EP1581734B1 - Method and device for diagnosing the dynamic characteristics of a lambda probe, used for the lambda regulation of individual cylinders - Google Patents

Method and device for diagnosing the dynamic characteristics of a lambda probe, used for the lambda regulation of individual cylinders Download PDF

Info

Publication number
EP1581734B1
EP1581734B1 EP03799439A EP03799439A EP1581734B1 EP 1581734 B1 EP1581734 B1 EP 1581734B1 EP 03799439 A EP03799439 A EP 03799439A EP 03799439 A EP03799439 A EP 03799439A EP 1581734 B1 EP1581734 B1 EP 1581734B1
Authority
EP
European Patent Office
Prior art keywords
lambda
cylinder
value
controllers
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03799439A
Other languages
German (de)
French (fr)
Other versions
EP1581734A1 (en
Inventor
Andreas Koring
Ruediger Deibert
Michael Daetz
Eberhard Schnaibel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Volkswagen AG
Original Assignee
Robert Bosch GmbH
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH, Volkswagen AG filed Critical Robert Bosch GmbH
Publication of EP1581734A1 publication Critical patent/EP1581734A1/en
Application granted granted Critical
Publication of EP1581734B1 publication Critical patent/EP1581734B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system

Definitions

  • the invention relates to a method and a device for diagnosing the dynamic properties of lambda probes with regard to a single-cylinder lambda control according to the preambles of the respective independent claims.
  • a lambda control in conjunction with a catalytic converter, is today the most effective emission control method for the gasoline engine. Only in combination with currently available ignition and injection systems can very low Exhaust gas values can be achieved. Legislators in most countries even impose limits on engine exhaust emissions.
  • the respective exhaust gas is basically measured and the supplied fuel quantity is corrected immediately, for example, by means of the injection system in accordance with the measurement result.
  • the dynamic properties of a lambda probe when new are usually sufficient in a selected operating range. If, however, the dynamic properties of the probe change in such a way that cylinder-specific lambda values can not be resolved, since the response times of the probe increase, the lambda control does not act in an intermeshing manner, although lambda fluctuations are actually present in the exhaust gas. Causes of reduced probe dynamics are, for example.
  • the present invention has for its object to provide a method and an apparatus of the type mentioned, which allows a reliable diagnosis of the dynamic properties of a lambda probe with respect to single cylinder lambda control.
  • the inventive method provides, in particular, to detect at least one manipulated variable of the lambda control and to compare it with a predefinable maximum threshold and in case of exceeding the maximum threshold, the dynamic behavior of the lambda probe in With regard to the suitability for the cylinder-specific lambda control as insufficient to assess.
  • the dynamic properties of the lambda probe are detected in a first variant according to the invention by means of the single cylinder control itself. It is based on the idea that the operation of individual cylinder-individual controller diverges with insufficient dynamic properties and the associated control variables, namely one or more manipulated variables, exceed a predetermined maximum threshold.
  • the dynamic behavior of the lambda probe is determined by means of a test function, i. by means of an introduced disturbance or detuning of the current lambda value.
  • the test function can be performed once, temporarily periodically or event-controlled.
  • the predefinable maximum threshold for a cylinder-specific controller can be exceeded, for example, when the controller is active and the value of the respective manipulated variable exceeds the predefinable amount or the manipulated variable can not be increased at all due to its structure.
  • the dynamic properties of the lambda probe in terms of usability for the Single cylinder lambda control considered insufficient.
  • the invention further relates to a diagnostic device which operates according to the inventive method.
  • the diagnostic routine described below with reference to the figure for detecting the usability or non-operational capability of a lambda probe of a spark-ignition engine is preferably carried out only during the time in which an individual regulator having individual cylinder control is active.
  • the test function described below is executed once or several times and the results of the tests are evaluated only as long as the test function is active.
  • step 30 it is determined in step 30 whether the engine is running is at all in a suitable for the single-cylinder control and thus for the detection of the dynamic properties of the lambda probe operating condition. If this is not the case, the program jumps back to the beginning of the routine in the form of a loop. Otherwise, the manipulated variables of the individual controllers are monitored 40 and after detecting the manipulated variables is further checked 50 whether at least one of the manipulated variables in amount exceeds a predetermined maximum threshold. If this is not the case, the system jumps back to step 40, possibly including a delay stage 60.
  • a next step 70 it is checked whether there is a suitable time for activating the test function. If this is to be answered in the negative, this test 70 is repeated in a loop, also possibly including a delay stage.
  • test routine begins with the fact that the currently present values of the manipulated variables of the individual controllers are temporarily stored 80. Thereafter, a disturbance is made to the currently determined lambda values switched on 90 and the manipulated variables of each controller observed or detected 100.
  • the dynamic properties of the lambda probe with respect to the individual cylinder control are therefore determined with the aid of the controller function itself and / or the described active test function.
  • the lambda of a cylinder is targeted by varying the cylinder-specific fuel measurement by a predefined amount x tune.
  • this cylinder trimming must be shown as an additional offset with about the same amount as the trim in the associated cylinder-specific control variable of the single cylinder control. If the resulting manipulated variable change is only a portion y of the stimulated cylinder trim, this means that the lambda probe can no longer fully follow the cylinder-specific fluctuations due to reduced dynamics. If the proportion y falls below a predefinable threshold z, ie an exhaust-relevant residual error x - z can no longer be corrected, an error signal must be output. The resulting exhaust disadvantage is not relevant in this case.
  • the invention can be implemented either as hardware or in the form of a control program as part of the engine control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Testing Of Engines (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Diagnose der dynamischen Eigenschaften von Lambdasonden im Hinblick auf eine Einzelzylinder-Lambdaregelung gemäß den Oberbegriffen der jeweiligen unabhängigen Ansprüche.The invention relates to a method and a device for diagnosing the dynamic properties of lambda probes with regard to a single-cylinder lambda control according to the preambles of the respective independent claims.

