WO2004053318A1 - Rücklauffreies kraftstoffversorgungssystem - Google Patents

Rücklauffreies kraftstoffversorgungssystem Download PDF

Info

Publication number
WO2004053318A1
WO2004053318A1 PCT/DE2003/002336 DE0302336W WO2004053318A1 WO 2004053318 A1 WO2004053318 A1 WO 2004053318A1 DE 0302336 W DE0302336 W DE 0302336W WO 2004053318 A1 WO2004053318 A1 WO 2004053318A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
pressure
return
supply system
fuel supply
Prior art date
Application number
PCT/DE2003/002336
Other languages
English (en)
French (fr)
Inventor
Peter Schelhas
Andreas Herforth
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10327562A external-priority patent/DE10327562A1/de
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to BR0307288-6A priority Critical patent/BR0307288A/pt
Priority to DE50305995T priority patent/DE50305995D1/de
Priority to US10/509,591 priority patent/US7275524B2/en
Priority to EP03799428A priority patent/EP1576272B1/de
Publication of WO2004053318A1 publication Critical patent/WO2004053318A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M37/10Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir
    • F02M37/106Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir the pump being installed in a sub-tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/02Feeding by means of suction apparatus, e.g. by air flow through carburettors
    • F02M37/025Feeding by means of a liquid fuel-driven jet pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M2037/085Electric circuits therefor
    • F02M2037/087Controlling fuel pressure valve

