EP1581734B1 - Verfahren und vorrichtung zur diagnose der dynamischen eigenschaften einer zur zylinderindividuellen lambdaregelung verwendeten lambdasonde - Google Patents

Verfahren und vorrichtung zur diagnose der dynamischen eigenschaften einer zur zylinderindividuellen lambdaregelung verwendeten lambdasonde Download PDF

Info

Publication number
EP1581734B1
EP1581734B1 EP03799439A EP03799439A EP1581734B1 EP 1581734 B1 EP1581734 B1 EP 1581734B1 EP 03799439 A EP03799439 A EP 03799439A EP 03799439 A EP03799439 A EP 03799439A EP 1581734 B1 EP1581734 B1 EP 1581734B1
Authority
EP
European Patent Office
Prior art keywords
lambda
cylinder
value
controllers
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03799439A
Other languages
English (en)
French (fr)
Other versions
EP1581734A1 (de
Inventor
Andreas Koring
Ruediger Deibert
Michael Daetz
Eberhard Schnaibel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Volkswagen AG
Original Assignee
Robert Bosch GmbH
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH, Volkswagen AG filed Critical Robert Bosch GmbH
Publication of EP1581734A1 publication Critical patent/EP1581734A1/de
Application granted granted Critical
Publication of EP1581734B1 publication Critical patent/EP1581734B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system