Eine Lambdaregelung, in Verbindung mit einem Katalysator, ist heute das wirksamste Abgasreinigungsverfahren für den Ottomotor. Erst im Zusammenspiel mit derzeit verfügbaren Zünd- und Einspritzsystemen können sehr niedrige Abgaswerte erreicht werden. In den meisten Ländern schreibt der Gesetzgeber sogar Grenzwerte für das Motorabgas vor.A lambda control, in conjunction with a catalytic converter, is today the most effective emission control method for the gasoline engine. Only in combination with currently available ignition and injection systems can very low Exhaust gas values can be achieved. Legislators in most countries even impose limits on engine exhaust emissions.

Besonders wirkungsvoll ist der Einsatz eines Dreiwege- oder Selektiv-Katalysators. Dieser Katalysatortyp hat die Eigenschaft, Kohlenwasserstoffe, Kohlenmonoxid und Stickoxide bis zu mehr als 98% abzubauen, falls der Motor in einem Bereich von etwa 1% um das stöchiometrische Luft-Kraftstoff-Verhältnis mit Lambda = 1 betrieben wird. Dabei gibt Lambda an, wieweit das tatsächliche vorhandene Luft-Kraftstoff-Gemisch von dem Wert Lambda = 1 abweicht, der einem zur vollständigen Verbrennung theoretisch notwendigen Massenverhältnis von 14,7 kg Luft zu 1 kg Benzin entspricht, d.h. Lambda ist der Quotient aus zugeführter Luftmasse und theoretischem Luftbedarf.Particularly effective is the use of a three-way or selective catalyst. This type of catalyst has the property of reducing hydrocarbons, carbon monoxide and nitrogen oxides by more than 98% if the engine is operated in a range of about 1% around the stoichiometric air-fuel ratio with lambda = 1. Lambda indicates the extent to which the actual air-fuel mixture present deviates from the value lambda = 1, which corresponds to a theoretically necessary mass ratio of 14.7 kg of air to 1 kg of gas for complete combustion, i. Lambda is the quotient of the supplied air mass and theoretical air requirement.

Bei der Lambdaregelung wird grundsätzlich das jeweilige Abgas gemessen und die zugeführte Kraftstoffmenge entsprechend dem Messergebnis bspw. mittels des Einspritzsystems sofort korrigiert. Als Messfühler wird dabei eine Lambdasonde verwendet, die ein stetiges Lambdasignal um Lambda = 1 messen kann und so ein Signal liefert, das anzeigt, ob das Gemisch fetter oder magerer als Lambda = 1 ist.In the lambda control, the respective exhaust gas is basically measured and the supplied fuel quantity is corrected immediately, for example, by means of the injection system in accordance with the measurement result. The sensor used here is a lambda probe which can measure a continuous lambda signal by lambda = 1 and thus supplies a signal which indicates whether the mixture is richer or leaner than lambda = 1.

Die Wirkung dieser Lambdasonden beruht in an sich bekannter Weise auf dem Prinzip einer galvanischen Sauerstoff Konzentrationszelle mit einem Festkörperelektrolyt.The effect of these lambda sensors is based in a conventional manner on the principle of a galvanic Oxygen concentration cell with a solid electrolyte.

Es ist weiterhin bekannt, eine Einzelzylinder-Lambdaregelung zur Abgasverbesserung einzusetzen, falls die Lambdasonde aufgrund ihrer dynamischen Eigenschaften in der Lage ist, Lambdaschwankungen im Abgasstrom am Sondeneinbauort, welche durch zylinderindividuelle Lambdaunterschiede hervorgerufen werden, zu folgen.It is also known to use a single-cylinder lambda control for improving the exhaust gas, if the lambda probe is able to follow lambda fluctuations in the exhaust gas flow at the probe installation site, which are caused by cylinder-individual lambda differences, because of its dynamic properties.

