WO2009056402A1 - Verfahren zur erkennung einer kraftstoffsorte - Google Patents

Verfahren zur erkennung einer kraftstoffsorte Download PDF

Info

Publication number
WO2009056402A1
WO2009056402A1 PCT/EP2008/062598 EP2008062598W WO2009056402A1 WO 2009056402 A1 WO2009056402 A1 WO 2009056402A1 EP 2008062598 W EP2008062598 W EP 2008062598W WO 2009056402 A1 WO2009056402 A1 WO 2009056402A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
pressure
leak
density
high pressure
Prior art date
Application number
PCT/EP2008/062598
Other languages
English (en)
French (fr)
Inventor
Hui Li
Christoph Adler
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Publication of WO2009056402A1 publication Critical patent/WO2009056402A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0628Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0634Determining a density, viscosity, composition or concentration
    • F02D19/0636Determining a density, viscosity, composition or concentration by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0673Valves; Pressure or flow regulators; Mixers
    • F02D19/0678Pressure or flow regulators therefor; Fuel metering valves therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0684High pressure fuel injection systems; Details on pumps, rails or the arrangement of valves in the fuel supply and return systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the invention relates to a method for detecting a
  • Fuel type which is injected via an injection system, in particular a common-rail injection system into a combustion chamber of an internal combustion engine.
  • Known common-rail injection systems include a volume control valve (VCV), which regulates the amount of fuel that is supplied to a high-pressure pump and pumped by this into a common rail, a pressure control valve (PCV) - ve), the pressure in the high pressure area, ie in the accumulator with the associated feeds depending on the load state of the engine adjusts, holds and degrades, and injectors with injectors, which are connected to the pressure accumulator and inject fuel into the combustion chamber of the internal combustion engine.
  • the pressure regulating valve is omitted, in which case the pressure in the injection via the volume flow through the high-pressure pump is controlled or controlled.
  • Liquids are inherent in the hydraulic system, and in particular the injectors, which on the one hand is a so-called switching leak and on the other hand a permanent leak.
  • the switching leakage occurs during the injection and corresponds to a control amount, which is used for indirect control of the nozzle needle via a hydraulic booster system.
  • the permanent leak is a continuous leak and is due to leaks in the nozzle needle and valve piston guides.
  • the switching leakage quantities and continuous leakage quantities are typically returned to the fuel tank via a fuel return, into which, if appropriate, the return of the pressure regulating valve opens.
  • the present invention has for its object to provide a method for identifying or detecting the type of in the fuel injection system implemented, for example, to detect whether gasoline, diesel, winter or summer diesel is used.
  • the balance equation of the closed hydraulic system i. the equation for the pressure build-up or -ausbau used in the system and indeed for the reduction of the influencing variables in phases, during which the high-pressure pump does not deliver fuel.
  • the pressure change i. the derivative of the pressure in the pressure accumulator or in the high-pressure region after the time by the flow rate of the injection, which is equivalent to the injected fuel mass, the permanent leakage and the switching leakage and the compressibility modulus E of the fuel and the volume V of the pressure accumulator determined.
  • the pressure difference is determined from the integrated balance equation, and the pair of compressibility modulus E and density p, which best reproduces the pressure difference measured over the considered time period, is used to detect the pressure difference Fuel are used.
  • 1 is a schematic representation of the hydraulic system of a common rail injection system
  • Fig. 1 the hydraulic system of a common rail injection system is shown schematically, the one with a tank 1 connected volumetric flow control valve 2 (VCV), which is usually arranged in the low pressure region of the system and supplies regulated fuel to a high-pressure pump, not shown.
  • VCV volumetric flow control valve 2
  • two tank container 1 are located. It can also be used only a single tank container 1, so that the supply line and thus the return line in one and the same tank 1 open.
  • the fuel quantity designated Qvcv represents the delivery rate at the outlet of the high-pressure pump.
  • the high-pressure pump supplies fuel to a pressure accumulator 3 called a common rail.
  • a pressure regulating valve 4 is fastened to the high-pressure pump or to the pressure accumulator 3, which measures the pressure in the pressure accumulator
  • the volume flow through the pressure valve 4 is designated by Q PC v.
  • the pressure accumulator 3 is connected to injectors 5, of which only two are shown (per combustion chamber at least one injector) and inject the fuel into the combustion chamber of the internal combustion engine. From the pressure accumulator 3 with the volume V, an amount of fuel is supplied to the injectors, which is composed of the volume flow Qi NJ , the amount of fuel to be injected, and the leakage amount Q LEAK .
  • the leakage quantity is composed of the continuous leakage Q CNT LEAK and the switching leak quantity Q S wi LEAK , which flows out via the injectors during the injection.
  • the injectors 5 are driven by a motor control and regulating unit (not shown), which is also the
  • This engine control unit also controls the engine in a known manner Volume flow control valve 2 and optionally the pressure control valve 4, wherein the other necessary for the control of the injection parameters are supplied by corresponding sensors.
  • FIG. 2 shows a diagram of a high-resolution measurement of the pressure in the pressure accumulator 3.
  • High-resolution means in the present case that is measured at a high sampling rate, for example, every millisecond a measured value is created.
  • the high-pressure pump used in the injection system is, for example, a 3-piston pump, wherein the ratio of the engine speed to the pump speed is 2/3.
  • only one piston works in each segment, ie it pushes the fuel into the pressure reservoir.
  • the pressure in the pressure accumulator 3 increases because the corresponding piston of the pump is in the compression tract. This is indicated in FIG. 2, for example, by the upwardly directed arrow 6. In this phase, the piston goes to top dead center (TDC).
  • TDC top dead center
  • equation (2) is integrated over time, the time being, for example, the one needed for an injection process according to arrow 7, equation (2) results in:
  • mf_inj_sum denotes the mass of the fuel injected in the period
  • V S wi LEAK the volume of the switching leakage occurring in the period, in this case the injection period
  • Q CNT LEAK ⁇ t the permanent leakage over the considered period, here the injection period.
  • the injection mass and the volume of the switching leak are basically known for each type of fuel, the endurance leakage can be estimated in advance by an adaptation method. However, this long-term leakage over the considered short period of time is very small, so that the last term of equation (3) can also be neglected without substantial errors occurring. In the case of direct-drive injectors (New Generation Injectors), the switching leakage is eliminated.
  • FIGS. 3 to 6 show characteristics relating to the compressibility module and the density over the pressure for summer diesel and winter diesel, the temperature being plotted as the third parameter, so that for the compressor bilticiansmodul and the pressure characteristic curves are shown.
  • the compressibility modulus E (p, T) and the density p (p, T) for the different types of fuel, here summer and winter diesel are determined using the pressure value measured in the pressure accumulator 3, and in a trial run. and error method can be calculated from the equation (3) ⁇ p.
  • the pair of compressibility E (p, T) and density p (p, T) that best represents the measured pressure differential (see FIG. 2) represents the desired type of fuel.

