EP1589122B1 - NiAl-Beta-Phase enthaltende Beschichtung - Google Patents

NiAl-Beta-Phase enthaltende Beschichtung Download PDF

Info

Publication number
EP1589122B1
EP1589122B1 EP05105696A EP05105696A EP1589122B1 EP 1589122 B1 EP1589122 B1 EP 1589122B1 EP 05105696 A EP05105696 A EP 05105696A EP 05105696 A EP05105696 A EP 05105696A EP 1589122 B1 EP1589122 B1 EP 1589122B1
Authority
EP
European Patent Office
Prior art keywords
phase
coating
weight
nial
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP05105696A
Other languages
English (en)
French (fr)
Other versions
EP1589122A1 (de
Inventor
Mohamed Dr. Nazmy
Hans Joachim Dr. Schmutzler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1589122A1 publication Critical patent/EP1589122A1/de
Application granted granted Critical
Publication of EP1589122B1 publication Critical patent/EP1589122B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Definitions

  • the invention relates to the field of materials technology. It relates to a coating which contains large volume fractions, in the range from 20 to 90% by volume, of NiAl- ⁇ -phase in a ⁇ -matrix.
  • the coating material In order to fully exploit the advantage of a high temperature to increase the efficiency of the turbine and the excellent mechanical properties of the base material (for example, single crystals or directionally solidified microstructures), it is necessary that the coating material not only protects the base material against oxidation and corrosion, but also the mechanical properties of the base material are not affected.
  • a low ductile-brittle transition temperature Ductile Brittle Transition Temperature - DBTT
  • the ⁇ -phase of the NiAl alloys has an ordered cubic B2 crystal structure (CsCl prototype) and consists of two simple interpenetrating cubic cells, where the Al atoms are the cube corners of one sublattice and the Ni atoms are the cube corners of the other Subgitter occupy.
  • the ⁇ phase is coarse and therefore brittle.
  • the object of the invention is to improve the ductility of NiAl coatings which have a high proportion of ⁇ phase in a ⁇ matrix.
  • the ⁇ -phase can have a different composition, for example NiAlCr, NiAlMo.
  • the coating comprising a Ni-base alloy with an Al content which contains a NiAl- ⁇ phase with a proportion of NiAl- ⁇ in the range from 20 to 90% by volume in a ⁇ matrix, has the following chemical composition (in wt .-%) of the coating: 13 Cr, 30 Co, 11.5 Al, 0.5 Ta, 1.2 Si, 0.3 Y, 0.1-8 Fe, and optionally 0.0005-0.9 B and / or 0.0005-1 Zr, and / or 0.1-8 Mo and / or 0.1-8 Ga, wherein the Total content of Fe, Mo and Ga maximum 10%, balance Ni and unavoidable impurities.
  • the advantages of the invention are that the ductility of the coating is substantially improved.
  • micro-alloying with Fe and optionally with Ga and Mo it is achieved that the ⁇ -phase is refined and thus the ductility is increased, without the oxidation resistance being reduced.
  • Exceeding the specified ranges will adversely affect ductility and resistance to oxidation and corrosion.
  • the coating max. 4 wt .-% Fe, Ga, Mo contains.
  • B 0.001-0.5 wt .-%)
  • Zr 0.001-0.5 wt .-%)
  • C 0.5 wt .-%
  • the comparative alloy VL 2 was microalloyed with Zr and Fe.
  • the following alloy data in% by weight was prepared, at which the plastic deformation was also determined in a three-point bending test at 200 ° C.: Table 2: Inventive alloy (modified comparative alloy) According to Tab. 1 Zr Fe L 21 VL 2 0.2 3
  • Fig. 1 In the case of the three-point bending specimen of the comparative alloy VL2 known from the prior art, a fracture occurred with a force of approximately 0.9 kN and a deflection of approximately 1.65 mm.
  • the ductility of the coatings containing NiAl- ⁇ phase can thus be increased.
  • the micro-alloying elements refine the coarse ⁇ -phase.
  • B, Zr and C consolidate the grain boundaries and the ⁇ / ⁇ phase boundaries.
  • the plastic deformation and thus the ductility of the coating alloy could thus be significantly increased by the addition of these additional elements.
  • By ductilizing the NiAl phase crack propagation is slowed down, ie. H. the fracture toughness is increased, which has a positive effect on the stress behavior of the coatings.
  • alloy C and / or B as a ⁇ / ⁇ phase boundary agent. It is the addition of 0.0005 to 0.9, preferably 0.001 to 0.5 wt .-% B, 0.0005 to 1.0, preferably 0.001 to 0.5 wt .-% Zr and 0.0005 to 0.8 wt .-% C provided.
  • phase boundary strengtheners B, C and Zr may be added singly or in combination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