Definitions

  • the invention relates to a method and a device for diagnosing the dynamic properties of lambda probes with regard to a single-cylinder lambda control according to the preambles of the respective independent claims.
  • a lambda control in conjunction with a catalytic converter, is today the most effective emission control method for the gasoline engine. Only in combination with currently available ignition and injection systems can very low Exhaust gas values can be achieved. Legislators in most countries even impose limits on engine exhaust emissions.
  • the respective exhaust gas is basically measured and the supplied fuel quantity is corrected immediately, for example, by means of the injection system in accordance with the measurement result.
  • the dynamic properties of a lambda probe when new are usually sufficient in a selected operating range. If, however, the dynamic properties of the probe change in such a way that cylinder-specific lambda values can not be resolved, since the response times of the probe increase, the lambda control does not act in an intermeshing manner, although lambda fluctuations are actually present in the exhaust gas. Causes of reduced probe dynamics are, for example.
  • the present invention has for its object to provide a method and an apparatus of the type mentioned, which allows a reliable diagnosis of the dynamic properties of a lambda probe with respect to single cylinder lambda control.
  • the inventive method provides, in particular, to detect at least one manipulated variable of the lambda control and to compare it with a predefinable maximum threshold and in case of exceeding the maximum threshold, the dynamic behavior of the lambda probe in With regard to the suitability for the cylinder-specific lambda control as insufficient to assess.
  • the dynamic properties of the lambda probe are detected in a first variant according to the invention by means of the single cylinder control itself. It is based on the idea that the operation of individual cylinder-individual controller diverges with insufficient dynamic properties and the associated control variables, namely one or more manipulated variables, exceed a predetermined maximum threshold.
  • the dynamic behavior of the lambda probe is determined by means of a test function, i. by means of an introduced disturbance or detuning of the current lambda value.
  • the test function can be performed once, temporarily periodically or event-controlled.
  • the predefinable maximum threshold for a cylinder-specific controller can be exceeded, for example, when the controller is active and the value of the respective manipulated variable exceeds the predefinable amount or the manipulated variable can not be increased at all due to its structure.
  • the dynamic properties of the lambda probe in terms of usability for the Single cylinder lambda control considered insufficient.
  • the invention further relates to a diagnostic device which operates according to the inventive method.
  • the diagnostic routine described below with reference to the figure for detecting the usability or non-operational capability of a lambda probe of a spark-ignition engine is preferably carried out only during the time in which an individual regulator having individual cylinder control is active.
  • the test function described below is executed once or several times and the results of the tests are evaluated only as long as the test function is active.
  • step 30 it is determined in step 30 whether the engine is running is at all in a suitable for the single-cylinder control and thus for the detection of the dynamic properties of the lambda probe operating condition. If this is not the case, the program jumps back to the beginning of the routine in the form of a loop. Otherwise, the manipulated variables of the individual controllers are monitored 40 and after detecting the manipulated variables is further checked 50 whether at least one of the manipulated variables in amount exceeds a predetermined maximum threshold. If this is not the case, the system jumps back to step 40, possibly including a delay stage 60.
