EP1576272B1 - Rücklauffreies kraftstoffversorgungssystem - Google Patents
Rücklauffreies kraftstoffversorgungssystem Download PDFInfo
- Publication number
- EP1576272B1 EP1576272B1 EP03799428A EP03799428A EP1576272B1 EP 1576272 B1 EP1576272 B1 EP 1576272B1 EP 03799428 A EP03799428 A EP 03799428A EP 03799428 A EP03799428 A EP 03799428A EP 1576272 B1 EP1576272 B1 EP 1576272B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- pressure
- supply system
- region
- return
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 117
- 238000002485 combustion reaction Methods 0.000 claims abstract description 18
- 230000001276 controlling effect Effects 0.000 claims abstract 3
- 230000001105 regulatory effect Effects 0.000 claims abstract 3
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims 2
- 230000001141 propulsive effect Effects 0.000 claims 2
- 239000002828 fuel tank Substances 0.000 abstract description 23
- 101100298225 Caenorhabditis elegans pot-2 gene Proteins 0.000 description 11
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000036316 preload Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M37/00—Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
- F02M37/04—Feeding by means of driven pumps
- F02M37/08—Feeding by means of driven pumps electrically driven
- F02M37/10—Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir
- F02M37/106—Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir the pump being installed in a sub-tank
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/3809—Common rail control systems
- F02D41/3836—Controlling the fuel pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M37/00—Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
- F02M37/02—Feeding by means of suction apparatus, e.g. by air flow through carburettors
- F02M37/025—Feeding by means of a liquid fuel-driven jet pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M37/00—Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
- F02M37/04—Feeding by means of driven pumps
- F02M37/08—Feeding by means of driven pumps electrically driven
- F02M2037/085—Electric circuits therefor
- F02M2037/087—Controlling fuel pressure valve
Definitions
- the invention is based on a non-return fuel supply system according to the preamble of claim 1.
- a fuel supply system fuel is pumped from a fuel tank from a fuel pump via a pressure line to a fuel rail on the engine with injectors or to a gasoline or diesel high pressure pump.
- Modern fuel supply systems have a tank installation unit inserted into the fuel tank, in which the fuel pump, a suction filter and a pot are integrated as a fuel reserve, which is filled by one or more suction jet pumps. Consequently, the suction jet pumps ensure that even when the fuel level in the fuel tank drops, the pot for providing the reserve fuel is always completely filled.
- the suction jet pumps are arranged in the branched off from the pressure line Saugstrahlpumpentechnisch, which opens into the pot.
- a return line branches from the fuel rail, leading back into the fuel tank.
- the fuel quantity not required by the internal combustion engine then flows through the fuel distributor via the return line back into the fuel tank.
- no return line from the fuel rail to provided the fuel tank is adjusted as needed by the actual fuel pressure measured by a pressure sensor, compared within a control unit with a stored in a map target fuel pressure and depending on the control difference, the speed of the fuel pump is changed.
- a downstream of the fuel pump check valve in the pressure line ensures a seal of the pressure distribution containing the fuel rail.
- the control function takes place as long as the internal combustion engine is operated under load and a consumption amount of fuel is called up.
- Another type of pressure relief valve is closed during operation, so that after a phase of non-promotion and at the beginning of load operation because of the sudden onset of pressure increase over-greasing and higher pressure due to the higher leaks at the injectors higher HC emissions can occur.
- the opening pressure in both types of pressure relief valves can not be varied during operation.
- the solenoid valve can be included in the electronic control of the internal combustion engine, which is a control of the system pressure and the amount of fuel in allows all operating conditions of the internal combustion engine, in particular during the shift operation and at a standstill.
- the electrically actuated solenoid valve depending on the opening duration variable opening pressures are adjustable. This is particularly advantageous for the compensation of temperature-induced pressure changes.
- electrically actuated solenoid valves eliminates the need for constant flushing, which is why the fuel pump can be made smaller and significantly reduces the risk of contamination of the valve seat.
- the solenoid valve is interposed between the check valve and the ejector and is driven by a central engine control unit, wherein the control of the solenoid valve in response to the pressure measured by a pressure sensor arranged in the pressure region.
- the solenoid valve is integrated into the electronic engine control, whereby variable opening pressures can be realized.
- the pressure range associated with injectors is preferably formed by a pressure line connecting the fuel pump to the injectors.
- an input of the solenoid valve is connected to the pressure range and an output to the ejector.
- the solenoid valve is de-energized closed during a standstill phase of the internal combustion engine and otherwise open, for example, during normal operation under load and energized during the coasting operation.
- the solenoid valve is opened by signals from the engine control unit in order to keep the pressure in the pressure line constant.
- the electronic control of the solenoid valve, in particular, the holding pressure during coasting and engine downtime can be set arbitrarily. However, this also means that the function of the engine control unit must be temporarily maintained even during the stoppage phase of the internal combustion engine.
- the solenoid valve is formed by a 2/3 way valve, of which an input to the pressure line, a first output to the suction jet pump and a second output is connected to a pressure relief valve.
- This 2/3 way valve is controlled by the engine control unit such that it connects the input to the second output in the de-energized state and the input to the first output when energized. Consequently, at standstill of the engine and de-energized deactivated engine control unit, the 2/3 way valve automatically, for example, by spring preload, in its de-energized position, in which the pressure line is connected to the pressure relief valve, via which then pressure is reduced. In normal load operation or coasting of the internal combustion engine, however, the 2/3 way valve is energized by the engine control unit, so that the suction jet pump is connected to the pressure line.
- the control of the solenoid valve takes place as a function of a degree of filling of the second region the fuel reservoir forming fuel tank with fuel.
- the pot forming the first region of the fuel reservoir and receiving the fuel pump is then arranged as a reservoir for the reserve fuel. If the solenoid valve is closed when the fill level of the fuel tank is in a range between maximum charge and a level substantially flush with an upper rim of the pot, the fuel will no longer travel past the fuel injector via the closed solenoid valve promoted in the pot. Rather, the fuel then flows to compensate for levels from the fuel tank over the edge of the pot in this.
- the ejector With sufficient filling level of the fuel tank, the ejector can therefore be put out of operation, resulting in a significant reduction in the required by the fuel pump power, in an increase in system efficiency, in a lower electrical system load, in a lower tank heating and in a longer life of the fuel pump.
