EP1577679B1 - Appareil de recherche pour la localisation d'un transmetteur, en particulier appareil de recherche pour la détection des personnes accidentées par des avalanches - Google Patents

Appareil de recherche pour la localisation d'un transmetteur, en particulier appareil de recherche pour la détection des personnes accidentées par des avalanches Download PDF

Info

Publication number
EP1577679B1
EP1577679B1 EP05005289A EP05005289A EP1577679B1 EP 1577679 B1 EP1577679 B1 EP 1577679B1 EP 05005289 A EP05005289 A EP 05005289A EP 05005289 A EP05005289 A EP 05005289A EP 1577679 B1 EP1577679 B1 EP 1577679B1
Authority
EP
European Patent Office
Prior art keywords
transmitter
signals
search
angle
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05005289A
Other languages
German (de)
English (en)
Other versions
EP1577679A1 (fr
Inventor
Gerald Kampel
Ingo Zawallich
Rolf Matzner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34839608&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1577679(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of EP1577679A1 publication Critical patent/EP1577679A1/fr
Application granted granted Critical
Publication of EP1577679B1 publication Critical patent/EP1577679B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B29/00Apparatus for mountaineering
    • A63B29/02Mountain guy-ropes or accessories, e.g. avalanche ropes; Means for indicating the location of accidentally buried, e.g. snow-buried, persons
    • A63B29/021Means for indicating the location of accidentally buried, e.g. snow-buried, persons

