EP1571247B2 - Verfahren zur Herstellung von Produkten aus Mineralwolle, insbesondere ein- und mehrschichtige Produkte - Google Patents

Verfahren zur Herstellung von Produkten aus Mineralwolle, insbesondere ein- und mehrschichtige Produkte Download PDF

Info

Publication number
EP1571247B2
EP1571247B2 EP04030194.7A EP04030194A EP1571247B2 EP 1571247 B2 EP1571247 B2 EP 1571247B2 EP 04030194 A EP04030194 A EP 04030194A EP 1571247 B2 EP1571247 B2 EP 1571247B2
Authority
EP
European Patent Office
Prior art keywords
mineral wool
nonwoven
process according
primary
flocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04030194.7A
Other languages
English (en)
French (fr)
Other versions
EP1571247B1 (de
EP1571247A3 (de
EP1571247A2 (de
Inventor
Johannes Horres
Joachim Mellem
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Isover SA France
Original Assignee
Saint Gobain Isover SA France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34683606&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1571247(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Saint Gobain Isover SA France filed Critical Saint Gobain Isover SA France
Priority to PL04030194T priority Critical patent/PL1571247T5/pl
Publication of EP1571247A2 publication Critical patent/EP1571247A2/de
Publication of EP1571247A3 publication Critical patent/EP1571247A3/de
Application granted granted Critical
Publication of EP1571247B1 publication Critical patent/EP1571247B1/de
Publication of EP1571247B2 publication Critical patent/EP1571247B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G9/00Opening or cleaning fibres, e.g. scutching cotton
    • D01G9/04Opening or cleaning fibres, e.g. scutching cotton by means of beater arms
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • D04H1/4226Glass fibres characterised by the apparatus for manufacturing the glass fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/593Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives to layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)

Definitions

  • the invention relates to a process for the production of mineral wool products according to the preamble of claim 1.
  • a collection chamber often called chute
  • the fibers are provided with binder on their way through the chute.
  • other process-relevant substances can be added in the chute, such as dust binders, water repellents and the like.
  • the fibers thus obtained are deposited on a moving, perforated element, which is one of the boundaries of the chute, and separated from the accompanying gas-air stream.
  • a moving, perforated element which is one of the boundaries of the chute, and separated from the accompanying gas-air stream.
  • endless nonwovens are produced in which the properties of the subsequent product which correspond in terms of weight per unit area, width, fiber orientation and homogeneity are predetermined. These properties can not be subsequently changed significantly, so that in the deposition of the chute generated orientations of the fibers in the web or inhomogeneities in the later product are given if the web is not subsequently split or doubled, or separated into adjacent webs.
  • the weight per unit area is influenced by varying the speed of the perforated separation element with constant fiber input, the fiber orientation generally being essentially laminar.
  • laminar is meant that the fibers are oriented substantially parallel to a surface, usually its support surface. In the production of the web, the total amount of air / gas must pass through the forming web. Depending on the basis weight and the available suction surface, different negative pressures are required in the extraction.
  • the invention is based on this known production of primary nonwovens made of mineral wool. It has been recognized that so-called inhomogeneities in web formation are virtually unavoidable in any of the known fiberizing processes. These may be inhomogeneities in the wool distribution, with a reduced amount of mineral wool at some points and an increased amount of mineral wool at others. Furthermore, defects such as binder batches or improperly defibred glass parts lead to quality losses.
  • inhomogeneities of the binder distribution may occur, such as multiply wetted wool accumulations, which had repeatedly passed into the area of the binder spray through backflow, or fiber bundles, which had passed the area of the spraying too fast.
  • binder deficiencies or - enrichments are in the final product z. B. recognizable by color differences.
  • a larger amount of binder must be added than theoretically necessary because of the inhomogeneous distribution of the binder.
  • the inhomogeneous wool distribution can also have an effect in locally different basis weights of the nonwoven resulting from locations of different density.
  • Such fluctuations in the wool distribution negatively affect quality features, such as in particular about the heat resistance, but also the mechanical strength.
  • quality features such as in particular about the heat resistance, but also the mechanical strength.
  • the achievable minimum density is increased by such inhomogeneities, even to avoid visible defects such as "holes".
  • the result must therefore be driven with a higher average density than actually necessary to account for these inhomogeneities of wool distribution. This leads to higher production costs and thus higher product costs and to the reduction of the thermal resistance due to the higher density. Overall, the result is a product that has a quality that differs from the theoretically possible quality.