Definitions

  • the invention is based on a return-free fuel supply system according to the preamble of claim 1.
  • a fuel supply system fuel is pumped from a fuel tank from a fuel pump via a pressure line to a fuel distributor with injection valves located on the internal combustion engine or to a high-pressure gasoline or diesel pump.
  • Modern fuel supply systems have a tank installation unit inserted into the fuel tank, into which the fuel pump, a suction filter and a pot are integrated as a fuel reserve, which is filled by one or more suction jet pumps.
  • the suction jet pumps consequently ensure that the pot for the provision of the reserve fuel is always completely full, even when the fuel level in the fuel tank drops.
  • the suction jet pumps are arranged in the suction jet pump line branching off from the pressure line, which opens into the pot.
  • a return line branches off from the fuel rail and leads back into the fuel tank.
  • the amount of fuel not required by the internal combustion engine then flows through the fuel distributor via the return line back into the fuel tank.
  • the pressure in the fuel rail is regulated as required by measuring the actual fuel pressure using a pressure sensor, comparing it within a control unit with a target fuel pressure stored in a map and changing the speed of the fuel pump as a function of the control difference.
  • a check valve downstream of the fuel pump in the pressure line seals the pressure area containing the fuel rail. The control function takes place as long as the internal combustion engine is operating under load and a consumption amount of fuel is being called up.
  • Another type of pressure relief valve is closed during operation, so that after a phase of non-delivery and at the start of load operation, due to the sudden increase in pressure, over-greasing and, due to the pressure-related higher leakages at the injection valves, higher HC emissions can also occur.
  • the opening pressure of both types of pressure relief valves cannot be varied during operation.
  • the means regulating and / or controlling the pressure in the pressure range include at least one electrically actuable solenoid valve, which is arranged downstream of the check valve in the suction jet pump line
  • the solenoid valve can be included in the electronic control of the internal combustion engine, which regulates the system pressure and the fuel quantity in All operating states of the internal combustion engine enabled, especially during the pushing operation and at a standstill.
  • variable opening pressures can be set via the electrically actuated solenoid valve depending on the opening time. This is particularly advantageous to compensate for temperature-related changes in pressure.
  • electrically operated solenoid valves which is why the fuel pump can be made smaller and the risk of contamination of the valve seat is significantly reduced.
  • the solenoid valve is preferably arranged between the check valve and the suction jet pump and is controlled by a central engine control unit, the solenoid valve being controlled as a function of the pressure measured in the pressure range.
  • the solenoid valve is integrated in the electronic motor control, which means that variable opening pressures can be achieved.
  • the pressure range associated with injectors is preferably formed by a pressure line which connects the fuel pump to the injectors.
  • an inlet of the solenoid valve is connected to the pressure area and an outlet is connected to the suction jet pump.
  • the solenoid valve is closed when de-energized during a standstill phase of the internal combustion engine and is otherwise opened, for example during normal operation under load and during pushing operation.
  • the solenoid valve is opened by signals from the engine control unit in order to keep the pressure in the pressure line constant.
  • the electronic control of the solenoid valve allows the holding pressure to be set as desired when the vehicle is in overrun and when the engine is not running.
  • this also means that the function of the engine control unit must be temporarily maintained even during the standstill phase of the internal combustion engine.
  • the solenoid valve is formed by a 2/3 way valve, of which an inlet is connected to the pressure line, a first outlet to the suction jet pump and a second outlet to a pressure relief valve.
  • This 2/3 way valve is controlled by the engine control unit such that it connects the input to the second output in the de-energized state and the input to the first output in the energized state. Consequently, when the internal combustion engine is at a standstill and the engine control unit is de-energized, the 2/3 way valve switches automatically, for example by spring preload, to its de-energized position, in which the pressure line is connected to the pressure relief valve, via which excess pressure is then released. In normal load operation or when the internal combustion engine is in push operation, however, the 2/3 directional control valve is energized by the engine control unit, so that the suction jet pump is connected to the pressure line.
  • the solenoid valve is controlled as a function of a degree of filling of the second area of the fuel tank forming fuel reservoir with fuel.
  • the pot forming the first area of the fuel reservoir and receiving the fuel pump is then arranged within the fuel tank as a reservoir for the reserve fuel. If the solenoid valve is closed when the fill level of the fuel tank is in a range between the maximum fill level and a level which is essentially aligned with an upper edge of the pot, the fuel is no longer discharged from the fuel tank via the suction jet pump which is deactivated by the closed solenoid valve promoted in the pot. Rather, the fuel then flows out of the fuel tank into the pot through the edge of the pot for level compensation.
  • the suction jet pump can consequently be put out of operation, which results in a noticeable reduction in the pumping power required by the fuel pump, in an increase in the system efficiency, in a lower on-board electrical system load, in a lower tank heating and in a longer service life of the fuel pump.
  • a further embodiment provides that the solenoid valve is formed by a switching valve, which is controlled in a clocked manner to regulate the driving pressure of the suction jet pump.
  • the solenoid valve can also be a proportional valve, which is controlled to regulate the driving pressure of the suction jet pump. In both cases, the suction jet pump can always be operated in an area with maximum efficiency.
  • the solenoid valve serves in the sense of a multiple function not only for a particularly advantageous regulation of the system pressure and the fuel quantity during the pushing operation and at standstill but also for further energy-saving measures.
  • FIG. 1 shows a schematic representation of a preferred embodiment of a fuel supply system according to the invention
  • FIG. 2 shows a schematic representation of a further embodiment of a fuel supply system according to the invention.
  • the return-free fuel supply system designated overall in FIG. 1 serves, for example, to supply fuel to an internal combustion engine of a vehicle and contains as essential components a tank installation unit 6 held within a swirl pot 2 of a fuel tank 4 and comprising a fuel pump 8 with a suction-side suction filter 10 on the fuel pump 8 in a pressure-side pressure line 12 check valve 14 and a fuel distributor 18 in flow connection with injection valves 16 or a gasoline or diesel high-pressure pump.
  • a tank installation unit 6 held within a swirl pot 2 of a fuel tank 4 and comprising a fuel pump 8 with a suction-side suction filter 10 on the fuel pump 8 in a pressure-side pressure line 12 check valve 14 and a fuel distributor 18 in flow connection with injection valves 16 or a gasoline or diesel high-pressure pump.
  • a pressure sensor 20 measures the actual pressure in the pressure line 12 and sends a corresponding signal to a control unit via a signal line 22, which is preferably formed by a central engine control unit 24 (MOTRONIC) and in which, depending on a control difference between the actual pressure and a demand-oriented target pressure, is controlled via an electrical line 26 to an electronic fuel pump control unit 30, which is connected to the fuel pump 8 via electrical lines 28, in order to control the pressure in the pressure line 12 via the Readjust fuel pump 8 as required.
  • MOTRONIC central engine control unit 24
  • a suction jet pump line 34 branches off at a branching point 32 from a downstream section of the pressure line 12 with respect to the check valve, which, for example, includes a suction pump 38 through which fuel flows, preferably in two individual lines 36, the individual lines 36 open into the swirl pot 2.
  • the swirl pot 2 serves on the one hand as a fuel reservoir, and on the other hand it prevents the fuel pump 8 from being able to suck in fuel for a short time due to strong lateral acceleration, because this is concentrated in a section of the fuel tank 4 that is remote from the suction side due to centrifugal force.
  • the suction jet pumps 38 suck fuel from the area of the fuel tank 4 outside the swirl pot into the two individual lines 36 and ensure a constant fuel level within the swirl pot 2 in a known manner.
  • an electrically actuable solenoid valve 40 Arranged in the suction jet pump line 34 branching off from the pressure line 12 is an electrically actuable solenoid valve 40, which is operated by the central engine control unit 24 via a control line 42, preferably as a function of the measured pressure in the pressure line 12, the temperature of the fuel, the fill level and / or the engine operating conditions is controlled.
  • the solenoid valve 40 is designed to open or close the cross section of the suction jet pump line 34.
  • the solenoid valve 40 is preferably closed when deenergized and opened when energized.
  • the functioning of the fuel supply system 1 is as follows: When the internal combustion engine is under load, the fuel pump 8 sucks fuel out of the swirl pot 2, the fuel flow opening the check valve 14 under the effect of the fuel pressure and part of the fuel flow at the branching point 32 into the suction jet pump line 34 flows.
  • the engine control unit 24 energizes the solenoid valve 40, whereupon it is switched to the open position, so that the suction jet pumps 38 run out of fuel can suck the area of the fuel tank 4 outside the swirl pot 2 into the swirl pot 2.
  • the other part of the fuel flow is fed along the pressure line 12 to the fuel distributor 18 as required, in order to be injected into the combustion chambers of the internal combustion engine via the injection valves 16.
  • the engine control unit 24 disconnects the solenoid valve 40, whereupon it closes. Consequently, the section of the pressure line 12 arranged downstream of the check valve 14 and the section of the suction jet pump line 34 arranged upstream of the solenoid valve 40 are sealed off from the environment by the closed injection valves 16, the closed solenoid valve 40 and by the check valve 14 closed to the fuel pump 8, the Pressure of the amount of fuel present in these sections should be kept constant. Due to the temperature, however, the holding pressure may be too high, which is detected by the pressure sensor 20 and reported to the central engine control unit 24. Then the solenoid valve 40 is briefly switched into an open position by the motor control device 24 by means of a current pulse in order to reduce the predetermined holding pressure.
  • a 2/3 way valve 44 is used as the solenoid valve, from which an inlet 46 is connected to the pressure line 12, a first outlet 48 to the suction jet pumps 38 and a second outlet 50 to a pressure relief valve 52.
  • the 2/3 way valve 44 is controlled by the central engine control unit 24 such that it connects the input 46 to the second output 50 in the de-energized state and the input 46 to the first output 48 in the energized state.
  • the 2/3-way valve 44 is de-energized during a standstill phase of the internal combustion engine and is otherwise energized, ie in load operation and in push operation.
  • the 2/3 way valve 44 switches automatically, for example by spring preload, to its de-energized position, in which the pressure line 12 is connected to the pressure relief valve 52, via which excess pressure can then be reduced.
  • the 2/3 directional valve 44 is energized by the engine control unit 24, so that the suction jet pumps 38 are connected to the pressure line 12.
  • the solenoid valve 40 is activated as a function of a degree of filling of the fuel tank 4 with fuel. If you close the solenoid valve 40 when the filling level of the fuel tank 4 is in a range between the maximum filling and a level which is essentially aligned with an upper edge 54 of the swirl pot 2, the fuel is no longer beyond that by the closed solenoid valve 40 Operation set suction jet pumps 38 promoted by the fuel tank 4 in the swirl pot 2. Rather, the fuel then flows out of the fuel tank 4 via the edge 54 of the swirl pot 2 into the same for level compensation. If the fuel tank 4 is sufficiently full, the suction jet pumps 38 can consequently be put out of operation. It is also possible to vary the parking pressure as a function of the temperature and / or the engine operating conditions.
  • the decommissioning of the suction jet pumps 38 and the variation of the parking pressure can also be carried out by the 3/2-way valve 44 according to the second embodiment. 2 take place if it is switched at the above-described sufficient level in the fuel tank 4 such that the inlet 46 is connected to the second outlet 50, which opens into the pressure relief valve 52. Then the part of the suction jet pump line 34 located downstream of the 2/3-way valve 44 is blocked up to a predetermined pressure level, so that the suction jet pumps 38 are no longer supplied with fuel.
  • the solenoid valves 40, 44 are preferably switching valves according to the embodiments in FIGS. 1 and 2, they can be controlled in a clocked manner to regulate the driving pressure of the suction jet pumps 38.
  • the solenoid valve 40, 44 can also be a proportional valve, which is controlled to regulate the driving pressure of the suction jet pump. By regulating the driving pressure, the suction jet pump 38 can then always be operated in an area of maximum efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