Abstract

Es wird ein Verfahren zum Erkennen des Typs eines Kraftstoffs, der über eine Einspritzanlage, insbesondere einer Common-Rail-Einspritzanlage, in einen Brennraum einer Brennkraftmaschine eingespritzt wird, vorgeschlagen. Der Druck im Hochdruckbereich wird über die Zeit gemessen und in Phasen, während derer die Hochdruckpumpe keinen Kraftstoff fördert, wird die Bilanzgleichung des hydraulischen Systems dp/dt= E/V (- Q inj_Qcnt-leak_Qswi-leak) verwendet und über einen betrachteten Zeitraum integriert, wobei p der Druck im Hochdruckbereich, E der Kompressibilitätsmodul des Kraftstoffs, V das Volumen des Hochdruckbereichs, Q: NJ der eingespritzte Kraftstoffvolumenstrom, QCNT LEAK der Dauerleckagevolumenstrom und Qswi LEAK der Schaltleckagevolumenstrom der Injektoren sind. Aus für jeden Kraftstofftyp bekannten Kennkurven des Kompressibilitätsmoduls und der Dichte in Abhängigkeit vom Druck wird in einem Trial-and-Error-Verfahren die Druckdifferenz aus der integrierten Bilanzgleichung bestimmt und das Paar von Kompressibilitätsmodul und Dichte, das am besten die über den betrachteten Zeitbereich gemessene Druckdifferenz reproduziert, zur Erkennung des Typs des Kraftstoffs herangezogen.