    Technisches Gebiet
  • Die Erfindung bezieht sich auf das Gebiet der Werkstofftechnik. Sie betrifft eine Beschichtung, welche grosse Volumenanteile, im Bereich von 20 bis 90 Vol%, an NiAl-β-Phase in einer γ-Matrix enthält.
  • Stand der Technik
  • Es sind eine Vielzahl von Legierungen bekannt, welche zur Beschichtung von z. B. Gasturbinenkomponenten eingesetzt werden. Die Gasturbinenkomponenten, beispielsweise Turbinenschaufeln, sind hohen Temperaturen ausgesetzt und sollen mittels der Beschichtungen vor Oxidation und Korrosion geschützt werden.
  • Um den Vorteil einer hohen Temperatur zur Steigerung des Wirkungsgrades der Turbine und der hervorragenden mechanischen Eigenschaften des Grundmaterials (beispielsweise Einkristalle oder gerichtet erstarrte Gefüge) voll auszuschöpfen, ist es notwendig, dass das Beschichtungsmaterial das Grundmaterial nicht nur vor Oxidation und Korrosion schützt, sondern auch die mechanischen Eigenschaften des Grundmaterials nicht beeinträchtigt werden. Insbesondere soll eine niedrige Duktil-Spröd-Übergangstemperatur (Duktile Brittle Transition Temperature - DBTT) und damit eine gewisse Duktilität bei niedrigen Temperaturen für das Beschichtungsmaterial erreicht werden.
  • Dies ist bei den bisher bekannten Beschichtungen leider nicht der Fall.
  • In US 5,943,138 wird beispielsweise eine Beschichtung beschrieben, welche eine typische Ni-Basis-Superlegierung (Einkristall-Legierung) ist mit Zusatz von Yttrium und Silizium. Diese Elemente verbessern zwar die Kriechfestigkeit und führen ausserdem zu einer niedrigen Duktil-Spröd-Übergangstemperatur, aber die ausserdem enthaltenen Elemente W, Mo und die geringen Anteile an Cr und Co bewirken einen schädlichen Effekt auf den Oxidationswiderstand.
  • Die in den letzten Jahren entwickelten hochfesten NiAl-Legierungen können zwar in gewisser Weise mit den Ni-Basis-Superlegierungen konkurrieren, jedoch ist ein Nachteil ihre im Vergleich zu den duktilen hochzähen Ni-Basis-Superlegierungen niedrige Zähigkeit und ihre hohe DBT-Temperatur (R. Dariola: NiAl for Turbine Airfoil Application, Structural Intermetallics, The Minerals, Metals & Materials Society, 1993, S. 495-504), was sich in einer niedrigen Duktilität dieser Legierungen bei niedrigen Temperaturen widerspiegelt. Die β-Phase der NiAl-Legierungen weist eine geordnete kubische B2-Kristallstrukur (CsCl Prototyp) auf und besteht aus zwei einfachen sich durchdringenden kubischen Zellen, bei denen die Al-Atome die Würfelecken des einen Subgitters und die Ni-Atome die Würfelecken des anderen Subgitters besetzen. Die β-Phase ist grob und daher spröd.
  • Aus US 5,116,438 sind β-Phasen Ni-Aluminide bekannt, die mit Gallium mikrolegiert sind. Diese weisen bei etwa 0,25 Atom% Ga eine signifikante Verbesserung der Duktilität bei Raumtemperatur auf. Ein höherer Ga-Anteil wirkt sich negativ aus.
  • Die Zugabe von geringen Anteilen an Bor, sowie Hf, Zr, Fe und Kombinationen dieser Elemente zu Ni3Al-Legierungen zum Zwecke der Duktilitätsverbesserung ist beispielsweise aus US 4,478,791 und US 4,612,165 bekannt.