Durch zeitlich hochauflösende Auswertung des von der Lambdasonde stammenden Signals kann aus dem Summen-Lambdasignal auf das Lambda der einzelnen Motorzylinder, deren Abgas dem Einbauort der Sonde zugeführt wird, geschlossen werden. Damit können zylinderindividuelle Lambda-Unterschiede korrigiert und somit das Abgasergebnis, zumindest jedoch die Abgasstabilität, verbessert werden. Eine solche zylinderindividuelle Lambda-Regelung geht beispielsweise aus der DE 199 03 721 C1 hervor.By temporally high-resolution evaluation of the originating from the lambda probe signal can be closed from the sum lambda signal to the lambda of the individual engine cylinders whose exhaust gas is supplied to the installation of the probe. Thus, cylinder-individual lambda differences can be corrected and thus the exhaust gas result, or at least the exhaust gas stability, can be improved. Such a cylinder-individual lambda control is for example from the DE 199 03 721 C1 out.

Die dynamischen Eigenschaften einer Lambdasonde im Neuzustand sind in einem ausgewählten Betriebsbereich meist ausreichend. Verändern sich jedoch die dynamischen Eigenschaften der Sonde dahingehend, dass zylinderindividuelle Lambdawerte nicht aufgelöst werden können, da die Reaktionszeiten der Sonde sich erhöhen, wird die Lambdaregelung nicht eingreifend tätig, obwohl im Abgas tatsächlich Lambdaschwankungen vorliegen. Ursachen einer reduzierten Sondendynamik sind bspw.The dynamic properties of a lambda probe when new are usually sufficient in a selected operating range. If, however, the dynamic properties of the probe change in such a way that cylinder-specific lambda values can not be resolved, since the response times of the probe increase, the lambda control does not act in an intermeshing manner, although lambda fluctuations are actually present in the exhaust gas. Causes of reduced probe dynamics are, for example.

Verengungen von Schutzrohröffnungen der Sonde oder die Verschmutzung von funktionsbestimmenden Sensorkeramikteilen des Festkörperelektrolyten aufgrund von Ablagerungen. Bei Breitbandsonden kommt zusätzlich eine Verschmutzung der dort vorhandenen Diffusionsbarriere in Betracht. Im ungünstigsten Fall führt eine nicht funktionierende Einzelzylinder-Lambdaregelung zur Verletzung der genannten, durch den Gesetzgeber geforderten Abgasgrenzwerte. In diesem Fall müssen die veränderten dynamischen Eigenschaften der Lambdasonde bspw. mittels einer Kontrollleuchte angezeigt werden.Constrictions of protective tube openings of the probe or the contamination of function-determining sensor ceramic parts of the solid electrolyte due to deposits. In the case of broadband probes, contamination of the diffusion barrier present there additionally comes into consideration. In the worst case, a non-functioning single-cylinder lambda control leads to violation of the abovementioned exhaust gas limit values required by law. In this case, the changed dynamic properties of the lambda probe must be displayed, for example, by means of a warning light.

Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art anzugeben, welche eine zuverlässige Diagnose der dynamischen Eigenschaften einer Lambdasonde im Hinblick auf Einzelzylinder-Lambdaregelung gestattet.Therefore, the present invention has for its object to provide a method and an apparatus of the type mentioned, which allows a reliable diagnosis of the dynamic properties of a lambda probe with respect to single cylinder lambda control.

Diese Aufgabe wird bei einem Verfahren und einer Vorrichtung zur Diagnose der vorgenannten Art gelöst durch die Merkmale der jeweiligen unabhängigen Ansprüche.This object is achieved in a method and a device for diagnosis of the aforementioned type by the features of the respective independent claims.

Das erfindungsgemäße Verfahren sieht insbesondere vor, wenigstens eine Stellgröße der Lambdaregelung zu erfassen und mit einer vorgebbaren maximalen Schwelle zu vergleichen und im Falle des Überschreitens der maximalen Schwelle das dynamische Verhalten der Lambdasonde im Hinblick auf die Einsatzfähigkeit für die zylinderindividuelle Lambdaregelung als nicht ausreichend zu bewerten.The inventive method provides, in particular, to detect at least one manipulated variable of the lambda control and to compare it with a predefinable maximum threshold and in case of exceeding the maximum threshold, the dynamic behavior of the lambda probe in With regard to the suitability for the cylinder-specific lambda control as insufficient to assess.