Description

Beschreibung
Verfahren zur Erkennung einer Kraftstoffsorte
Die Erfindung betrifft ein Verfahren zur Erkennung einer
Kraftstoffsorte, die über eine Einspritzanlage, insbesondere eine Common-Rail-Einspritzanlage in einen Brennraum einer Brennkraftmaschine eingespritzt wird.
Bekannte Common-Rail-Einspritzanlagen umfassen ein Volumenstromregelventil (VCV - Volume Control Valve) , das die Menge des Kraftstoffs regelt, der einer Hochdruckpumpe zugeführt wird und von dieser in einen Druckspeicher (Common Rail) gepumpt wird, ein Druckregelventil (PCV - Pressure Control VaI- ve) , das den Druck im Hochdruckbereich, d.h. im Druckspeicher mit den zugehörigen Zuführungen abhängig vom Lastzustand der Brennkraftmaschine einstellt, hält und abbaut, sowie Injektoren mit Einspritzdüsen, die mit dem Druckspeicher verbunden sind und Kraftstoff in den Brennraum der Brennkraftmaschine einspritzen. In einer anderen Ausführungsform von Einspritzanlagen wird das Druckregelventil weggelassen, wobei dann der Druck bei der Einspritzung über den Volumenstrom durch die Hochdruckpumpe geregelt bzw. gesteuert wird. Dem hydraulischen System, und dabei insbesondere den Injektoren, sind Le- ckagen inhärent, wobei es sich einerseits um eine so genannte Schaltleckage und andererseits um eine Dauerleckage handelt. Die Schaltleckage tritt bei der Einspritzung auf und entspricht einer Steuermenge, die zur indirekten Ansteuerung der Düsennadel über ein hydraulisches Kraftverstärkersystem ein- gesetzt wird. Die Dauerleckage ist eine kontinuierliche Leckage und ist auf Leckagen an den Düsennadel- und Ventilkolbenführungen zurückzuführen. Die Schaltleckagemengen und Dauerleckagemengen werden typischerweise über einen Kraftstoffrücklauf zum Kraftstoffbehälter zurückgeführt, in den gegebe- nenfalls auch der Rücklauf des Druckregelventils mündet.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Identifizierung bzw. Erkennung des Typs des in der Einspritzanlage umgesetzten Kraftstoffs zu schaffen, beispielsweise zur Erkennung, ob Benzin, Diesel, Winter- oder Sommerdiesel verwendet wird.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.
Entsprechend der Erfindung wird die Bilanzgleichung des geschlossenen hydraulischen Systems, d.h. die Gleichung für den Druckaufbau bzw. -abbau im System verwendet und zwar zur Reduktion der Einflussgrößen in Phasen, während derer die Hochdruckpumpe keinen Kraftstoff fördert. Dabei wird die Druckänderung, d.h. die Ableitung des Drucks im Druckspeicher bzw. im Hochdruckbereich nach der Zeit durch den Volumenstrom der Einspritzung, der äquivalent zu der eingespritzten Kraftstoffmasse ist, der Dauerleckage und der Schaltleckage sowie dem Kompressibilitätsmodul E des Kraftstoffs und dem Volumen V des Druckspeichers bestimmt. Durch Integrieren der Bilanzgleichung über einen betrachteten Zeitraum und aus für jeden Kraftstofftyp bekannten Kennkurven für den Kompressibilitätsmodul E und der Dichte p über den Druck kann unter Verwendung der aus diesen Kennkurven bei einem in der Einspritzphase gemessenen Druck gefundenen Werten für den Kompressibilitätsmodul E und die Dichte p in einem Versuchs- und Irrtums- Verfahren (Trial-and-Error-Verfahren) die Druckdifferenz aus der integrierten Bilanzgleichung bestimmt werden und das Paar von Kompressibilitätsmodul E und Dichte p, das am besten die über den betrachteten Zeitraum gemessene Druckdifferenz reproduziert, zur Erkennung des Kraftstoffs herangezogen wer- den.
Die Kenntnis der Art des Kraftstoffs und damit des Kompressibilitätsmoduls E und der Dichte p bringt zahlreiche Vorteile mit sich. So kann, abhängig von den möglichen Kraftstoffarten die Offset-Drucksteuerung bzw. die Übergangssteuerung
(QTRA=V/E dp/dt) angepasst werden. Weiterhin kann eine Anpassung der Parameter der PID-Regelung, beispielsweise der Proportionalitätskonstante des P Reglers an die möglichen Kraft- stoffarten vorgenommen werden und so jeder Regler optimiert werden. Schließlich kann die Voraussage des Kraftstoffdrucks entsprechend der möglichen Kraftstoffart angepasst werden. Es kann eine Korrektur der Einspritzdauer und des Einspritzbe- ginns abhängig von der Kraftstoffart vorgenommen werden, ebenso wie andere Verbrennungssteuerungsparameter . Schließlich kann die Bestimmung des Kraftstofftyps zur Motorüberwachung verwendet werden, d.h. es kann ein Alarmsignal gegeben werden, wenn ein falscher Kraftstoff verwendet wird, bei- spielsweise wenn Benzin in einen für Diesel ausgerichteten Motor getankt wird.