- a further embodiment provides that the solenoid valve is formed by a switching valve, which is controlled clocked to control the driving pressure of the suction jet pump.
- the solenoid valve may also be a proportional valve, which is controlled to control the driving pressure of the suction jet pump. In both cases, the suction jet pump can always be operated in a region of highest efficiency.
- the solenoid valve in the sense of a multiple function not only for a particularly advantageous control of the system pressure and the amount of fuel during coasting and at a standstill but also for further energy-saving measures.
- the generally designated 1 in Fig.1 return-free fuel supply system is used for example for fueling an internal combustion engine of a vehicle and includes as essential components held within a swirl pot 2 of a fuel tank 4 tank installation unit 6 comprising a fuel pump 8 with a suction side filter 10, based on the fuel pump 8 disposed in a pressure-side pressure line 12 check valve 14 and a fuel injector 16 in fluid communication with fuel injectors 18 or a gasoline or diesel high-pressure pump.
- a pressure sensor 20 measures the actual pressure in the pressure line 12 and sends via a signal line 22 a corresponding signal to a control unit, which is preferably formed by a central engine control unit 24 (MOTRONIC) and in which is controlled as a function of a control difference between the actual pressure and a demand-based desired pressure via an electrical line 26, a control signal to an electronic, connected to the fuel pump 8 via electrical lines 28 fuel pump controller 30 to the pressure in the pressure line 12 via the Regulate fuel pump 8 demand-dependent.
- MOTRONIC central engine control unit 24
- downstream portion of the pressure line 12 branches off at a branch point 32 from a Saugstrahlpumpentechnisch 34, which branches, for example in several, preferably in two individual lines 36 branching in each branch 36 a fuel-carrying suction pump 38, wherein the individual lines 36 open into the swirl pot 2.
- the swirl pot 2 serves on the one hand as a fuel reservoir, on the other hand it prevents that with strong lateral acceleration the fuel pump 8 can no longer suck fuel for a short time, because this centrifugal force is concentrated in a remote from the suction side portion of the fuel tank 4.
- the suction jet pumps 38 suck fuel from the area of the fuel tank 4 located outside the swirl pot into the two individual lines 36 and ensure a constant fuel level within the swirl pot 2 in a known manner.
- an electrically actuated solenoid valve 40 Arranged in the suction jet pump line 34 branching off from the pressure line 12 is an electrically actuated solenoid valve 40, which is controlled by the central engine control unit 24 via a control line 42, preferably as a function of the measured pressure in the pressure line 12, the temperature of the fuel, the level and / or the engine operating conditions is controlled.
- the solenoid valve 40 is designed to open or close the cross section of the suction jet pump line 34.
- the solenoid valve 40 is preferably closed and energized closed open.
- the operation of the fuel supply system 1 is as follows: In load operation of the internal combustion engine, the fuel pump sucks 8 fuel from the swirl pot 2, wherein the fuel flow opens the check valve 14 under the effect of fuel pressure and a portion of the fuel flow at the branch point 32 in the Saugstrahlpumpen Koch 34th flows.
- the engine control unit 24 energizes the solenoid valve 40, whereupon this is switched to the open position, so that the suction jet pumps 38 fuel the region of the fuel tank 4 located outside of the swirl pot 2 can suck into the swirl pot 2.
- the other part of the fuel flow is fed to the fuel meter 18 as required depending along the pressure line 12 in order to be injected via the injection valves 16 into combustion chambers of the internal combustion engine.
- the engine control unit 24 switches the solenoid valve 40 de-energized, whereupon it closes. Consequently, the arranged downstream of the check valve 14 portion of the pressure line 12 and the upstream of the solenoid valve 40 disposed portion of the Saugstrahlpumpen Koch 34 is sealed by the closed injectors 16, the closed solenoid valve 40 and by the closed fuel pump 8 towards the check valve 14 against the environment, the Pressure of existing in these sections amount of fuel to be kept constant. Ternperatur myself however, the holding pressure may be too high, which is detected by the pressure sensor 20 and reported to the central engine control unit 24. Then, the solenoid valve 40 is briefly switched by the engine control unit 24 by a current pulse in the open position to reduce the predetermined holding pressure.
- a solenoid valve here a 2/3 way valve 44 is used, of which an input 46 to the pressure line 12, a first output 48 to the suction jet 38 and a second output 50 is connected to a pressure relief valve 52.
- the 2/3 way valve 44 is controlled by the central engine control unit 24 such that it connects the input 46 to the second output 50 in the de-energized state and the input 46 to the first output 48 when energized.
- the 2/3-way valve 44 is de-energized during a standstill phase of the internal combustion engine and otherwise energized, ie in load operation and in overrun operation.
- the 2/3-way valve 44 automatically, for example by spring preload, in its de-energized position, in which the pressure line 12 is connected to the pressure relief valve 52, via which then pressure can be reduced.
- the 2/3 way valve 44 is energized by the engine control unit 24, so that the suction jet pumps 38 are connected to the pressure line 12.
- the control of the solenoid valve 40 takes place in dependence on a degree of filling of the fuel tank 4 with fuel. If the solenoid valve 40 is closed, when the filling level of the fuel tank 4 is in a range between maximum filling and a level that is substantially flush with an upper edge 54 of the swirl pot 2, the fuel is no longer beyond that through the closed solenoid valve 40 except Operation set Saugstrahlpumpen 38 from the fuel tank 4 in the swirl pot 2 promoted. Rather, the fuel then flows to level compensation from the fuel tank 4 via the edge 54 of the swirl pot 2 in this. With sufficient degree of filling of the fuel tank 4, the suction jet pumps 38 can thus be put out of operation. Further, it is possible to vary the shutdown pressure as a function of the temperature and / or of the engine operating conditions.
- the decommissioning of the Saugstrahlpumpen 38 and the variation of the Abstelltiks can also by the 3/2-way valve 44 according to the second embodiment 2, if it is switched in the above-described, sufficient water level in the fuel tank 4 such that the input 46 is connected to the second output 50, which opens into the pressure relief valve 52. Then, the part of the suction jet pump line 34 located downstream of the 2/3-way valve 44 is shut off to a predetermined pressure level, so that the suction jet pumps 38 are no longer supplied with fuel.
- the solenoid valves 40, 44 are preferably switching valves, they can be controlled clocked to control the motive pressure of the ejector 38.
