EP1575013A2 - Sensor mit Multiplex-Datenausgang - Google Patents
Sensor mit Multiplex-Datenausgang Download PDFInfo
- Publication number
- EP1575013A2 EP1575013A2 EP04030561A EP04030561A EP1575013A2 EP 1575013 A2 EP1575013 A2 EP 1575013A2 EP 04030561 A EP04030561 A EP 04030561A EP 04030561 A EP04030561 A EP 04030561A EP 1575013 A2 EP1575013 A2 EP 1575013A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- lsn
- msn
- sensor
- data words
- short data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C19/00—Electric signal transmission systems
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C15/00—Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
Definitions
- Sensors are usually located at the location of the size to be determined. Either this already requires the measuring principle or is used to measure errors and uncertainties keep as small as possible.
- the measured quantities such as temperature, magnetic field, pressure, Force, flow, level, etc. are in the sensor in physical signals converted, which are then fed to the receiving device.
- a conversion into electrical signals instead of easily generating, can be transmitted and received, in particular if as a receiver, a processor is provided, which has appropriate interfaces.
- signals can be analog or digital signals. Digital signals have the advantage over analog signals that they can be used on the Transmission can be disturbed less, however, by an increased Effort on the transmitter and receiver side as well as on the transmission line has to be bought.
- digital signals often fit better in the Signal landscape of the connected processors, because their signal processing in essential parts are also digital.
- a disadvantage of the serial data transmission is with longer data words that for the Transmission time required because the transmission rate is relatively slow. Long signal lines can smoothen the pulse edges, resulting in safe Detection requires compared to the processor clock significantly reduced data rate. In the rule is during this time at least the associated data input of the Receiver blocked for other data, in the worst case extends the Blocking on other parts of the processor, which then no example Interruption allows.
- Another way of transferring data quickly is to transfer the data before the transmission by means of a digital-to-analog converter back into an analog signal discrete values and transmit this signal. This corresponds to one parallel data transmission. On the receiver side can then be out of the signal areas again the data by means of an analog-to-digital converter win back. At first glance, this looks awkward, because you could equal to the original analog output signal of the sensor transmitted. Finds though in the sensor processing of the sensor signal instead, for example, a filtering, Interpolation, compensation, level adjustment, equalization etc., then this is done a lot easier on the digital level, because then the associated parameters and Program steps are retrievable from digital stores and digital processing in with integrated computing devices takes place. There are problems with this type of transmission with high-resolution sensor output signals, because then the disturbances on the Transmission distance comparable or even greater than the step size of the Available signal grid.
- the solution of the task is based on the knowledge that not all data simultaneously for transmission into an analog signal, a pseudo signal, to be implemented, but only in sections.
- the resulting analog signals then become one after the other in multiplex mode.
- On the receiver side are the the transmitted pseudo signals bits compiled correctly, so that the full data word is available for further processing stands.
- the number of multiplexing sections and the number of multiplexing sections transmitted data is of the respective characteristics of the involved Function units and the expected interference dependent. If the disturbing influence is low, then this allows more discretely distinguishable states than when the Disturbance is high. In the limiting case the disturbing influence is so high that a Multiplex transmission is no longer possible, but each bit transmitted individually must be, but this is again purely sequential operation.
- the multiplexed data packets must be on the receiver side be reassembled correctly. So there must be a secure association be predetermined, which of the various data packets are each. There are a lot of possibilities for this.
- a very simple solution is the Marked by short breaks between the related ones Multiplex sections of a single data word and long pauses leading to Differentiation of different data words serve. Here is the order of fixed data packets.
- a great advantage of the described multiplex transmission is that even high-resolution Sensor signals from the analog-to-digital converters with a lower Bit resolution in the processors can be detected.
- the first 7 bits, which are the higher or lower digits of the Data word associated with are then stored in a first register.
- At the second received signal are the 7 bits of the lower or higher order digits of the data word and in a second tab or left blank Positions of the first register are stored correctly.
- the demand for one High transmission accuracy is the detection of the exact throttle position in an internal combustion engine, called for the setting of a quiet idle is required.