Ausführungsbeispiele des erfindungsgemäßen Verfahrens werden anhand der beigefügten Zeichnung näher erläutert. Es zeigen:
Fig. 1 eine schematische Darstellung des hydraulischen Systems einer Common-Rail-Einspritzanlage,
Fig. 2 eine Messung des Drucks im Hochdruckbereich bzw. im Rail über die Zeit,
Fig. 3 Kennlinien der Kraftstoffdichte von Sommerdiesel über den Druck für unterschiedliche Temperaturen,
Fig. 4 Kennlinien des Kompressibilitätsmoduls über den
Druck für Sommerdiesel bei unterschiedlichen Temperaturen,
Fig. 5 Kennlinien der Kraftstoffdichte für Winterdiesel über den Druck bei unterschiedlichen Temperaturen, und
Fig. 6 Kennlinien des Kompressibilitätsmoduls über den
Druck für Winterdiesel bei unterschiedlichen Tem- peraturen.
In Fig. 1 ist schematisch das hydraulische System einer Common-Rail-Einspritzanlage dargestellt, das ein mit einem Tank 1 verbundenes Volumenstromregelventil 2 (VCV) aufweist, das üblicherweise im Niederdruckbereich der Anlage angeordnet ist und geregelten Kraftstoff zu einer nicht dargestellten Hochdruckpumpe liefert. In dieser Figur 1 sind zwei Tankbehälter 1 eingezeichnet. Es kann auch nur ein einziger Tankbehälter 1 verwendet werden, so dass die Zufuhrleitung also auch die Rückführleitung in einem und demselben Tank 1 münden. Die mit Qvcv bezeichnete Kraftstoffmenge stellt die Fördermenge am Ausgang der Hochdruckpumpe dar. Die Hochdruckpumpe liefert Kraftstoff an einen als Common-Rail bezeichneten Druckspeicher 3. Ein Druckregelventil 4 ist an der Hochdruckpumpe oder am Druckspeicher 3 befestigt, das den Druck im Druckspeicher
3 abhängig vom Lastzustand des Motors einstellt. Die Volumenströmung über das Druckventil 4 ist mit QPCv bezeichnet. Der Druckspeicher 3 ist mit Injektoren 5 verbunden, von denen lediglich zwei dargestellt sind (je Brennraum mindestens einen Injektor) und die Kraftstoff in den Brennraum der Brennkraftmaschine einspritzen. Aus dem Druckspeicher 3 mit dem Volumen V wird an die Injektoren eine Kraftstoffmenge geliefert, die sich aus dem Volumenstrom QiNJ, der einzuspritzenden Kraftstoffmenge entsprechend, und der Leckagemenge QLEAK zusammensetzt. Wie schon ausgeführt wurde, setzt sich die Leckagemenge aus der kontinuierlichen bzw. Dauerleckage QCNT LEAK und der Schaltleckagemenge QSwi LEAK, die während der Einspritzung über die Injektoren abströmt, zusammen. Diese Leckagemengen fließen, wie dargestellt, wiederum in den Kraftstofftank zurück, in den auch der rückfließende Kraftstoff vom Druckregelventil
4 strömt.
Im Falle, dass das hydraulische System kein Druckventil 4 aufweist, ist selbstverständlich kein Volumenstrom QPCv vorhanden und zu berücksichtigen.
Die Injektoren 5 werden durch eine Motorsteuer- und Regelein- heit (nicht dargestellt) angesteuert, die gleichfalls das
Signal eines den Druck im Druckspeicher 3 messenden Drucksensors (nicht dargestellt) empfängt und auswertet. Diese Mo- torsteuer-/Regeleinheit steuert in bekannter Weise auch das Volumenstromregelventil 2 und gegebenenfalls das Druckregelventil 4 an, wobei die weiteren für die Steuerung der Einspritzung notwendigen Parameter von entsprechenden Sensoren geliefert werden.
Die Bilanzgleichung für den Druckaufbau in diesem geschlossenen hydraulischen System kann wie folgt beschrieben werden.
~T~ = 77 * yϋrcr ~ QPVC ~ QINJ ~ QCNT LEAK ~ QSWI LEAK ) ( 1 )
wobei dp/dt die Ableitung des Drucks p nach der Zeit, E der Kompressibilitätsmodul und V das Volumen des Druckspeichers 3 einschließlich der Anschlussleitungen ist. Die anderen Größen sind schon weiter oben beschrieben worden. Falls kein Druck- ventil 4 verwendet wird, ist Qpcv=0.