- the solenoid valve 40, 44 may also be a proportional valve, which is controlled to control the driving pressure of the suction jet pump. By controlling the driving pressure, the suction jet pump 38 can then always be operated in a region of highest efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
- Jet Pumps And Other Pumps (AREA)
Abstract
Description
- Die Erfindung geht aus von einem rücklauffreien Kraftstoffversorgungssystem gemäß dem Oberbegriff von Anspruch 1.
- In einem Kraftstoffversorgungssystem wird Kraftstoff aus einem Kraftstoffbehälter von einer Kraftstoffpumpe über eine Druckleitung zu einem an der Brennkraftmaschine befindlichen Kraftstoffverteiler mit Einspritzventilen oder zu einer Benzin- oder Dieselhochdruckpumpe gepumpt. Moderne Kraftstoffversorgungssysteme weisen eine in den Kraftstoffbehälter eingesetzte Tankeinbaueinheit auf, in welche die Kraftstoffpumpe, ein Saugfilter und ein Topf als Kraftstoffreserve integriert ist, welcher durch eine oder mehrere Saugstrahlpumpen befüllt wird. Die Saugstrahlpumpen sorgen folglich dafür, dass auch bei abfallendem Kraftstoffpegel im Kraftstoffbehälter der Topf zur Bereitstellung des Reservekraftstoffs stets vollständig gefüllt ist. Die Saugstrahlpumpen sind in der von der Druckleitung abzweigenden Saugstrahlpumpenleitung angeordnet, welche in den Topf mündet.
- Bei manchen Kraftstoffversorgungssystemen zweigt von dem Kraftstoffverteiler eine Rücklaufleitung ab, die zurück in den Kraftstoffbehälter führt. Die von der Brennkraftmaschine nicht benötigte Kraftstoffmenge strömt dann durch den Kraftstoffverteiler über die Rücklaufleitung zurück in den Kraftstoffbehälter. Bei beispielsweise aus der DE 199 51 132 A1 bekannten rücklauffreien Kraftstoffversorgungssystemen ist dagegen keine Rücklaufleitung von dem Kraftstoffverteiler zu dem Kraftstoffbehälter vorgesehen. Vielmehr wird der Druck im Kraftstoffverteiler bedarfsgerecht geregelt, indem der Ist-Kraftstoffdruck mittels eines Drucksensors gemessen, innerhalb eines Steuergeräts mit einem in einem Kennfeld abgelegten Soll-Kraftstoffdruck verglichen und abhängig von der Regeldifferenz die Drehzahl der Kraftstoffpumpe verändert wird. Ein der Kraftstoffpumpe nachgeordnetes Rückschlagventil in der Druckleitung sorgt für eine Abdichtung des den Kraftstoffverteiler enthaltenden Druckbereichs. Die Regelfunktion erfolgt, solange die Brennkraftmaschine unter Last betrieben und eine Verbrauchsmenge an Kraftstoff abgerufen wird.
- Während Phasen, in denen die Einspritzventile geschlossen sind und die Kraftstoffpumpe keinen Kraftstoff in die Druckleitung fördert, beispielsweise bei Motorstillstand, kann bei hohen Temperaturen der Druck in der einerseits durch die geschlossenen Einspritzventile und andererseits das geschlossene Rücklaufventil dichten Druckleitung ansteigen, weshalb mechanisch betätigte Druckbegrenzungsventile oder Membrandruckregler verwendet werden siehe z.B. US 2002/0043253, um den Druck in der Druckleitung konstant zu halten. Ein Typ dieser Druckbegrenzungsventile muss im Betrieb stets von einer geringen Überströmmenge durchspült werden, was einerseits den ständigen Betrieb der Kraftstoffpumpe und folglich einen gewissen Energieverbrauch erfordert und andererseits wegen der geringen Spülmenge die Gefahr besteht, dass sich Schmutz am Ventilsitz ablagert. Ein weiterer Typ von Druckbegrenzungsventil ist im Betriebsfall geschlossen, so dass nach einer Phase der Nichtförderung und zu Beginn des Lastbetriebs wegen des dann plötzlich einsetzenden Druckanstiegs Überfettungen und aufgrund der druckbedingt höheren Leckagen an den Einspritzventilen auch höhere HC-Emissionen auftreten können. Außerdem ist der Öffnungsdruck bei beiden Typen von Druckbegrenzungsventilen während des Betriebs nicht variierbar.
- Indem die den Druck im Druckbereich regelnden und/oder steuernden Mittel wenigstens ein elektrisch betätigbares Magnetventil beinhalten, welches stromabwärts des Rückschlagventils in der Saugstrahlpumpenleitung angeordnet ist, kann das Magnetventil in die elektronische Regelung der Brennkraftmaschine einbezogen werden, was eine Regelung des Systemdrucks und der Kraftstoffmenge in allen Betriebszuständen der Brennkraftmaschine ermöglicht, insbesondere während des Schiebebetriebs und bei Stillstand. Dann sind auch im Gegensatz zu den mechanisch hydraulisch betätigten Ventilen des Stands der Technik über das elektrische betätigbare Magnetventil je nach Öffnungsdauer variable Öffnungsdrücke einstellbar. Dies ist insbesondere zum Ausgleich von temperaturbedingten Druckänderungen von Vorteil. Schließlich entfällt bei elektrisch betätigten Magnetventilen das Erfordernis der ständigen Durchspülung, weshalb die Kraftstoffpumpe kleiner dimensioniert werden kann und sich das Verschmutzungsrisiko des Ventilsitzes wesentlich reduziert.
- Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Patentanspruch 1 angegebenen Erfindung möglich.
- In bevorzugter Weise ist das Magnetventil dem Rückschlagventil und der Saugstrahlpumpe zwischengeordnet und wird von einem zentralen Motorsteuergerät angesteuert, wobei die Ansteuerung des Magnetventils in Abhängigkeit des von einem im Druckbereich angeordneten Drucksensors gemessenen Drucks erfolgt.
- Durch diese Maßnahme ist das Magnetventil in die elektronische Motorsteuerung integriert, wodurch variable Öffnungsdrücke realisierbar sind. Der mit Einspritzventilen in Verbindung stehende Druckbereich wird vorzugsweise durch eine Druckleitung gebildet wird, welche die Kraftstoffpumpe mit den Einspritzventilen verbindet.