  • a next step 70 it is checked whether there is a suitable time for activating the test function. If this is to be answered in the negative, this test 70 is repeated in a loop, also possibly including a delay stage.
  • test routine begins with the fact that the currently present values of the manipulated variables of the individual controllers are temporarily stored 80. Thereafter, a disturbance is made to the currently determined lambda values switched on 90 and the manipulated variables of each controller observed or detected 100.
  • the dynamic properties of the lambda probe with respect to the individual cylinder control are therefore determined with the aid of the controller function itself and / or the described active test function.
  • the lambda of a cylinder is targeted by varying the cylinder-specific fuel measurement by a predefined amount x tune.
  • this cylinder trimming must be shown as an additional offset with about the same amount as the trim in the associated cylinder-specific control variable of the single cylinder control. If the resulting manipulated variable change is only a portion y of the stimulated cylinder trim, this means that the lambda probe can no longer fully follow the cylinder-specific fluctuations due to reduced dynamics. If the proportion y falls below a predefinable threshold z, ie an exhaust-relevant residual error x - z can no longer be corrected, an error signal must be output. The resulting exhaust disadvantage is not relevant in this case.
  • the invention can be implemented either as hardware or in the form of a control program as part of the engine control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Testing Of Engines (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Diagnose der dynamischen Eigenschaften von Lambdasonden im Hinblick auf eine Einzelzylinder-Lambdaregelung gemäß den Oberbegriffen der jeweiligen unabhängigen Ansprüche.
  • Eine Lambdaregelung, in Verbindung mit einem Katalysator, ist heute das wirksamste Abgasreinigungsverfahren für den Ottomotor. Erst im Zusammenspiel mit derzeit verfügbaren Zünd- und Einspritzsystemen können sehr niedrige Abgaswerte erreicht werden. In den meisten Ländern schreibt der Gesetzgeber sogar Grenzwerte für das Motorabgas vor.
  • Besonders wirkungsvoll ist der Einsatz eines Dreiwege- oder Selektiv-Katalysators. Dieser Katalysatortyp hat die Eigenschaft, Kohlenwasserstoffe, Kohlenmonoxid und Stickoxide bis zu mehr als 98% abzubauen, falls der Motor in einem Bereich von etwa 1% um das stöchiometrische Luft-Kraftstoff-Verhältnis mit Lambda = 1 betrieben wird. Dabei gibt Lambda an, wieweit das tatsächliche vorhandene Luft-Kraftstoff-Gemisch von dem Wert Lambda = 1 abweicht, der einem zur vollständigen Verbrennung theoretisch notwendigen Massenverhältnis von 14,7 kg Luft zu 1 kg Benzin entspricht, d.h. Lambda ist der Quotient aus zugeführter Luftmasse und theoretischem Luftbedarf.
  • Bei der Lambdaregelung wird grundsätzlich das jeweilige Abgas gemessen und die zugeführte Kraftstoffmenge entsprechend dem Messergebnis bspw. mittels des Einspritzsystems sofort korrigiert. Als Messfühler wird dabei eine Lambdasonde verwendet, die ein stetiges Lambdasignal um Lambda = 1 messen kann und so ein Signal liefert, das anzeigt, ob das Gemisch fetter oder magerer als Lambda = 1 ist.
  • Die Wirkung dieser Lambdasonden beruht in an sich bekannter Weise auf dem Prinzip einer galvanischen Sauerstoff Konzentrationszelle mit einem Festkörperelektrolyt.
  • Es ist weiterhin bekannt, eine Einzelzylinder-Lambdaregelung zur Abgasverbesserung einzusetzen, falls die Lambdasonde aufgrund ihrer dynamischen Eigenschaften in der Lage ist, Lambdaschwankungen im Abgasstrom am Sondeneinbauort, welche durch zylinderindividuelle Lambdaunterschiede hervorgerufen werden, zu folgen.
  • Durch zeitlich hochauflösende Auswertung des von der Lambdasonde stammenden Signals kann aus dem Summen-Lambdasignal auf das Lambda der einzelnen Motorzylinder, deren Abgas dem Einbauort der Sonde zugeführt wird, geschlossen werden. Damit können zylinderindividuelle Lambda-Unterschiede korrigiert und somit das Abgasergebnis, zumindest jedoch die Abgasstabilität, verbessert werden. Eine solche zylinderindividuelle Lambda-Regelung geht beispielsweise aus der DE 199 03 721 C1 hervor.