In Fig. 2 ist ein Diagramm einer hochaufgelösten Messung des Drucks im Druckspeicher 3 dargestellt. Hochaufgelöst bedeutet im vorliegenden Fall, dass mit hoher Abtastrate gemessen wird, z.B. jede Millisekunde ein Messwert erstellt wird. Die in dem Einspritzsystem verwendete Hochdruckpumpe ist z.B. eine 3-Kolbenpumpe, wobei die Übersetzung der Motordrehzahl zur Pumpendrehzahl 2/3 ist. In diesem Fall arbeitet in jedem Segment nur ein Kolben, d.h. drückt den Kraftstoff in den Druck- Speicher. In jedem Segment steigt der Druck im Druckspeicher 3, da der entsprechende Kolben der Pumpe sich im Kompressionstrakt befindet. Dies ist in der Fig. 2 beispielsweise durch den nach oben gerichteten Pfeil 6 angedeutet. In dieser Phase geht der Kolben zum oberen Totpunkt (TDC) . Nachdem der Kolben den oberen Totpunkt erreicht und dann zurückgezogen wird, gibt es keine Pumpenförderung in den Druckspeicher, d.h. Qvcv=0. Während dieser Förderpause, finden die Einspritzungen statt, wobei in Fig. 2 der nach unten gerichteten Pfeil 7 eine Einspritzphase darstellt. In einem optimierten Betriebszustand ist auch das Druckregelventil 4 geschlossen, so dass die Gleichung (1) sich reduziert auf , ~ 77 \ xflNJ ~ xt CNT LEAK ~ \l SWl LEAK ) ' ^ •
Wird die Gleichung (2) über die Zeit integriert, wobei die Zeit beispielsweise diejenige ist, die für einen Einspritz- Vorgang entsprechend Pfeil 7 benötigt wird, so ergibt sich die Gleichung (2) zu:
Δp=E/V (-mf_inj_sum/p - VSWI_LEAK - QCNτ_LEAκΔt) (3)
Dabei bezeichnet mf_inj_sum die Masse des in dem Zeitraum eingespritzten Kraftstoffs, VSwi LEAK das Volumen der in dem Zeitraum, hier dem Einspritzzeitraum, auftretenden Schaltleckage und QCNT LEAKΔt die Dauerleckage über den betrachteten Zeitraum, hier den Einspritzzeitraum.
In der Gleichung (3) sind die Einspritzmasse und das Volumen der Schaltleckage für jeden Kraftstofftyp grundsätzlich bekannt, die Dauerleckage kann durch ein Adaptionsverfahren im Vorhinein geschätzt werden. Allerdings ist diese Dauerleckage über den betrachteten kurzen Zeitraum sehr klein, so dass der letzte Term der Gleichung (3) auch vernachlässigt werden kann, ohne dass wesentliche Fehler auftreten. Bei direkt angetriebenen Injektoren (New Generation Injektoren) entfällt die Schaltleckage.
Somit sind aus der Gleichung (3) nur die Kompressibilität E und die Dichte p unbekannt, wobei der Kompressibilitätsmodul E und die Dichte p grundsätzlich druckabhängig sind. Da jedoch die Druckänderung in dem betrachteten Zeitraum, z.B. der Einspritzung relativ klein ist, können der Kompressibilitätsmodul und die Dichte als konstant angesehen werden.
In den Figuren 3 bis 6 sind Kennlinien bezüglich des Kompressibilitätsmoduls und der Dichte über den Druck für Sommerdie- sei und Winterdiesel dargestellt, wobei als dritter Parameter die Temperatur eingezeichnet ist, so dass für den Kompressi- bilitätsmodul und den Druck Kennlinienscharen dargestellt sind.
Mit Hilfe dieser Kennlinien wird unter Heranziehung des in dem Druckspeicher 3 gemessenen Druckwertes jeweils der Kompressibilitätsmodul E (p, T) und die Dichte p(p, T) für die verschiedenen Kraftstofftypen, hier Sommer- und Winterdiesel, bestimmt, und in einem Trial-and-Error-Verfahren kann aus der Gleichung (3) Δp berechnet werden. Das Paar aus Kompressibilität E (p, T) und Dichte p (p, T) , das die gemessene Druckdifferenz (siehe Fig. 2) am Besten wiedergibt, repräsentiert den gewünschten Kraftstofftyp .
In der folgenden Tabelle ist für unterschiedliche Temperaturen und für vorgegebene Parameter aus den Kennlinien der Fign. 3 bis 6 Druckdifferenzwerte Δp berechnet worden, um den Einfluss der Temperatur des Kraftstoffs im Rail zu untersuchen .
Figure imgf000009_0001
Aus dieser Tabelle ist zu erkennen, dass jeweils für eine Temperatur unterschiedliche Druckdifferenzwerte für Sommer- und Winterdiesel erzielt werden, so dass ein Schwellen- oder Entscheidungswert vorgegeben werden kann. Beispielsweise kann Kraftstofftemperatur von 10° ein Wert von 0,98 angegeben werden, d.h., wenn Δp größer als 0,98 ist, kann der Kraftstoff als Sommerdiesel erkannt werden und wenn die Druckdifferenz kleiner als 0,98 ist, wird auf Winterdiesel geschlossen. Es können somit solche Entscheidungswerte, die abhängig von der Kraftstofftemperatur sind, in der Steuer-/Regeleinheit gespeichert und bei der Bestimmung des Kraftstofftyps herangezogen werden. Dabei ist wichtig, dass die Kraftstofftemperatur, die auch der Temperatur im Druckspeicher 3 entspricht, in einer Größenordnung bestimmbar ist, die in einer Toleranz von +/-5°C liegt.

