger Services | Compositions de cimentation et application de ces compositions pour la cimentation des puits petroliers ou analogues |
US6197418B1 (en) * | 1998-12-21 | 2001-03-06 | Agfa-Gevaert, N.V. | Electroconductive glass laminate |
RU2154619C1 (ru) * | 1999-01-05 | 2000-08-20 | Котляр Владимир Дмитриевич | Легкий бетон |
ES2380414T3 (es) * | 1999-01-29 | 2012-05-11 | Sika Technology Ag | Procedimiento para la reducción de la contracción de agentes aglutinantes hidráulicos |
DE10033815A1 (de) | 1999-07-12 | 2001-01-18 | Lothar Mansfeld | Zementgebundener Sielbaustoff |
FR2796935B1 (fr) * | 1999-07-29 | 2001-09-21 | Dowell Schlumberger Services | Coulis de cimentation des puits petroliers ou analogues a basse densite et basse porosite |
CA2318703A1 (fr) | 1999-09-16 | 2001-03-16 | Bj Services Company | Compositions et methodes de cimentation utilisant des particules elastiques |
FR2799458B1 (fr) * | 1999-10-07 | 2001-12-21 | Dowell Schlumberger Services | Compositions de cimentation et application de ces compositions pour la cimentation des puits petroliers ou analogues |
AU2001231075A1 (en) * | 2000-01-24 | 2001-07-31 | Robert R. Wood | Improved drilling fluids |
US6444316B1 (en) * | 2000-05-05 | 2002-09-03 | Halliburton Energy Services, Inc. | Encapsulated chemicals for use in controlled time release applications and methods |
US6530437B2 (en) * | 2000-06-08 | 2003-03-11 | Maurer Technology Incorporated | Multi-gradient drilling method and system |
GB2365859B (en) * | 2000-08-18 | 2002-09-04 | Earth Link Technology Entpr Lt | Cementitious construction materials containing rubber |
US6457524B1 (en) * | 2000-09-15 | 2002-10-01 | Halliburton Energy Services, Inc. | Well cementing compositions and methods |
GB0024688D0 (en) * | 2000-10-09 | 2000-11-22 | Dyno Specialty Polymers As | Process |
US6739408B2 (en) | 2000-10-30 | 2004-05-25 | Baker Hughes Incorporated | Apparatus and method for preparing variable density drilling muds |
US6545066B1 (en) * | 2000-11-28 | 2003-04-08 | United States Gypsum Company | Lightweight ready-mix joint compound |
US6536540B2 (en) | 2001-02-15 | 2003-03-25 | De Boer Luc | Method and apparatus for varying the density of drilling fluids in deep water oil drilling applications |
RU2178320C1 (ru) * | 2001-04-02 | 2002-01-20 | Винниченко Юрий Алексеевич | Способ фотополимеризации светоотверждаемых пломбировочных адгезивных материалов |
US6367549B1 (en) * | 2001-09-21 | 2002-04-09 | Halliburton Energy Services, Inc. | Methods and ultra-low density sealing compositions for sealing pipe in well bores |
US6644405B2 (en) | 2002-03-21 | 2003-11-11 | Halliburton Energy Services, Inc. | Storable water-microsphere suspensions for use in well cements and methods |
US6732800B2 (en) * | 2002-06-12 | 2004-05-11 | Schlumberger Technology Corporation | Method of completing a well in an unconsolidated formation |
US6641658B1 (en) * | 2002-07-03 | 2003-11-04 | United States Gypsum Company | Rapid setting cementitious composition |
US6516883B1 (en) * | 2002-07-25 | 2003-02-11 | Halliburton Energy Services, Inc. | Methods of cementing pipe in well bores and low density cement compositions therefor |
US6757919B2 (en) * | 2002-08-27 | 2004-07-06 | Sloan Valve Company | Automatically operated handle-type flush valve |
US7494544B2 (en) * | 2003-01-23 | 2009-02-24 | Bj Services Company | Polymer shell encapsulated gas as a cement expansion additive |
US7543642B2 (en) | 2003-01-24 | 2009-06-09 | Halliburton Energy Services, Inc. | Cement compositions containing flexible, compressible beads and methods of cementing in subterranean formations |
US7482309B2 (en) * | 2003-11-24 | 2009-01-27 | Halliburton Energy Services, Inc. | Methods of drilling wellbores using variable density fluids comprising coated elastic particles |
US6962201B2 (en) * | 2003-02-25 | 2005-11-08 | Halliburton Energy Services, Inc. | Cement compositions with improved mechanical properties and methods of cementing in subterranean formations |
US7147055B2 (en) * | 2003-04-24 | 2006-12-12 | Halliburton Energy Services, Inc. | Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations |
US6904971B2 (en) * | 2003-04-24 | 2005-06-14 | Halliburton Energy Services, Inc. | Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations |
US20040244978A1 (en) * | 2003-06-04 | 2004-12-09 | Sun Drilling Products Corporation | Lost circulation material blend offering high fluid loss with minimum solids |