  • Die dynamischen Eigenschaften einer Lambdasonde im Neuzustand sind in einem ausgewählten Betriebsbereich meist ausreichend. Verändern sich jedoch die dynamischen Eigenschaften der Sonde dahingehend, dass zylinderindividuelle Lambdawerte nicht aufgelöst werden können, da die Reaktionszeiten der Sonde sich erhöhen, wird die Lambdaregelung nicht eingreifend tätig, obwohl im Abgas tatsächlich Lambdaschwankungen vorliegen. Ursachen einer reduzierten Sondendynamik sind bspw.
  • Verengungen von Schutzrohröffnungen der Sonde oder die Verschmutzung von funktionsbestimmenden Sensorkeramikteilen des Festkörperelektrolyten aufgrund von Ablagerungen. Bei Breitbandsonden kommt zusätzlich eine Verschmutzung der dort vorhandenen Diffusionsbarriere in Betracht. Im ungünstigsten Fall führt eine nicht funktionierende Einzelzylinder-Lambdaregelung zur Verletzung der genannten, durch den Gesetzgeber geforderten Abgasgrenzwerte. In diesem Fall müssen die veränderten dynamischen Eigenschaften der Lambdasonde bspw. mittels einer Kontrollleuchte angezeigt werden.
  • Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art anzugeben, welche eine zuverlässige Diagnose der dynamischen Eigenschaften einer Lambdasonde im Hinblick auf Einzelzylinder-Lambdaregelung gestattet.
  • Diese Aufgabe wird bei einem Verfahren und einer Vorrichtung zur Diagnose der vorgenannten Art gelöst durch die Merkmale der jeweiligen unabhängigen Ansprüche.
  • Das erfindungsgemäße Verfahren sieht insbesondere vor, wenigstens eine Stellgröße der Lambdaregelung zu erfassen und mit einer vorgebbaren maximalen Schwelle zu vergleichen und im Falle des Überschreitens der maximalen Schwelle das dynamische Verhalten der Lambdasonde im Hinblick auf die Einsatzfähigkeit für die zylinderindividuelle Lambdaregelung als nicht ausreichend zu bewerten.
  • Die dynamischen Eigenschaften der Lambdasonde werden in einer ersten erfindungsgemäßen Variante mittels der Einzelzylinderregelung selbst erfasst. Es liegt dabei der Gedanke zugrunde, dass die Arbeitsweise einzelner zylinderindividueller Regler bei nicht ausreichenden dynamischen Eigenschaften divergiert und die zugehörigen Stellgrößen, und zwar eine oder mehrere Stellgrößen, einen vorgebbaren maximalen Schwellwert überschreiten.
  • In einer zweiten erfindungsgemäßen Variante wird das dynamische Verhalten der Lambdasonde mittels einer Testfunktion, d.h. mittels einer eingeleiteten Störung oder Verstimmung des aktuellen Lambdawertes, erfasst. Die Testfunktion kann einmalig, zeitweilig periodisch oder ereignisgesteuert durchgeführt werden.
  • Die vorgebbare maximale Schwelle für einen zylinderindividuellen Regler kann bspw. dann überschritten sein, wenn der Regler aktiv ist und der Wert der jeweiligen Stellgröße den vorgebbaren Betrag übertrifft oder die Stellgröße aufgrund ihrer Struktur überhaupt nicht mehr vergrößert werden kann. In diesem Fall werden die dynamischen Eigenschaften der Lambdasonde im Hinblick auf die Einsatzfähigkeit für die Einzelzylinder-Lambdaregelung als nicht ausreichend erachtet.
  • Die Erfindung betrifft des Weiteren eine Diagnosevorrichtung, welche nach dem erfindungsgemäßen Verfahren arbeitet.
  • Die Erfindung wird nachfolgend, unter Bezugnahme auf die beigefügte Zeichnung, anhand eines Ausführungsbeispiels noch eingehender erläutert, aus dem sich weitere Merkmale und Vorteile der Erfindung ergeben. Die einzige Figur zeigt eine bevorzugte Ausgestaltung des erfindungsgemäßen Diagnoseverfahrens anhand eines Flussdiagramms.
  • Die nachfolgend anhand der Figur beschriebene Diagnoseroutine zur Erkennung der Einsatzfähigkeit bzw. Nicht-Einsatzfähigkeit einer Lambdasonde eines Ottomotors wird bevorzugt nur während der Zeit, in welcher eine einzelne Regler aufweisende Einzelzylinderregelung aktiv ist, durchgeführt. Je nach Strategie wird dabei die nachfolgend beschriebene Testfunktion einmalig oder mehrmals ausgeführt und die Ergebnisse der Tests nur solange ausgewertet, wie die Testfunktion aktiv ist.