Die Erfindung betrifft ein rücklauffreies Kraftstoffversorgungssystem (1) für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs, mit wenigstens einer Kraftstoffpumpe (8), mittels der Kraftstoff aus einem ersten Bereich (2) eines Kraftstoffreservoirs in einen mit einem Kraftstoffzuteiler (18) in Verbindung stehenden Druckbereich (12) förderbar ist, wenigstens einer von durch eine Saugstrahlpumpenleitung (34) mittels der Kraftstoffpumpe (8) gefördertem Kraftstoff durchflossene Saugstrahlpumpe (38), durch welche Kraftstoff aus einem zweiten Bereich (4) des Kraftstoffreservoirs in den ersten Bereich (2) förderbar ist, wenigstens einem den Druck im Druckbereich (12) regelnden und/oder steuernden Mittel (20, 24, 30), und wenigstens einem Rückschlagventil (14), durch welches wenigstens ein Teil des Druckbereichs (12) gegen die Kraftstoffpumpe (8) sperrbar ist. Die Erfindung sieht vor, dass die den Druck im Druckbereich regelnden und/oder steuernden Mittel (20, 24, 30) wenigstens ein elektrisch betätigbares Magnetventil (40; 44) beinhalten, welches stromabwärts des Rückschlagventils (14) in der Saugstrahlpumpenleitung (34) angeordnet ist.