Definitions

  • the invention relates to a search device for locating a transmitter, in particular an avalanche victim search device, wherein for searching a search area, the search device is pivoted by a user in an angular range, which covers the search area.
  • Avalanche searchers work with an unmodulated transmit signal at 457 kHz. All skiers in a group switch their equipment to normal operation. If a part of the group is buried in an avalanche, the other people switch their equipment to receive and try to locate the victims on the basis of the emitted signal.
  • the transmission signal is clocked at a frequency of about one hertz.
  • the transmission time at the frequency of 457 kHz, the so-called duty cycle, is ten to 30 percent.
  • This method has a number of disadvantages in practice.
  • the antennas influence each other even if they are switched off, so that the receiver sensitivity of the device as a whole suffers.
  • a determination of the direction at long distances over 50 meters is almost impossible, so the direction indicator thus obtained not useful.
  • this technique is very sensitive to disturbances, so that the direction indicator scatters greatly under non-optimal conditions.
  • the DE 299 22 217 U1 are busy with the search of buried. GPS coordinates are compared here. To search for avalanche victims GPS receivers are too inaccurate and prone to failure.
  • An essential idea of the invention is that a search device which achieves the above-mentioned object would ideally work like a radar and would constantly rotate the antenna by an angular range, for example 180 degrees. Because it is known at which angle the antenna is currently standing, a received signal with the respective field strength can be assigned to the instantaneous angle of the antenna at any time. This is of course not feasible in practice. After all, but the rotation is achieved by 180 degrees in that the searching person holds the device while walking in the hand and swings to the left and right, a procedure as it is known in the application of search devices according to the prior art. The problem then is to determine what angle to an external reference coordinate system the device is at a given time.
  • angle signals from the transmitter signals and the sensor signals, which represent a reception field strength as a function of a search angle, solves this problem.
  • the application of signal processing mechanisms to the angle signals according to the invention allows the determination of the transmitter location in a particularly simple and reliable manner.
  • information about the search angle could possibly be obtained from the evaluation of the GPS signal. This is offset by the relatively high cost of a GPS receiver and - for rescue applications - generally insufficient availability of sufficient GPS signals.
  • the magnetic field sensor outputs three sensor signals relating to the earth's magnetic field to the signal processing device.
  • the solid angle of the device can be determined relative to the field lines, in which the field strength components of the geomagnetic field are measured in three mutually perpendicular axes.
  • magnetic field sensors with a precision of 1 degree are cheaper than a GPS receiver, so that the search device according to the invention can be manufactured more cheaply.
  • inclination sensors are provided which output sensor signals to the signal processing device, which represent the position of the search device relative to a horizontal plane. From the sensor signals of the tilt sensors, the sensor signals of the magnetic field sensor can advantageously be corrected so that the relative position of the search device to the earth's magnetic field can be determined very accurately and independently of the horizontal position of the search device.
  • the signal processing device is designed for calculating a transmitter search angle, in which the transmitter is located, on the basis of the angle signals.
  • the locator of the transmitter can be determined by the search device, since the determination of the distance between the transmitter and the search device by conventional methods is easily possible. A provision the station by ear is therefore not required.
  • the station search angle can be determined after one or more panning of the search device according to the invention, even if the device already shows again in a completely different direction.
  • the signal processing device is designed to determine the transmitter search angle from at least two angle signals.
  • a problem with transmitters to find victims is that the transmitter signal of the transmitter is clocked.
  • the sequence of angle signals, d. H. the function of the reception field strength above the search angle therefore, will generally be present only in sections.
  • an algorithm is implemented in the search device to extrapolate from the intermediate values maximum and minimum. In principle, only two arbitrary points of the field strength curve (i.e., two angle signals) are required for this, if the directional characteristic of the search antenna is known.
  • the images obtained (as described above for the search angle and subsequently for the field strength) (time -> search angle) and (time -> field strength) are transformed into an image (search angle -> field strength).
  • the extrapolation or interpolation of the complete course of the image (search angle -> field strength) is carried out by applying the method of least squares. This allows a continuous improvement of the estimated field strength profile over the search angle with further measured values.
  • the output unit is designed for graphic output of result signals which represent the transmitter search angle, and in particular a display field for graphic display of the Sender location in the search area includes.
  • the signal processing device comprises a filter correlation unit which is designed to detect angle signals by correlation of the transmitter signals (received signal or reduced received signal) with predetermined pattern or filter signals.
  • a filter correlation unit which is designed to detect angle signals by correlation of the transmitter signals (received signal or reduced received signal) with predetermined pattern or filter signals. This allows the detection of weak transmitter signals of a transmitter, which is, for example, located at a great distance from the search device. This corresponds to finding a signal of known form in noise.
  • a so-called matched-filter mechanism can be implemented on the filter correlation unit, whereby a cross-correlation is carried out between the searched and the received signal.
  • the filter correlation unit is designed to correlate the angle signals with a sinusoidal and with a cosinusoidal filter signal sequence.
  • a cosinusoidal filter signal i. E. if a cosinusoidal transmitter signal is expected, the computational overhead of a matched-filter method can be significantly reduced if the transmitter signal is decomposed into a sine and a cosine component. In this case, a simple multiplication with the sine and cosine components of the pattern or filter signal with subsequent magnitude formation and moving average filtering is sufficient instead of the cross-correlation.
  • the signal processing device of a search device comprises an autocorrelation unit, which is designed to detect periodic signal components in stored signals by autocorrelation. If the signals of several transmitters are received, the transmitter signals of the transmitters can overlap each other and also cancel each other out. Since two devices always have slightly different repetition rates and / or duty cycles, however, an assignment of the respectively received signal to the one or the other transmitter is possible in principle.
  • the superimposition of signals from several transmitters is the sum of several signals that are periodically switched on and off. Therefore, the autocorrelation function is suitable for the periodic contributions of this sum signal detect. For example, an on / off function can be formed from the measured reception field strengths by thresholding whose autocorrelation function contains spectral lines at the frequencies occurring. Thus, a separation of the signals of multiple transmitters by providing an autocorrelation unit in the search device is possible.
  • the autocorrelation unit is connected downstream of a filter correlation unit.
  • the search antenna of the search device according to the invention comprises a ferrite antenna, preferably with a cosinusoidal directional characteristic.
  • Ferrite antennas are particularly suitable for transmitter location because of their pronounced directional characteristic.
  • a cosinusoidal directional characteristic makes it possible, for example, to form the filter correlation unit as stated above, wherein the angle signals are correlated with a sinusoidal and with a cosinusoidal filter signal sequence.
  • the search device comprises a transmitter for transmitting transmitter signals, wherein the transmitter signals are preferably individualized by a transmitter identifier.
  • the transmitter signals are preferably individualized by a transmitter identifier.