  • Nach dem Start 10 der Routine wird zunächst die Motordrehzahl und/oder die Motorlast und/oder der Abgasmassenstrom erfasst 20. Basierend auf diesen Daten wird in Schritt 30 festgestellt, ob der Motor sich überhaupt in einem für die Einzelzylinderregelung und damit für die Erkennung der dynamischen Eigenschaften der Lambdasonde geeigneten Betriebszustand befindet. Ist dies nicht der Fall, wird in Form einer Schleife wieder an den Anfang der Routine zurückgesprungen. Andernfalls werden die Stellgrößen der einzelnen Regler überwacht 40 und nach Erfassen der Stellgrößen wird weiterhin geprüft 50, ob wenigstens eine der Stellgrößen im Betrag eine vorgebbare Maximalschwelle überschreitet. Ist dies nicht der Fall, wird wieder zu Schritt 40 zurückgesprungen, ggf. unter Einbeziehung einer Verzögerungsstufe 60.
  • Falls eine oder mehrere Stellgrößen der einzelnen Regler eine vorgebbare maximale Schwelle betragsmäßig überschreiten, wird angenommen, dass die dynamischen Eigenschaften der Lambdasonde nicht ausreichend sind.
  • In einem nächsten Schritt 70 wird geprüft, ob ein geeigneter Zeitpunkt zur Aktivierung der Testfunktion vorliegt. Ist dies zu verneinen, wird diese Prüfung 70 in einer Schleife wiederholt, ebenfalls ggf. unter Einbeziehung einer Verzögerungsstufe.
  • Andernfalls beginnt die Testroutine damit, dass die aktuell vorliegenden Werte der Stellgrößen der einzelnen Regler zwischengespeichert 80 werden. Danach wird auf die aktuell ermittelten Lambdawerte eine Störung aufgeschaltet 90 und die Stellgrößen der einzelnen Regler beobachtet bzw. erfasst 100.
  • Im Anschluss daran wird geprüft 110, ob der Regler bzw. die Regler in der Lage ist/sind, die Störung auszuregeln. Ist dies der Fall, wird ggf. ein positives Signal ausgegeben 120, wonach die Dynamik der Sonde ausreichend ist. Andernfalls wird angenommen, dass die dynamischen Anforderungen nicht erfüllt sind und ein entsprechendes negatives Signal ausgegeben 130.
  • Abschließend wird die Störung zurückgenommen 140 und es erfolgt eine Neuinitialisierung 150 der einzelnen Regler mit den zwischengespeicherten Werten. Daraufhin wird wiederum eine Störung aufgeschaltet, wie durch den Rücksprung 160 angedeutet ist.
  • Die vorbeschriebene Prozedur oder Routine wird ggf. mehrfach durchgeführt, um die Stellgrößen sozusagen 'iterativ' oder schrittweise optimieren zu können.
  • Die dynamischen Eigenschaften der Lambdasonde in Bezug auf die Einzelzylinderregelung werden demnach mit Hilfe der Reglerfunktion selbst und/oder der beschriebenen aktiven Testfunktion ermittelt. In einer geeigneten Fahrsituation wird gezielt das Lambda eines Zylinders durch Variation der zylinderindividuellen Kraftstoffmessung um einen vorher definierten Betrag x verstimmt. Bei aktiver Einzelzylinder-Regelung muss sich diese Zylindervertrimmung als zusätzlicher Offset mit etwa dem gleichen Betrag wie die Vertrimmung in der dazugehörigen zylinderindividuellen Stellgröße der Einzelzylinderregelung abbilden. Beträgt die resultierende Stellgrößenänderung nur einen Anteil y der stimulierten Zylindervertrimmung, bedeutet dies, dass die Lambdasonde aufgrund einer reduzierten Dynamik den zylinderindividuellen Schwankungen nicht mehr in vollem Umfang folgen kann. Unterschreitet der Anteil y eine vorgebbare Schwelle z, d.h. ein abgasrelevanter Restfehler x - z kann nicht mehr ausgeregelt werden, muss ein Fehlersignal ausgegeben werden. Der entstehende Abgasnachteil ist in diesem Fall nicht von Belang.
  • Im Falle einer Gutprüfung, d.h. die Sondendynamik für Einzelzylinder-Lambdaregelung wird als ausreichend erachtet, da die Vertrimmung wird vollständig oder nahezu vollständig ausgeregelt wird, entsteht durch die beschriebene Testfunktion kein Abgasnachteil. Zudem erfolgt nach Abschluss einer Prüfung, wie vorbeschrieben, eine Zurücksetzung der Zylindervertrimmung in den Ausgangszustand.
  • Es ist anzumerken, dass eine etwa erfasste Änderung der dynamischen Eigenschaften der Lambdasonde für die übrigen Funktionen der Motorsteuerung, die das Lambdasondensignal auswerten, nicht von Relevanz ist und diese daher getrennt zu überwachen sind.
  • Die Erfindung kann entweder als Hardware oder in Form eines Steuerprogramms als Teil der Motorsteuerung implementiert werden.