  • EP 1 111 113 A2 From the documents EP 1 111 113 A2 .
  • EP 0 434 536 A1 and US 4,632,685 are compressed mineral wool nonwovens become known.
  • FR 2 682 403 a method for mechanical comminution of a primary web to mineral wool flakes.
  • From the US 2,589,008 is a process for the production of products made of mineral wool, in which a primary web of loose, binder-free wool or such wool mixed with binder powder is subjected to a mechanical action for reorientation of the individual fibers in several stages in order to produce a final nonwoven with more homogeneous properties.
  • binder can be sprayed onto this end fleece.
  • existing binder is cured in the final web.
  • the present invention is based on the teaching of FR 2 591 621 A1 from which a method according to the preamble of claim 1 is known. In this known procedure, however, a primary nonwoven with hardened binder is subjected to mechanical comminution.
  • the invention has for its object to provide a method for the production of products made of mineral wool, in which the effects of the different manufacturing processes production-technically unavoidable inhomogeneities in the final product are minimized so that optimal product-specific properties can be achieved with minimal possible mineral wool cost, in particular so that multi-layer products with different properties of the individual layers and high quality single-layer products should be produced.
  • the mineral wool material of the primary nonwoven is crushed mechanically out of its composite into individual mineral wool flakes. These are then deposited again to form the Endvlieses so that the mineral wool material is present isotropically in Endvlies.
  • isotropic is to be understood here that individual theoretically separated, e.g. Cube-shaped elements of Endvlieses in all directions in the room have the same properties as load capacity and so on.
  • the present invention goes beyond this prior art a very different way: starting from a preferably laminar primary fleece made of mineral wool, which is deliberately crushed into individual mineral wool flakes, to subsequently obtain an improved product, which in its structure consists exclusively of mineral wool again , It has surprisingly been found that individual mineral wool flakes are obtained by a specific comminution of the primary nonwoven, namely by a combined impact and cutting process, which provide a product at a re-deposition to a final nonwoven, which has a lower density compared to the primary nonwoven, but still has at least the other insulation and strength values of the primary nonwoven. This means raw density savings without quality loss.
  • the Mineralwollefasem binder is added in the production of the primary web.
  • the advantages of the method according to the invention also come into play, since hereby also the binder distribution is homogenized, which in particular has an advantageous effect on the strength of the product.
  • the targeted crushing of the primary nonwoven in certain mineral wool flakes can be achieved in one embodiment of the invention, when the impact and cutting process in their shape differently shaped tines are used, which are part of circumferentially arranged on a roller axially parallel bars and the corresponding during comminution process Combing projections of a downholder for the primary nonwoven with a game.
  • the primary web via a conveyor, in particular a conveyor belt, the impact and cutting process is fed so that it is forcibly guided between the conveyor belt and the hold-down, expediently the conveyor belt and the hold-down run conically to each other.
  • the tines of the provided on the roller bars can be formed alternately as a percussion finger and a cutting blade, the impact fingers and the cutting blades are to be equipped at their face or cutting edges with a highly wear-resistant coating, as this wear can be minimized, the glassy mineral wool fiber can cause.
  • the tines formed as cutting knives may alternately have different sizes and be aligned with their conical tips in the direction of the roll radius, thereby creating gaps of different sizes for the counterpart in the form of alternating sliding fingers and rod-shaped conveying members.
  • the sliding fingers should be provided rigidly to the hold-down and each extend to near the smaller cutting blade, whereas the rod-shaped conveying members, z. B. designed as endless circulating chains should extend to near the larger cutting blade.
  • the mineral wool flakes produced during comminution are advantageously precompressed to a certain extent, wherein this precompression may amount to more than 50%, based on the density of the primary nonwoven, eg. B. a raw density increase from originally 30 kg / m 3 to 50 kg / m 3 . It has further been found that the size of the mineral wool flakes produced is of importance in order to obtain an isotropic structure in the final web, and it has been determined from many tests that the mineral wool flakes preferably have an average radial extent of 10 to 30 mm, in particular 15 +/-. 5 mm should have.
  • the mineral wool flakes advantageously influenced by the precompression randomly stored, so that this random or chaotic distribution counteracts a new formation of inhomogeneities.