  • Aus US 4,045,255 ist eine eutektische gerichtet erstarrte Ni-Basis-Superlegierung bekannt, welche eine γ-Phase und einen erheblichen Anteil an β-Phase aufweist und als Grundmaterial für lastaufnehmende Bauteile eingesetzt wird, weil diese Legierung eine erhöhte Temperaturfestigkeit aufweist. Für Beschichtungen ist sie aber nicht geeignet. In der Druckschrift EP 0 207 874 werden verschiedene Beschichtungsmaterialien mit geringem Anteil (<10%) an der NiAl-β-Phase offenbart. Die US 4,451,431 beschreibt eine korrosionsbeständige und duktile Beschichtung für Turbinenbauteile aus einer Superlegierung, wobei die Beschichtung aus einer Ni-Basis-Legierung besteht mit z. B. folgender Zusammensetzung: 18 % Cr, 12 % Co, 12 % Al, 0.6 % Y, 1.2 % Mo oder 2.8 % Mo, Rest Nickel.
  • Darstellung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, die Duktilität von NiAl-Beschichtungen, welche einen hohen Anteil an β-Phase in einer γ-Matrix aufweisen, zu verbessern. Die β-Phase kann dabei eine unterschiedliche Zusammensetzung haben, beispielsweise NiAlCr, NiAlMo.
  • Erfindungsgemäss wird dies dadurch erreicht, dass die Beschichtung aus einer Ni-Basislegierung mit einem Al-Gehalt, welche eine NiAl-β-Phase mit einem Anteil an NiAl-β im Bereich von 20 bis 90 Vol.% in einer γ-Matrix enthält, folgende chemische Zusammensetzung (Angaben in Gew.-%) der Beschichtung aufweist: 13 Cr, 30 Co, 11.5 Al, 0.5 Ta, 1.2 Si, 0.3 Y, 0.1-8 Fe, sowie wahlweise 0.0005-0.9 B und/oder 0.0005-1 Zr, und/oder 0.1-8 Mo und/oder 0.1-8 Ga, wobei der Gesamtanteil Fe, Mo und Ga maximal 10 % beträgt, Rest Ni und unvermeidbare Verunreinigungen.
  • Die Erfindung wird in den Ansprüchen angegeben.
  • Die Vorteile der Erfindung bestehen darin, dass die Duktilität der Beschichtung wesentlich verbessert wird. Durch das Mikrolegieren mit Fe und wahlweise mit Ga und Mo wird erreicht, dass die β-Phase verfeinert und damit die Duktilität erhöht wird, ohne dass der Oxidationswiderstand verringert wird. Werden die angegebenen Bereiche überschritten, so hat das ungünstige Auswirkungen auf die Duktilität und den Widerstand gegen Oxidation und Korrosion.
  • Es ist besonders zweckmässig, wenn die Beschichtung max. 4 Gew.-% Fe, Ga, Mo enthält.
  • Ferner ist es vorteilhaft, wenn zusätzlich geringe Mengen an B (0.001-0.5 Gew.-%), Zr (0.001-0.5 Gew.-%) und/oder C (0.5 Gew.-%) zugegeben werden. B, Zr und C festigen die Korngrenzen und die β/γ-Phasengrenzen.
  • Kurze Beschreibung der Zeichnung
  • In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt.
  • Es zeigen:
  • Fig. 1
    ein Kraft-Durchbiegungs-Diagramm für die Legierung VL 2 (Stand der Technik) und
    Fig. 2
    ein Kraft-Durchbiegungs-Diagramm für die Legierung L 21 in einer Ausführungsvariante der Erfindung.
    Weg zur Ausführung der Erfindung
  • Nachfolgend wird die Erfindung anhand eines Ausführungsbeispieles und der Fig. 1 bis 2 näher erläutert.