Description

Rücklauffreies Kraftstoffversorgungssystem
Beschreibung
Stand der Technik
Die Erfindung geht aus von einem rücklauffreien Kraftstoffversorgungssystem gemäß dem Oberbegriff von Anspruch 1.
In einem Kraftstoffversorgungssystem wird Kraftstoff aus einem Kraftstoffbehälter von einer Kraftstoffpumpe über eine Druckleitung zu einem an der Brennkraftmaschine befindlichen Kraftstoffverteiler mit Einspritzventilen oder zu einer Benzinoder Dieselhochdruckpumpe gepumpt. Moderne Kraftstoffversorgungssysteme weisen eine in den Kraftstoffbehälter eingesetzte Tankeinbaueinheit auf, in welche die Kraftstoffpumpe, ein Saugfilter und ein Topf als Kraftstoffreserve integriert ist, welcher durch eine oder mehrere Saugstrahlpumpen befüllt wird. Die Saugstrahlpumpen sorgen folglich dafür, dass auch bei abfallendem Kraftstoffpegel im Kraftstoffbehälter der Topf zur Bereitstellung des Reservekraftstoffs stets vollständig gefüllt ist. Die Saugstrahlpumpen sind in der von der Druckleitung abzweigenden Saugstrahlpumpenleitung angeordnet, welche in den Topf mündet.
Bei manchen Kraftstoffversorgungssystemen zweigt von dem Kraftstoffverteiler eine Rücklaufleitung ab, die zurück in den Kraftstoffbehälter führt. Die von der Brennkraftmaschine nicht benötigte Kraftstoffmenge strömt dann durch den Kraft- stoffverteiler über die Rücklaufleitung zurück in den Kraftstoffbehälter. Bei beispielsweise aus der DE 199 51 132 A1 bekannten rücklauffreien Kraftstoffversorgungssystemen ist dagegen keine Rücklaufleitung von dem Kraftstoffverteiler zu dem Kraftstoffbehälter vorgesehen. Vielmehr wird der Druck im Kraftstoffverteiler bedarfsgerecht geregelt, indem der Ist-Kraftstoffdruck mittels eines Drucksensors gemessen, innerhalb eines Steuergeräts mit einem in einem Kennfeld abgelegten Soll-Kraftstoffdruck verglichen und abhängig von der Regeldifferenz die Drehzahl der Kraftstoffpumpe verändert wird. Ein der Kraftstoffpumpe nachgeordnetes Rückschlagventil in der Druckleitung sorgt für eine Abdichtung des den Kraftstoffverteiler enthaltenden Druckbereichs. Die Regelfunktion erfolgt, solange die Brennkraftmaschine unter Last betrieben und eine Verbrauchsmenge an Kraftstoff abgerufen wird.
Während Phasen, in denen die Einspritzventile geschlossen sind und die Kraftstoffpumpe keinen Kraftstoff in die Druckleitung fördert, beispielsweise bei Motorstillstand, kann bei hohen Temperaturen der Druck in der einerseits durch die geschlossenen Einspritzventile und andererseits das geschlossene Rücklaufventil dichten Druckleitung ansteigen, weshalb mechanisch betätigte Druckbegrenzungsventile oder Membrandruckregler verwendet werden, um den Druck in der Druckleitung konstant zu halten. Ein Typ dieser Druckbegrenzungsventile muss im Betrieb stets von einer geringen Überströmmenge durchspült werden, was einerseits den ständigen Betrieb der Kraftstoffpumpe und folglich einen gewissen Energieverbrauch erfordert und andererseits wegen der geringen Spülmenge die Gefahr besteht, dass sich Schmutz am Ventilsitz ablagert. Ein weiterer Typ von Druckbegrenzungsventil ist im Betriebsfall geschlossen, so dass nach einer Phase der Nichtförderung und zu Beginn des Lastbetriebs wegen des dann plötzlich einsetzenden Druckanstiegs Überfettungen und aufgrund der druckbedingt höheren Leckagen an den Einspritzventilen auch höhere HC-Emissionen auftreten können. Außerdem ist der Öffnungsdruck bei beiden Typen von Druckbegrenzungsventilen während des Betriebs nicht variierbar. Vorteile der Erfindung
Indem die den Druck im Druckbereich regelnden und/oder steuernden Mittel wenigstens ein elektrisch betätigbares Magnetventil beinhalten, welches stromabwärts des Rückschlagventils in der Saugstrahlpumpenleitung angeordnet ist, kann das Magnetventil in die elektronische Regelung der Brennkraftmaschine einbezogen werden, was eine Regelung des Systemdrucks und der Kraftstoffmenge in allen Betriebszuständen der Brennkraftmaschine ermöglicht, insbesondere während des Schiebebetriebs und bei Stillstand. Dann sind auch im Gegensatz zu den mechanisch hydraulisch betätigten Ventilen des Stands der Technik über das elektrische betätigbare Magnetventil je nach Öffnungsdauer variable Öffnungsdrücke einstellbar. Dies ist insbesondere zum Ausgleich von temperaturbedingten Druckänderungen von Vorteil. Schließlich entfällt bei elektrisch betätigten Magnetventilen das Erfordernis der ständigen Durchspülung, weshalb die Kraftstoffpumpe kleiner dimensioniert werden kann und sich das Verschmutzungsrisiko des Ventilsitzes wesentlich reduziert.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Patentanspruch 1 angegebenen Erfindung möglich.
In bevorzugter Weise ist das Magnetventil dem Rückschlagventil und der Saugstrahlpumpe zwischengeordnet und wird von einem zentralen Motorsteuergerät angesteuert, wobei die Ansteuerung des Magnetventils in Abhängigkeit des von einem im Druckbereich angeordneten Drucksensors gemessenen Drucks erfolgt. Durch diese Maßnahme ist das Magnetventil in die elektronische Motorsteuerung integriert, wodurch variable Öffnungsdrücke realisierbar sind. Der mit Einspritzventilen in Verbindung stehende Druckbereich wird vorzugsweise durch eine Druckleitung gebildet wird, welche die Kraftstoffpumpe mit den Einspritzventilen verbindet. Gemäß einer ersten Ausführungsform ist ein Eingang des Magnetventils mit dem Druckbereich und ein Ausgang mit der Saugstrahlpumpe verbunden. Insbesondere ist das Magnetventil während einer Stillstandsphase der Brennkraftmaschine unbestromt geschlossen und ansonsten, beispielsweise während des normalen Betriebs unter Last und während des Schiebebetriebs bestromt geöffnet. Im Falle eines beispielsweise temperaturbedingten Druckanstiegs während der Stillstandsphase wird das Magnetventil durch Signale des Motorsteuergeräts geöffnet, um den Druck in der Druckleitung konstant zu halten. Durch die elektronische Regelung des Magnetventils kann insbesondere der Haltedruck bei Schiebebetrieb und bei Motorstillstand beliebig festgelegt werden. Dies bedeutet aber auch, dass die Funktion des Motorsteuergeräts temporär auch während der Stillstandsphase der Brennkraftmaschine aufrecht erhalten werden muss.