Die dynamischen Eigenschaften der Lambdasonde werden in einer ersten erfindungsgemäßen Variante mittels der Einzelzylinderregelung selbst erfasst. Es liegt dabei der Gedanke zugrunde, dass die Arbeitsweise einzelner zylinderindividueller Regler bei nicht ausreichenden dynamischen Eigenschaften divergiert und die zugehörigen Stellgrößen, und zwar eine oder mehrere Stellgrößen, einen vorgebbaren maximalen Schwellwert überschreiten.The dynamic properties of the lambda probe are detected in a first variant according to the invention by means of the single cylinder control itself. It is based on the idea that the operation of individual cylinder-individual controller diverges with insufficient dynamic properties and the associated control variables, namely one or more manipulated variables, exceed a predetermined maximum threshold.

In einer zweiten erfindungsgemäßen Variante wird das dynamische Verhalten der Lambdasonde mittels einer Testfunktion, d.h. mittels einer eingeleiteten Störung oder Verstimmung des aktuellen Lambdawertes, erfasst. Die Testfunktion kann einmalig, zeitweilig periodisch oder ereignisgesteuert durchgeführt werden.In a second variant according to the invention, the dynamic behavior of the lambda probe is determined by means of a test function, i. by means of an introduced disturbance or detuning of the current lambda value. The test function can be performed once, temporarily periodically or event-controlled.

Die vorgebbare maximale Schwelle für einen zylinderindividuellen Regler kann bspw. dann überschritten sein, wenn der Regler aktiv ist und der Wert der jeweiligen Stellgröße den vorgebbaren Betrag übertrifft oder die Stellgröße aufgrund ihrer Struktur überhaupt nicht mehr vergrößert werden kann. In diesem Fall werden die dynamischen Eigenschaften der Lambdasonde im Hinblick auf die Einsatzfähigkeit für die Einzelzylinder-Lambdaregelung als nicht ausreichend erachtet.The predefinable maximum threshold for a cylinder-specific controller can be exceeded, for example, when the controller is active and the value of the respective manipulated variable exceeds the predefinable amount or the manipulated variable can not be increased at all due to its structure. In this case, the dynamic properties of the lambda probe in terms of usability for the Single cylinder lambda control considered insufficient.

Die Erfindung betrifft des Weiteren eine Diagnosevorrichtung, welche nach dem erfindungsgemäßen Verfahren arbeitet.The invention further relates to a diagnostic device which operates according to the inventive method.

Die Erfindung wird nachfolgend, unter Bezugnahme auf die beigefügte Zeichnung, anhand eines Ausführungsbeispiels noch eingehender erläutert, aus dem sich weitere Merkmale und Vorteile der Erfindung ergeben. Die einzige Figur zeigt eine bevorzugte Ausgestaltung des erfindungsgemäßen Diagnoseverfahrens anhand eines Flussdiagramms.The invention will be explained in more detail below, with reference to the accompanying drawings, with reference to an exemplary embodiment from which further features and advantages of the invention result. The single figure shows a preferred embodiment of the diagnostic method according to the invention with reference to a flow chart.

Die nachfolgend anhand der Figur beschriebene Diagnoseroutine zur Erkennung der Einsatzfähigkeit bzw. Nicht-Einsatzfähigkeit einer Lambdasonde eines Ottomotors wird bevorzugt nur während der Zeit, in welcher eine einzelne Regler aufweisende Einzelzylinderregelung aktiv ist, durchgeführt. Je nach Strategie wird dabei die nachfolgend beschriebene Testfunktion einmalig oder mehrmals ausgeführt und die Ergebnisse der Tests nur solange ausgewertet, wie die Testfunktion aktiv ist.The diagnostic routine described below with reference to the figure for detecting the usability or non-operational capability of a lambda probe of a spark-ignition engine is preferably carried out only during the time in which an individual regulator having individual cylinder control is active. Depending on the strategy, the test function described below is executed once or several times and the results of the tests are evaluated only as long as the test function is active.

Nach dem Start 10 der Routine wird zunächst die Motordrehzahl und/oder die Motorlast und/oder der Abgasmassenstrom erfasst 20. Basierend auf diesen Daten wird in Schritt 30 festgestellt, ob der Motor sich überhaupt in einem für die Einzelzylinderregelung und damit für die Erkennung der dynamischen Eigenschaften der Lambdasonde geeigneten Betriebszustand befindet. Ist dies nicht der Fall, wird in Form einer Schleife wieder an den Anfang der Routine zurückgesprungen. Andernfalls werden die Stellgrößen der einzelnen Regler überwacht 40 und nach Erfassen der Stellgrößen wird weiterhin geprüft 50, ob wenigstens eine der Stellgrößen im Betrag eine vorgebbare Maximalschwelle überschreitet. Ist dies nicht der Fall, wird wieder zu Schritt 40 zurückgesprungen, ggf. unter Einbeziehung einer Verzögerungsstufe 60.After the start 10 of the routine, first the engine speed and / or the engine load and / or the exhaust gas mass flow is detected. Based on these data, it is determined in step 30 whether the engine is running is at all in a suitable for the single-cylinder control and thus for the detection of the dynamic properties of the lambda probe operating condition. If this is not the case, the program jumps back to the beginning of the routine in the form of a loop. Otherwise, the manipulated variables of the individual controllers are monitored 40 and after detecting the manipulated variables is further checked 50 whether at least one of the manipulated variables in amount exceeds a predetermined maximum threshold. If this is not the case, the system jumps back to step 40, possibly including a delay stage 60.