  • Der Duktilisierungseffekt der erfindungsgemässen Mikrolegierung von Schichtmaterialien, welche grosse Anteile an NiAl-β-Phase in einer γ-Matrix enthalten, wurde an Proben nachgewiesen, die durch Schmelzen des Materials und anschliessendes Schmieden zu einem Streifen der Grösse 7 x 2 x35 mm3 hergestellt wurden und die etwa 40-70 Vol.% NiAl-β enthalten.
  • An diesen Proben wurden Drei-Punkt-Biegeversuche bei 200 °C durchgeführt. Es wurde der Betrag der plastische Deformation ermittelt, welcher ein Mass für die Duktilität der Beschichtungen darstellt.
  • Als Vergleichsmaterial diente folgende Legierung (Angabe in Gew.-%): Tabelle 1: Vergleichslegierungen
    Ni Cr Co Al Y Si Ta
    VL 2 Rest 13 30 11.5 0.3 1.2 0.5
  • Erfindungsgemäss wurde die Vergleichslegierung VL 2 mikrolegiert mit Zr und Fe. Im einzelnen wurde folgende Legierung (Angaben in Gew.-%) hergestellt, an der ebenfalls im Drei-Punkt-Biegeversuch bei 200 °C die plastische Deformation ermittelt wurde: Tabelle 2: Erfindungsgemässe Legierung (modifizierte Vergleichslegierung)
    Gemäss Tab. 1 Zr Fe
    L 21 VL 2 0.2 3
  • Gemäss Fig. 1 kam es bei der Drei-Punkt-Biege-Probe der aus dem Stand der Technik bekannten Vergleichslegierung VL2 bei einer Krafteinwirkung von etwa 0.9 kN und einer Durchbiegung von etwa 1.65 mm zum Bruch.
  • Wird dagegen die erfindungsgemässe Legierung L 21 (= VL 2 + 0.2 Gew.-% Zr + 3 Gew.-% Fe) im Drei-Punkt-Biegeversuch untersucht (Fig. 2), so kann die plastische Durchbiegung wesentlich erhöht werden. Der Bruch trat erst bei einer Kraft von ca. 1.4 kN ein, wobei die Durchbiegung der Probe ca. 2,5 mm betrug.
  • Durch Mikrolegieren mit Fe und Zr kann somit die Duktilität der NiAl-β-Phase enthaltenen Beschichtungen erhöht werden. Die Mikrolegierungselemente verfeinern die grobe β-Phase. B, Zr und C festigen die Korngrenzen und die β/γ-Phasengrenzen.
  • Die plastische Deformation und damit die Duktilität der Beschichtungslegierung konnte somit entscheidend durch die Zugabe dieser zusätzlichen Elemente erhöht werden. Durch die Duktilisierung der NiAl-Phase wird die Rissausbreitung verlangsamt, d. h. die Risszähigkeit wird erhöht, was sich positiv auf das Beanspruchungsverhalten der Beschichtungen auswirkt.
  • Selbstverständlich ist die Erfindung gemäss den Ansprüchen nicht auf das beschriebene Ausführungsbeispiel beschränkt. Die genannten Elemente verfeinern die β-Phase und erhöhen damit die Duktilität, ohne den Oxidationswiderstand zu verringern. Werden die angegebenen Bereiche überschritten, so hat das ungünstige Auswirkungen auf die Duktilität und den Widerstand gegen Oxidation und Korrosion.
  • Ausser der im Ausführungsbeispiel beschriebenen Zugabe von Zr kann als ein β/γ-Phasengrenzenfestiger auch C und/oder B zulegiert werden. Es ist die Zugabe von 0.0005 bis 0.9, vorzugsweise 0.001 bis 0.5 Gew.-% B, 0.0005 bis 1.0, vorzugsweise 0.001 bis 0.5 Gew.-% Zr und 0.0005 bis 0.8 Gew.-% C vorgesehen.
  • Die Phasengrenzenverfestiger B, C und Zr können einzeln oder in Kombination zugegeben werden.