  • the signal processing device is designed to generate processing signals which associate a transmitter identifier with a transmitter identifier, a transmitter being designed such that transmitter signals of this transmitter can be individualized with respect to transmitter signals of further transmitters.
  • such a method is developed further in such a way that sensor signals which relate to the earth's magnetic field are displayed to the users as a processing signal by result signals, and a fixed search angle relative to the earth's magnetic field is assigned to each search direction.
  • the geomagnetic field is used as a fixed reference coordinate system, and it is possible at any time the assignment of the measured transmitter signal of a transmitter to a fixed search angle.
  • field strength components of the geomagnetic field are measured in three mutually perpendicular directions for the assignment of search direction and angle.
  • the solid angle of the device can be determined relative to the field lines.
  • the inclinations of the search device are measured against the horizontal plane and the sensor signals are corrected accordingly.
  • the direction can be determined exactly.
  • angle signals which in each case indicate a reception field strength at a search angle are generated from the transmitter signals and the assignments of search direction and search angle.
  • To Generation of the angle signals is advantageous the application of signal processing mechanisms to these signals possible, which allows the determination of the transmitter location in a particularly simple and reliable manner.
  • a transmitter search angle in which the transmitter is located is calculated on the basis of the angle signals and a result signal is output which represents the transmitter search angle.
  • the location of the transmitter can be determined, since the determination of the distance between the transmitter and the search device by conventional methods is easily possible. A determination of the transmitter location by ear is therefore not required.
  • the station search angle can be determined after one or more panning of the search device according to the invention, even if the device already shows again in a completely different direction.
  • the transmitter search angle is determined from at least two, in particular at least three, angle signals.
  • the sequence of angle signals, d. H. the function of the reception field strength above the search angle therefore, will generally be present only in sections.
  • the inventive method is designed to extrapolate from the intermediate values maximum and minimum. For this purpose, in principle any two points of the field strength profile (i.e., two angle signals) are sufficient if the directional characteristic of the search antenna is known. For a robust approximation, the use of at least three angle signals is advantageous.
  • an estimated angle signal sequence is calculated from the angle signals according to the method of least squares and the transmitter search angle is determined from the maximum of the estimated angle signal sequence. From the present sections of the angle signals, the least squares method can be used to estimate the determining parameters of the entire curve. From this, the estimation angle signal sequence can be calculated in a simple manner, as has already been explained above.
  • angle signals are weighted differently in the calculation of the estimated angle signal sequence, in particular in accordance with the time that has elapsed since receipt of the transmitter signals underlying the angle signals.
  • the estimate can be continuously improved by using new measurements. This results in a relatively accurate location estimate even at a great distance from the buried and correspondingly weak transmitter signal.
  • jumping or excessive instability of the calculated transmitter search angle can be reliably suppressed by a corresponding weighting of older persons in relation to the current measured values or the angle signals determined therefrom.
  • estimated transmitter signals are determined by correlation of transmitter signals with predetermined filter signals and angle signals are determined from the estimated transmitter signals. If a cross-correlation between the filter signals and the transmitter signals is performed, the detection of weak transmitter signals of a transmitter is, for example, located at a great distance from the searcher, which corresponds to finding a signal of known form in the noise.
  • a sine and a cosine signal sequence is determined for determining the transmitter signal from noise interference by correlation of received transmitter signals with a sinusoidal and with a cosinusoidal filter signal sequence.
  • the above-mentioned cross-correlation can be performed by means of a matched-filter mechanism.
  • the disadvantage of the matched filter is a high computational effort. This is due to the fact that the pattern function represented by the filter signals must be compared in all possible phase positions with the sequence of received transmitter signals. This computational effort can be significantly reduced if the sequence of transmitter signals is decomposed into a sine and a cosine component.
  • reception field strengths of the signals of the estimated transmitter signal sequence are calculated from the summation of the products of the received signal sequence (possibly previously mixed down) with a sine and a cosine signal sequence determined.
  • the argument (angle) of the complex number formed by the above-mentioned sine and cosine component describes the phase position of the received signal in relation to the cosine pattern function, while the amount of the complex number is a measure of the reception field strength.
  • a periodic signal component of stored transmitter signals or processing signals, in particular estimated transmitter signals is determined by autocorrelation for the detection of a plurality of transmitters. If the signals of several buried victims received, the transmitter signals of the transmitter can overlap each other and also mutually cancel. However, since two transmitters always have slightly different repetition rates and / or duty cycles from each other, it is possible in principle to assign the respectively received signal to the one or the other transmitter. The superimposition of signals from several transmitters is the sum of several signals that are periodically switched on and off. Therefore, the autocorrelation function is useful to detect the periodic components of this sum signal.
  • an on / off function can be formed from the measured reception field strengths by thresholding whose autocorrelation function contains spectral lines at the frequencies occurring.
  • thresholding whose autocorrelation function contains spectral lines at the frequencies occurring.
  • a determined periodic signal component which can be assigned to a transmitter, is masked out of transmitter signals or processing signals in order to determine further periodic signal components. Due to noise and inaccuracies, the periodic components of weaker received signals are often obscured. In order to be able to detect these components, it is advantageous if signal components which can be assigned to a dominant received signal are masked out (set to zero).
  • the transmitter signals of a transmitter are compared with transmitter signals of further transmitters by a transmitter identifier individualized and processing signals are generated, which assign a sender search angle this sender identification.
  • group functions can be realized in which at least one of a plurality of transmitters is optionally identifiable by its individualized identifier, for example the group leader of a group of skiers.
  • a search device 1 designed according to the invention for use as an avalanche victim search device (avalanche transceiver). Communication with the user is via an illuminated display 10 and two control buttons 12, 13.
  • the display 10 allows the graphic display of the position of one or more spillers relative to their own location.
  • the device 1 additionally has a loudspeaker 14 for outputting a synthetically generated sound to the user as acoustic feedback and an LED 15, as is known for conventional devices.
  • the loudspeaker 14 and the red LED 15 enable a conventional search even without using the graphic display via the display 10.
  • the display of the display 10 is divided into a coordinate field 16 for true to scale representation of the location of the geordeten transmitter Spilled, a status line 18 with the respective most important information and labeling fields 20 for the two control buttons 12th
  • the device 1 is designed as a combined search and transmit device.
  • the housing has the form of a folding mobile phone.
  • the hinge is indicated in Fig. 1 by a dashed line 21. If the device 1 is in search mode, closing the device automatically switches back to the transmission mode. As a result, an emergency downshift is realized in an advantageous manner, as it is, for example, in the case of a later avalanche, required in the standards.
  • the device 1 is equipped with an outwardly invisible antenna for transmitting and searching at a search frequency of 457 kHz.
  • the specified frequency is standardized for avalanche transceivers (EN 282).