  • Such an effect can also be achieved in the method according to the invention.
  • the fibers occupy again a preferred fiber orientation in the storage to Endvlies.
  • the chaotic storage for the first time a somewhat three-dimensionally compressed product with orientation about the same fiber content in all three main directions can be produced, but the inevitable with the known method disadvantage of a concomitant compression or increase in bulk density is avoided.
  • the end fleece with its isotropic structure with at least one other mineral wool material for.
  • the mineral wool flakes of the primary nonwoven produced on the other, possibly different mineral wool material can be easily stored and subjected together with this further processing steps such as a compaction and / or an upsetting process and / or a curing process.
  • composite products with very different properties of the layers can be produced, such as a composite product with an inner mineral wool body and at least one stable outer protective layer, the latter does not differ substantially in their bulk density from that of the main body.
  • the method according to the invention offers, above all, in a simple manner, the possibility of producing multilayer products which are known by the term bidensity plates, which in particular find their use in flat roofs and on the façade.
  • the product according to the invention is characterized by a layer with isotropic and a layer with laminar fiber structure, wherein the layer having the isotropic structure has a higher compressive strength than the other layer.
  • products are also possible which are plate-shaped and consist of only one layer, which has an isotropic fiber structure, which z. B. as so-called. Impact sound insulation panels in the screed area can be used.
  • a station designated overall for comminuting mineral wool material of a primary nonwoven 2 is illustrated.
  • the comminuting station 1 is arranged between a conveying direction arrow 3 upstream of the defibering station and a downstream curing oven.
  • the fiberizing station and the curing oven may be of any known type and are therefore not shown in detail.
  • the primary web 2 is produced in the fiberization station by depositing mineral fibers produced from a melt by means of a large-volume conveying gas air flow on an evacuated perforated element, such as a screen fabric, which is progressively moved in the direction of production. This results in a fiber deposit in the primary web 2 such that the mineral fibers are arranged predominantly parallel to the bearing surface or to the large surfaces of the primary web 2, so to speak, "lie”. Such a fiber deposit is referred to as "laminar”.
  • a binder would have been added to the fiber stream prior to deposition on the perforated element which is cured in a conventional conventional curing oven so as to give the mineral wool product its stable final shape. Between shredding station and curing oven, the binder is still uncured, and the fibers are still movable against each other, and can be influenced in terms of reorientation.
  • the strength of the product is significantly increased with concomitant increase in density against surface pressure and surface tension, but conversely decreases the flexural strength.
  • the shredding station 1 is now arranged between the shredding station and the curing oven.
  • the mineral wool material of the primary web 2 is mechanically comminuted, so singled out of its composite in mineral wool flakes, and then this newly filed to form a Endvlieses 4.
  • the primary nonwoven 2 runs in the entry into the crushing station 1 by a rotating pressing member 5 in its thickness compressed, and is held by a hold-6 in the compressed state. In this position, a separation of the mineral wool material from the composite of the primary nonwoven 2 out by intervening between the hold-6 tines 7 a Zerflockungswalze 8, which takes place Apply primary fleece 2 from below and separate between gaps in the hold-down 6 to form mineral wool flakes 9.
  • the individual mineral wool flakes 9 containing fiber stream is supplied in the example of a bottom-side perforated conveyor belt 11 and stored on this.
  • an air extraction takes place, so that the fiber deposit on the conveyor belt 11 is supported by a large-volume air flow.
  • the fiber deposit on the conveyor belt 11 is similar to that on the perforated element in the fiberizing station.
  • relatively compact flakes are produced in the comminuting station 1, which already experience a certain pre-compaction with respect to the gross density in the primary web 2 due to the action of the prongs 6 meshing with the blank holder 6, the flakes being deposited in a random orientation. Therefore, the fiber orientation in the final web 4 is chaotic, i. isotropic. In the example case after appropriate, not shown further pre-compaction, the material passes with this isotropic orientation in the curing oven in which the binder hardens. Depending on requirements, before the curing oven also a further fiber influencing may take place, for example by a compression.
  • a guide member 13 On the underside of the fiber stream 10, a guide member 13 may be arranged, which in its downstream region, the fiber stream 10 toward its deposit on the conveyor belt 11 leads, and is supported with its upstream end in a manner not shown and between the tines. 7 the flocculation roller 8 engages to prevent formation of fiber accumulations there.