Claims (8)

  1. Beschichtung aus einer Ni-Basislegierung mit einem Al-Gehalt, welche eine NiAl-β-Phase mit einem Anteil an NiAI-β im Bereich von 20 bis 90 Vol.% in einer γ-Matrix enthält, gekennzeichnet durch folgende chemische Zusammensetzung (Angaben in Gew.-%) der Beschichtung: 13 Cr, 30 Co, 11.5 Al, 0.5 Ta, 1.2 Si, 0.3 Y, 0.1-8 Fe, sowie wahlweise 0.0005-0.9 B und/oder 0.0005-1 Zr, und/oder 0.1-8 Mo und/oder 0.1-8 Ga, wobei der Gesamtanteil Fe, Mo und Ga maximal 10 % beträgt, Rest Ni und unvermeidbare Verunreinigungen.
  2. Beschichtung nach Anspruch 1, gekennzeichnet durch (Angaben in Gew.-%) max. 4 Fe und/oder max. 4 Mo und/oder max. 4 Ga.
  3. Beschichtung nach Anspruch 1, gekennzeichnet durch 0.001-0.5 Gew.-% Zr.
  4. Beschichtung nach Anspruch 3, gekennzeichnet durch 0.2 Gew.-% Zr.
  5. Beschichtung nach Anspruch 1, gekennzeichnet durch 0.001-0.5 Gew.-% B.
  6. Beschichtung nach Anspruch 5, gekennzeichnet durch 0.2 Gew.-% B.
  7. Beschichtung nach Anspruch 1, gekennzeichnet durch 0.5 Gew.-% C.
  8. Beschichtung nach Anspruch 1, gekennzeichnet durch (Angaben in Gew.%) 13 Cr, 30 Co, 11,5 Al, 0.3 Y, 1.2 Si, 0.5 Ta, 0.2 Zr, 3 Fe, Rest Ni.
EP05105696A 1999-06-08 2000-05-12 NiAl-Beta-Phase enthaltende Beschichtung Expired - Lifetime EP1589122B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19926669A DE19926669A1 (de) 1999-06-08 1999-06-08 NiAl-beta-Phase enthaltende Beschichtung
DE19926669 1999-06-08
EP00810410A EP1061150B1 (de) 1999-06-08 2000-05-12 NiAl-B-Phase enthaltende Beschichtung