  • EN 282 avalanche transceivers
  • An automatic location of the buried is done from the natural pivoting movement of the seeker or user. According to the invention, however, no manual bearing is required as in conventional devices.
  • the illustrated device 1 has a bearing mode for concentrating on a selected victim.
  • a search process is carried out in such a way that the searcher turns the device 1 back and forth several times after switching from transmit to search mode by about 180 degrees.
  • the achievable DF or search accuracy is initially ⁇ 10 degrees.
  • all transmitter or transmitter signals of transmitters are detected by those who are in range.
  • the range of the device is about 80 m.
  • the transmitters may be conventional avalanche transceivers, or devices identical to the device 1.
  • a manual bearing, i. holding the device 1 in the direction of the strongest signal is not required.
  • the detected transmitters 22 are displayed in direction and distance on the display 10, with the scale representation of the distance of the transmitter 22 from the searcher (in the center of the coordinate field 16, i.e. the crosshair 23) being specified by distance indications 24 in meters.
  • the seeker can now find himself by requesting the victim, the first and press the button 12 "PEILEN" focus on this and hide the other transmitter 22.
  • distance information 24 and position information 22 are constantly adapted to the current position of the searcher.
  • Target search in the near range can be supported by the red LED 15.
  • a zoom function may be activated in the display 10 (not shown).
  • a circle is displayed on the display 10, which is concentric with the resting point 22 and concentrically shrinks on further approach.
  • the circle is fade in from a distance of three meters, but the fade-in can also take place at greater or smaller distances.
  • a square or similar symbol could also be used.
  • the exact burial depth can be determined in a simple manner.
  • the seeker brings the detected transmitter 22 (the suspected resting point of the victim) with the center of the crosshairs 23 (the position of the seeker) in cover, so that the seeker is vertically above the victim.
  • the distance indication 24 indicates the burial depth.
  • the determination of the burial depth is only indirect and results in greater burial depth unreliable values, since the display at greater depth often remains the same over a diameter of up to several meters and over the depth no more accurate information is possible.
  • the seeker picks up the bearing and devotes himself to the next victim.
  • the search device 1 is equipped with a motion sensor (not shown). This detects whether the device 1 is moved. If the device is in any mode that is not the send mode and the device is not moved for 90 seconds, it automatically switches to the send mode. As a result, the above-mentioned emergency downshift is triggered safely even if the seeker due to a post avalanche or the like surprising event has no opportunity to close the search device.
  • the search device 1 has in the embodiment described here in addition to the search function on other functions that can be selected via the main menu to be reached with the key 13.
  • a warning is issued regardless of the operating mode.
  • the standard does not allow any additional functions (compass, temperature display, inclination measurement).
  • the search device according to the invention requires the inclination sensors for its functionality. Then only care must be taken that the display of the additional data obtained does not increase the power consumption in such a way that the safety of the mission is no longer guaranteed. Therefore, a safety circuit is provided in the search device 1 (not shown) which turns off the display of the additional functions when the battery capacity falls below 50% of the maximum value.
  • the device 1 can determine at any time, in which direction the seeker keeps it straight.
  • the location of the located transmitters of the victims can be displayed correctly at any time relative to their own point of view.
  • the technical realization in the search device 1 takes place in principle such that the received 457 kHz signals are digitized and processed with a powerful microprocessor. Digital signal processing algorithms enable search sounds, i. Filter signals even out of the noise even if they are already below the perceptibility of human hearing. This allows a range comparable to conventional, analogue devices.
  • the positions of the victims are calculated.
  • the algorithms used are robust against individual faults or measurement errors. As the positions are constantly being recalculated throughout the search phase, the accuracy of the estimated positions for the victims will improve rapidly over time.
  • Fig. 3 the functional structure of the device 1 of Fig. 1 is shown schematically.
  • a geomagnetic field sensor 30 which outputs a sensor signal for each rotational degree of freedom (X, Y, vertical) and tilt sensors 32 for the two tilt axes.
  • a further sensor 34 for one of the above-mentioned additional functions of the device, the temperature measurement, located.
  • the microprocessor-controlled sample manager 36 supplies the current sample to the correct destination and selects the channel for the next sample.
  • the timing is designed so that the maximum possible sample clock essentially for the Sampling of the reception or transmitter signals is available.
  • the received signal is faded out approximately every 32nd time slot and instead one of the sensor channels for temperature, magnetic field and inclination is read.
  • the spatial position relative to the earth's magnetic field is determined exactly from the sampled values of the magnetic sensor 30 and the inclination sensors 32. Such methods are known per se to those skilled in the art and are therefore not described further.
  • each direction in which the search device 1 is held is assigned a fixed search angle ⁇ with respect to the measured magnetic field vector ⁇ .
  • the sin / cos correlator 40 is provided for the detection of transmitter signals at the sensitivity limit. Basically, the task consists in one
  • the matched filter has as impulse response exactly the function mirrored along the time axis.
  • the gain of the matched filter is due to the fact that useful signal components are added constructively by the impulse response, while noise components add up in terms of performance.
  • the disadvantage of the matched filter is the very high computational effort. This is due to the fact that the pattern function must be compared in all possible phase positions with the sequence of the reception or transmitter signals.
  • the transmitter signal sequence is known that it is a cosinusoidal signal sequence with a constant frequency. Any scaled and phase-shifted sine wave can be divided into a cosine and a sine wave.
  • the performance of searched signal is the sum of the power of sine and cosine. Therefore, it is sufficient to multiply the transmitter signal sequence with a cosine and a sinusoidal filter signal sequence, ie to break the sequence of transmitter signals into a sine and a cosine component.
  • the argument (angle) of the complex number formed by sine and cosine components describes the phase position of the receiver or transmitter signal sequence in relation to the cosine pattern function, while the amount of the complex number is a measure of the reception field strength.
  • the sin / cos correlator 40 operating in this manner effects a demodulation of the search sound into the baseband (multiplication by sin or cos) and subsequent low-pass filtering for suppressing the image frequencies at twice the signal frequency.
  • An essential advantage of the sin / cos correlator 40 is that it can be constructed in a simple and resource-saving manner. Compared to a matched filter, the detection performance is 3 dB worse.
  • the RSS module 42 values are obtained from the output values a (amplitude estimate of the sine component) and b (amplitude estimate of the cosine component) of the correlator 40 by means of square mean RSS ("received signal strength") values.
  • the AKF module 44 then calculates the autocorrelation function (AKF) of the RSS values.
  • the output of the AKF module 44 serves as the basis for the separation of the signal components in the case of several simultaneously active transmitters.
  • the search for buried people is particularly difficult if at the same time the signals of several victims are received.
  • the transmitter signals of the transmitters can overlap each other and also mutually cancel out. Since two devices always have slightly different repetition rates and / or duty cycles, however, an assignment of the respectively received signal to the one or the other transmitter is possible in principle.
  • the superimposition of signals from several transmitters is the sum of several signals that are periodically switched on and off.
  • an autocorrelation function is suitable in order to detect the periodic components of this summation signal.
  • an on / off function whose autocorrelation function should contain spectral lines at the frequencies occurring, is formed from the measured field strength values by thresholding.