  • additives such as hydroxides or extraneous fibers may be introduced into the loose fiber stream 10 to create or assist desired properties.
  • the nonwoven former comprising the conveyor belt 11 can be provided with side walls which are known per se and can be adjusted in a distance, in order to laterally guide and limit the end web 4.
  • the web forming device can further be added or subordinated to a device for influencing the wool distribution.
  • the wool can be further homogenized in order to even more uniform when filing from the fiber stream 10 occurred inhomogeneities of the wool distribution or bring about a desired wool distribution.
  • the wool distribution can be influenced by locally different effective suction or by air lances or mechanical action as needed.
  • Such comminuting stations 1 can be used in a variety of ways in the area between the refining station and the curing oven.
  • a crushing station 1 can first of all be used wherever previously a compression station was provided. It can also homogenize each individual primary non-woven fabric for itself and thereby isotropically reshaping, after which instead of primary nonwovens 2, the final nonwovens 4 thus formed can be moved over one another or placed on top of each other. But it is also possible to promote 4 further mineral wool material on the conveyor belt 11 in the form of a further primary web 2 or Endvlieses, and to form on the upper side of the end web 4 as a further layer.
  • inventive method thus does not limit the applicability of known procedures nowhere, but extends them to the possibility of any fleece, whether inventively or otherwise pretreated or not, as primary fleece 2 supply a crushing station 1 and so in any case to homogenize, and in to transform an isotropic fiber orientation.
  • Fig. 2 and 2a each shown section of a preferred crushing station 1 'shows in side view a Zerflockungswalze 8', the circumferentially a plurality of the same distance from one another and axially parallel strips 14 having, which are provided at their free ends with tines 7 '.
  • the tines 7 ' mesh with a hold-down 6' with a play 15 to allow formation of the mineral wool flakes 9 (not shown).
  • the game 15 is in Fig. 2a clearly recognizable and can be adjusted in size.
  • the designated with 2 'primary web is the impact and cutting process by means of a conveyor belt 12' and a hold-6 'supplied, wherein the conveyor belt 12' and the hold-6 'run conically in the transport direction, so that the primary web 2' is forcibly guided.
  • the tines 7 'of the strips 14 are formed alternately as a percussion finger 16 and as a kind of cutting blade 17, which are equipped at their impact and cutting surfaces with a highly wear-resistant coating.
  • the cutting blades 17 are again alternately different sizes - 17a; 17b - formed and aligned with their conical tips radially with respect to the Zerflockungswalze 8 '.
  • the hold-down 6 has alternately arranged rigid sliding fingers 18, each extending to the vicinity of the smaller, relatively radially projecting cutting blade 17a, and rod-shaped conveying members 19 in the form of endlessly circulating chains, which are up to the vicinity of the larger, radially relative extend inner cutter 17b.
  • the primary nonwoven 2 'on the conveyor belt 12' and the hold-6 'of the flocculation 8' according to the in Fig. 2 forcibly fed in the direction of transport, while the flocculation roller 8 'in the counterclockwise direction as shown in FIG Fig. 2 is driven at about 1000 revolutions per minute, which means a peripheral speed of 32 meters per minute with a mean roller diameter of 800 mm.
  • the flocculation roller 8 'in the counterclockwise direction as shown in FIG Fig. 2 is driven at about 1000 revolutions per minute, which means a peripheral speed of 32 meters per minute with a mean roller diameter of 800 mm.
  • the impact fingers 16 a certain pre-densification of mineral wool flakes 9.
  • This pre-compression may be more than 50% based on the density of the primary web 2', ie, for example, an increase in the density in Primarvlies 2 'of 25 kg / m 3 to 50 kg / m 3 in the mineral wool flakes 9 effect.
  • a preferred average expansion of the mineral wool flakes 9 of 15 +/- 5 mm is achieved, so that the end fleece 4 (not shown) receives an isotropic fiber structure. Due to the initially loose storage of the precompressed mineral fiber flakes 9 on the conveyor belt 11 is advantageously effected that the end fleece 4 has a lower bulk density than the primary nonwoven 2 ', but otherwise about the same parameters (thermal conductivity, mechanical strength).
  • Fig. 3 is a diagram of a conventionally compressed plate shown how it is exposed surface tension or surface pressure.
  • the compression (crepage) leads to a different formation on the side surface of the product 20 designated 21, which was produced in a production direction according to arrow 3.