- the example shows that as a rule the transmission with two steps is sufficient, which simplifies the procedures for marking the two sections. For example, you can choose the available voltage range between Split 0.25V and 4.75V into two 0.25V to 2.25V and 2.75V to 4.75V parts. In One area will then be the higher-ranking places and the other area transferred to lower-ranking bodies.
- the interference immunity is halved, but has compared to the above example with the transmission of a 10 bit signal still a gain of about 15 times.
- the definition of the respective data area or its request can also be done by the controller itself by this a load resistance of Transmission line via one of its I / O ports to the VSS or VDD potential on. This switching is via the changed current direction in one corresponding evaluation circuit detected in the sensor output and triggers the transmission of the desired data section.
- Another way to define the Data packets and, if applicable, their tripping can be monitored via signals on the Supply line VDD or another connection of the sensor done.
- VDD Supply voltage connection
- the data does not change in the higher value range, but only the data in the low-order range. In this case it is expedient, as long as only the changes in the low-order data area until the higher-order data area a change results. If the transmission occurs in two control areas, the Marking which data section is currently being transmitted ensures otherwise, another label must ensure this. This method Accelerates the transfer further and reduces the occupancy of the controller.
- the decimal value 5241 is the output voltage going from 0V to 5V Vout, where the full stroke corresponds to the decimal 16384.
- the decimal value 5241 results in a voltage value of 1,600 V.
- Fig. 4 shows schematically the analog output signal Vout for a sensor for Recording of angle values.
- the angles ⁇ from -60 ° to + 60 ° are ⁇ linearly assigned the voltage values from 0 V to 5 V.
- FIG. 5 shows in the time diagram the successive transmission of the short data words LSN and MSN of FIG. 1 as different voltage levels Vout of 4.727 V and 1.563 V.
- a short transition of about 0.2 ms signals the change from the LSN to MSN.
- the change is triggered in the embodiment in that in Sensor output is detected that the current flow direction on the Transmission line has reversed, which, for example, by switching the Load resistance RL from VSS or GND to VDD is effected.
- FIG. 6 An example of such an implementation is shown in FIG. 6.
- a sensor 1 is connected to its Signal output 2 connected to a transmission link 3, the one Load resistance RL, for example, 10 kOhm. That of the Transmission link 3 opposite end of the load resistor is connected to an I / O input a receiver 4, e.g. a controller connected to its output potential optionally switch between VSS and VDD and thus in the sensor 1, the output of the respective short data word as an analog pseudo signal controls.
- FIG. 7 shows another implementation of the external triggering of the short data words shown schematically.
- the control now takes place via the supply voltage VDD, which is modulated by the controller 4 in an appropriate manner via the I / O port. Whether an overvoltage and undervoltage +/- ⁇ U is used or different high overvoltages depends only on the detection circuit in the sensor. Of the Load resistance RL in this case is at a fixed potential, e.g. VDD, connected.
- Fig. 8 shows schematically as a block diagram the functional units of an embodiment for a sensor 1.
- the actual sensor element 6 delivers its analog measurement signal to an analog-to-digital converter 7.
- the subsequent processing takes place digitally in the circuit block 8. If this parameter or program instructions needed, then these are brought from a memory 9. There also intermediate results etc. can be stored.
- the result of the processing is the digital output signal of the block 8, a multi-digit data word, which is ultimately to be transmitted to a receiver, not shown.
- This data word is split in the circuit block 10 into two short data words MSN and LSN, which are buffered in the registers 11, 12. Via an electronic switching device 13, the content of the two registers is switched by a control device 14 at the correct time to a digital-to-analog converter 15, which converts the short data words MSN and LSN each into an analog pseudo signal which is supplied via an amplifier 16 to an output terminal of the sensor 1 becomes.