  • the disadvantage of this method is that just at low field strengths or imperfect orientation of the receiving antenna to the transmitter, the on / off times can be determined only insufficiently accurate. These inaccuracies smear the spectral lines of the autocorrelation function, i. out of focus, and quickly unusable.
  • the information about the periodicity is of course also present in the analog field strength function. This is calculated as the magnitude of the output of the sin / cos correlator 40, i. H. won as the output of the RSS module 42.
  • the assignment of individual signal sections to different transmitters is performed by the heuristic segmentation in the segmentation module 46.
  • those signal elements which contribute to the maximum of the ACF are essentially determined by threshold value decision.
  • the signal elements determined in this way are separated again by analysis of jumps in the correlation values and assigned to different transmitters.
  • a signal element may be subdivided into two individual regions at the edges, starting from the left and right boundaries, and a central overlay region, which can not be used for the location estimation.
  • jumps and discontinuities in the sin and cos correlation values can be used.
  • the location of the at least one received transmitter is determined.
  • the distance of the transmitter can be reliably determined in a conventional manner by applying a power law to the measured or determined field strength.
  • the assignment of the search angle ⁇ obtained according to the invention from the sensor data to the processing signals ⁇ resulting from the currently measured transmitter signals, which indicate the instantaneous reception field strength of a transmitter, takes place.
  • the ferrite receiving antenna used in the receiving unit 28 has a cosine-shaped directivity. With a fixed transmitter, the received field strength thus changes with the cosine of the double search angle. If the device is swiveled back and forth by the searcher during the search, ie if the angle is continuously changed, then the field estimation module 48 can easily form the field strength ⁇ as a function of the search angle ⁇ . For all angle signal elements of a recording interval (from which exactly one AKF was calculated), the searcher angle and thus the location of the transmitter is estimated by linking with the search angles ⁇ . The coordinates obtained from successive recording intervals for the same transmitters can be continuously improved by weighted averaging.
  • the search tone i. the received transmitter signal sequence
  • the field strength function d. H.
  • the sequence of angle signals ⁇ ( ⁇ ) which in each case indicate a reception field strength at a search angle
  • the least squares method can be used to estimate the determining parameters of the entire curve. From this it is easy to calculate the angle and distance of the transmitter.
  • the entire field strength profile as a result of estimated angle signals could be calculated from the field strength profile of the received transmitter signal sequence.
  • two arbitrary points of the transmitter signal sequence were sufficient. In practice, however, the received signal is more or less noisy. The two points used for the approximation can then be randomly strongly corrupted by noise samples, so that the parameters of the actual angular signal sequence are very erroneous to be appreciated.
  • all available points of the received field strength curve or transmitter signal sequence should be included and the searched parameters optimized so that the total deviation of the calculated course of the estimated angular signal sequence from the portion of the sequence of angular signals determined from the transmitter signals and search angles is minimal becomes.
  • the estimate can be continuously improved by using new measurements.
  • this results in a relatively accurate location estimate even at a great distance from the victim and correspondingly weak search or reception signal.
  • jumping or excessive instability of the determined transmitter search angle can be reliably suppressed by a corresponding weighting of older persons in relation to the current values of the measured search or determined angle signals.
  • the object of the location estimation is also the solution of the problem of resolving the 180 degree ambiguity of the angle estimate from the field strength differences of two or more successive recording intervals and assigning the transmitter to the front (in the direction of movement) or rear (opposite to the direction of movement) half-plane.
  • the position of a victim, in particular the transmitter search angle even then fully and reliably calculated if his transmitter at the time when the device 1 of the seeker points in his direction, is currently in the transmission break.
  • This is achieved with an inventively designed search device which has only a single search antenna and therefore be correspondingly lighter and less expensive can (of course, the use of multiple antennas in a search device according to the invention also possible).
  • the determined location of a transmitter is then displayed on the display 10, as described above with reference to FIGS. 1, 2a and 2b.
  • modules which are shown in FIG. 3 as separate units. These units may be in the search device in the form of software, firmware, and / or hardware. Preferably, the modules are in the form of software on a microprocessor / DSP. For a fully-equipped search device such as that illustrated by the figures, a processor with 30 MIPS computing power and 8 KB of working memory would be suitable.
  • an inventive device without AKF module or module for separating the signal components of multiple transmitters may be formed.
  • Such a device can be used in situations where only one transmitter is to be located.
  • An example of this is a group of skiers on a secured track, in which the finding of the group leader is made possible by the search devices of the group members, whereby only the transmitter of the conductor is in the transmission mode.
  • a search device can be designed without a module for carrying out the cross-correlation of a filter signal with weak search or reception signals. Then weak signals in the noise are no longer detectable, the sensitivity of the search device is reduced accordingly.
  • the resources of the device available memory, processor processing capacity
  • the AKF module may be configured to separate a larger number of transmitters from each other.
  • a lower-powered device may have an extended operating time for the same battery capacity, such as when a smaller processor is used.
  • a search device with a GPS system.
  • the GPS system provides a true-to-nature representation of the terrain.
  • the viewpoint of the searcher and the sender location detected by the searcher, i. the suspected lying points of the victims are superimposed on the representation of the GPS system.
  • Such a system allows the seeker to intuitively, i.e., intuitively determine, the position of the reclining point from any prominent terrain points present. quickly detect, so that he can visit the resting point with the least possible delay.
  • the search device can be combined with a voice control, as is known for example in GPS systems for motor vehicles.
  • the searcher receives acoustic instructions, for example in the form of a voice generated by the search device. This allows the seeker to focus on the terrain.
  • a search device can furthermore be combined with a camera, as is known for mobile phones.
  • the terrain view recorded by the camera is advantageously reproduced on the display of the search device.
  • the detected transmitter locations are superimposed on the terrain view.
  • the view on the display is broadly consistent with the view the seeker has of his environment. Thus, the orientation of the seeker is facilitated, especially in contour-rich terrain.
  • a combination of a search device according to the invention with a GPS system and camera is also possible. In doing so, the GPS system and camera would work together to achieve a detailed and contour rich representation of the terrain.
  • a search device designed according to the invention can also be advantageously used for further applications.
  • a group of skiers are called, which are based on their group leader, for example. In poor visibility or otherwise confusing conditions. All participants have transceivers.
  • the device of the conductor has a transmitter whose transmitter signal is provided with an individual transmitter identification.
  • the search devices of the group participants are designed to evaluate the received sender identification, so that the located transmitter of the conductor is identifiable among the plurality of located transmitters.
  • the display of the search devices of the participants identifies the location of the group leader by specifying the identifier.
  • all transmitters of a group can be individualized by transmitter identifications.
  • a second transmitter may be provided which emits the signals with transmitter identifiers.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Transmitters (AREA)
  • Alarm Systems (AREA)