US6902001B2 (en) * | 2003-06-10 | 2005-06-07 | Schlumberger Technology Corporation | Cementing compositions and application of such compositions for cementing oil wells or the like |
-
2003
- 2003-01-24 US US10/350,533 patent/US7543642B2/en not_active Expired - Fee Related
-
2004
- 2004-01-08 EP EP15192622.7A patent/EP3012238B1/fr not_active Expired - Lifetime
- 2004-01-08 WO PCT/GB2004/000010 patent/WO2004065321A1/fr active Application Filing
- 2004-01-08 EP EP04700724.0A patent/EP1590308B1/fr not_active Expired - Lifetime
- 2004-01-08 CA CA 2513561 patent/CA2513561C/fr not_active Expired - Fee Related
- 2004-01-23 AR ARP040100203 patent/AR042918A1/es not_active Application Discontinuation
- 2004-11-05 US US10/982,028 patent/US20050061206A1/en not_active Abandoned
-
2005
- 2005-08-09 NO NO20053778A patent/NO344261B1/no not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
US20050061206A1 (en) | 2005-03-24 |
EP3012238A1 (fr) | 2016-04-27 |
CA2513561C (fr) | 2012-03-27 |
WO2004065321A1 (fr) | 2004-08-05 |
US20040144537A1 (en) | 2004-07-29 |
US7543642B2 (en) | 2009-06-09 |
AR042918A1 (es) | 2005-07-06 |
CA2513561A1 (fr) | 2004-08-05 |
EP3012238B1 (fr) | 2018-12-05 |
NO344261B1 (no) | 2019-10-21 |
NO20053778L (no) | 2005-08-23 |
EP1590308A1 (fr) | 2005-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1590308B1 (fr) | Procedes de cimentation a mettre en oeuvre dans des formations souterraines utilisant de compositions de ciment renfermant des billes creuses souples | |
US6907929B2 (en) | Cementing compositions and the use of such compositions for cementing wells | |
US20090038855A1 (en) | Variable Density Fluids and Methods of Use in Subterranean Formations | |
US20040171499A1 (en) | Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation | |
US6742592B1 (en) | Cementing compositions and applications of such compositions for cementing oil wells or the like | |
JP2993942B2 (ja) | 軽量の高温井戸用セメント組成物及びセメンチング方法 | |
US7748453B2 (en) | Servicing a wellbore with wellbore fluids comprising perlite | |
US7833344B2 (en) | Ultra low density cement compositions and methods of making same | |
US5736594A (en) | Cementing compositions and methods using recycled expanded polystyrene | |
US20120196777A1 (en) | Variable Pressure Weighting Material Particles | |
EP2273063B1 (fr) | Compositions de cement comprenant des matériaux à facteur de forme élevé, et méthodes d'utilisation dans des formations souterraines. | |
AU2007285628B2 (en) | Methods of preparing settable fluids comprising particle-size distribution-adjusting agents, and associated methods | |
WO2000037387A1 (fr) | Compositions de cimentation et leurs applications a des puits de petrole et autres | |
WO2005047212A1 (fr) | Procedes permettant d'incorporer un gaz inerte dans une composition de ciment contenant des billes spheriques | |
Sugama et al. | Advanced high-temperature lightweight foamed cements for geothermal well completions | |
MXPA01003481A (en) | Cementing compositions and the use of such compositions for cementing oil wells or the like | |
OA17088A (en) | Set-delayed, cement compositions comprising pumice and associated methods. | |
MXPA01005664A (es) | Composiciones de cementacion y aplicacion de tales composiciones para cementar pozos petroleros o similares |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050824 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 20090109 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C09K 8/46 20060101ALI20151201BHEP Ipc: C09K 8/473 20060101ALI20151201BHEP Ipc: C04B 28/02 20060101AFI20151201BHEP Ipc: E21B 33/13 20060101ALI20151201BHEP |
|
INTG | Intention to grant announced |
Effective date: 20151214 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160525 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602004050054 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20161005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161005 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004050054 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602004050054 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161005 |
|
26N | No opposition filed |
Effective date: 20170706 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170801 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20181109 Year of fee payment: 16 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200108 |