- the required supply lines and control lines and clocks are not shown for the sake of clarity. Whether the individual functional units are realized wholly or partly by means of an adapted circuit or by means of a program is within the scope of the invention.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Time-Division Multiplex Systems (AREA)
Abstract
Description
Fig. 8 zeigt schematisch als Blockschaltbild die Funktionseinheiten eines Ausführungsbeispieles für einen Sensor 1. Das eigentliche Sensorelement 6 liefert sein analoges Messsignal an einen Analog-Digitalumsetzer 7. Die darauf folgende Verarbeitung erfolgt digital im Schaltungsblock 8. Werden hierzu Parameter oder Programmanweisungen gebraucht, dann werden diese aus einem Speicher 9 geholt. Dort können auch Zwischenergebnisse usw. abgespeichert werden. Das Ergebnis der Verarbeitung ist das digitale Ausgangssignal des Blockes 8, ein mehrstelliges Datenwort, das letzten Endes zu einem nicht dargestellten Empfänger übertragen werden soll. Dieses Datenwort wird in dem Schaltungsblock 10 in zwei Kurzdatenworte MSN und LSN aufgespalten, die in den Registern 11, 12 zwischengespeichert werden. Über eine elektronische Schalteinrichtung 13 wird der Inhalt der beiden Register von einer Steuereinrichtung 14 zur richtigen Zeit auf einen Digital-Analogumsetzer 15 geschaltet, der die Kurzdatenworte MSN und LSN jeweils in ein analoges Pseudosignal umwandelt, das über einen Verstärker 16 einem Ausgangsanschluss des Sensors 1 zugeführt wird. Die erforderlichen Versorgungsleitungen und Steuerleitungen und Taktgeber sind der besseren Übersicht wegen nicht dargestellt. Ob die einzelnen Funktionseinheiten ganz oder teilweise mittels einer angepassten Schaltung oder mittels eines Programms realisiert sind, liegt im Rahmen der Erfindung.
Claims (11)
- Verfahren zur Datenübertragung von einem Sensor (1) auf einen Empfänger (4), dadurch gekennzeichnet, dassjedes ursprüngliche Datenwort stellenmäßig in mindestens zwei getrennte Kurzdatenworte (MSN, LSN) zerlegt wird, wodurch die Anzahl der jeweiligen Stellen kleiner wird als bei dem ursprünglichen Datenwort,die getrennten Kurzdatenworte (MSN, LSN) mittels einer Digital-Analogumsetzung (15) jeweils in ein analoges Pseudosignal umgesetzt werden,im Multiplexbetrieb diese analogen Pseudosignale über einen Ausgang des Sensors (1) und eine Übertragungsstrecke (3) einem Signaleingang des Empfängers (4) zugeführt werden,der Signaleingang mit einem Analog-Digitalumsetzer (5) gekoppelt ist, der die analogen Pseudosignale in empfängerseitige Kurzdatenworte (MSN, LSN) umwandelt, wobei die Stellenzahl durch die Stellenzahl entsprechenden Kurzdatenwort (MSN, LSN) im Sensor (1) vorgegeben sind, unddie Stellen zusammengehöriger Kurzdatenworte (MSN, LSN) stellenrichtig wieder zu einem empfängerseitigen Datenwort zusammenfügt, das dem ursprünglichen Datenwort entspricht.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Übertragung der Kurzdatenworte (MSN, LSN) mittels eines modifizierten Multiplexbetriebes erfolgt, wenn sich die Daten im höherwertigen Kurzdatenwort (MSN) zwischen aufeinanderfolgenden Datenworten nicht ändern.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass im modifizierten Multiplexbetrieb nur die niederwertigen Kurzdatenworte (LSN) übertragen werden.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Unterscheidung zwischen den zusammengehörigen und nicht zusammengehörigen Kurzdatenworten (MSN, LSN) durch unterschiedlich lange Pausen erfolgt.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass den Kurzdatenworten (MSN, LSN) zur Unterscheidung getrennte Aussteuerbereiche des Sensorausganges zugeordnet sind.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass den Kurzdatenworten (MSN, LSN) zur Unterscheidung getrennte Stromflussrichtungen des Sensorausganges zugeordnet sind.
- Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die getrennte Stromflussrichtung mittels eines umschaltbaren Lastwiderstandes (RL) auf der Übertragungstrecke (3) erzeugt wird, dessen von der Übertragungsstrecke abgewandtes Ende zwischen einer oberen und unteren Spannung (VDD, VSS) umschaltbar ist.
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Umschaltung des Lastwiderstandes (RL) durch einen I/O-Anschluss des Empfängers (I/O) erfolgt.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass Kurzdatenworte (MSN, LSN) definiert mittels eines Steuersignals vom Empfänger (4) abrufbar sind.
- Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Steuersignal dem Sensor (1) über einen getrennten Eingang oder einen Versorgungsanschluss (VDD) zugeführt wird.
- Sensor (1) mit einem Datenausgang zur Übertragung eines aus einem Sensorsignal gebildeten Datenwortes an einen Empfänger (4), dadurch gekennzeichnet, dassder Sensor (1) Einrichtungen (10, 11, 12) enthält, die jedes ursprüngliche Datenwort stellenmäßig in mindestens zwei getrennte Kurzdatenworte (MSN, LSN) mit geringerer Stellenzahl als bei dem ursprünglichen Datenwort zerlegen,eine von einer Steuereinrichtung (14) gesteuerte Multiplexeinrichtung (13) enthält, welche an die Einrichtung (10, 11, 12) angeschlossen ist, um die analogen Pseudosignale zeitlich zu trennen,eine Digital-Analogumsetzung (15) im Signalweg nach der Multiplexeinrichtung (13) enthält, um die getrennten Kurzdatenworte (MSN, LSN) jeweils in ein analoges Pseudosignal umzusetzen, undeinem Verstärker (16) zwischen der Multiplexeinrichtung (13) und dem Ausgang des Sensors (1), der die erforderliche Leistung für die Übertragung liefert.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004007486 | 2004-02-12 | ||
DE102004007486A DE102004007486A1 (de) | 2004-02-13 | 2004-02-13 | Sensor mit Multiplex-Datenausgang |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1575013A2 true EP1575013A2 (de) | 2005-09-14 |
EP1575013A3 EP1575013A3 (de) | 2007-10-31 |
EP1575013B1 EP1575013B1 (de) | 2010-02-24 |
Family
ID=34813408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04030561A Active EP1575013B1 (de) | 2004-02-13 | 2004-12-23 | Sensor mit Multiplex-Datenausgang |
Country Status (5)
Country | Link |
---|---|
US (1) | US7319418B2 (de) |
EP (1) | EP1575013B1 (de) |
JP (1) | JP4745679B2 (de) |
KR (1) | KR101089486B1 (de) |
DE (2) | DE102004007486A1 (de) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007029660B4 (de) * | 2007-06-27 | 2011-06-01 | Vega Grieshaber Kg | Adaptiver Fehlerzähler für ein drahtloses Feldgerät |
DE102007046560A1 (de) * | 2007-09-28 | 2009-04-02 | Siemens Ag | Feldgerät mit einem Analogausgang |
EP2211147B1 (de) * | 2009-01-23 | 2012-11-28 | Micronas GmbH | Verfahren zur Funktionsüberprüfung einer elektrischen Schaltung |
IT1397584B1 (it) * | 2009-12-18 | 2013-01-16 | Eltek Spa | Dispositivo di monitoraggio di una ruota di un veicolo e relativo metodo di comunicazione. |
DE102012013072B4 (de) | 2012-07-02 | 2015-01-08 | Micronas Gmbh | Vorrichtung zur Auswertung eines Magnetfeldes |
JP5737327B2 (ja) * | 2013-05-08 | 2015-06-17 | 株式会社デンソー | 通信システム、送信装置、受信装置 |
EP2999943B1 (de) | 2013-06-20 | 2022-04-06 | Allegro MicroSystems, LLC | System und verfahren zur bereitstellung einer für einen signaturbereich in einem ziel und eine drehrichtung repräsentativen signalcodierung |
US9787495B2 (en) | 2014-02-18 | 2017-10-10 | Allegro Microsystems, Llc | Signaling between master and slave components using a shared communication node of the master component |