Claims (28)

  1. Dispositif de repérage pour la localisation d'un émetteur, en particulier dispositif de repérage d'une personne ensevelie sous une avalanche (1), qui est orientable pour balayer une zone de recherche dans une plage angulaire d'angles de recherche qui recouvre la zone de recherche, avec
    - une antenne de recherche (28) pour la réception de signaux d'émetteur d'un émetteur depuis une direction de recherche momentanée,
    - un dispositif de traitement de signaux pour la génération de signaux de traitement à partir des signaux d'émetteur
    - une unité de sortie (14, 15), à laquelle sont fournis les signaux de traitement, pour fournir en sortie à l'utilisateur des signaux de résultat qui représentent les signaux de traitement, et
    - un capteur de champ magnétique (30) qui fournit en sortie au dispositif de traitement de signaux (36 - 48) des signaux de capteur concernant le champ magnétique terrestre, qui sont fournis en tant que signal de traitement à l'unité de sortie (10),
    caractérisé en ce que
    à chaque signal d'émetteur reçu est attribué un angle de recherche fixe (ϕ) par rapport au champ magnétique terrestre (µ),
    le dispositif de traitement de signaux (48) étant formé pour générer, à partir des signaux d'émetteur et des signaux de capteur, des signaux d'angle qui représentent un champ reçu en fonction d'un angle de recherche (ϕ).
  2. Dispositif de repérage selon la revendication 1, caractérisé en ce que le capteur de champ magnétique (30) fournit en sortie au dispositif de traitement de signaux (36 - 40) trois signaux de capteur concernant le champ magnétique terrestre.
  3. Dispositif de repérage selon la revendication 1 ou 2, caractérisé en ce que sont prévus des capteurs d'inclinaison (32) qui fournissent en sortie au dispositif de traitement de signaux (36 - 40) des signaux de capteur qui représentent la position du dispositif de repérage (1) par rapport à un niveau horizontal.
  4. Dispositif de repérage selon l'une des revendications précédentes, caractérisé en ce que le dispositif de traitement de signaux (48) est formé pour le calcul d'un angle de recherche d'émetteur dans lequel se trouve l'émetteur, au moyen des signaux d'angle.
  5. Dispositif de repérage selon la revendication 4, caractérisé en ce que le dispositif de traitement de signaux (48) est formé pour déterminer l'angle de recherche d'émetteur à partir d'au moins deux signaux d'angle.
  6. Dispositif de repérage selon la revendication 4 ou 5, caractérisé en ce que l'unité de sortie (10) est formée pour la sortie graphique de signaux de résultat qui représentent l'angle de recherche d'émetteur, et comprend en particulier un tableau d'affichage (10) pour l'affichage graphique (16) de l'emplacement de l'émetteur (22) dans la zone de recherche.
  7. Dispositif de repérage selon l'une des revendications précédentes, caractérisé en ce que le dispositif de traitement de signaux comprend une unité de corrélation de filtrage (40) qui est formée pour détecter des signaux d'angle par corrélation des signaux d'émetteur avec des signaux de filtrage prédéfinis.
  8. Dispositif de repérage selon la revendication 7, caractérisé en ce que l'unité de corrélation de filtrage (40) est formée pour corréler les signaux d'émetteur avec une succession de signaux de filtrage sinusoïdaux et cosinusoïdaux.
  9. Dispositif de repérage selon l'une des revendications précédentes, caractérisé en ce que le dispositif de traitement de signaux comprend une unité d'auto-corrélation (44) qui est formée pour détecter par auto-corrélation des portions de signal périodiques dans des signaux enregistrés.
  10. Dispositif de repérage selon la revendication 9, caractérisé en ce que l'unité d'auto-corrélation (44) est placée après une unité de corrélation de filtrage (40).
  11. Dispositif de repérage selon l'une des revendications précédentes, caractérisé en ce que l'antenne de recherche (28) comprend une antenne ferrite, de préférence avec une directivité cosinusoïdale.
  12. Dispositif de repérage selon l'une des revendications précédentes, caractérisé par un émetteur pour l'émission de signaux d'émetteur, les signaux d'émetteur étant de préférence individualisés par une identification d'émetteur.
  13. Dispositif de repérage selon la revendication 12, caractérisé par un capteur de mouvement, qui enregistre des mouvements du dispositif de repérage (1), et un dispositif de commutation inverse d'urgence relié au capteur de mouvement, qui commute le dispositif de repérage (1) dans un mode d'émission, dans lequel l'émetteur émet des signaux d'émetteur si le capteur de mouvement n'enregistre aucun mouvement du dispositif de repérage (1) dans un intervalle de temps prédéfini, par exemple 90 secondes.
  14. Dispositif de repérage selon l'une des revendications 6 à 13, caractérisé par un système GPS et/ou une caméra pour visualiser l'environnement sur le tableau d'affichage (10).
  15. Dispositif de repérage selon l'une des revendications précédentes, caractérisé en ce que le dispositif de traitement de signaux est formé pour générer des signaux de traitement qui attribuent une identification d'émetteur à un angle de recherche d'émetteur, un émetteur étant formé de sorte que des signaux d'émetteur de cet émetteur puissent être individualisés par rapport aux signaux d'émetteur d'autres émetteurs.
  16. Procédé pour la localisation d'un émetteur, en particulier de l'émetteur d'une personne ensevelie sous une avalanche,
    - dans lequel, pour balayer une zone de recherche, un dispositif de repérage (1) est orienté par un utilisateur dans une plage angulaire d'angles de recherche qui recouvre la zone de recherche,
    - des signaux d'émetteur, qui sont émis par l'émetteur, sont reçus par une antenne de recherche (28) du dispositif de repérage (1) depuis des directions de recherche momentanées,
    - des signaux de traitement sont générés à partir des signaux d'émetteur, et
    - des signaux de résultat qui représentent les signaux de traitement sont fournis en sortie à l'utilisateur, et
    - des signaux de capteur qui concernent le champ magnétique terrestre sont affichés comme signal de traitement par des signaux de résultat aux utilisateurs,
    caractérisé en ce que
    à chaque signal d'émission reçu est attribué un angle de recherche fixe (ϕ) par rapport au champ magnétique terrestre (µ),
    des signaux d'angle qui indiquent respectivement un champ reçu (σ) avec un angle de recherche (ϕ) étant générés à partir des signaux d'émetteur (r) et des attributions de direction et d'angle de recherche.
  17. Procédé selon la revendication 16, caractérisé en ce que, pour l'attribution de la direction et de l'angle de recherche, des composantes d'intensité de champ (µ) du champ magnétique terrestre sont mesurées dans trois directions perpendiculaires les unes aux autres (X, Y, verticale).
  18. Procédé selon la revendication 16 ou 17, caractérisé en ce que les inclinaisons du dispositif de repérage sont mesurées par rapport au niveau horizontal (32) et les signaux de capteur sont corrigés en proportion (38).
  19. Procédé selon l'une des revendications 16 à 18, caractérisé en ce qu'un angle de recherche d'émetteur dans lequel se trouve l'émetteur, est calculé au moyen des signaux d'angle et en ce qu'un signal de résultat est fourni en sortie (10, 16) représentant l'angle de recherche d'émetteur (22).
  20. Procédé selon l'une des revendications 16 à 19, caractérisé en ce que l'angle de recherche d'émetteur est déterminé à partir d'au moins deux, en particulier d'au moins trois, signaux d'angle.
  21. Procédé selon l'une des revendications 19 ou 20, caractérisé en ce qu'une succession de signaux d'angle d'estimation est calculée suivant la méthode du plus petit carré des erreurs à partir des signaux d'angle, et l'angle de recherche d'émetteur est déterminé à partir du maximum de la succession de signaux d'angle d'estimation.
  22. Procédé selon la revendication 21, caractérisé en ce que, lors du calcul de la succession de signaux d'angle d'estimation, les signaux d'angle sont pondérés différemment, en particulier en fonction du temps qui s'est écoulé depuis une réception des signaux d'émetteur qui sont à la base des signaux d'angle.
  23. Procédé selon l'une des revendications 16 à 22, caractérisé en ce que des signaux d'émetteur d'estimation (40: a, b) sont déterminés par corrélation de signaux d'émetteur (r) avec des signaux de filtrage prédéfinis, et en ce que des signaux d'angle sont déterminés à partir des signaux d'émetteur d'estimation.
  24. Procédé selon la revendication 23, caractérisé en ce que, pour déterminer le signal d'émetteur à partir de bruits aléatoires par corrélation de signaux d'émetteur (r) reçus avec une succession de signaux de filtrage sinusoïdaux et une succession de signaux de filtrage cosinusoïdaux, est déterminée une succession de signaux respectivement de sinus et de cosinus (a, b).
  25. Procédé selon la revendication 24, caractérisé en ce que les champs reçus des signaux de la succession de signaux d'émetteur d'estimation sont déterminés à partir de la sommation des produits de la succession de signaux d'émetteur reçue avec une succession de signaux de sinus et de cosinus (a et b).
  26. Procédé selon l'une des revendications 16 à 25, caractérisé en ce que, pour détecter plusieurs émetteurs, une portion de signal périodique de signaux d'émetteur ou de signaux de traitement enregistrés, en particulier de signaux d'émetteur d'estimation, est déterminée par auto-corrélation (44).
  27. Procédé selon la revendication 26, caractérisé en ce qu'une portion de signal périodique déterminée (σ), qui peut être attribuée à un émetteur, est séparée des signaux d'émetteur ou des signaux de traitement pour déterminer d'autres portions de signal périodiques.
  28. Procédé selon l'une des revendications 16 à 27, caractérisé en ce que les signaux d'émetteur d'un émetteur sont individualisés par rapport aux signaux d'émetteur d'autres émetteurs par une identification d'émetteur, et en ce que des signaux de traitement sont générés, qui attribuent cette identification d'émetteur à un angle de recherche d'émetteur.
EP05005289A 2004-03-17 2005-03-10 Appareil de recherche pour la localisation d'un transmetteur, en particulier appareil de recherche pour la détection des personnes accidentées par des avalanches Active EP1577679B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004013097 2004-03-17
DE102004013097 2004-03-17
DE102004027314A DE102004027314B4 (de) 2004-03-17 2004-06-04 Lawinen-Verschütteten-Suchgerät und Verfahren zur Ortung eines Senders
DE102004027314 2004-06-04