Claims

Patentansprüche
1. Verfahren zur Erkennung deiner Kraftstoffsorte, der über eine Einspritzanlage, insbesondere einer Common-Rail- 5 Einspritzanlage, in einen Brennraum einer Brennkraftmaschine eingespritzt wird, wobei die Einspritzanlage ein hydraulisches System mit einem Hochdruckbereich (3), der mehrere Injektoren (5) zum Einspritzen des Kraftstoffs versorgt, und einem Volumenstromregelventil (2) zum Ein- 10 stellen des dem Hochdruckbereich über eine Hochdruckpumpe zugeführten KraftstoffStroms aufweist und wobei der Druck im Hochdruckbereich (3) über die Zeit gemessen wird und in Phasen, während derer die Hochdruckpumpe keinen Kraftstoff fördert, die Bilanzgleichung des hydraulischen Systems
-L ^ , ~~ 77 \ xflNJ ~ \t CNT LEAK ~ \l SWl LEAK ) verwendet und über einen betrachteten Zeitraum integriert wird, wobei p der Druck im Hochdruckbereich, E der Kompressibilitätsmodul des Kraftstoffs, V das Volumen des Hochdruckbereichs, QiNJ der eingespritzte Kraftstoffvolu-
20 menstrom, QCNT LEAK der Dauerleckagevolumenstrom und QSwi LEAK der Schaltleckagevolumenstrom der Injektoren sind und QiNJ und Qswi LEAK und gegebenenfalls QCNT LEAK bekannt sind oder letzterer im betrachteten Zeitraum vernachlässigbar ist und wobei aus für jeden Kraftstofftyp bekannten Kennkurven
25 des Kompressibilitätsmoduls und der Dichte in Abhängigkeit vom Druck unter Verwendung der aus diesen Kennkurven bei einem in der Einspritzphase gemessenen Druck gefundenen Werten für Kompressibilitätsmodul und Dichte in einem Tri- al-and-Error-Verfahren die Druckdifferenz aus der integ-
30 rierten Bilanzgleichung bestimmt wird und das Paar von
Kompressibilitätsmodul und Dichte, das am besten die über den betrachteten Zeitbereich gemessene Druckdifferenz reproduziert, zur Erkennung des Typs des Kraftstoffs herangezogen wird.
35 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur im Hochdruckbereich gemessen oder berechnet wird, wobei die Werte für den Kompressibilitätsmodul und die Dichte unter Berücksichtigung der Temperatur aus den Kennkurven gefunden werden.
PCT/EP2008/062598 2007-10-31 2008-09-22 Verfahren zur erkennung einer kraftstoffsorte WO2009056402A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007052096A DE102007052096B4 (de) 2007-10-31 2007-10-31 Verfahren zur Erkennung einer Kraftstoffsorte
DE102007052096.6 2007-10-31

Publications (1)

Publication Number Publication Date
WO2009056402A1 true WO2009056402A1 (de) 2009-05-07

Family

ID=40303718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/062598 WO2009056402A1 (de) 2007-10-31 2008-09-22 Verfahren zur erkennung einer kraftstoffsorte

Country Status (2)

Country Link
DE (1) DE102007052096B4 (de)
WO (1) WO2009056402A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014108138A1 (en) * 2013-01-08 2014-07-17 Volvo Truck Corporation Method and arrangement for determining a fuel quality
EP2798179A1 (de) * 2011-12-28 2014-11-05 Scania CV AB Anordnung und verfahren zur schätzung eines kraftstoffgemischgehaltes eines zusätzlichen brennstoffes
WO2018114532A1 (de) * 2016-12-19 2018-06-28 Continental Automotive Gmbh Verfahren zum betreiben einer brennkraftmaschine mit kraftstofferkennung