- Gemäß einer ersten Ausführungsform ist ein Eingang des Magnetventils mit dem Druckbereich und ein Ausgang mit der Saugstrahlpumpe verbunden. Insbesondere ist das Magnetventil während einer Stillstandsphase der Brennkraftmaschine unbestromt geschlossen und ansonsten, beispielsweise während des normalen Betriebs unter Last und während des Schiebebetriebs bestromt geöffnet. Im Falle eines beispielsweise temperaturbedingten Druckanstiegs während der Stillstandsphase wird das Magnetventil durch Signale des Motorsteuergeräts geöffnet, um den Druck in der Druckleitung konstant zu halten. Durch die elektronische Regelung des Magnetventils kann insbesondere der Haltedruck bei Schiebebetrieb und bei Motorstillstand beliebig festgelegt werden. Dies bedeutet aber auch, dass die Funktion des Motorsteuergeräts temporär auch während der Stillstandsphase der Brennkraftmaschine aufrecht erhalten werden muss.
- Hierauf kann bei einer zweiten Ausführungsform verzichtet werden, bei welcher das Magnetventil durch ein 2/3 Wegeventil gebildet wird, von welchem ein Eingang mit der Druckleitung, ein erster Ausgang mit der Saugstrahlpumpe und ein zweiter Ausgang mit einem Druckbegrenzungsventil verbunden ist. Dieses 2/3 Wegeventil wird vom Motorsteuergerät derart angesteuert ist, dass es in stromlosem Zustand den Eingang mit dem zweiten Ausgang und in bestromtem Zustand den Eingang mit dem ersten Ausgang verbindet. Folglich schaltet bei Stillstand der Brennkraftmaschine und stromlos deaktiviertem Motorsteuergerät das 2/3 Wegeventil automatisch, beispielsweise durch Federvorspannung, in seine stromlose Stellung, in welcher die Druckleitung mit dem Druckbegrenzungsventil verbunden ist, über welches dann Überdruck abgebaut wird. Im normalen Lastbetrieb oder im Schiebebetrieb der Brennkraftmaschine wird das 2/3 Wegeventil hingegen vom Motorsteuergerät bestromt, so dass die Saugstrahlpumpe an die Druckleitung angeschlossen ist.
- Gemäß einer weiteren Ausführungsform der Erfindung erfolgt die Ansteuerung des Magnetventils in Abhängigkeit von einem Füllgrad des den zweiten Bereich des Kraftstoffreservoirs bildenden Kraftstoffbehälters mit Kraftstoff. Innerhalb des Kraftstoffbehälters ist dann der den ersten Bereich des Kraftstoffreservoirs bildende, die Kraftstoffpumpe aufnehmende Topf als Reservoir für den Reservekraftstoff angeordnet. Falls man das Magnetventil schließt, wenn der Füllpegel des Kraftstoffbehälters in einem Bereich zwischen maximaler Füllung und einem Pegelstand liegt, welcher im wesentlichen mit einem oberen Rand des Topfes fluchtet, wird der Kraftstoff nicht mehr über die durch das geschlossene Magnetventil außer Betrieb gesetzte Saugstrahlpumpe vom Kraftstoffbehälter in den Topf gefördert. Vielmehr fließt dann der Kraftstoff zum Pegelausgleich aus dem Kraftstoffbehälter über den Rand des Topfes in diesen hinein. Bei ausreichendem Füllgrad des Kraftstoffbehälters kann die Saugstrahlpumpe folglich außer Betrieb gesetzt werden, was in einer merklichen Reduzierung der von der Kraftstoffpumpe geforderten Pumpleistung, in einer Erhöhung des Systemwirkungsgrades, in einer geringeren Bordnetzbelastung, in einer geringeren Tankaufheizung sowie in einer längeren Lebensdauer der Kraftstoffpumpe resultiert.
- Eine weitere Ausführungsform sieht vor, dass das Magnetventil durch ein Schaltventil gebildet wird, welches zur Regelung des Treibdrucks der Saugstrahlpumpe getaktet angesteuert ist. Gemäß einer Alternative hierzu kann das Magnetventil auch ein Proportionalventil sein, das zur Regelung des Treibdrucks der Saugstrahlpumpe angesteuert ist. In beiden Fällen kann die Saugstrahlpumpe stets in einem Bereich höchsten Wirkungsgrades betrieben werden.
- Folglich dient das Magnetventil im Sinne einer Mehrfachfunktion nicht nur für eine besonders vorteilhafte Regelung des Systemdrucks und der Kraftstoffmenge während des Schiebebetriebs und bei Stillstand sondern auch für weitere energiesparende Maßnahmen.
- Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den restlichen Unteransprüchen beschrieben.
- Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. In der Zeichnung zeigt
- Fig.1
- eine schematische Darstellung einer bevorzugten Ausführungsform eines erfindungsgemäßen Kraftstoffversorgungssystems;
- Fig.2
- eine schematische Darstellung einer weiteren Ausführungsform eines erfindungsgemäßen Kraftstoffversorgungssystems.
- Das in Fig.1 insgesamt mit 1 bezeichnete rücklauffreie Kraftstoffversorgungssystem dient beispielsweise zur Kraftstoffversorgung einer Brennkraftmaschine eines Fahrzeugs und beinhaltet als wesentliche Bauelemente eine innerhalb eines Dralltopfes 2 eines Kraftstoffbehälters 4 gehaltene Tankeinbaueinheit 6 umfassend eine Kraftstoffpumpe 8 mit einem vorlaufseitigen Saugfilter 10, ein bezogen auf die Kraftstoffpumpe 8 in einer druckseitigen Druckleitung 12 angeordnetes Rückschlagventil 14 sowie einen mit Einspritzventilen 16 in Strömungsverbindung stehenden Kraftstoffzuteiler 18 oder eine Benzin- oder Dieselhochdruckpumpe. In einem Bereich zwischen dem Rückschlagventil 14 und dem Kraftstoffzuteiler 18 misst ein Drucksensor 20 den Ist-Druck in der Druckleitung 12 und sendet über eine Signalleitung 22 ein entsprechendes Signal an ein Steuergerät, welches vorzugsweise durch ein zentrales Motorsteuergerät 24 (MOTRONIC) gebildet wird und in welchem abhängig von einer Regeldifferenz zwischen dem Ist-Druck und einem bedarfsorientierten Soll-Druck über eine elektrische Leitung 26 ein Steuersignal an ein elektronisches, mit der Kraftstoffpumpe 8 über elektrische Leitungen 28 verbundenes Kraftstoffpumpensteuergerät 30 ausgesteuert wird, um den Druck in der Druckleitung 12 über die Kraftstoffpumpe 8 bedarfsabhängig nachzuregeln.