US9634715B2 (en) | 2014-02-18 | 2017-04-25 | Allegro Microsystems, Llc | Signaling between master and slave components using a shared communication node of the master component |
US9851416B2 (en) | 2014-07-22 | 2017-12-26 | Allegro Microsystems, Llc | Systems and methods for magnetic field sensors with self-test |
US9739846B2 (en) | 2014-10-03 | 2017-08-22 | Allegro Microsystems, Llc | Magnetic field sensors with self test |
US10156461B2 (en) | 2014-10-31 | 2018-12-18 | Allegro Microsystems, Llc | Methods and apparatus for error detection in a magnetic field sensor |
US10101410B2 (en) | 2015-10-21 | 2018-10-16 | Allegro Microsystems, Llc | Methods and apparatus for sensor having fault trip level setting |
US10495700B2 (en) | 2016-01-29 | 2019-12-03 | Allegro Microsystems, Llc | Method and system for providing information about a target object in a formatted output signal |
US10495485B2 (en) | 2016-05-17 | 2019-12-03 | Allegro Microsystems, Llc | Magnetic field sensors and output signal formats for a magnetic field sensor |
DE102016119446A1 (de) * | 2016-10-12 | 2018-04-12 | Fujitsu Technology Solutions Intellectual Property Gmbh | Schnittstellenanordnung zum Anschluss eines Peripheriegeräts an eine Schnittstelle eines Host-Systems, Verfahren und elektronisches Gerät, insbesondere Computersystem |
US10216559B2 (en) | 2016-11-14 | 2019-02-26 | Allegro Microsystems, Llc | Diagnostic fault communication |
US10747708B2 (en) | 2018-03-08 | 2020-08-18 | Allegro Microsystems, Llc | Communication system between electronic devices |
US10388362B1 (en) * | 2018-05-08 | 2019-08-20 | Micron Technology, Inc. | Half-width, double pumped data path |
US10656170B2 (en) | 2018-05-17 | 2020-05-19 | Allegro Microsystems, Llc | Magnetic field sensors and output signal formats for a magnetic field sensor |
US10725122B2 (en) | 2018-07-20 | 2020-07-28 | Allegro Microsystems, Llc | Ratiometric sensor output topology and methods |
US11686597B2 (en) | 2019-06-07 | 2023-06-27 | Allegro Microsystems, Llc | Magnetic field sensors and output signal formats for magnetic field sensors |
US11942831B2 (en) | 2020-01-15 | 2024-03-26 | Allegro Microsystems, Llc | Three-phase BLDC motor driver/controller having diagnostic signal processing |
US11029370B1 (en) | 2020-05-22 | 2021-06-08 | Allegro Microsystems, Llc | Sensor output control methods and apparatus |
US11811569B2 (en) | 2020-09-01 | 2023-11-07 | Allegro Microsystems, Llc | Sensor integrated circuits having a single edge nibble transmission (SENT) output |
US11885645B2 (en) | 2021-06-17 | 2024-01-30 | Allegro Microsystems, Llc | Supply voltage configurable sensor |
US11848682B2 (en) | 2022-01-11 | 2023-12-19 | Allegro Microsystems, Llc | Diagnostic circuits and methods for analog-to-digital converters |
US12061937B2 (en) | 2022-06-22 | 2024-08-13 | Allegro Microsystems, Llc | Methods and apparatus for sensor data consistency |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4494183A (en) * | 1982-06-17 | 1985-01-15 | Honeywell Inc. | Process variable transmitter having a non-interacting operating range adjustment |
US20020082799A1 (en) * | 1999-07-02 | 2002-06-27 | Siemens Ag | Measuring transducer with a corrected output signal |
WO2003002950A1 (de) * | 2001-06-27 | 2003-01-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. | Verfahren und vorrichtung zum vorbereiten eines sensorsignals eines positionssensors für eine übertragung zu einer auswerteeinheit |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2330263A1 (de) * | 1973-06-14 | 1975-01-09 | Licentia Gmbh | Uebertragungs- und vermittlungsverfahren mit hilfe der amplitudenselektion |