Hierauf kann bei einer zweiten Ausführungsform verzichtet werden, bei welcher das Magnetventil durch ein 2/3 Wegeventil gebildet wird, von welchem ein Eingang mit der Druckleitung, ein erster Ausgang mit der Saugstrahlpumpe und ein zweiter Ausgang mit einem Druckbegrenzungsventil verbunden ist. Dieses 2/3 Wegeventil wird vom Motorsteuergerät derart angesteuert ist, dass es in stromlosem Zustand den Eingang mit dem zweiten Ausgang und in bestromtem Zustand den Eingang mit dem ersten Ausgang verbindet. Folglich schaltet bei Stillstand der Brennkraftmaschine und stromlos deaktiviertem Motorsteuergerät das 2/3 Wegeventil automatisch, beispielsweise durch Federvorspannung, in seine stromlose Stellung, in welcher die Druckleitung mit dem Druckbegrenzungsventil verbunden ist, über welches dann Überdruck abgebaut wird. Im normalen Lastbetrieb oder im Schiebebetrieb der Brennkraftmaschine wird das 2/3 Wegeventil hingegen vom Motorsteuergerät bestromt, so dass die Saugstrahlpumpe an die Druckleitung angeschlossen ist.
Gemäß einer weiteren Ausführungsform der Erfindung erfolgt die Ansteuerung des Magnetventils in Abhängigkeit von einem Füllgrad des den zweiten Bereich des Kraftstoffreservoirs bildenden Kraftstoffbehälters mit Kraftstoff. Innerhalb des Kraftstoffbehälters ist dann der den ersten Bereich des Kraftstoffreservoirs bildende, die Kraftstoffpumpe aufnehmende Topf als Reservoir für den Reservekraftstoff angeordnet. Falls man das Magnetventil schließt, wenn der Füllpegel des Kraftstoffbehälters in einem Bereich zwischen maximaler Füllung und einem Pegelstand liegt, welcher im wesentlichen mit einem oberen Rand des Topfes fluchtet, wird der Kraftstoff nicht mehr über die durch das geschlossene Magnetventil außer Betrieb gesetzte Saugstrahlpumpe vom Kraftstoffbehälter in den Topf gefördert. Vielmehr fließt dann der Kraftstoff zum Pegelausgleich aus dem Kraftstoffbehälter über den Rand des Topfes in diesen hinein. Bei ausreichendem Füllgrad des Kraftstoffbehälters kann die Saugstrahlpumpe folglich außer Betrieb gesetzt werden, was in einer merklichen Reduzierung der von der Kraftstoffpumpe geforderten Pumpleistung, in einer Erhöhung des Systemwirkungsgrades, in einer geringeren Bordnetzbelastung, in einer geringeren Tankaufheizung sowie in einer längeren Lebensdauer der Kraftstoffpumpe resultiert.
Eine weitere Ausführungsform sieht vor, dass das Magnetventil durch ein Schaltventil gebildet wird, welches zur Regelung des Treibdrucks der Saugstrahlpumpe getaktet angesteuert ist. Gemäß einer Alternative hierzu kann das Magnetventil auch ein Proportionalventil sein, das zur Regelung des Treibdrucks der Saugstrahlpumpe angesteuert ist. In beiden Fällen kann die Saugstrahlpumpe stets in einem Bereich höchsten Wirkungsgrades betrieben werden.
Folglich dient das Magnetventil im Sinne einer Mehrfachfunktion nicht nur für eine besonders vorteilhafte Regelung des Systemdrucks und der Kraftstoffmenge während des Schiebebetriebs und bei Stillstand sondern auch für weitere energiesparende Maßnahmen.
Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den restlichen Unteransprüchen beschrieben. Zeichnungen
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. In der Zeichnung zeigt
Fig.1 eine schematische Darstellung einer bevorzugten Ausführungsform eines erfindungsgemäßen Kraftstoffversorgungssystems;
Fig.2 eine schematische Darstellung einer weiteren Ausführungsform eines erfindungsgemäßen Kraftstoffversorgungssystems.
Beschreibung der Ausführungsbeispiele
Das in Fig.1 insgesamt mit 1 bezeichnete rücklauffreie Kraftstoffversorg ungssy- stem dient beispielsweise zur Kraftstoffversorgung einer Brennkraftmaschine eines Fahrzeugs und beinhaltet als wesentliche Bauelemente eine innerhalb eines Dralltopfes 2 eines Kraftstoffbehälters 4 gehaltene Tankeinbaueinheit 6 umfassend eine Kraftstoffpumpe 8 mit einem vorlaufseitigen Saugfilter 10, ein bezogen auf die Kraftstoffpumpe 8 in einer druckseitigen Druckleitung 12 angeordnetes Rückschlagventil 14 sowie einen mit Einspritzventilen 16 in Strömungsverbindung stehenden Kraftstoffzuteiler 18 oder eine Benzin- oder Dieselhochdruckpumpe. In einem Bereich zwischen dem Rückschlagventil 14 und dem Kraftstoffzuteiler 18 misst ein Drucksensor 20 den Ist-Druck in der Druckleitung 12 und sendet über eine Signalleitung 22 ein entsprechendes Signal an ein Steuergerät, welches vorzugsweise durch ein zentrales Motorsteuergerät 24 (MOTRONIC) gebildet wird und in welchem abhängig von einer Regeldifferenz zwischen dem Ist-Druck und einem bedarfsorientierten Soll-Druck über eine elektrische Leitung 26 ein Steuersignal an ein elektronisches, mit der Kraftstoffpumpe 8 über elektrische Leitungen 28 verbundenes Kraftstoffpumpensteuergerät 30 ausgesteuert wird, um den Druck in der Druckleitung 12 über die Kraftstoffpumpe 8 bedarfsabhängig nachzuregeln. Von einem bezogen auf das Rückschlagventil 14 stromabwärtigen Abschnitt der Druckleitung 12 zweigt an einer Verzweigungstelle 32 eine Saugstrahlpumpenleitung 34 ab, welche sich beispielsweise in mehrere, vorzugsweise in zwei Einzelleitungen 36 verzweigend in jedem Zweig 36 eine von Kraftstoff durchflossene Saugpumpe 38 beinhaltet, wobei die Einzelleitungen 36 in den Dralltopf 2 münden. Der Dralltopf 2 dient zum einen als Kraftstoffreservoir, zum andern verhindert er, dass bei starker Seitenbeschleunigung die Kraftstoffpumpe 8 kurzzeitig keinen Kraftstoff mehr ansaugen kann, weil dieser fliehkraftbedingt in einem von der Saugseite entfernten Abschnitt des Kraftstoffbehälters 4 konzentriert ist. In dem von Kraftstoff durchströmten Zustand saugen die Saugstrahlpumpen 38 Kraftstoff aus dem außerhalb des Dralltopfes gelegenen Bereich des Kraftstoffbehälters 4 in die beiden Einzelleitungen 36 hinein und sorgen in bekannter Weise für einen konstanten Kraftstoffpegel innerhalb des Dralltopfes 2.