- Von einem bezogen auf das Rückschlagventil 14 stromabwärtigen Abschnitt der Druckleitung 12 zweigt an einer Verzweigungstelle 32 eine Saugstrahlpumpenleitung 34 ab, welche sich beispielsweise in mehrere, vorzugsweise in zwei Einzelleitungen 36 verzweigend in jedem Zweig 36 eine von Kraftstoff durchflossene Saugpumpe 38 beinhaltet, wobei die Einzelleitungen 36 in den Dralltopf 2 münden. Der Dralltopf 2 dient zum einen als Kraftstoffreservoir, zum andern verhindert er, dass bei starker Seitenbeschleunigung die Kraftstoffpumpe 8 kurzzeitig keinen Kraftstoff mehr ansaugen kann, weil dieser fliehkraftbedingt in einem von der Saugseite entfernten Abschnitt des Kraftstoffbehälters 4 konzentriert ist. In dem von Kraftstoff durchströmten Zustand saugen die Saugstrahlpumpen 38 Kraftstoff aus dem außerhalb des Dralltopfes gelegenen Bereich des Kraftstoffbehälters 4 in die beiden Einzelleitungen 36 hinein und sorgen in bekannter Weise für einen konstanten Kraftstoffpegel innerhalb des Dralltopfes 2.
- In der von der Druckleitung 12 abzweigenden Saugstrahlpumpenleitung 34 ist ein elektrisch betätigbares Magnetventil 40 angeordnet, welches von dem zentralen Motorsteuergerät 24 über eine Steuerleitung 42 vorzugsweise in Abhängigkeit des gemessenen Drucks in der Druckleitung 12, der Temperatur des Kraftstoffs, dem Füllstand und/oder den Motorbetriebsbedingungen angesteuert ist. Das Magnetventil 40 ist ausgebildet, um den Querschnitt der Saugstrahlpumpenleitung 34 zu öffnen oder zu schliessen. Das Magnetventil 40 ist vorzugsweise unbestromt geschlossen und bestromt geöffnet.
- Vor diesem Hintergrund ist die Funktionsweise des Kraftstoffversorgungssystems 1 wie folgt: Bei Lastbetrieb der Brennkraftmaschine saugt die Kraftstoffpumpe 8 Kraftstoff aus dem Dralltopf 2, wobei der Kraftstoffstrom unter Wirkung des Kraftstoffdrucks das Rückschlagventil 14 öffnet und ein Teil des Kraftstoffstroms an der Verzweigungsstelle 32 in die Saugstrahlpumpenleitung 34 fließt. Im Lastbetrieb bestromt das Motorsteuergerät 24 das Magnetventil 40, woraufhin dieses in Öffnungsstellung geschaltet ist, damit die Saugstrahlpumpen 38 Kraftstoff aus dem außerhalb des Dralltopfes 2 gelegenen Bereich des Kraftstoffbehälters 4 in den Dralltopf 2 hinein saugen können. Der andere Teil des Kraftstoffstromes wird entlang der Druckleitung 12 dem Kraftstoffzuteiler 18 bedarfsabhängig zugeführt, um über die Einspritzventile 16 in Brennräume der Brennkraftmaschine eingespritzt zu werden.
- Im Schiebebetrieb sind die Einspritzventile 16 geschlossen, so dass der Kraftstoffstrom in der Druckleitung 12 gleich Null ist, gleichwohl wird die Saugstrahlpumpenleitung 34 durch das weiterhin bestromte und dadurch geöffnet gehaltene Magnetventil 40 durchströmt und folglich Kraftstoff in den Dralltopf 2 gefördert.
- Während einer Stillstandsphase der Brennkraftmaschine hingegen schaltet das Motorsteuergerät 24 das Magnetventil 40 stromlos, woraufhin dieses schließt. Folglich ist der stromabwärts des Rückschlagventils 14 angeordnete Abschnitt der Druckleitung 12 und der stromaufwärts des Magnetventils 40 angeordnete Abschnitt der Saugstrahlpumpenleitung 34 durch die geschlossenen Einspritzventile 16, das geschlossene Magnetventil 40 sowie durch das zur Kraftstoffpumpe 8 hin geschlossene Rückschlagventil 14 gegen die Umgebung abgedichtet, wobei der Druck der in diesen Abschnitten vorhandenen Kraftstoffmenge konstant gehalten werden soll. Ternperaturbedingt kann jedoch der Haltedruck zu hoch sein, was durch den Drucksensor 20 detektiert und an das zentrale Motorsteuergerät 24 gemeldet wird. Dann wird das Magnetventil 40 vom Motorsteuergerät 24 durch einen Stromimpuls kurzzeitig in Öffnungsstellung geschaltet, um den vorgegebenen Haltedruck zu reduzieren.
- Bei dem zweiten Ausführungsbeispiel der Erfindung nach Fig.2 sind die gegenüber dem vorhergehenden Beispiel gleichbleibenden und gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet. Als Magnetventil wird hier ein 2/3 Wegeventil 44 verwendet, von welchem ein Eingang 46 mit der Druckleitung 12, ein erster Ausgang 48 mit den Saugstrahlpumpen 38 und ein zweiter Ausgang 50 mit einem Druckbegrenzungsventil 52 verbunden ist. Das 2/3 Wegeventil 44 wird vom zentralen Motorsteuergerät 24 derart angesteuert, dass es in stromlosem Zustand den Eingang 46 mit dem zweiten Ausgang 50 und in bestromtem Zustand den Eingang 46 mit dem ersten Ausgang 48 verbindet. Vorzugsweise wird das 2/3-Wegeventil 44 während einer Stillstandsphase der Brennkraftmaschine stromlos geschaltet und ansonsten, d.h. im Lastbetrieb und im Schiebebetrieb bestromt. Folglich schaltet bei Stillstand der Brennkraftmaschine und stromlos deaktiviertem Motorsteuergerät 24 das 2/3-Wegeventil 44 automatisch, beispielsweise durch Federvorspannung, in seine stromlose Stellung, in welcher die Druckleitung 12 mit dem Druckbegrenzungsventil 52 verbunden ist, über welches dann Überdruck abgebaut werden kann. Im normalen Lastbetrieb oder im Schiebebetrieb der Brennkraftmaschine wird das 2/3 Wegeventil 44 hingegen vom Motorsteuergerät 24 bestromt, so dass die Saugstrahlpumpen 38 an die Druckleitung 12 angeschlossen sind.