Falls eine oder mehrere Stellgrößen der einzelnen Regler eine vorgebbare maximale Schwelle betragsmäßig überschreiten, wird angenommen, dass die dynamischen Eigenschaften der Lambdasonde nicht ausreichend sind.If one or more manipulated variables of the individual controllers exceed a predefinable maximum threshold amount, it is assumed that the dynamic properties of the lambda probe are not sufficient.

In einem nächsten Schritt 70 wird geprüft, ob ein geeigneter Zeitpunkt zur Aktivierung der Testfunktion vorliegt. Ist dies zu verneinen, wird diese Prüfung 70 in einer Schleife wiederholt, ebenfalls ggf. unter Einbeziehung einer Verzögerungsstufe.In a next step 70 it is checked whether there is a suitable time for activating the test function. If this is to be answered in the negative, this test 70 is repeated in a loop, also possibly including a delay stage.

Andernfalls beginnt die Testroutine damit, dass die aktuell vorliegenden Werte der Stellgrößen der einzelnen Regler zwischengespeichert 80 werden. Danach wird auf die aktuell ermittelten Lambdawerte eine Störung aufgeschaltet 90 und die Stellgrößen der einzelnen Regler beobachtet bzw. erfasst 100.Otherwise, the test routine begins with the fact that the currently present values of the manipulated variables of the individual controllers are temporarily stored 80. Thereafter, a disturbance is made to the currently determined lambda values switched on 90 and the manipulated variables of each controller observed or detected 100.

Im Anschluss daran wird geprüft 110, ob der Regler bzw. die Regler in der Lage ist/sind, die Störung auszuregeln. Ist dies der Fall, wird ggf. ein positives Signal ausgegeben 120, wonach die Dynamik der Sonde ausreichend ist. Andernfalls wird angenommen, dass die dynamischen Anforderungen nicht erfüllt sind und ein entsprechendes negatives Signal ausgegeben 130.Following this, it is checked 110 whether the controller or the controller is / are able to correct the disturbance. If this is the case, a positive signal is output 120 if necessary, after which the dynamics of the probe is sufficient. Otherwise, it is assumed that the dynamic requirements are not met and a corresponding negative signal is output 130.

Abschließend wird die Störung zurückgenommen 140 und es erfolgt eine Neuinitialisierung 150 der einzelnen Regler mit den zwischengespeicherten Werten. Daraufhin wird wiederum eine Störung aufgeschaltet, wie durch den Rücksprung 160 angedeutet ist.Finally, the fault is taken back 140 and there is a reinitialization 150 of each controller with the cached values. Then, in turn, a fault is applied, as indicated by the return 160.

Die vorbeschriebene Prozedur oder Routine wird ggf. mehrfach durchgeführt, um die Stellgrößen sozusagen 'iterativ' oder schrittweise optimieren zu können.If necessary, the above-described procedure or routine is performed several times in order to be able to optimize the manipulated variables so-to-say iteratively or stepwise.

Die dynamischen Eigenschaften der Lambdasonde in Bezug auf die Einzelzylinderregelung werden demnach mit Hilfe der Reglerfunktion selbst und/oder der beschriebenen aktiven Testfunktion ermittelt. In einer geeigneten Fahrsituation wird gezielt das Lambda eines Zylinders durch Variation der zylinderindividuellen Kraftstoffmessung um einen vorher definierten Betrag x verstimmt. Bei aktiver Einzelzylinder-Regelung muss sich diese Zylindervertrimmung als zusätzlicher Offset mit etwa dem gleichen Betrag wie die Vertrimmung in der dazugehörigen zylinderindividuellen Stellgröße der Einzelzylinderregelung abbilden. Beträgt die resultierende Stellgrößenänderung nur einen Anteil y der stimulierten Zylindervertrimmung, bedeutet dies, dass die Lambdasonde aufgrund einer reduzierten Dynamik den zylinderindividuellen Schwankungen nicht mehr in vollem Umfang folgen kann. Unterschreitet der Anteil y eine vorgebbare Schwelle z, d.h. ein abgasrelevanter Restfehler x - z kann nicht mehr ausgeregelt werden, muss ein Fehlersignal ausgegeben werden. Der entstehende Abgasnachteil ist in diesem Fall nicht von Belang.The dynamic properties of the lambda probe with respect to the individual cylinder control are therefore determined with the aid of the controller function itself and / or the described active test function. In a suitable driving situation, the lambda of a cylinder is targeted by varying the cylinder-specific fuel measurement by a predefined amount x tune. With active single-cylinder control, this cylinder trimming must be shown as an additional offset with about the same amount as the trim in the associated cylinder-specific control variable of the single cylinder control. If the resulting manipulated variable change is only a portion y of the stimulated cylinder trim, this means that the lambda probe can no longer fully follow the cylinder-specific fluctuations due to reduced dynamics. If the proportion y falls below a predefinable threshold z, ie an exhaust-relevant residual error x - z can no longer be corrected, an error signal must be output. The resulting exhaust disadvantage is not relevant in this case.