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP00810410A Division EP1061150B1 (de) 1999-06-08 2000-05-12 NiAl-B-Phase enthaltende Beschichtung

Publications (2)

Publication Number Publication Date
EP1589122A1 EP1589122A1 (de) 2005-10-26
EP1589122B1 true EP1589122B1 (de) 2008-08-06

Family

ID=7910933

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00810410A Expired - Lifetime EP1061150B1 (de) 1999-06-08 2000-05-12 NiAl-B-Phase enthaltende Beschichtung
EP05105696A Expired - Lifetime EP1589122B1 (de) 1999-06-08 2000-05-12 NiAl-Beta-Phase enthaltende Beschichtung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00810410A Expired - Lifetime EP1061150B1 (de) 1999-06-08 2000-05-12 NiAl-B-Phase enthaltende Beschichtung

Country Status (4)

Country Link
US (1) US6471791B1 (de)
EP (2) EP1061150B1 (de)
CN (1) CN1250771C (de)
DE (3) DE19926669A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1260612A1 (de) * 2001-05-25 2002-11-27 ALSTOM (Switzerland) Ltd MCrAlY-Haftschicht bzw. Überzug
US6746783B2 (en) * 2002-06-27 2004-06-08 General Electric Company High-temperature articles and method for making
US7070866B2 (en) * 2004-05-27 2006-07-04 General Electric Company Nickel aluminide coating with improved oxide stability
US7641985B2 (en) * 2004-06-21 2010-01-05 Siemens Energy, Inc. Boron free joint for superalloy component
EP1774876B1 (de) * 2004-07-14 2010-07-07 Raymond Chin Kochgeschirr mit metallischer antihaftbeschichtung und herstellungsverfahren dafür
EP1790743A1 (de) * 2005-11-24 2007-05-30 Siemens Aktiengesellschaft Legierung, Schutzschicht und Bauteil
KR100911788B1 (ko) * 2007-02-13 2009-08-12 레이몬드 친 금속 비점착 코팅을 갖는 요리 식기 및 이의 제조 방법
US8920937B2 (en) * 2007-08-05 2014-12-30 United Technologies Corporation Zirconium modified protective coating
CN101638376B (zh) * 2008-07-29 2011-04-27 江苏恩华药业股份有限公司 阿戈美拉汀的制备方法及其中间体
EP2611949B1 (de) * 2010-11-02 2016-01-06 Siemens Aktiengesellschaft Nickel basis legierung, schutzschicht und bauteil
EP2474414A1 (de) * 2011-01-06 2012-07-11 Siemens Aktiengesellschaft Legierung, Schutzschicht und Bauteil
EP2474413A1 (de) * 2011-01-06 2012-07-11 Siemens Aktiengesellschaft Legierung, Schutzschicht und Bauteil
CN105624658B (zh) * 2014-10-31 2017-12-15 中国科学院金属研究所 一种活性元素改性铝化物涂层及其制备工艺
US20230011769A1 (en) * 2019-12-27 2023-01-12 Kubota Corporation Ni-BASED ALLOY, HEAT-RESISTANT AND CORROSION-RESISTANT COMPONENT, AND HEAT TREATMENT FURNACE COMPONENT

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2542962A (en) * 1948-07-19 1951-02-20 His Majesty The King In The Ri Nickel aluminum base alloys
JPS5124452B2 (de) * 1972-12-14 1976-07-24
US4045255A (en) * 1976-06-01 1977-08-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Directionally solidified eutectic γ+β nickel-base superalloys
US4116723A (en) * 1976-11-17 1978-09-26 United Technologies Corporation Heat treated superalloy single crystal article and process
US4328045A (en) * 1978-12-26 1982-05-04 United Technologies Corporation Heat treated single crystal articles and process
US4451431A (en) * 1982-10-25 1984-05-29 Avco Corporation Molybdenum-containing high temperature coatings for nickel- and cobalt-based superalloys
US4478791A (en) 1982-11-29 1984-10-23 General Electric Company Method for imparting strength and ductility to intermetallic phases
US4612165A (en) 1983-12-21 1986-09-16 The United States Of America As Represented By The United States Department Of Energy Ductile aluminide alloys for high temperature applications
US5043138A (en) 1983-12-27 1991-08-27 General Electric Company Yttrium and yttrium-silicon bearing nickel-base superalloys especially useful as compatible coatings for advanced superalloys
EP0207874B1 (de) * 1985-05-09 1991-12-27 United Technologies Corporation Schutzschichten für Superlegierungen, gut angepasst an die Substrate
US5215831A (en) * 1991-03-04 1993-06-01 General Electric Company Ductility ni-al intermetallic compounds microalloyed with iron
US5116691A (en) * 1991-03-04 1992-05-26 General Electric Company Ductility microalloyed NiAl intermetallic compounds
US5116438A (en) * 1991-03-04 1992-05-26 General Electric Company Ductility NiAl intermetallic compounds microalloyed with gallium
DE4423118C1 (de) * 1994-07-01 1995-06-01 Max Planck Inst Eisenforschung Nickel-Aluminium-Legierung
US5516380A (en) * 1994-10-14 1996-05-14 General Electric Company NiAl intermetallic alloy and article with improved high temperature strength
IT1294098B1 (it) * 1997-07-10 1999-03-22 Flametal S P A Lega per rivestimenti o riporti resistenti alla corrosione.
US6153313A (en) * 1998-10-06 2000-11-28 General Electric Company Nickel aluminide coating and coating systems formed therewith