US4592002A (en) * | 1983-12-13 | 1986-05-27 | Honeywell Inc. | Method of digital temperature compensation and a digital data handling system utilizing the same |
US4591855A (en) * | 1983-12-27 | 1986-05-27 | Gte Communication Products Corporation | Apparatus for controlling a plurality of current sources |
JPS63245599A (ja) * | 1987-03-31 | 1988-10-12 | 株式会社日立製作所 | 2線式通信装置用伝送方法 |
DE3803872A1 (de) * | 1988-02-09 | 1989-08-17 | Messerschmitt Boelkow Blohm | Einrichtung zur inertialen geschwindigkeits- oder beschleunigungsmessung und schaltungsanordnung zur signalaufbereitung und -verarbeitung hierfuer |
JPH0632151B2 (ja) * | 1988-09-07 | 1994-04-27 | セコム株式会社 | 検針システム |
DE4035996A1 (de) | 1990-11-12 | 1992-05-14 | Siemens Ag | Verfahren zur simultanen uebertragung von daten auf einem uebertragungskanal |
US5361218A (en) * | 1992-08-11 | 1994-11-01 | Itt Corporation | Self-calibrating sensor |
US5481200A (en) * | 1993-09-15 | 1996-01-02 | Rosemont Inc. | Field transmitter built-in test equipment |
JP3412349B2 (ja) * | 1994-12-28 | 2003-06-03 | 株式会社日立製作所 | 制御装置 |
US5815100A (en) * | 1996-06-04 | 1998-09-29 | Hewlett-Packard Company | Voltage multiplexed chip I/O for multi-chip modules |
KR100238674B1 (ko) | 1997-01-27 | 2000-01-15 | 윤종용 | 디지털 스틸 카메라의 영상데이터 중간처리 방법 |
DE19815011A1 (de) | 1998-04-03 | 1999-10-14 | Temic Semiconductor Gmbh | Verfahren zur Übertragung von digitalen Sendesignalen |
DE19819265C1 (de) * | 1998-04-30 | 1999-08-19 | Micronas Intermetall Gmbh | Verfahren zum Parametrieren einer integrierten Schaltungsanordnung und integrierte Schaltungsanordnung hierfür |
US6744376B1 (en) * | 1998-08-26 | 2004-06-01 | The Johns Hopkins University | Remote input/output (RIO) smart sensor analog-digital chip |
DE19946776A1 (de) | 1999-09-29 | 2001-04-12 | Bosch Gmbh Robert | Verfahren und Vorrichtung zu bidirektionalen Kommunikation wenigstens zweier Kommunikationsteilnehmer |
DE10121879A1 (de) * | 2001-05-05 | 2002-11-07 | Conti Temic Microelectronic | Verfahren zur Übertragung eines Sensordatensignals und eines Zusatzdatensignals von einer Sensorbaugruppe zu wenigstens einem Empfänger |
JP2004145474A (ja) * | 2002-10-22 | 2004-05-20 | Yokohama Rubber Co Ltd:The | タイヤモニタリングシステム並びにそのモニタ受信機とモニタ装置及びセンサ装置 |
-
2004
- 2004-02-13 DE DE102004007486A patent/DE102004007486A1/de not_active Withdrawn
- 2004-12-23 DE DE502004010803T patent/DE502004010803D1/de active Active
- 2004-12-23 EP EP04030561A patent/EP1575013B1/de active Active
-
2005
- 2005-02-14 KR KR1020050012029A patent/KR101089486B1/ko active IP Right Grant
- 2005-02-14 US US11/057,711 patent/US7319418B2/en active Active
- 2005-02-14 JP JP2005036013A patent/JP4745679B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4494183A (en) * | 1982-06-17 | 1985-01-15 | Honeywell Inc. | Process variable transmitter having a non-interacting operating range adjustment |
US20020082799A1 (en) * | 1999-07-02 | 2002-06-27 | Siemens Ag | Measuring transducer with a corrected output signal |
WO2003002950A1 (de) * | 2001-06-27 | 2003-01-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. | Verfahren und vorrichtung zum vorbereiten eines sensorsignals eines positionssensors für eine übertragung zu einer auswerteeinheit |
Also Published As
Publication number | Publication date |
---|---|
JP4745679B2 (ja) | 2011-08-10 |
US7319418B2 (en) | 2008-01-15 |
EP1575013B1 (de) | 2010-02-24 |
KR101089486B1 (ko) | 2011-12-02 |