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034133B4 (de) * 2010-08-12 2021-04-22 Volkswagen Ag Verfahren zum Detektieren eines Kraftstoffes in einem Kraftstoffzuführungssystem einer Brennkraftmaschine
DE102010045521B4 (de) 2010-09-15 2023-12-28 Volkswagen Ag Verfahren zum Detektieren eines Kraftstoffes
DE102010045520A1 (de) 2010-09-15 2012-03-15 Volkswagen Ag Verfahren und Vorrichtung zum Detektieren eines Kraftstoffes in einem Kraftstoffzuführungssystem einer Brennkraftmaschine
DE102010045517A1 (de) 2010-09-15 2012-03-15 Volkswagen Ag Verfahren zum Detektieren eines Kraftstoffes
DE102011077404B4 (de) 2011-06-10 2012-12-27 Continental Automotive Gmbh Verfahren zur Bestimmung des Kraftstofftyps in einer Hochdruck-Einspritzvorrichtung eines Verbrennungsmotors
DE102013223756B4 (de) * 2013-11-21 2015-08-27 Continental Automotive Gmbh Verfahren zum Betreiben von Injektoren eines Einspritzsystems
DE102014007963A1 (de) * 2014-06-04 2015-12-17 Man Diesel & Turbo Se Verfahren zum Betreiben einer Brennkraftmaschine und Motorsteuergerät
DE102017205775A1 (de) 2017-04-05 2018-10-11 Robert Bosch Gmbh Verfahren und Steuereinrichtung zur Bestimmung der Zusammensetzung des Kraftstoffes in einem Kraftfahrzeug
DE102018104258B4 (de) * 2018-02-26 2021-03-25 Man Truck & Bus Se Technik zur Kraftstoffbestimmung
DE102019205680B4 (de) * 2019-04-18 2021-08-05 Vitesco Technologies GmbH Verfahren und Vorrichtung zum Ermitteln der Kraftstofftemperatur eines Kraftstoffs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19700738C1 (de) * 1997-01-11 1998-04-16 Daimler Benz Ag Verfahren zur Regelung der Einspritzmengen von Injektoren einer kraftstoffeinspritzenden Brennkraftmaschine
DE10303765A1 (de) * 2002-01-31 2003-09-04 Denso Corp Sammlereinspritzsystem
US20040134268A1 (en) * 2000-05-04 2004-07-15 Taner Tuken System for estimating a quantity of parasitic leakage
WO2004063547A1 (de) * 2003-01-15 2004-07-29 Siemens Aktiengesellschaft Verfahren und vorrichtung zur temperaturbestimmung des kraftstoffs in einem speicher-einspritzsystem
DE102004003316A1 (de) * 2003-01-23 2004-08-19 Denso Corp., Kariya Kraftstoffeinspritzsystem der Drucksammelbauart
WO2004104397A1 (de) * 2003-05-26 2004-12-02 Siemens Aktiengesellschaft Verfahren zum betreiben eines verbrennungsmotors, kraftstoffsystem und ein volumenstromregelventil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19633156A1 (de) * 1996-08-17 1998-02-19 Bosch Gmbh Robert Vorrichtung und Verfahren zur Steuerung einer Brennkraftmaschine
DE19703891B4 (de) * 1997-02-03 2008-07-31 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung einer Leckage
DE502006002885D1 (de) * 2006-06-26 2009-04-02 Ford Global Tech Llc Verfahren zur Bestimmung der Kraftstoffsorte eines in einem Kraftstoffversorgungssystem einer Brennkraftmaschine befindlichen Kraftstoffes und Kraftstoffversorgungssystem zur Durchführung eines derartigen Verfahrens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19700738C1 (de) * 1997-01-11 1998-04-16 Daimler Benz Ag Verfahren zur Regelung der Einspritzmengen von Injektoren einer kraftstoffeinspritzenden Brennkraftmaschine
US20040134268A1 (en) * 2000-05-04 2004-07-15 Taner Tuken System for estimating a quantity of parasitic leakage
DE10303765A1 (de) * 2002-01-31 2003-09-04 Denso Corp Sammlereinspritzsystem
WO2004063547A1 (de) * 2003-01-15 2004-07-29 Siemens Aktiengesellschaft Verfahren und vorrichtung zur temperaturbestimmung des kraftstoffs in einem speicher-einspritzsystem
DE102004003316A1 (de) * 2003-01-23 2004-08-19 Denso Corp., Kariya Kraftstoffeinspritzsystem der Drucksammelbauart
WO2004104397A1 (de) * 2003-05-26 2004-12-02 Siemens Aktiengesellschaft Verfahren zum betreiben eines verbrennungsmotors, kraftstoffsystem und ein volumenstromregelventil