Also Published As

Publication number Publication date
CN1280210A (zh) 2001-01-17
DE50011352D1 (de) 2006-03-02
EP1061150B1 (de) 2005-10-19
CN1250771C (zh) 2006-04-12
EP1061150A3 (de) 2000-12-27
US6471791B1 (en) 2002-10-29
DE19926669A1 (de) 2000-12-14
EP1589122A1 (de) 2005-10-26
DE50015301D1 (de) 2008-09-18
EP1061150A2 (de) 2000-12-20

Similar Documents

Publication Publication Date Title
DE69404937T2 (de) Nickellegierung
DE69620998T2 (de) Oxidationsbeständige molybdänlegierung
DE69531532T2 (de) Aluminium enthaltende Legierungen auf Eisenbasis, brauchbar für elektrische Widerstandsheizelemente
DE69017574T2 (de) Hochfestes ermüdungsrissbeständiges Legierungswerkstück.
EP1589122B1 (de) NiAl-Beta-Phase enthaltende Beschichtung
DE19983957B4 (de) Beschichtungszusammensetzung für Hochtemperturschutz
EP2163656B1 (de) Hochtemperaturbeständige Kobaltbasis-Superlegierung
DE68916414T2 (de) Titanaluminid-Legierungen.
DE69215404T2 (de) Mikrolegierte Nial-intermetallische Verbindungen mit verbesserter Duktilität
EP3175008B1 (de) Kobaltbasissuperlegierung
DE3921626C2 (de) Bauteil mit hoher Festigkeit und geringer Ermüdungsriß-Ausbreitungsgeschwindigkeit
DE3024645A1 (de) Titanlegierung, insbesondere titan- aluminium-legierung
DE102020116868A1 (de) Pulver aus einer Nickel-Kobaltlegierung, sowie Verfahren zur Herstellung des Pulvers
DE102018107248A1 (de) Verwendung einer nickel-chrom-eisen-aluminium-legierung
EP2196550B1 (de) Hochtemperatur- und oxidationsbeständiges Material auf der Basis von NiAl
DE69106372T2 (de) Legierung mit niedrigem wärmeausdehnungskoeffizient und daraus hergestellter gegenstand.
DE112016004410T5 (de) Superlegierung mit geringer thermischer ausdehnung und herstellungsverfahren dafür
EP1420075B1 (de) Nickel-Basis-Superlegierung
DE3784204T2 (de) Thermomechanisches verfahren zur herstellung einer dauerbruchbestaendigen nickelbasissuperlegierung und nach dem verfahren hergestelltes erzeugnis.
DE69215931T2 (de) Hochduktile Nial-intermetallische Verbindungen mikrolegiert mit Gallium
DE2248130C2 (de) Pulverförmiger Schweißzusatzwerkstoff auf Nickelbasis sowie damit erhaltenes geschweißtes Werkstück
DE3248134C2 (de)
DE2010055B2 (de) Verfahren zum Herstellen eines Werkstoffs mit hoher Zeitstandfestigkeit und Zähigkeit
EP2451986B2 (de) Nickel-basis-superlegierung
EP3133178B1 (de) Optimierte nickelbasis-superlegierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1061150

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NAZMY, MOHAMED, DR.

Inventor name: SCHMUTZLER, HANS JOACHIM, DR.

17P Request for examination filed

Effective date: 20060324

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1061150

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50015301

Country of ref document: DE

Date of ref document: 20080918

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090507

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160520

Year of fee payment: 17

Ref country code: DE

Payment date: 20160520

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50015301

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50015301

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160520

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20161110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50015301

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170512

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170512

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531