  • the formation of the side surface 21 ranges depending on the device used by a pronounced waveform to a largely random random position, as in Fig. 3 is illustrated.
  • Such a largely random random position on the side surface 21 can be approximately with a high-performance compression system according to the EP 1 144 742 B1 to which reference is made in full in this respect because of further details.
  • end faces of the product 20 which arise in the lengthening of plates of the cured mineral wool web, however, a laminar deposition of the fibers is still recognizable. All forces encountered during compression have only acted perpendicularly to this end face 23, so that fiber strands or "chains" lying transversely to the production direction according to arrow 3 may possibly have been rotated or tilted so that fibers lying in the direction of production according to arrow 3 are oriented in the direction of the vertical were. However, fibers of the laminar product lying transverse to the direction of production according to arrow 3 were not influenced in their orientation. In that regard, the product 20 is still laminar over its frontal width at the end face 23, even after the compression.
  • the product 20 must be designed for certain surface tension or surface pressure loads to which it is exposed during use. To achieve these strengths, a certain bulk density must be maintained as the product becomes stronger with higher bulk density. For example, to obtain a surface tensile strength of 30 kN / m 2 , the product 20 may require a bulk density of 130 kg / m 3 . In order to achieve a surface compressive strength of 60 kN / m 2 , a bulk density of 160 kg / m 3 may be required. Increased bulk density leads to increased use of material and thus increased costs and above a bulk density of about 50 to 70 kg / m 3 to a reduction of the thermal resistance by increasing the thermal bridges to the fibers, so a drop in quality.
  • Fig. 4 is an exemplary inventively obtained product 30 in a representation accordingly Fig. 3 shown.
  • the product 30 has been obtained by mechanically comminuting a primary web to form flakes and recombining the flakes into a final web 4 which has been precompressed as desired and then cured in the curing oven to compact it to its final thickness.
  • the fibers lie in predominantly non-parallel arrangement, but as it has formed the interaction of the tines 7 'with the hold-down 6'.
  • the flakes are moved against each other and finally deposited randomly on the conveyor belt 11 to form the Endvlieses 4.
  • the previously laminar fiber deposit of the primary web 2 has been reoriented to a completely random, isotropic fiber deposit in the final web 4.
  • the individual mineral wool flakes 9 in Endvlies 4 are no longer recognizable, but the deposited flake mass has become a homogeneous and integral new structure.
  • the local dashed line illustrated curve 40 shows a typical course of thermal conductivity above the density in laminar, produced with internal centrifugation mineral wool material.
  • the curve 41 shown in a solid line illustrates the corresponding course in a material homogenized by targeted comminution material with isotropic fiber structure and otherwise the same parameters as the wool material of the curve 40.
  • a point A of the same thermal conductivity shifts Material produced according to the invention by an amount a in the direction of reduced bulk density. This means that products which could not fall below a certain density to achieve a desired thermal conductivity, according to the invention can be prepared with respect to reduced bulk density, resulting in corresponding savings.
  • any permissible reduction in the bulk density as a result of the high production quantities results in a considerable cost advantage.
  • both the bulk density can be reduced by a value a 1 which is lower than the value a and the thermal conductivity can be improved by a value b 1 which is reduced by comparison with the value b, as shown in FIG Fig. 5 is illustrated by arrow c.
  • This is recommended, for example, if the improvement in the Wämleitction to the value b 1 is already sufficient to achieve a desired better sautmentssucc, so that a further reduction of the thermal conductivity is no longer necessary and instead to the still available value a 1 at Raw density can be saved.
  • An essential further field of application of the present invention resides in composite products, wherein the use of the invention can at least always take place where conventionally compression processes (crepage) have been used.
  • Such a composite product is in Fig. 6 shown as product 50.
  • a product for example a facade insulation board
  • the solid surface layer 52 usually a compression plate relatively high bulk density, serves to protect the insulating layer 51 against point-like applied forces.
  • these forces are applied by retaining dowels, which set the facade insulation board with the solid surface layer outwards against the building wall and hold against gravity and wind forces. For reasons of installation effort is to strive to get along with as few plugs.