- Gemäß einer Fortbildung der ersten Ausführungsform von Fig.1 erfolgt die Ansteuerung des Magnetventils 40 in Abhängigkeit von einem Füllgrad des Kraftstoffbehälters 4 mit Kraftstoff. Falls man das Magnetventil 40 schließt, wenn der Füllpegel des Kraftstoffbehälters 4 in einem Bereich zwischen maximaler Füllung und einem Pegelstand liegt, welcher im wesentlichen mit einem oberen Rand 54 des Dralltopfes 2 fluchtet, wird der Kraftstoff nicht mehr über die durch das geschlossene Magnetventil 40 außer Betrieb gesetzte Saugstrahlpumpen 38 vom Kraftstoffbehälter 4 in den Dralltopf 2 gefördert. Vielmehr fließt dann der Kraftstoff zum Pegelausgleich aus dem Kraftstoffbehälter 4 über den Rand 54 des Dralltopfes 2 in diesen hinein. Bei ausreichendem Füllgrad des Kraftstoffbehälters 4 können die Saugstrahlpumpen 38 folglich außer Betrieb gesetzt werden. Weiter ist es möglich, den Abstelldruck in Abhängigkeit von der Temperatur und/oder von den Motorbetriebsbedingungen zu variieren.
- Die Außerbetriebnahme der Saugstrahlpumpen 38 sowie die Variation des Abstelldrucks kann auch durch das 3/2-Wegeventil 44 gemäß der zweiten Ausführungsform von Fig.2 erfolgen, falls es bei dem oben beschriebenen, ausreichenden Pegelstand im Kraftstoffbehälter 4 derart geschaltet wird, dass der Eingang 46 mit dem zweiten Ausgang 50 verbunden ist, welcher in das Druckbegrenzungsventil 52 mündet. Dann wird der stromabwärts des 2/3-Wegeventils 44 gelegene Teil der Saugstrahlpumpenleitung 34 bis zu einem vorbestimmten Druckniveau gesperrt, so dass die Saugstrahlpumpen 38 nicht mehr mit Kraftstoff versorgt sind.
- Da die Magnetventile 40, 44 gemäß der Ausführungsformen von Fig.1 und Fig.2 vorzugsweise Schaltventile sind, können sie zur Regelung des Treibdrucks der Saugstrahlpumpen 38 getaktet angesteuert werden. Gemäß einer Alternative hierzu kann das Magnetventil 40, 44 auch ein Proportionalventil sein, das zur Regelung des Treibdrucks der Saugstrahlpumpe angesteuert ist. Durch eine Regelung des Treibdrucks können die Saugstrahlpumpe 38 dann stets in einem Bereich höchsten Wirkungsgrades betrieben werden.
Claims (16)
- Rücklauffreies Kraftstoffversorgungssystem (1) für eine Brennkraftmaschine, mit- wenigstens einer Kraftstoffpumpe (8), mittels der Kraftstoff aus einem ersten Bereich (2) eines Kraftstoffreservoirs in einen mit einem Kraftstoffzuteiler (18) in Verbindung stehenden Druckbereich (12) förderbar ist,- wenigstens einer von durch eine Saugstrahlpumpenleitung (34) mittels der Kraftstoffpumpe (8) gefördertem Kraftstoff durchflossene Saugstrahlpumpe (38), durch welche Kraftstoff aus einem zweiten Bereich (4) des Kraftstoffreservoirs in den ersten Bereich (2) förderbar ist,- wenigstens einem den Druck im Druckbereich (12) regelnden und/oder steuernden Mittel (20, 24, 30),- wenigstens einem Rückschlagventil (14), durch welches wenigstens ein Teil des Druckbereichs (12) gegen die Kraftstoffpumpe (8) sperrbar ist,dadurch gekennzeichnet, dass die den Druck im Druckbereich (12) regelnden und/oder steuernden Mittel (20, 24, 30) wenigstens ein elektrisch betätigbares Magnetventil (40; 44) beinhalten, welches stromabwärts des Rückschlagventils (14) in der Saugstrahlpumpenleitung (34) angeordnet ist.
- Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 1, dadurch gekennzeichnet, dass das Magnetventil (40; 44) dem Rückschlagventil (14) und der Saugstrahlpumpe (38) zwischengeordnet ist.
- Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Magnetventil (40; 44) von einem elektronischen Motorsteuergerät (24) angesteuert ist.
- Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 3, dadurch gekennzeichnet, dass die Ansteuerung des Magnetventils (40; 44) in Abhängigkeit des von einem im Druckbereich (12) angeordneten Drucksensors (20) gemessenen Drucks erfolgt.
- Rücklauffreies Kraftstoffversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Eingang des Magnetventils (40) mit dem Druckbereich (12) und ein Ausgang mit der Saugstrahlpumpe (38) verbunden ist.
- Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 5, dadurch gekennzeichnet, dass das Magnetventil (40) während einer Stillstandsphase der Brennkraftmaschine unbestromt geschlossen und ansonsten bestromt geöffnet ist.
- Rücklauffreies Kraftstoffversorgungssystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Magnetventil durch ein 2/3-Wegeventil (44) gebildet wird, von welchem ein Eingang (46) mit dem Druckbereich (12), ein erster Ausgang (48) mit der Saugstrahlpumpe (38) und ein zweiter Ausgang (50) mit einem Druckbegrenzungsventil (52) verbunden ist.
- Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 7, dadurch gekennzeichnet, dass das 2/3-Wegeventil (44) derart angesteuert ist, dass es in stromlosem Zustand den Eingang (46) mit dem zweiten Ausgang (50) und in bestromtem Zustand den Eingang (46) mit dem ersten Ausgang (48) verbindet.
- Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 8, dadurch gekennzeichnet, dass das 2/3-Wegeventil (44) während einer Stillstandsphase der Brennkraftmaschine stromlos und ansonsten bestromt ist.