In der von der Druckleitung 12 abzweigenden Saugstrahlpumpenleitung 34 ist ein elektrisch betätigbares Magnetventil 40 angeordnet, welches von dem zentralen Motorsteuergerät 24 über eine Steuerleitung 42 vorzugsweise in Abhängigkeit des gemessenen Drucks in der Druckleitung 12, der Temperatur des Kraftstoffs, dem Füllstand und/oder den Motorbetriebsbedingungen angesteuert ist. Das Magnetventil 40 ist ausgebildet, um den Querschnitt der Saugstrahlpumpenleitung 34 zu öffnen oder zu schliessen. Das Magnetventil 40 ist vorzugsweise unbestromt geschlossen und bestromt geöffnet.
Vor diesem Hintergrund ist die Funktionsweise des Kraftstoffversorgungssystems 1 wie folgt : Bei Lastbetrieb der Brennkraftmaschine saugt die Kraftstoffpumpe 8 Kraftstoff aus dem Dralltopf 2, wobei der Kraftstoffstrom unter Wirkung des Kraftstoffdrucks das Rückschlagventil 14 öffnet und ein Teil des Kraftstoffstroms an der Verzweigungsstelle 32 in die Saugstrahlpumpenleitung 34 fließt. Im Lastbetrieb bestromt das Motorsteuergerät 24 das Magnetventil 40, woraufhin dieses in Öffnungsstellung geschaltet ist, damit die Saugstrahlpumpen 38 Kraftstoff aus dem außerhalb des Dralltopfes 2 gelegenen Bereich des Kraftstoffbehälters 4 in den Dralltopf 2 hinein saugen können. Der andere Teil des Kraftstoffstromes wird entlang der Druckleitung 12 dem Kraftstoffzuteiler 18 bedarfsabhängig zugeführt, um über die Einspritzventile 16 in Brennräume der Brennkraftmaschine eingespritzt zu werden.
Im Schiebebetrieb sind die Einspritzventile 16 geschlossen, so dass der Kraftstoffstrom in der Druckleitung 12 gleich Null ist, gleichwohl wird die Saugstrahlpumpenleitung 34 durch das weiterhin bestromte und dadurch geöffnet gehaltene Magnetventil 40 durchströmt und folglich Kraftstoff in den Dralltopf 2 gefördert.
Während einer Stillstandsphase der Brennkraftmaschine hingegen schaltet das Motorsteuergerät 24 das Magnetventil 40 stromlos, woraufhin dieses schließt. Folglich ist der stromabwärts des Rückschlagventils 14 angeordnete Abschnitt der Druckleitung 12 und der stromaufwärts des Magnetventils 40 angeordnete Abschnitt der Saugstrahlpumpenleitung 34 durch die geschlossenen Einspritzventile 16, das geschlossene Magnetventil 40 sowie durch das zur Kraftstoffpumpe 8 hin geschlossene Rückschlagventil 14 gegen die Umgebung abgedichtet, wobei der Druck der in diesen Abschnitten vorhandenen Kraftstoffmenge konstant gehalten werden soll. Temperaturbedingt kann jedoch der Haltedruck zu hoch sein, was durch den Drucksensor 20 detektiert und an das zentrale Motorsteuergerät 24 gemeldet wird. Dann wird das Magnetventil 40 vom Motorsteuergerät 24 durch einen Stromimpuls kurzzeitig in Öffnungsstellung geschaltet, um den vorgegebenen Haltedruck zu reduzieren.
Bei dem zweiten Ausführungsbeispiel der Erfindung nach Fig.2 sind die gegenüber dem vorhergehenden Beispiel gleichbleibenden und gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet. Als Magnetventil wird hier ein 2/3 Wegeventil 44 verwendet, von welchem ein Eingang 46 mit der Druckleitung 12, ein erster Ausgang 48 mit den Saugstrahlpumpen 38 und ein zweiter Ausgang 50 mit einem Druckbegrenzungsventil 52 verbunden ist. Das 2/3 Wegeventil 44 wird vom zentralen Motorsteuergerät 24 derart angesteuert, dass es in stromlosem Zustand den Eingang 46 mit dem zweiten Ausgang 50 und in bestromtem Zustand den Eingang 46 mit dem ersten Ausgang 48 verbindet. Vorzugsweise wird das 2/3-Wegeventil 44 während einer Stillstandsphase der Brennkraftmaschine stromlos geschaltet und ansonsten, d.h. im Lastbetrieb und im Schiebebetrieb bestromt. Folglich schaltet bei Stillstand der Brennkraftmaschine und stromlos deaktiviertem Motorsteuergerät 24 das 2/3-Wegeventil 44 automatisch, beispielsweise durch Federvorspannung, in seine stromlose Stellung, in welcher die Druckleitung 12 mit dem Druckbegrenzungsventil 52 verbunden ist, über welches dann Überdruck abgebaut werden kann. Im normalen Lastbetrieb oder im Schiebebetrieb der Brennkraftmaschine wird das 2/3 Wegeventil 44 hingegen vom Mo- torsteuergerät 24 bestromt, so dass die Saugstrahlpumpen 38 an die Druckleitung 12 angeschlossen sind.
Gemäß einer Fortbildung der ersten Ausführungsform von Fig.1 erfolgt die Ansteuerung des Magnetventils 40 in Abhängigkeit von einem Füllgrad des Kraftstoffbehälters 4 mit Kraftstoff. Falls man das Magnetventil 40 schließt, wenn der Füllpegel des Kraftstoffbehälters 4 in einem Bereich zwischen maximaler Füllung und einem Pegelstand liegt, welcher im wesentlichen mit einem oberen Rand 54 des Dralltopfes 2 fluchtet, wird der Kraftstoff nicht mehr über die durch das geschlossene Magnetventil 40 außer Betrieb gesetzte Saugstrahlpumpen 38 vom Kraftstoffbehälter 4 in den Dralltopf 2 gefördert. Vielmehr fließt dann der Kraftstoff zum Pegelausgleich aus dem Kraftstoffbehälter 4 über den Rand 54 des Dralltopfes 2 in diesen hinein. Bei ausreichendem Füllgrad des Kraftstoffbehälters 4 können die Saugstrahlpumpen 38 folglich außer Betrieb gesetzt werden. Weiter ist es möglich, den Abstelldruck in Abhängigkeit von der Temperatur und/oder von den Motorbetriebsbedingungen zu variieren.
Die Außerbetriebnahme der Saugstrahlpumpen 38 sowie die Variation des Abstelldrucks kann auch durch das 3/2-Wegeventil 44 gemäß der zweiten Ausfüh- rungsform von Fig.2 erfolgen, falls es bei dem oben beschriebenen, ausreichenden Pegelstand im Kraftstoffbehälter 4 derart geschaltet wird, dass der Eingang 46 mit dem zweiten Ausgang 50 verbunden ist, welcher in das Druckbegrenzungsventil 52 mündet. Dann wird der stromabwärts des 2/3-Wegeventils 44 gelegene Teil der Saugstrahlpumpenleitung 34 bis zu einem vorbestimmten Druckniveau gesperrt, so dass die Saugstrahlpumpen 38 nicht mehr mit Kraftstoff versorgt sind.
Da die Magnetventile 40, 44 gemäß der Ausführungsformen von Fig.1 und Fig.2 vorzugsweise Schaltventile sind, können sie zur Regelung des Treibdrucks der Saugstrahlpumpen 38 getaktet angesteuert werden. Gemäß einer Alternative hierzu kann das Magnetventil 40, 44 auch ein Proportionalventil sein, das zur Regelung des Treibdrucks der Saugstrahlpumpe angesteuert ist. Durch eine Regelung des Treibdrucks können die Saugstrahlpumpe 38 dann stets in einem Bereich höchsten Wirkungsgrades betrieben werden.