Publications (2)

Publication Number Publication Date
EP1577679A1 EP1577679A1 (fr) 2005-09-21
EP1577679B1 true EP1577679B1 (fr) 2007-05-09

Family

ID=34839608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05005289A Active EP1577679B1 (fr) 2004-03-17 2005-03-10 Appareil de recherche pour la localisation d'un transmetteur, en particulier appareil de recherche pour la détection des personnes accidentées par des avalanches

Country Status (5)

Country Link
US (1) US7403112B2 (fr)
EP (1) EP1577679B1 (fr)
AT (1) ATE362112T1 (fr)
CA (1) CA2501035C (fr)
DE (2) DE102004027314B4 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11346938B2 (en) 2019-03-15 2022-05-31 Msa Technology, Llc Safety device for providing output to an individual associated with a hazardous environment
DE102022125028A1 (de) 2022-09-28 2024-03-28 ADVENATE GmbH Lawinen-Verschütteten-Suchgerät

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116272B2 (en) * 2003-06-09 2006-10-03 Wolf Edward A Direction and distance finder for locating distress signals
US7796026B1 (en) * 2005-04-20 2010-09-14 The United States Of America As Represented By The United States National Aeronautics And Space Administration Communication path for extreme environments
DE502005001391D1 (de) * 2005-07-18 2007-10-11 Gerald Kampel Verfahren und Vorrichtung zum Auffinden eines Verschütteten
EP1785170B1 (fr) * 2005-11-14 2010-01-20 Mammut Sports Group AG Dispositif de recherche
EP1785168A1 (fr) * 2005-11-14 2007-05-16 Ascom (Schweiz) AG Dispositif de recherche
EP1785169B1 (fr) * 2005-11-14 2013-04-17 Mammut Sports Group AG Dispositif de recherche
DE102007050293A1 (de) * 2007-10-22 2009-04-23 Robert Bosch Gmbh Entfernungsmessvorrichtung
DE102008016137A1 (de) * 2007-11-19 2009-05-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Ortung von Objekten oder Personen, insbesondere für eine Lawinenverschüttetensuche sowie Verfahren zur Ortung
EP2072092B1 (fr) 2007-12-19 2009-12-02 Gerald Kampel Dispositif de localisation et procédé de fonctionnement d'un dispositif de localisation
US20110193702A1 (en) * 2010-02-05 2011-08-11 Brooks William Mathews Wireless apparatuses, systems, and methods for locating items
KR101702922B1 (ko) 2010-05-31 2017-02-09 삼성전자주식회사 휴대용 단말기의 영역 인식 장치 및 방법
ES2382426B1 (es) * 2010-09-01 2013-05-08 Universidad De Zaragoza Aparato de busqueda de dispositivo emisor de campo magnetico bajo la superficie y procedimiento de operacion asociado en modo emision
DE102011003154B4 (de) 2011-01-26 2020-08-27 Ortovox Sportartikel Gmbh Suchgerät sowie Verfahren zum Erzeugen einer Aktualisierten Richtungsdarstellung der Suchrichtung
DE102011010499B4 (de) * 2011-02-07 2018-09-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, System und Verfahren zur Ortung insbesondere von Lawinenverschütteten unter Einsatz eines mobilen Kommunikationsgerätes
EP2573583B1 (fr) 2011-09-26 2017-04-26 Ortovox Sportartikel GmbH Procédé et appareil de recherche pour la recherche d'un appareil d'émission
GB201200313D0 (en) * 2012-01-10 2012-02-22 Secr Defence Signature identification
CH706278B1 (de) 2012-03-30 2016-07-29 Ortovox Sportartikel Gmbh Tragbare Vorrichtung zum Suchen und/oder zur Ortung von Sendern mit mindestens einer ausserhalb des Gehäuses angeordneten Antenne.
EP2692394B1 (fr) * 2012-07-30 2017-08-16 Ortovox Sportartikel GmbH Appareil de recherche et un procédé de fonctionnement d'un appareil de recherche
EP2752680B1 (fr) * 2013-01-04 2016-05-11 Ortovox Sportartikel GmbH Système de recherche et procédé de recherche d'une personne ensevelie
WO2014153727A1 (fr) * 2013-03-26 2014-10-02 Google Inc. Traitement de signal d'extraction de direction de déplacement d'un piéton
US10359288B2 (en) 2013-03-26 2019-07-23 Google Llc Signal processing to extract a pedestrian's moving direction
EP2907551B1 (fr) * 2014-02-14 2020-10-21 Ortovox Sportartikel GmbH Détecteur et procédé de fonctionnement d'un détecteur
WO2016062337A1 (fr) * 2014-10-21 2016-04-28 Fundació Centre Tecnològic De Telecomunicacions De Catalunya Procédé et système pour localiser des victimes d'avalanche équipées d'un émetteur-récepteur
KR102458532B1 (ko) * 2016-03-10 2022-10-26 삼성전자주식회사 위치 판단 방법 및 장치
GB2551956B (en) 2016-05-05 2021-11-03 Ubisense Ltd Object detection
FR3121230B1 (fr) * 2021-03-24 2023-04-28 Api K Système et procédé de recherche de balises
EP4320457A1 (fr) 2021-05-19 2024-02-14 Backcountry Access, Inc. Émetteur-récepteur d'avalanche