EP1575013A3 (de) | 2007-10-31 |
KR20060041930A (ko) | 2006-05-12 |
DE102004007486A1 (de) | 2005-10-27 |
JP2005228336A (ja) | 2005-08-25 |
DE502004010803D1 (de) | 2010-04-08 |
US20050243184A1 (en) | 2005-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1575013B1 (de) | Sensor mit Multiplex-Datenausgang | |
WO1987004123A1 (en) | Circuit for transmitting values measured at vehicle wheels | |
EP0883097A2 (de) | Anordnung zur Signalübertragung zwischen einer Geberstelle und einer Empfangsstelle | |
DE4422867A1 (de) | Sensor mit einer programmierbaren Schaltschwelle | |
DE102007046560A1 (de) | Feldgerät mit einem Analogausgang | |
WO2014166656A1 (de) | Messumformerspeisegerät, system zum einsatz in der automatisierungstechnik, sowie verfahren zum bedienen eines solchen systems | |
WO2010046179A2 (de) | Vorrichtung und verfahren zur datenübertragung zwischen einem positionsmessgerät und einer folgeelektronik | |
DE102008014448A1 (de) | Intelligente Enddruckwächtereinheit | |
DE102005043478A1 (de) | Automatisierungstechnische Einrichtung | |
EP2223054B1 (de) | Vorrichtung zur übertragung von elektrischer energie und information | |
DE102008057474A1 (de) | Meßumformer | |
EP1203933B1 (de) | Sensoranordnung zur Erfassung wenigstens eines Messwerts | |
DE3921962C2 (de) | ||
EP3032429B1 (de) | Verfahren und vorrichtung zum einlesen eines seriellen datenstroms | |
DE102008050612A1 (de) | Verfahren zum Testen des Verhaltens einer Prozessanlage | |
DE102005043488A1 (de) | Automatisierungstechnische Einrichtung | |
DE3300218C2 (de) | Datenfernübertragungssystem | |
DE10315179B4 (de) | Halbleitermessvorrichtung zum Messen einer physikalischen Grösse | |
DE102005053439B4 (de) | Verbrauchswerterfassungssystem und Verfahren zum Betreiben eines Verbrauchswerterfassungssystems | |
DE10213687A1 (de) | Sensor mit Schwellenregeleinrichtung | |
EP4016206B1 (de) | Sensoranordnung, steuergerät, automatisierungssystem und verfahren zum übermitteln von signalen gemäss zweier kommunikationsstandards | |
EP3153938B1 (de) | Messanordnung | |
DE102004012506A1 (de) | Verfahren zur Erfassung von Signalen in einer zentralen Erfassungseinheit | |
DE102009005220A1 (de) | Konstante Laststrommodulation für Sensoren | |
EP2418551B1 (de) | Diagnoseverfahren für ein nach dem AS-Interface Standard ausgeführtes Feldbussystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
17P | Request for examination filed |
Effective date: 20080502 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT NL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 502004010803 Country of ref document: DE Date of ref document: 20100408 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20101125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20110701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110701 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502004010803 Country of ref document: DE Representative=s name: KOCH-MUELLER PATENTANWALTSGESELLSCHAFT MBH, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502004010803 Country of ref document: DE Owner name: TDK-MICRONAS GMBH, DE Free format text: FORMER OWNER: MICRONAS GMBH, 79108 FREIBURG, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: TDK-MICRONAS GMBH, DE Effective date: 20180717 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20181218 Year of fee payment: 15 Ref country code: FR Payment date: 20181219 Year of fee payment: 15 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191223 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231214 Year of fee payment: 20 |