Claims

Patentansprüche
Rücklauffreies Kraftstoffversorgungssystem (1) für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs, mit
- wenigstens einer Kraftstoffpumpe (8), mittels der Kraftstoff aus einem ersten Bereich (2) eines Kraftstoffreservoirs in einen mit einem Kraftstoffzuteiler (18) in Verbindung stehenden Druckbereich (12) förderbar ist,
- wenigstens einer von durch eine Saugstrahlpumpenleitung (34) mittels der Kraftstoffpumpe (8) gefördertem Kraftstoff durchflossene Saugstrahlpumpe (38), durch welche Kraftstoff aus einem zweiten Bereich (4) des Kraftstoffreservoirs in den ersten Bereich (2) förderbar ist,
- wenigstens einem den Druck im Druckbereich (12) regelnden und/oder steuernden Mittel (20, 24, 30),
- wenigstens einem Rückschlagventil (14), durch welches wenigstens ein Teil des Druckbereichs (12) gegen die Kraftstoffpumpe (8) sperrbar ist, dadurch gekennzeichnet, dass die den Druck im Druckbereich (12) regelnden und/oder steuernden Mittel (20, 24, 30) wenigstens ein elektrisch betätigbares Magnetventil (40; 44) beinhalten, welches stromabwärts des Rückschlagventils (14) in der Saugstrahlpumpenleitung (34) angeordnet ist.
2. Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 1 , dadurch gekennzeichnet, dass das Magnetventil (40; 44) dem Rückschlagventil (14) und der Saugstrahlpumpe (38) zwischengeordnet ist.
3. Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Magnetventil (40; 44) von einem elektronischen Motorsteuergerät (24) angesteuert ist.
4. Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 3, dadurch gekennzeichnet, dass die Ansteuerung des Magnetventils (40; 44) in Abhängigkeit des von einem im Druckbereich (12) angeordneten Drucksensors (20) gemessenen Drucks erfolgt.
5. Rücklauffreies Kraftstoffversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Eingang des Magnetventils (40) mit dem Druckbereich (12) und ein Ausgang mit der Saugstrahlpumpe (38) verbunden ist.
6. Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 5, dadurch gekennzeichnet, dass das Magnetventil (40) während einer Stillstandsphase der Brennkraftmaschine unbestromt geschlossen und ansonsten bestromt geöffnet ist.
7. Rücklauffreies Kraftstoffversorgungssystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Magnetventil durch ein 2/3- Wegeventil (44) gebildet wird, von welchem ein Eingang (46) mit dem Druckbereich (12), ein erster Ausgang (48) mit der Saugstrahl- pumpe (38) und ein zweiter Ausgang (50) mit einem Druckbegrenzungsventil (52) verbunden ist.
8. Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 7, dadurch gekennzeichnet, dass das 2/3-Wegeventil (44) derart angesteuert ist, dass es in stromlosem Zustand den Eingang (46) mit dem zweiten Ausgang (50) und in bestromtem Zustand den Eingang (46) mit dem ersten Ausgang (48) verbindet.
9. Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 8, dadurch gekennzeichnet, dass das- 2/3-Wegeventil (44) während einer Stillstandsphase der Brennkraftmaschine stromlos und ansonsten bestromt ist.
10. Rücklauffreies Kraftstoffversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mit dem Kraftstoffzuteiler (18) in Verbindung stehende Druckbereich durch eine Druckleitung (12) gebildet wird, welche die Kraftstoffpumpe (8) mit Einspritzventilen (16) verbindet.
11. Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 10, dadurch gekennzeichnet, dass die Saugstrahlpumpenleitung (34) von der Druckleitung (12) stromabwärts des Rückschlagventils (14) abzweigt.
12. Rücklauffreies Kraftstoffversorgungssystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Ansteuerung des Magnet- ventils (40; 44) in Abhängigkeit von einem Füllgrad des zweiten Bereichs (4) des Kraftstoffreservoirs mit Kraftstoff erfolgt.
13. Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 12, dadurch gekennzeichnet, dass der erste Bereich des Kraftstoff reservoirs durch einen die Kraftstoffpumpe (8) aufnehmenden Topf (2) gebildet wird, welcher innerhalb des zweiten Bereichs (4) des Kraftstoffreser- voirs angeordnet ist.
14. Rücklauffreies Kraftstoffversorgungssystem nach Anspruch 13, dadurch gekennzeichnet, dass das Magnetventil (40; 44) geschlossen ist, wenn der Füllpegel des zweitens Bereichs (4) des Kraftstoffreservoirs in einem Bereich zwischen maximaler Füllung und einem Pegelstand liegt, welcher im wesentlichen mit einem oberen Rand des Topfes fluchtet, und dass es ansonsten geöffnet ist.
15. Rücklauffreies Kraftstoffversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Magnetventil (40; 44) durch ein Schaltventil gebildet wird, welches zur Regelung des Treibdrucks der Saugstrahlpumpe (38) getaktet angesteuert ist.
16. Rücklauffreies Kraftstoffversorgungssystem nach einem Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Magnetventil durch ein Proportionalventil (40; 44) gebildet wird, welches zur Regelung des Treibdrucks der Saugstrahlpumpe (38) angesteuert ist.
PCT/DE2003/002336 2002-12-07 2003-07-11 Rücklauffreies kraftstoffversorgungssystem WO2004053318A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR0307288-6A BR0307288A (pt) 2002-12-07 2003-07-11 Sistema de alimentação de combustìvel sem retorno
DE50305995T DE50305995D1 (de) 2002-12-07 2003-07-11 Rücklauffreies kraftstoffversorgungssystem
US10/509,591 US7275524B2 (en) 2002-12-07 2003-07-11 Non-return fuel supply system
EP03799428A EP1576272B1 (de) 2002-12-07 2003-07-11 Rücklauffreies kraftstoffversorgungssystem

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10257280.1 2002-12-07
DE10257280 2002-12-07
DE10327562.2 2003-06-18
DE10327562A DE10327562A1 (de) 2002-12-07 2003-06-18 Rücklauffreies Kraftstoffversorgungssystem

Publications (1)

Publication Number Publication Date
WO2004053318A1 true WO2004053318A1 (de) 2004-06-24

Family

ID=32509742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002336 WO2004053318A1 (de) 2002-12-07 2003-07-11 Rücklauffreies kraftstoffversorgungssystem

Country Status (5)