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4016959A1 (de) * 1989-06-02 1990-12-06 Hamacher Leuchten Gmbh Ortungssystem, insbesondere fuer den untertaegigen bergbau
DE19510875C1 (de) * 1995-03-24 1996-09-05 Silvretta Sherpas Sportartikel Tragbares Ortungsgerät
DE19526494C2 (de) * 1995-07-20 2000-04-27 Hermann W Kurth Mobile Messzelle zum Erfassen von Istwert-Daten über die momentane Ortsposition der mobilen Messzelle
FR2742874B1 (fr) * 1995-12-22 1998-03-13 Onera (Off Nat Aerospatiale) Procede et systeme pour la detection et localisation d'un individu, par exemple enseveli sous un depot d'avalanche
CH693117A5 (de) * 1997-07-28 2003-02-28 Joseph J Laux Tragbares Navigationsgerät und Navigationsverfahren für Sportler.
DE19752939C1 (de) * 1997-11-28 1999-08-26 Kampel Verschüttetensuchgerät
DE29813723U1 (de) * 1998-07-31 1998-10-08 Eckhard Christian Verschüttetensuchgerät
JP3532773B2 (ja) * 1998-09-26 2004-05-31 ジヤトコ株式会社 携帯用位置検出装置および位置管理システム
US20020169539A1 (en) * 2001-03-28 2002-11-14 Menard Raymond J. Method and system for wireless tracking
DE19914380B4 (de) * 1999-03-30 2004-11-11 Peter Apel Kommunikations- und Such-System für Taucher
DE29922217U1 (de) * 1999-12-17 2000-02-24 Hano Christian Verschüttetensuchgerät
DE10109284A1 (de) * 2000-02-26 2003-03-27 Karthaus Udo Verfahren zur Ortung von Verschütteten
DE10030719C2 (de) * 2000-06-16 2002-09-12 Erika Grabowski Neues Lawinen-Verschütteten-Suchsystem
US6957593B1 (en) * 2001-12-31 2005-10-25 Burns Ian F Devices, systems, and methods for analyzing snow stability
US20030135327A1 (en) * 2002-01-11 2003-07-17 Seymour Levine Low cost inertial navigator
AT6120U3 (de) * 2003-01-15 2004-01-26 Seidel Elektronik Gmbh Suchgerät, insbesonders zur ortung verschütteter personen in lawinen, sowie verfahren zum betreiben eines suchgerätes
AT413449B (de) * 2003-01-15 2006-03-15 Seidel Elektronik Gmbh Nfg Kg Suchgerät, insbesonders zur ortung verschütteter personen in lawinen, sowie verfahren zum betreiben eines suchgerätes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11346938B2 (en) 2019-03-15 2022-05-31 Msa Technology, Llc Safety device for providing output to an individual associated with a hazardous environment
DE102022125028A1 (de) 2022-09-28 2024-03-28 ADVENATE GmbH Lawinen-Verschütteten-Suchgerät

Also Published As

Publication number Publication date
EP1577679A1 (fr) 2005-09-21
CA2501035C (fr) 2009-04-07
US20050231359A1 (en) 2005-10-20
DE102004027314B4 (de) 2006-03-23
US7403112B2 (en) 2008-07-22
DE102004027314A1 (de) 2005-10-06
CA2501035A1 (fr) 2005-09-17
ATE362112T1 (de) 2007-06-15
DE502005000676D1 (de) 2007-06-21

Similar Documents

Publication Publication Date Title
EP1577679B1 (fr) Appareil de recherche pour la localisation d'un transmetteur, en particulier appareil de recherche pour la détection des personnes accidentées par des avalanches
EP2752680B1 (fr) Système de recherche et procédé de recherche d'une personne ensevelie
DE60222606T2 (de) Verfahren und Vorrichtung zur Positionsbestimmung mit hoher Genauigkeit unter Verwendung von Suchmodus-Entfernungstechniken
DE60316818T2 (de) System und verfahren zur elektromagnetischen nahfeld-entfernungsmessung
CN102713664B (zh) 协作式位置/方位估计
DE60216209T2 (de) Objektpositionsbestimmungssystem mit einer akustischen Bake und entsprechendes Verfahren
DE102008053176B4 (de) Vorrichtung und Verfahren zum Schätzen einer Orientierung eines mobilen Endgeräts
DE60016933T2 (de) Verfahren und einrichtung zur ortung eines mobil-endgeräts mittels zeitgebern von geringer genauigkeit
US20060061504A1 (en) Through wall detection and tracking system
US9476963B2 (en) Search and rescue method and system
EP1127535A3 (fr) Système de surveillance et localisation de patients
AT413449B (de) Suchgerät, insbesonders zur ortung verschütteter personen in lawinen, sowie verfahren zum betreiben eines suchgerätes
WO2006015721A1 (fr) Dispositif et procede de recherche de personnes et d'objets
DE102010043394A1 (de) Mobiles Gerät und Infrastruktursystem
EP2065722B1 (fr) Dispositif destiné au positionnement d'objets ou de personnes, notamment pour une recherche de victimes d'une avalanche et procédé de positionnement
DE102015107555A1 (de) Positionsbestimmung eines Nutzer-Endgeräts durch Kombinieren von mittels des Nutzer-Endgeräts ermittelter Information
DE102004035608B4 (de) Empfänger eines Positionsbestimmungssystems und Verfahren zur Positionsbestimmung mit erhöhter Empfindlichkeit
Loschonsky et al. Detection technology for trapped and buried people
DE102014004981B4 (de) Verfahren zur Bestimmung der relativen Position wenigstens einer passiven Ortungseinrichtung durch wenigstens eine aktive Ortungseinrichtung
WO2003049058A1 (fr) Dispositif de radiocommunication mobile
AT391561B (de) Suchgeraet zur anpeilung von ein peilsignal abgebenden sendern
EP2111079B1 (fr) Procédé pour la détermination de la position de personnes equipées d'un terminal mobile
DE19921759C2 (de) Informationssystem und Verfahren zur Orientierung
DE102018206677A1 (de) Verfahren und Vorrichtung zur Lokalisierung eines Objekts
DE19961112C2 (de) Verschüttetensuchgerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060131

AKX Designation fees paid

Designated state(s): AT CH DE FR IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REF Corresponds to:

Ref document number: 502005000676

Country of ref document: DE

Date of ref document: 20070621

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ORTOVOX SPORTARTIKEL GMBH, DE

Free format text: FORMER OWNER: KAMPEL, GERALD, DE

Ref country code: CH

Ref legal event code: NV

Representative=s name: FIAMMENGHI-FIAMMENGHI, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ORTOVOX SPORTARTIKEL GMBH, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 362112

Country of ref document: AT

Kind code of ref document: T

Owner name: ORTOVOX SPORTARTIKEL GMBH, DE

Effective date: 20130222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140228

Year of fee payment: 10

Ref country code: IT

Payment date: 20140307

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005000676

Country of ref document: DE

Representative=s name: HOFSTETTER, SCHURACK & PARTNER PATENT- UND REC, DE

Effective date: 20140626

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005000676

Country of ref document: DE

Owner name: ORTOVOX SPORTARTIKEL GMBH, DE

Free format text: FORMER OWNER: KAMPEL, GERALD, 82024 TAUFKIRCHEN, DE

Effective date: 20140626

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005000676

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150310

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190220

Year of fee payment: 15

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 362112

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230402

Year of fee payment: 19