Im Falle einer Gutprüfung, d.h. die Sondendynamik für Einzelzylinder-Lambdaregelung wird als ausreichend erachtet, da die Vertrimmung wird vollständig oder nahezu vollständig ausgeregelt wird, entsteht durch die beschriebene Testfunktion kein Abgasnachteil. Zudem erfolgt nach Abschluss einer Prüfung, wie vorbeschrieben, eine Zurücksetzung der Zylindervertrimmung in den Ausgangszustand.In the case of a good check, i. the probe dynamics for single-cylinder lambda control is considered sufficient, since the trim is completely or almost completely compensated, created by the test function described no exhaust gas disadvantage. In addition, after completion of a test, as described above, a reset of the cylinder trimming in the initial state.

Es ist anzumerken, dass eine etwa erfasste Änderung der dynamischen Eigenschaften der Lambdasonde für die übrigen Funktionen der Motorsteuerung, die das Lambdasondensignal auswerten, nicht von Relevanz ist und diese daher getrennt zu überwachen sind.It should be noted that an approximately detected change in the dynamic characteristics of the lambda probe for the remaining functions of the engine control, the lambda probe signal evaluate, are not relevant and therefore have to be monitored separately.

Die Erfindung kann entweder als Hardware oder in Form eines Steuerprogramms als Teil der Motorsteuerung implementiert werden.The invention can be implemented either as hardware or in the form of a control program as part of the engine control.

Claims (6)

  1. Method for diagnosing the dynamic properties of a lambda probe which is used at least intermittently for cylinder-specific lambda control,
    characterized in that at least one actuating variable of the lambda control is measured and compared with a predefinable maximum threshold and, in the event of an exceedance of the maximum threshold, the dynamic behaviour of the lambda probe is evaluated as being insufficient with regard to usability for the cylinder-specific lambda control.
  2. Method according to Claim 1, characterized in that the value of lambda at least of one cylinder is detuned by a predefinable value and it is checked as to whether the detuning by the predefinable value is depicted as an offset or factor in the actuating variable of the respective controller of the lambda control.
  3. Method according to Claim 2, characterized in that it is checked as to whether the difference or the absolute value of the difference between the detuning and the offset is smaller than the predefinable maximum threshold.
  4. Method according to Claim 2 or 3, characterized in that the value of lambda is detuned by varying the cylinder-specific fuel metering.
  5. Method according to one of Claims 2 to 4,
    characterized by the steps:
    detecting a suitable operating range for the cylinder-specific lambda control;
    monitoring the actuating variables of the individual lambda controllers and, if one or more actuating variables exceed their maximum size in terms of magnitude, carrying out the following steps;
    detecting a suitable time for carrying out the following steps;
    buffering the actuating variables of the individual lambda controllers;
    detuning the value of lambda at least of one cylinder by the predefinable value;
    observing the actuating variables of the individual lambda controllers;
    determining whether or not the lambda controllers are capable of compensating the detuning of the value of lambda and, in the event that the lambda controllers are capable of this, withdrawing the detuning and re-initializing the individual lambda controllers with the buffered actuating variables, and otherwise outputting a fault signal.
  6. Diagnostic device for carrying out the method according to one of the preceding claims.
EP03799439A 2002-12-23 2003-12-19 Method and device for diagnosing the dynamic characteristics of a lambda probe, used for the lambda regulation of individual cylinders Expired - Lifetime EP1581734B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10260721A DE10260721A1 (en) 2002-12-23 2002-12-23 Method and device for diagnosing the dynamic properties of a lambda probe used for cylinder-specific lambda control
DE10260721 2002-12-23
PCT/DE2003/004250 WO2004059152A1 (en) 2002-12-23 2003-12-19 Method and device for diagnosing the dynamic characteristics of a lambda probe, used for the lambda regulation of individual cylinders

Publications (2)

Publication Number Publication Date
EP1581734A1 EP1581734A1 (en) 2005-10-05
EP1581734B1 true EP1581734B1 (en) 2008-03-26

Family

ID=32602436

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03799439A Expired - Lifetime EP1581734B1 (en) 2002-12-23 2003-12-19 Method and device for diagnosing the dynamic characteristics of a lambda probe, used for the lambda regulation of individual cylinders

Country Status (6)