  • the solid surface layer 52 is conventionally made from a compressed plate, it contains a plurality of thickness-directional fibers which avoid indentation of the solid surface layer in the area of the dowel plate 53 (mattress effect) but have very limited strength against shear forces at the dowel edges because they can be relatively easily moved against each other by also acting in the direction of thickness forces. Therefore, very high densities and comparatively high thicknesses of the solid surface layers 52 are required, resulting in an increased required thickness of the entire due to the greatly reduced heat resistance of the solid surface layer Facade insulation board leads.
  • Will the solid surface layer 52, as shown in Fig. 6 is schematically illustrated, according to the invention produced by the fact that a primary nonwoven fabric 2 selectively crushed to form mineral wool 9 and then recombined into a final web 4, the three-dimensional, isotropic Faserablage results in an orientation of the fibers in all directions. In this way, on the one hand enough fibers are present, which counteract a recess (mattress effect), but also sufficient fibers which extend in the region of the dowel edges transverse to the shear forces introduced there and thus intercept these clean.
  • inhomogeneities are present in a solid surface layer of compressed material. These consist for example in areas of higher and lower binder content, ie harder and softer points. Moreover, the bulk density can vary significantly locally. Such inhomogeneities cause the local absorption capacity for shear forces to drop drastically. Thus, if such a density variation comes within the range of a dowel edge, the dowel may rupture, although the dowel pull-through strength of the entire plate, measured at many other locations, is sufficient. For this reason, dowel pull-through resistance in the compressed plate must, so to speak, be "held up” so as to still have adequate dowel pull-through strength even in the event that the dowel comes to sit at a weak point. This in turn leads to higher required thicknesses or bulk densities of the solid surface layer.
  • Hard hides produced according to the invention are considerably more homogeneous due to the disruption and the associated dissolution of inhomogeneities in the primary nonwoven 2 and have virtually no defects. Both the binder distribution and the wool distribution are considerably more uniform. Thus, the anchor tensile strengths at different points of a facade insulation board also vary only slightly, so that no Dübel malzugsfestmaschine "held” must be to compensate for vulnerabilities. This is an additional reason why solid surface layers 52 made in accordance with the invention can manage with still further reduced thicknesses and / or bulk densities compared to the above description.
  • products of mineral wool, in particular rock wool, which exclusively have an isotropic fiber structure can also be produced by the process according to the invention.
  • a typical application would be so-called tread insulation panels or flat roof insulation panels, the latter can be compressed to a further increase in their compressive strength two- or three-dimensional.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonwoven Fabrics (AREA)
  • Glass Compositions (AREA)
  • Cosmetics (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Compounds Of Unknown Constitution (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Produkten aus Mineralwolle nach dem Oberbegriff des Anspruchs 1.
  • Zur Herstellung von Mineralfasern sind verschiedene Verfahren bekannt und in Gebrauch, so etwa Zerfaserung mit innerer Zentrifugierung (sog. TEL-Verfahren), Verfahren mit äußerer Zentrifugierung wie Kaskaden-Schleuderverfahren (sog. REX-Verfahren), Düsenblasverfahren und andere. Bei all diesen bekannten Verfahren werden die zu erzeugenden Fasern mittels großer Volumenströme von einem Gemisch aus Luft und Verbrennungsgasen, die für das Ausziehen der Fasern benötigt werden, in eine Sammelkammer, vielfach Fallschacht genannt, eingebracht. Zur Erzeugung gebundener Mineralwolleprodukte werden die Fasern bei ihrem Weg durch den Fallschacht mit Bindemittel versehen. Ferner können im Fallschacht auch andere verfahrensrelevante Stoffe zugesetzt werden, wie etwa Staubbindemittel, Hydrophobierungsmittel und dergleichen.
  • Die so erhaltenen Fasern werden an einem bewegten, perforierten Element, das eine der Begrenzungen des Fallschachtes darstellt, abgeschieden und vom begleitenden Gas-Luftstrom getrennt. Beim Abscheiden der Fasern auf dem perforierten Element entstehen endlose Vliese, bei denen die in bezug auf Flächengewicht, Breite, Faserorientierung und Homogenität entsprechenden Eigenschaften des nachfolgenden Produktes vorgeben sind. Diese Eigenschaften können nachträglich nicht mehr wesentlich geändert werden, so daß bei der Abscheidung aus dem Fallschacht erzeugte Orientierungen der Fasern im Vlies oder Inhomogenitäten im späteren Produkt vorgegeben sind, wenn das Vlies nicht nachträglich aufgespalten oder aufgedoppelt, oder zu nebeneinander liegenden Bahnen getrennt wird.