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2798179A1 (de) * 2011-12-28 2014-11-05 Scania CV AB Anordnung und verfahren zur schätzung eines kraftstoffgemischgehaltes eines zusätzlichen brennstoffes
EP2798179A4 (de) * 2011-12-28 2015-01-28 Scania Cv Ab Anordnung und verfahren zur schätzung eines kraftstoffgemischgehaltes eines zusätzlichen brennstoffes
WO2014108138A1 (en) * 2013-01-08 2014-07-17 Volvo Truck Corporation Method and arrangement for determining a fuel quality
CN104919163A (zh) * 2013-01-08 2015-09-16 沃尔沃卡车集团 用于确定燃料质量的方法和装置
US9651535B2 (en) 2013-01-08 2017-05-16 Volvo Truck Corporation Method and arrangement for determining a fuel quality
WO2018114532A1 (de) * 2016-12-19 2018-06-28 Continental Automotive Gmbh Verfahren zum betreiben einer brennkraftmaschine mit kraftstofferkennung
KR20190094450A (ko) * 2016-12-19 2019-08-13 씨피티 그룹 게엠베하 연료의 검출을 행하는 내연 기관을 작동시키기 위한 방법
CN110121589A (zh) * 2016-12-19 2019-08-13 世倍特集团有限责任公司 具有燃料识别功能的用于运行内燃机的方法
KR102197168B1 (ko) 2016-12-19 2020-12-31 씨피티 그룹 게엠베하 연료의 검출을 행하는 내연 기관을 작동시키기 위한 방법
US11053867B2 (en) 2016-12-19 2021-07-06 Vitesco Technologies GmbH Method for operating an internal combustion engine with a fuel detection

Also Published As

Publication number Publication date
DE102007052096A1 (de) 2009-05-14
DE102007052096B4 (de) 2009-07-09

Similar Documents

Publication Publication Date Title
DE102007052096B4 (de) Verfahren zur Erkennung einer Kraftstoffsorte
DE102008042329B4 (de) Steuereinrichtung für ein Kraftstoffeinspritzsystem
DE102008036122B4 (de) Verfahren zur Adaption der Leistung einer Kraftstoffvorförderpumpe eines Kraftfahrzeugs
DE102009002793B4 (de) Common-Rail-Kraftstoffeinspritzsystem sowie Brennkraftmaschine, Elektronische Einrichtung und Verfahren zur Steuerung und/oder Regelung einer Brennkraftmaschine
EP2205846B1 (de) Verfahren zur steuerung eines kraftstoffeinspritzsystems einer brennkraftmaschine
DE102012102336B4 (de) Vorrichtung zum Abschätzen eines Kraftstoffeinspritzzustands
DE102011077404B4 (de) Verfahren zur Bestimmung des Kraftstofftyps in einer Hochdruck-Einspritzvorrichtung eines Verbrennungsmotors
DE102004009026B4 (de) Vorrichtung zur Kraftstoffzuführung zu einem Verbrennungsmotor
DE102007052451B4 (de) Verfahren zum Bestimmen der aktuellen Dauerleckagemenge einer Common-Rail-Einspritzanlage und Einspritzanlage für eine Brennkraftmaschine
DE102009018654B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007052092B4 (de) Verfahren und Kraftstoffsystem zum Steuern der Kraftstoffzufuhr für eine Brennkraftmaschine
DE10341775A1 (de) Kraftstoffeinspritzsystem der Speicherbauart
DE102011075108A1 (de) Verfahren zum Bestimmen einer Steuermenge eines Injektors
DE10036772C2 (de) Verfahren zum Betreiben eines Kraftstoffzumesssystems einer direkteinspritzenden Brennkraftmaschine
DE102011004378B4 (de) Verfahren zur Funktionskontrolle eines Speichereinspritzsystems
DE102006000321A1 (de) Speicher-Kraftstoffeinspritzsteuersystem
DE10318433B4 (de) Kraftstoffeinspritzsystem mit Druckerhöhungsfunktion
DE10155252B4 (de) Verfahren zur Überprüfung der Plausibilität eines von einem Drucksensor gelieferten Kraftstoffdruckwertes in eine Einspritzanlage für Brennkraftmaschinen und entsprechende Einspritzanlage
WO2001069067A1 (de) Verfahren zum betreiben einer brennkraftmaschine
WO2009121652A1 (de) Verfahren zum bestimmen des effektiven kompressibilitätsmoduls eines einspritzsystems
DE10155249C1 (de) Einspritzanlage sowie Verfahren zur Regelung einer Kraftstoffpunpe
DE10305525B4 (de) Verfahren und Vorrichtung zur Adaption der Druckwellenkorrektur in einem Hochdruck-Einspritzsystem eines Kraftfahrzeuges im Fahrbetrieb
EP1689998B1 (de) Vorrichtung zum fördern von kraftstoff aus einem vorratsbehälter zu einer brennkraftmaschine und verfahren zur druckerfassung
DE102010004215B4 (de) Vorrichtung zur Verhinderung des Absterbens des Motors bei einem mit einem Dieseleinspritzsystem ausgestatteten Fahrzeug
DE102008016662A1 (de) Verfahren und Einrichtung zum Einspritzen von Kraftstoff in einen Kraftfahrzeugmotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08804524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08804524

Country of ref document: EP

Kind code of ref document: A1