Country Link
US (1) US7481104B2 (en)
EP (1) EP1581734B1 (en)
JP (1) JP4369872B2 (en)
CN (1) CN100449130C (en)
DE (2) DE10260721A1 (en)
WO (1) WO2004059152A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005027990B4 (en) * 2005-06-17 2007-05-10 Audi Ag Device for dynamically checking an exhaust gas probe
DE102005045932A1 (en) 2005-09-26 2007-03-29 Robert Bosch Gmbh Technical device e.g. lambda-sensor, diagnosing device for motor vehicle, has diagnostic unit deactivated when specified conditions are not present, where information indicating condition, which is not present, is stored in storage spaces
DE102006061117B3 (en) * 2006-12-22 2007-08-02 Audi Ag Phase adaptation in cylinder-selective lambda control of multi-cylinder internal combustion engine, perturbs mixture, establishes phase shifts and forms correction value
DE102007042086B4 (en) * 2007-09-05 2014-12-24 Continental Automotive Gmbh Test method for an exhaust gas probe of an internal combustion engine, in particular for a lambda probe
DE102007045984A1 (en) 2007-09-26 2009-04-02 Continental Automotive Gmbh Method for determining the dynamic properties of an exhaust gas sensor of an internal combustion engine
DE102008001569B4 (en) 2008-04-04 2021-03-18 Robert Bosch Gmbh Method and device for adapting a dynamic model of an exhaust gas probe
DE102008001213A1 (en) 2008-04-16 2009-10-22 Robert Bosch Gmbh Method and device for diagnosing the dynamics of an exhaust gas sensor
DE102008001579A1 (en) 2008-05-06 2009-11-12 Robert Bosch Gmbh Method and device for diagnosing the dynamics of a broadband lambda probe
DE102008042549B4 (en) 2008-10-01 2018-03-22 Robert Bosch Gmbh Method and device for diagnosing an exhaust gas probe
DE102008058008B3 (en) 2008-11-19 2010-02-18 Continental Automotive Gmbh Device for operating an internal combustion engine
DE102009045376A1 (en) 2009-10-06 2011-04-07 Robert Bosch Gmbh Method and device for diagnosing the dynamics of an exhaust gas sensor
DE102009047648B4 (en) 2009-12-08 2022-03-03 Robert Bosch Gmbh Method and device for diagnosing deviations in an individual cylinder lambda control
DE102009054935B4 (en) 2009-12-18 2022-03-10 Robert Bosch Gmbh Method and device for diagnosing the dynamics of an exhaust gas sensor
DE102011002782B3 (en) * 2011-01-17 2012-06-21 Continental Automotive Gmbh Internal combustion engine operating method for motor car, involves determining characteristic value of gradient of measurement signal, and determining dynamics characteristic value dependent on characteristic value of gradient
US8499624B1 (en) * 2012-02-16 2013-08-06 Delphi Technologies, Inc. Method to determine performance characteristic of an engine exhaust system
DE102013216223A1 (en) * 2013-08-15 2015-02-19 Robert Bosch Gmbh Universally applicable control and evaluation unit, in particular for operating a lambda probe
DE102014208585A1 (en) 2014-05-07 2015-11-12 Continental Automotive Gmbh Device for operating an internal combustion engine
DE102014216844B3 (en) * 2014-08-25 2015-10-22 Continental Automotive Gmbh Device for operating an internal combustion engine
DE102019100577B3 (en) 2019-01-11 2019-12-19 Bayerische Motoren Werke Aktiengesellschaft Process for monitoring sensor signals and quantitative determination of the stoichiometric air-fuel ratio of the fuel used by means of an injector test and catalyst diagnosis in a vehicle