Claims (6)

  1. Verfahren zur Diagnose der dynamischen Eigenschaften einer Lambdasonde, die wenigstens zeitweilig zu einer zylinderindividuellen Lambdaregelung verwendet wird, dadurch gekennzeichnet, dass wenigstens eine Stellgröße der Lambdaregelung erfasst und mit einer vorgebbaren maximalen Schwelle verglichen wird und im Falle des Überschreitens der maximalen Schwelle das dynamische Verhalten der Lambdasonde im Hinblick auf die Einsatzfähigkeit für die zylinderindividuelle Lambdaregelung als nicht ausreichend bewertet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Wert von Lambda wenigstens eines Zylinders um einen vorgebbaren Wert verstimmt und geprüft wird, ob die Verstimmung um den vorgebbaren Wert als Offset oder Faktor in der Stellgröße des jeweiligen Reglers der Lambdaregelung abgebildet wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass geprüft wird, ob die Differenz oder der Absolutwert der Differenz zwischen Verstimmung und Offset kleiner als die vorgebbare maximale Schwelle ist.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Wert von Lambda durch Variation der zylinderindividuellen Kraftstoffmessung verstimmt wird.
  5. Verfahren nach einem der Ansprüche 2 bis 4, gekennzeichnet durch die Schritte:
    Erkennung eines geeigneten Betriebsbereichs für die zylinderindividuelle Lambdaregelung;
    Überwachung der Stellgrößen der einzelnen Lambdaregler und, falls eine oder mehrere Stellgrößen betragsmäßig ihre maximale Größe überschreitet, Durchführung der nachfolgenden Schritte;
    Erkennung eines geeigneten Zeitpunktes zur Durchführung der nachfolgenden Schritte;
    Zwischenspeicherung der Stellgrößen der einzelnen Lambdaregler;
    Verstimmung des Wertes von Lambda wenigstens eines Zylinders um den vorgebbaren Wert;
    Beobachtung der Stellgrößen der einzelnen Lambdaregler;
    Feststellung, ob die Lambdaregler in der Lage sind, die Verstimmung des Wertes von Lambda auszugleichen oder nicht und im Falle, dass die Lambdaregler dazu in der Lage sind, Rücknahme der Verstimmung und Neuinitialisierung der einzelnen Lambdaregler mit den zwischengespeicherten Stellgrößen, andernfalls Ausgabe eines Fehlersignals.
  6. Diagnosevorrichtung zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche.
EP03799439A 2002-12-23 2003-12-19 Verfahren und vorrichtung zur diagnose der dynamischen eigenschaften einer zur zylinderindividuellen lambdaregelung verwendeten lambdasonde Expired - Lifetime EP1581734B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10260721A DE10260721A1 (de) 2002-12-23 2002-12-23 Verfahren und Vorrichtung zur Diagnose der dynamischen Eigenschaften einer zur zylinderindividuellen Lambdaregelung verwendeten Lambdasonde
DE10260721 2002-12-23
PCT/DE2003/004250 WO2004059152A1 (de) 2002-12-23 2003-12-19 Verfahren und vorrichtung zur diagnose der dynamischen eigenschaften einer zur zylinderindividuellen lambdaregelung verwendeten lambdasonde