- Rücklauffreies Kraftstoffversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mit dem Kraftstoffzuteiler (18) in Verbindung stehende Druckbereich durch eine Druckleitung (12) gebildet wird, welche die Kraftstoffpumpe (8) mit Einspritzventilen (16) verbindet.
- Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 10, dadurch gekennzeichnet, dass die Saugstrahlpumpenleitung (34) von der Druckleitung (12) stromabwärts des Rückschlagventils (14) abzweigt.
- Rücklauffreies Kraftstoffversorgungssystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Ansteuerung des Magnetventils (40; 44) in Abhängigkeit von einem Füllgrad des zweiten Bereichs (4) des Kraftstoffreservoirs mit Kraftstoff erfolgt.
- Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 12, dadurch gekennzeichnet, dass der erste Bereich des Kraftstoffreservoirs durch einen die Kraftstoffpumpe (8) aufnehmenden Topf (2) gebildet wird, welcher innerhalb des zweiten Bereichs (4) des Kraftstoffreservoirs angeordnet ist.
- Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 13, dadurch gekennzeichnet, dass das Magnetventil (40; 44) geschlossen ist, wenn der Füllpegel des zweitens Bereichs (4) des Kraftstoffreservoirs in einem Bereich zwischen maximaler Füllung und einem Pegelstand liegt, welcher im wesentlichen mit einem oberen Rand des Topfes fluchtet, und dass es ansonsten geöffnet ist.
- Rücklauffreies Kraftstoffversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Magnetventil (40; 44) durch ein Schaltventil gebildet wird, welches zur Regelung des Treibdrucks der Saugstrahlpumpe (38) getaktet angesteuert ist.
- Rücklauffreies Kraftstoffversorgungssystem nach einem Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Magnetventil durch ein Proportionalventil (40; 44) gebildet wird, welches zur Regelung des Treibdrucks der Saugstrahlpumpe (38) angesteuert ist.
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10257280 | 2002-12-07 | ||
| DE10257280 | 2002-12-07 | ||
| DE10327562 | 2003-06-18 | ||
| DE10327562A DE10327562A1 (de) | 2002-12-07 | 2003-06-18 | Rücklauffreies Kraftstoffversorgungssystem |
| PCT/DE2003/002336 WO2004053318A1 (de) | 2002-12-07 | 2003-07-11 | Rücklauffreies kraftstoffversorgungssystem |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1576272A1 EP1576272A1 (de) | 2005-09-21 |
| EP1576272B1 true EP1576272B1 (de) | 2006-12-13 |
Family
ID=32509742
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP03799428A Expired - Lifetime EP1576272B1 (de) | 2002-12-07 | 2003-07-11 | Rücklauffreies kraftstoffversorgungssystem |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US7275524B2 (de) |
| EP (1) | EP1576272B1 (de) |
| BR (1) | BR0307288A (de) |
| DE (1) | DE50305995D1 (de) |
| WO (1) | WO2004053318A1 (de) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10319660B4 (de) * | 2003-05-02 | 2018-04-19 | Robert Bosch Gmbh | Vorrichtung zum Fördern von Kraftstoff aus einem Vorratsbehälter zu einer Brennkraftmaschine |
| DE102004049286A1 (de) * | 2004-10-09 | 2006-04-20 | Robert Bosch Gmbh | Vorrichtung zum Fördern von Kraftstoff |
| US7469683B2 (en) * | 2006-03-29 | 2008-12-30 | Robert Bosch Gmbh | Fuel system with pressure regulation and pressure relief |
| EP1911962A1 (de) * | 2006-09-29 | 2008-04-16 | Inergy Automotive Systems Research (SA) | Einstückige Doppestrahlpunpe und diese verwendes Kraftstoffsystem |
| DE102007039892A1 (de) * | 2007-08-23 | 2009-02-26 | Continental Automotive Gmbh | Einspritzanlage für eine Brennkraftmaschine |
| DE102010062121A1 (de) * | 2010-11-29 | 2012-05-31 | Robert Bosch Gmbh | Vorrichtung zum Fördern von Kraftstoff |
| US9097217B2 (en) * | 2011-08-31 | 2015-08-04 | Gm Global Technology Operations. Llc | Propulsion systems and modules for vehicles |
| US20140338752A1 (en) | 2013-05-14 | 2014-11-20 | Delphi Technologies, Inc. | Fuel supply system and method for operating |
| DE102013212267A1 (de) * | 2013-06-26 | 2014-12-31 | Robert Bosch Gmbh | Kraftstoff-Fördersystem mit Teildruckentlastungsventil an Treibleitung einer Saugstrahlpumpe |
| US10451013B2 (en) * | 2015-08-20 | 2019-10-22 | Ford Global Technologies, Llc | Method for operating a dual lift pump system |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4926829A (en) * | 1988-11-28 | 1990-05-22 | Walbro Corporation | Pressure-responsive fuel delivery system |
| DE4123367A1 (de) * | 1991-07-15 | 1993-01-21 | Magenwirth Gmbh Co Gustav | Einrichtung zum foerdern von kraftstoff aus einem behaelter |
| DE4224981C2 (de) * | 1992-07-29 | 2003-06-26 | Bosch Gmbh Robert | Einrichtung zum Fördern von Kraftstoff aus einem Vorratstank zur Brennkraftmaschine eines Kraftfahrzeuges |
| DE4242242C2 (de) * | 1992-12-15 | 2003-04-30 | Bosch Gmbh Robert | Vorrichtung zum Versorgen der Brennkraftmaschine eines Kraftfahrzeuges mit in einem Vorratstank vorhandenem Kraftstoff |
| US5732684A (en) * | 1994-09-22 | 1998-03-31 | Ford Global Technologies, Inc. | Automotive fuel delivery system with pressure actuated auxiliary fuel pump |
| DE19540892A1 (de) * | 1995-11-02 | 1997-05-07 | Bayerische Motoren Werke Ag | Kraftstoffanlage |
| DE19628580A1 (de) * | 1996-07-16 | 1998-01-22 | Mannesmann Vdo Ag | Strömungsventil |
| US6024064A (en) * | 1996-08-09 | 2000-02-15 | Denso Corporation | High pressure fuel injection system for internal combustion engine |
| DE19913477B4 (de) * | 1999-03-25 | 2004-08-26 | Robert Bosch Gmbh | Verfahren zum Betreiben einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs |
| DE19950289A1 (de) * | 1999-10-19 | 2001-04-26 | Bosch Gmbh Robert | Kraftstoffversorgungseinrichtung für eine Brennkraftmaschine eines Kraftfahrzeugs |