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3816520A1 (en) 1988-05-14 1989-11-23 Bosch Gmbh Robert CONTROL PROCESS AND DEVICE, IN PARTICULAR LAMBAR CONTROL
DE4140618A1 (en) * 1991-12-10 1993-06-17 Bosch Gmbh Robert METHOD AND DEVICE FOR DETERMINING THE CONVERSIBILITY OF A CATALYST
DE4236008C2 (en) 1992-10-24 2002-03-28 Bosch Gmbh Robert Method and device for adaptive single-cylinder lambda control in an engine with variable valve control
JP3729295B2 (en) * 1996-08-29 2005-12-21 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
DE19733107C2 (en) * 1997-07-31 2003-02-13 Siemens Ag Procedure for checking the functionality of a lambda sensor
DE19734073C1 (en) 1997-08-06 1998-11-12 Fraunhofer Ges Forschung Method of cleaning watercraft hull exterior esp for sports boat
DE19734072C2 (en) * 1997-08-06 2001-12-13 Iq Mobil Electronics Gmbh Lambda control for injection systems with adaptive filter
DE19734670C1 (en) * 1997-08-11 1999-05-27 Daimler Chrysler Ag Exchanging test for lambda sensors
DE19856367C1 (en) * 1998-12-07 2000-06-21 Siemens Ag Process for cleaning the exhaust gas with lambda control
DE19903721C1 (en) * 1999-01-30 2000-07-13 Daimler Chrysler Ag Internal combustion engine operating method involves regulating lambda values of individual cylinders/groups to different demand values using I- and/or D-regulating components
DE10038338A1 (en) * 2000-08-05 2002-02-14 Bosch Gmbh Robert Method and device for monitoring a sensor
DE10128969C1 (en) * 2001-06-15 2002-12-12 Audi Ag Method for diagnosing guide probe fitted downstream from catalytic converter in system for controlling engine, involves detecting oxygen content in exhaust system for an internal combustion engine.
DE10130054B4 (en) * 2001-06-21 2014-05-28 Volkswagen Ag Exhaust system of a multi-cylinder internal combustion engine and method for purifying an exhaust gas
DE10161901B4 (en) * 2001-12-17 2010-10-28 Volkswagen Ag Method and device for compensating the offset of the linear sensor characteristic of a sensor arranged in the exhaust gas of an internal combustion engine
DE10206402C1 (en) * 2002-02-15 2003-04-24 Siemens Ag Cylinder-selective lambda regulation method for multi-cylinder IC engine using comparison of actual and required lambda values for adjusting fuel injection timing
JP2005147140A (en) * 2003-11-14 2005-06-09 Robert Bosch Gmbh Detection method for misfire of internal combustion engine and operation device
DE102005054735B4 (en) * 2005-11-17 2019-07-04 Robert Bosch Gmbh Method and device for operating an internal combustion engine

Also Published As

Publication number Publication date
JP4369872B2 (en) 2009-11-25
EP1581734A1 (en) 2005-10-05
DE50309504D1 (en) 2008-05-08
JP2006511752A (en) 2006-04-06
CN1692218A (en) 2005-11-02
WO2004059152A1 (en) 2004-07-15
US7481104B2 (en) 2009-01-27
DE10260721A1 (en) 2004-07-29
US20060170538A1 (en) 2006-08-03
CN100449130C (en) 2009-01-07

Similar Documents

Publication Publication Date Title
EP1581734B1 (en) Method and device for diagnosing the dynamic characteristics of a lambda probe, used for the lambda regulation of individual cylinders
DE102008001569B4 (en) Method and device for adapting a dynamic model of an exhaust gas probe
DE19844994C2 (en) Method for diagnosing a continuous lambda probe
EP1228301B1 (en) Method of monitoring the exhaust catalyst of an internal combustion engine
DE102008042549B4 (en) Method and device for diagnosing an exhaust gas probe
DE4233977C2 (en) Device for detecting deterioration of a catalyst for an internal combustion engine
DE69634580T2 (en) Detection device of catalyst deterioration of an internal combustion engine
DE19636415B4 (en) Method and device for monitoring the operation of a hydrocarbon sensor for an internal combustion engine
DE102016211506A1 (en) Method and device for monitoring the functionality of an emission control system
DE102004017274B4 (en) Improved diagnosis of a multi-row, catalytic exhaust system
DE102008001213A1 (en) Method and device for diagnosing the dynamics of an exhaust gas sensor
DE3634873A1 (en) METHOD FOR DETERMINING THE SUITABILITY OF AN EXHAUST GAS CONCENTRATION SENSOR
DE102009045376A1 (en) Method and device for diagnosing the dynamics of an exhaust gas sensor
DE19926139A1 (en) Calibration of a NOx sensor
EP0530655B1 (en) Method and apparatus for controlling an internal combustion engine and testing its catalytic converter
DE102009054935B4 (en) Method and device for diagnosing the dynamics of an exhaust gas sensor
DE10244125B4 (en) Method for evaluating the time behavior of a NOx sensor
DE102004029301A1 (en) Reference voltage diagnosis for use in a control unit for motor vehicles
WO1994028292A1 (en) Catalyst effectiveness checking process
DE102016210143A1 (en) A method for determining an aging state of a NOx storage catalyst of an exhaust aftertreatment system of a designed for lean operation internal combustion engine and control device
DE102007035168B4 (en) Monitoring a cam profile switching system in internal combustion engines
DE102022129061A1 (en) Method for diagnosing a catalytic converter with oxygen storage capability
DE10257059B4 (en) Method and device for diagnosing catalyst units
EP1143131A2 (en) Multiple exhaust gas system and method to regulate an air/fuel ratio and to control the regeneration of an NOx storage catalyst
DE102006043679B4 (en) Method for single-cylinder control in an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50309504

Country of ref document: DE

Date of ref document: 20080508

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081230

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191216

Year of fee payment: 17

Ref country code: FR

Payment date: 20191218

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200221

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50309504

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201219

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701