Publications (2)

Publication Number Publication Date
EP1581734A1 EP1581734A1 (de) 2005-10-05
EP1581734B1 true EP1581734B1 (de) 2008-03-26

Family

ID=32602436

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03799439A Expired - Lifetime EP1581734B1 (de) 2002-12-23 2003-12-19 Verfahren und vorrichtung zur diagnose der dynamischen eigenschaften einer zur zylinderindividuellen lambdaregelung verwendeten lambdasonde

Country Status (6)

Country Link
US (1) US7481104B2 (de)
EP (1) EP1581734B1 (de)
JP (1) JP4369872B2 (de)
CN (1) CN100449130C (de)
DE (2) DE10260721A1 (de)
WO (1) WO2004059152A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005027990B4 (de) * 2005-06-17 2007-05-10 Audi Ag Vorrichtung zur dynamischen Überprüfung einer Abgassonde
DE102005045932A1 (de) 2005-09-26 2007-03-29 Robert Bosch Gmbh Gerät und Verfahren zur Diagnose einer technischen Vorrichtung
DE102006061117B3 (de) * 2006-12-22 2007-08-02 Audi Ag Verfahren zur Phasenadaption einer zylinderselektiven Lambdaregelung bei einer mehrzylindrigen Brennkraftmaschine
DE102007042086B4 (de) * 2007-09-05 2014-12-24 Continental Automotive Gmbh Testverfahren für eine Abgassonde einer Brennkraftmaschine, insbesondere für eine Lambda-Sonde
DE102007045984A1 (de) 2007-09-26 2009-04-02 Continental Automotive Gmbh Verfahren zur Ermittlung der dynamischen Eigenschaften eines Abgassensors einer Brennkraftmaschine
DE102008001569B4 (de) 2008-04-04 2021-03-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde
DE102008001213A1 (de) 2008-04-16 2009-10-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE102008001579A1 (de) 2008-05-06 2009-11-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose der Dynamik einer Breitband-Lambdasonde
DE102008042549B4 (de) 2008-10-01 2018-03-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose einer Abgassonde
DE102008058008B3 (de) 2008-11-19 2010-02-18 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102009045376A1 (de) 2009-10-06 2011-04-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE102009047648B4 (de) 2009-12-08 2022-03-03 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose von Abweichungen bei einer Einzelzylinder-Lambdaregelung
DE102009054935B4 (de) 2009-12-18 2022-03-10 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE102011002782B3 (de) * 2011-01-17 2012-06-21 Continental Automotive Gmbh Vefahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US8499624B1 (en) * 2012-02-16 2013-08-06 Delphi Technologies, Inc. Method to determine performance characteristic of an engine exhaust system
DE102013216223A1 (de) * 2013-08-15 2015-02-19 Robert Bosch Gmbh Universell einsetzbare Steuer- und Auswerteeinheit insbesondere zum Betrieb einer Lambdasonde
DE102014208585A1 (de) 2014-05-07 2015-11-12 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102014216844B3 (de) * 2014-08-25 2015-10-22 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102019100577B3 (de) 2019-01-11 2019-12-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Überwachung von Sensorsignalen und quantitative Ermittlung des stöchiometrischen Kraftstoff-Luftverhältnisses des gefahrenen Kraftstoffs mittels Injektortest und Katalysatordiagnose in einem Fahrzeug

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3816520A1 (de) 1988-05-14 1989-11-23 Bosch Gmbh Robert Regelverfahren und -vorrichtung, insbesondere lambdaregelung
DE4140618A1 (de) * 1991-12-10 1993-06-17 Bosch Gmbh Robert Verfahren und vorrichtung zur ermittlung der konvertierungsfaehigkeit eines katalysators
DE4236008C2 (de) 1992-10-24 2002-03-28 Bosch Gmbh Robert Verfahren und Vorrichtung zur adaptiven Einzelzylinder-Lambdaregelung bei einem Motor mit variabler Ventilsteuerung
JP3729295B2 (ja) * 1996-08-29 2005-12-21 本田技研工業株式会社 内燃機関の空燃比制御装置
DE19733107C2 (de) * 1997-07-31 2003-02-13 Siemens Ag Verfahren zur Überprüfung der Funktionsfähigkeit einer Lambdasonde
DE19734073C1 (de) 1997-08-06 1998-11-12 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur Reinigung der Rumpfaußenfläche von Schiffen
DE19734072C2 (de) * 1997-08-06 2001-12-13 Iq Mobil Electronics Gmbh Lambda-Regelung für Einspritzanlagen mit adaptivem Filter
DE19734670C1 (de) * 1997-08-11 1999-05-27 Daimler Chrysler Ag Verfahren zur Vertauschprüfung von Lambdasonden
DE19856367C1 (de) * 1998-12-07 2000-06-21 Siemens Ag Verfahren zur Reinigung des Abgases mit Lambda-Regelung
DE19903721C1 (de) * 1999-01-30 2000-07-13 Daimler Chrysler Ag Betriebsverfahren für eine Brennkraftmaschine mit Lambdawertregelung und Brennkraftmaschine
DE10038338A1 (de) * 2000-08-05 2002-02-14 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung eines Sensors
DE10128969C1 (de) * 2001-06-15 2002-12-12 Audi Ag Verfahren zur Diagnose einer Führungssonde
DE10130054B4 (de) * 2001-06-21 2014-05-28 Volkswagen Ag Abgasanlage einer mehrzylindrigen Verbrennungskraftmaschine und Verfahren zur Reinigung eines Abgases
DE10161901B4 (de) * 2001-12-17 2010-10-28 Volkswagen Ag Verfahren und Vorrichtung zur Kompensation des Offsets der linearen Sensorcharakteristik eines im Abgas einer Verbrennungskraftmaschine angeordneten Sensors
DE10206402C1 (de) * 2002-02-15 2003-04-24 Siemens Ag Verfahren zur zylinderselektiven Lambdaregelung
JP2005147140A (ja) * 2003-11-14 2005-06-09 Robert Bosch Gmbh 内燃機関のミスファイアの検知方法及び運転装置
DE102005054735B4 (de) * 2005-11-17 2019-07-04 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine

Also Published As

Publication number Publication date
JP4369872B2 (ja) 2009-11-25
EP1581734A1 (de) 2005-10-05
DE50309504D1 (de) 2008-05-08
JP2006511752A (ja) 2006-04-06
CN1692218A (zh) 2005-11-02
WO2004059152A1 (de) 2004-07-15
US7481104B2 (en) 2009-01-27
DE10260721A1 (de) 2004-07-29
US20060170538A1 (en) 2006-08-03
CN100449130C (zh) 2009-01-07

Similar Documents

Publication Publication Date Title
EP1581734B1 (de) Verfahren und vorrichtung zur diagnose der dynamischen eigenschaften einer zur zylinderindividuellen lambdaregelung verwendeten lambdasonde
DE102008001569B4 (de) Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde
DE19844994C2 (de) Verfahren zur Diagnose einer stetigen Lambdasonde
EP1228301B1 (de) Verfahren zum überprüfen eines abgaskatalysators einer brennkraftmaschine
DE102008042549B4 (de) Verfahren und Vorrichtung zur Diagnose einer Abgassonde
DE4233977C2 (de) Gerät zur Erfassung der Verschlechterung eines Katalysators für einen Verbrennungsmotor
DE69634580T2 (de) Feststellungsvorrichtung der Katalysatorverschlechterung einer Brennkraftmaschine
DE19636415B4 (de) Verfahren und Vorrichtung zur Überwachung der Funktionsweise eines Kohlenwasserstoffsensors für eine Brennkraftmaschine
DE102016211506A1 (de) Verfahren und Vorrichtung zur Überwachung der Funktionsfähigkeit einer Abgasreinigungsanlage
DE102004017274B4 (de) Verbesserte Diagnose eines mehrreihigen, katalytischen Abgassystems
DE102008001213A1 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE3634873A1 (de) Verfahren zum bestimmen der eignung eines abgaskonzentrationssensors
DE102009045376A1 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE19926139A1 (de) Kalibrierung eines NOx-Sensors
EP0530655B1 (de) Verfahren und Vorrichtung zur Regelung eines Otto-Motors und Prüfung eines ihm nachgeschalteten Katalysators
DE102009054935B4 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE10244125B4 (de) Verfahren zur Bewertung des Zeitverhaltens eines NOx-Sensors
DE102004029301A1 (de) Referenzspannungsdiagnose zur Verwendung in einer Steuereinheit für Kraftfahrzeuge
WO1994028292A1 (de) Verfahren zur überprüfung des katalysatorwirkungsgrades
DE102016210143A1 (de) Verfahren zur Ermittlung eines Alterungszustands eines NOx-Speicherkatalysators einer Abgasnachbehandlungsanlage eines für einen Magerbetrieb ausgelegten Verbrennungsmotors sowie Steuerungseinrichtung
DE102007035168B4 (de) Überwachen eines Nockenprofilumschaltsystems in Verbrennungsmotoren
DE102022129061A1 (de) Verfahren zur Diagnose eines Katalysators mit Sauerstoffspeicherfähigkeit
DE10257059B4 (de) Verfahren und Vorrichtung zur Diagnose von Katalysatoreinheiten
EP1143131A2 (de) Mehrflutige Abgasanlage und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses und Steuerung einer NOx-Regeneration eines NOx-Speicherkatalysators
DE102006043679B4 (de) Verfahren zur Einzelzylinderregelung bei einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50309504

Country of ref document: DE

Date of ref document: 20080508

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081230

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191216

Year of fee payment: 17

Ref country code: FR

Payment date: 20191218

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200221

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50309504

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201219

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701