| DE19951132A1 (de) * | 1999-10-23 | 2001-05-10 | Bosch Gmbh Robert | Verfahren zum Ablassen des Kraftstoffdrucks in einem rücklauffreien Kraftstoffversorgungssystem |
| DE29922474U1 (de) * | 1999-12-22 | 2001-05-03 | Robert Bosch Gmbh, 70469 Stuttgart | Kraftstoffversorgungseinrichtung für eine Brennkraftmaschine eines Kraftfahrzeugs |
| DE10006622A1 (de) * | 2000-02-15 | 2001-08-16 | Bosch Gmbh Robert | Kraftstoffversorgungseinrichtung für eine Brennkraftmaschine eines Kraftfahrzeugs |
| US6622707B2 (en) * | 2000-06-28 | 2003-09-23 | Delphi Technologies, Inc. | Electronic returnless fuel system |
| US6532941B2 (en) | 2000-08-29 | 2003-03-18 | Delphi Technologies, Inc. | Electronic returnless fuel system |
| IT1320684B1 (it) | 2000-10-03 | 2003-12-10 | Fiat Ricerche | Dispositivo di controllo della portata di una pompa ad alta pressionein un impianto di iniezione a collettore comune del combustibile di un |
| DE10058674A1 (de) * | 2000-11-25 | 2002-06-06 | Bosch Gmbh Robert | Verfahren, Computerprogramm und Steuer und/oder Regelgerät zum Betreiben einer Brennkraftmaschine |
| US6718948B2 (en) * | 2002-04-01 | 2004-04-13 | Visteon Global Technologies, Inc. | Fuel delivery module for petrol direct injection applications including supply line pressure regulator and return line shut-off valve |
-
2003
- 2003-07-11 DE DE50305995T patent/DE50305995D1/de not_active Expired - Lifetime
- 2003-07-11 BR BR0307288-6A patent/BR0307288A/pt not_active IP Right Cessation
- 2003-07-11 WO PCT/DE2003/002336 patent/WO2004053318A1/de not_active Ceased
- 2003-07-11 US US10/509,591 patent/US7275524B2/en not_active Expired - Fee Related
- 2003-07-11 EP EP03799428A patent/EP1576272B1/de not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| US20050175488A1 (en) | 2005-08-11 |
| DE50305995D1 (de) | 2007-01-25 |
| BR0307288A (pt) | 2004-12-28 |
| US7275524B2 (en) | 2007-10-02 |
| EP1576272A1 (de) | 2005-09-21 |
| WO2004053318A1 (de) | 2004-06-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE19640826B4 (de) | Speicherkraftstoffeinspritzvorrichtung und Druckregelvorrichtung hierfür | |
| DE69906459T2 (de) | Kraftstoffeinspritzvorrichtung der Accumulatorgattung | |
| DE102013021920B4 (de) | Dual-Brennstoff-Common-Rail-Systeme und Verfahren zum Übergang von einem Nur-Diesel- auf ein Dual-Brennstoff-Betriebsverfahren | |
| EP1306548B1 (de) | Kraftstoffeinspritzanlage mit verbesserter Fördermengenregelung | |
| DE102008001240A1 (de) | Verfahren und Vorrichtung zur Steuerung eines Kraftstoffversorgungssystems | |
| DE10155247B4 (de) | Einspritzanlage mit Notlauffunktion | |
| DE102007017256A1 (de) | Brennstoff-Zuführ-Vorrichtung für einen Motor und Steuerverfahren hierfür | |
| DE3436768A1 (de) | Verfahren zur steuerung der kraftstoffeinspritzung bei brennkraftmaschinen und kraftstoffeinspritzsystem zur durchfuehrung des verfahrens | |
| DE69816048T2 (de) | Verfahren zur abgabe einer kleinen menge von brennstoff mit einer hydraulisch betätigten einspritzvorrichtung während getrennter einspritzung | |
| DE102010016093A1 (de) | Kraftstoffeinspritzerfassungsvorrichtung | |
| DE19959431A1 (de) | Elektronische Brennstoffeinspritzung für ruhigen Betrieb | |
| EP1576272B1 (de) | Rücklauffreies kraftstoffversorgungssystem | |
| WO2009056402A1 (de) | Verfahren zur erkennung einer kraftstoffsorte | |
| DE102010064176A1 (de) | Kraftstoffversorgungssystem für eine Brennkraftmaschine | |
| EP2344750A1 (de) | Kraftstoff-hochdruckpumpe für eine brennkraftmaschine | |
| DE10341775B4 (de) | Kraftstoffeinspritzsystem der Speicherbauart | |
| DE102011005663A1 (de) | Betriebsverfahren für eine Elektro-Kraftstoffpumpe eines Kraftstoffversorgungs-Systems | |
| DE102004002139A1 (de) | Kraftstoffversorgungssystem für eine Brennkraftmaschine | |
| DE102006000333B4 (de) | Kraftstoffeinspritzsteuersystem, das einen unerwünschten Anstieg des Kraftstoffdrucks vermeidet | |
| DE102008002462A1 (de) | Kraftstoffversorgungseinrichtung | |
| EP1825125B1 (de) | Verfahren zum betreiben eines kraftstoffsystems einer brennkraftmaschine | |
| DE112007001809T5 (de) | Begrenzen des Pumpendurchsatzes während eines Überdrehzahl-Selbstaktivierungszustands | |
| EP1124055B1 (de) | Kraftstoffversorgungsanlage für eine Brennkraftmaschine | |
| DE102005011114A1 (de) | Druckakkumulations-Kraftstoffeinspritzsystem | |
| DE102010064181A1 (de) | Kraftstoffversorgungssystem für eine Brennkraftmaschine mit einer Kraftstoff-pumpe |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20050707 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT SE TR |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT SE |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REF | Corresponds to: |
Ref document number: 50305995 Country of ref document: DE Date of ref document: 20070125 Kind code of ref document: P |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| ET | Fr: translation filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20070914 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20090727 Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100712 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120723 Year of fee payment: 10 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20120803 Year of fee payment: 10 Ref country code: IT Payment date: 20120721 Year of fee payment: 10 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130711 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140331 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130711 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130711 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190924 Year of fee payment: 17 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50305995 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210202 |