Country Link
US (1) US7275524B2 (de)
EP (1) EP1576272B1 (de)
BR (1) BR0307288A (de)
DE (1) DE50305995D1 (de)
WO (1) WO2004053318A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10319660B4 (de) * 2003-05-02 2018-04-19 Robert Bosch Gmbh Vorrichtung zum Fördern von Kraftstoff aus einem Vorratsbehälter zu einer Brennkraftmaschine
DE102004049286A1 (de) * 2004-10-09 2006-04-20 Robert Bosch Gmbh Vorrichtung zum Fördern von Kraftstoff
US7469683B2 (en) * 2006-03-29 2008-12-30 Robert Bosch Gmbh Fuel system with pressure regulation and pressure relief
EP1911962A1 (de) * 2006-09-29 2008-04-16 Inergy Automotive Systems Research (SA) Einstückige Doppestrahlpunpe und diese verwendes Kraftstoffsystem
DE102007039892A1 (de) * 2007-08-23 2009-02-26 Continental Automotive Gmbh Einspritzanlage für eine Brennkraftmaschine
DE102010062121A1 (de) * 2010-11-29 2012-05-31 Robert Bosch Gmbh Vorrichtung zum Fördern von Kraftstoff
US9097217B2 (en) * 2011-08-31 2015-08-04 Gm Global Technology Operations. Llc Propulsion systems and modules for vehicles
US20140338752A1 (en) * 2013-05-14 2014-11-20 Delphi Technologies, Inc. Fuel supply system and method for operating
DE102013212267A1 (de) * 2013-06-26 2014-12-31 Robert Bosch Gmbh Kraftstoff-Fördersystem mit Teildruckentlastungsventil an Treibleitung einer Saugstrahlpumpe
US10451013B2 (en) * 2015-08-20 2019-10-22 Ford Global Technologies, Llc Method for operating a dual lift pump system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4123367A1 (de) * 1991-07-15 1993-01-21 Magenwirth Gmbh Co Gustav Einrichtung zum foerdern von kraftstoff aus einem behaelter
DE19913477A1 (de) * 1999-03-25 2000-10-05 Bosch Gmbh Robert Verfahren zum Betreiben einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19951132A1 (de) * 1999-10-23 2001-05-10 Bosch Gmbh Robert Verfahren zum Ablassen des Kraftstoffdrucks in einem rücklauffreien Kraftstoffversorgungssystem
US20020020397A1 (en) * 2000-06-28 2002-02-21 Begley Chris Clarence Electronic returnless fuel system
EP1195514A2 (de) * 2000-10-03 2002-04-10 C.R.F. Società Consortile per Azioni Vorrichtung zur Regelung des Durchflusses einer Hochdruckpumpe in einem Common-rail Kraftstoffeinspritzsystem einer Brennkraftmaschine
US20020043253A1 (en) * 2000-08-29 2002-04-18 Delphi Technologies Inc. Electronic returnless fuel system
DE10058674A1 (de) * 2000-11-25 2002-06-06 Bosch Gmbh Robert Verfahren, Computerprogramm und Steuer und/oder Regelgerät zum Betreiben einer Brennkraftmaschine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926829A (en) * 1988-11-28 1990-05-22 Walbro Corporation Pressure-responsive fuel delivery system
DE4224981C2 (de) * 1992-07-29 2003-06-26 Bosch Gmbh Robert Einrichtung zum Fördern von Kraftstoff aus einem Vorratstank zur Brennkraftmaschine eines Kraftfahrzeuges
DE4242242C2 (de) * 1992-12-15 2003-04-30 Bosch Gmbh Robert Vorrichtung zum Versorgen der Brennkraftmaschine eines Kraftfahrzeuges mit in einem Vorratstank vorhandenem Kraftstoff
US5732684A (en) * 1994-09-22 1998-03-31 Ford Global Technologies, Inc. Automotive fuel delivery system with pressure actuated auxiliary fuel pump
DE19540892A1 (de) * 1995-11-02 1997-05-07 Bayerische Motoren Werke Ag Kraftstoffanlage
DE19628580A1 (de) * 1996-07-16 1998-01-22 Mannesmann Vdo Ag Strömungsventil
US6024064A (en) * 1996-08-09 2000-02-15 Denso Corporation High pressure fuel injection system for internal combustion engine
DE19950289A1 (de) * 1999-10-19 2001-04-26 Bosch Gmbh Robert Kraftstoffversorgungseinrichtung für eine Brennkraftmaschine eines Kraftfahrzeugs
DE29922474U1 (de) * 1999-12-22 2001-05-03 Bosch Gmbh Robert Kraftstoffversorgungseinrichtung für eine Brennkraftmaschine eines Kraftfahrzeugs
DE10006622A1 (de) * 2000-02-15 2001-08-16 Bosch Gmbh Robert Kraftstoffversorgungseinrichtung für eine Brennkraftmaschine eines Kraftfahrzeugs
US6718948B2 (en) * 2002-04-01 2004-04-13 Visteon Global Technologies, Inc. Fuel delivery module for petrol direct injection applications including supply line pressure regulator and return line shut-off valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4123367A1 (de) * 1991-07-15 1993-01-21 Magenwirth Gmbh Co Gustav Einrichtung zum foerdern von kraftstoff aus einem behaelter
DE19913477A1 (de) * 1999-03-25 2000-10-05 Bosch Gmbh Robert Verfahren zum Betreiben einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19951132A1 (de) * 1999-10-23 2001-05-10 Bosch Gmbh Robert Verfahren zum Ablassen des Kraftstoffdrucks in einem rücklauffreien Kraftstoffversorgungssystem
US20020020397A1 (en) * 2000-06-28 2002-02-21 Begley Chris Clarence Electronic returnless fuel system
US20020043253A1 (en) * 2000-08-29 2002-04-18 Delphi Technologies Inc. Electronic returnless fuel system
EP1195514A2 (de) * 2000-10-03 2002-04-10 C.R.F. Società Consortile per Azioni Vorrichtung zur Regelung des Durchflusses einer Hochdruckpumpe in einem Common-rail Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE10058674A1 (de) * 2000-11-25 2002-06-06 Bosch Gmbh Robert Verfahren, Computerprogramm und Steuer und/oder Regelgerät zum Betreiben einer Brennkraftmaschine

Also Published As

Publication number Publication date
US20050175488A1 (en) 2005-08-11
EP1576272A1 (de) 2005-09-21
BR0307288A (pt) 2004-12-28
EP1576272B1 (de) 2006-12-13
DE50305995D1 (de) 2007-01-25
US7275524B2 (en) 2007-10-02

Similar Documents

Publication Publication Date Title
DE19640826B4 (de) Speicherkraftstoffeinspritzvorrichtung und Druckregelvorrichtung hierfür
DE19802583C2 (de) Vorrichtung und Verfahren zum Druckregeln in Speichereinspritzsystemen mit einem elektromagnetisch betätigten Druckstellglied
DE4446277B4 (de) Kraftstoffversorgungssystem für eine Brennkraftmaschine
DE10162989C1 (de) Schaltungsanordnung zum Regeln einer regelbaren Kraftstoffpumpe, Verfahren zum Regeln einer Förderleistung und Verfahren zum Überprüfen der Funktionsfähigkeit einer regelbaren Kraftstoffpumpe
EP1306548B1 (de) Kraftstoffeinspritzanlage mit verbesserter Fördermengenregelung
EP1556609B1 (de) Verfahren zum betreiben eines common-rail-kraftstoffeinspritzsystems für brennkraftmaschinen
DE102008001240A1 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftstoffversorgungssystems
DE102006000333B4 (de) Kraftstoffeinspritzsteuersystem, das einen unerwünschten Anstieg des Kraftstoffdrucks vermeidet
EP2625432A1 (de) Vorrichtung zur steuerung eines hydraulischen speichers eines hvdrauliksystems
DE102010043420A1 (de) Passives und Semiaktives Diesel- und Benzinkraftstoffmodul
EP2006521A1 (de) Verfahren zur Regelung des Raildrucks während eines Startvorgangs
WO2012069237A2 (de) Tankanordnung mit mechanischem druckregler sowie fahrzeug
EP1576272B1 (de) Rücklauffreies kraftstoffversorgungssystem
WO2005098561A1 (de) Verfahren zum überwachen einer kraftstoffzuführeinrichtung einer brennkraftmaschine
DE102011005663A1 (de) Betriebsverfahren für eine Elektro-Kraftstoffpumpe eines Kraftstoffversorgungs-Systems
EP2344750A1 (de) Kraftstoff-hochdruckpumpe für eine brennkraftmaschine
DE102008002462A1 (de) Kraftstoffversorgungseinrichtung
WO1997023725A1 (de) Kraftstoffhochdruckspeichersystem für ein in brennkraftmaschinen eingesetztes kraftstoffeinspritzsystem
DE112007001809T5 (de) Begrenzen des Pumpendurchsatzes während eines Überdrehzahl-Selbstaktivierungszustands
EP1750007A1 (de) Kraftstoffversorgungssystem
EP1124055B1 (de) Kraftstoffversorgungsanlage für eine Brennkraftmaschine
DE102004007718A1 (de) Kraftstofffördermodul mit mindestens zwei Pumpen
DE102010064181A1 (de) Kraftstoffversorgungssystem für eine Brennkraftmaschine mit einer Kraftstoff-pumpe
DE10327562A1 (de) Rücklauffreies Kraftstoffversorgungssystem
DE10223077B4 (de) Kraftstoffeinspritzsystem für Brennkraftmaschinen mit Niederdruckspeicher

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003799428

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): BR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10509591

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003799428

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003799428

Country of ref document: EP