  • Das Flächengewicht wird bei konstantem Fasereintrag durch Variation der Geschwindigkeit des perforierten Abscheideelementes beeinflußt, wobei die Faserorientierung in der Regel im wesentlichen laminar verläuft. Unter "laminar" ist hier zu verstehen, daß die Fasern im wesentlichen parallel zu einer Fläche, üblicherweise deren Auflagefläche, orientiert sind. Bei der Herstellung des Vlieses muß die gesamte Luft/Gas-Menge das sich bildende Vlies passieren. Dabei werden je nach Flächengewicht und zur Verfügung stehender Absaugfläche unterschiedliche Unterdrücke in der Absaugung benötigt.
  • Von dieser bekannten Erzeugung von Primärvliesen aus Mineralwolle geht die Erfindung aus. Es wurde erkannt, daß dabei sogenannte Inhomogenitäten bei der Vliesbildung bei jedem der bekannten Zerfaserungsverfahren praktisch unvermeidlich sind. Es kann sich dabei um Inhomogenitäten in der Wolleverteilung handeln, wobei an einzelnen Stellen eine verminderte Mineralwollemenge und an anderen eine erhöhte Mineralwollemenge zu liegen kommt. Weiter führen Fehlstellen wie Bindemittelbatzen oder unsauber zerfaserte Glasteile zu Qualitätseinbußen.
  • Auch können Inhomogenitäten der Bindemittelverteilung auftreten, wie mehrfach benetzte Wolleanhäufungen, die durch Rückströmungen mehrfach in den Bereich der Bindemittelbesprühung gelangt waren, oder Faserbündel, die den Bereich der Besprühung zu schnell passiert haben. Derartige Bindemittelmangelstellen oder - anreicherungen sind im Endprodukt z. B. durch Farbunterschiede erkennbar. Für die Erzielung der vollen Funktionalität der Bindung muß wegen der inhomogenen Verteilung des Bindemittels eine größere Menge an Bindemittel zugegeben werden als theoretisch notwendig.
  • Die inhomogene Wolleverteilung kann sich ferner in lokal unterschiedlichen Flächengewichten des Vlieses auswirken, die aus Stellen unterschiedlicher Rohdichte resultieren. Derartige Schwankungen in der Wolleverteilung beeinflussen Qualitätsmerkmale negativ, wie insbesondere etwa den Wärmedurchlaßwiderstand, aber auch die mechanische Festigkeit. Besonders bei niederen Rohdichten, bei denen die Bereiche mit weiter verminderter Rohdichte optisch erkennbar sind, wird die erzielbare Mindestrohdichte durch derartige Inhomogenitäten erhöht, schon um sichtbare Fehlstellen wie "Löcher" zu vermeiden. Im Ergebnis muß also mit einer im Mittel höheren Rohdichte als eigentlich nötig gefahren werden, um diesen Inhomogenitäten der Wolleverteilung Rechnung zu tragen. Dies führt zu höheren Gestehungskosten und damit höheren Produktkosten sowie zur Verminderung des Wärmedurchlaßwiderstands aufgrund der höheren Rohdichte. Die Folge ist insgesamt ein Produkt, welches eine Qualität aufweist, die von der theoretisch möglichen Qualität abweicht.
  • Aus den Dokumenten EP 1 111 113 A2 , EP 0 434 536 A1 und US 4,632,685 sind gestauchte Mineralwollevliese bekannt geworden.
  • Ferner beschreibt die FR 2 682 403 ein Verfahren zur mechanischen Zerkleinerung eines Primärvlieses zu Mineralwolleflocken.
  • Aus der US 2,589,008 geht ein Verfahren zur Herstellung von Produkten aus Mineralwolle hervor, bei der ein Primärvlies aus loser, bindemittelfreier Wolle oder derartiger Wolle vermischt mit Bindemittelpulver einer mechanischen Einwirkung zur Reorientierung der einzelnen Fasern in mehreren Stufen unterzogen wird, um hieraus ein Endvlies mit homogeneren Eigenschaften herzustellen. Auf dieses Endvlies kann dann zusätzlich Bindemittel aufgesprüht werden. In einem abschließenden Härteschritt wird vorhandenes Bindemittel im Endvlies ausgehärtet.
  • Die vorliegende Erfindung geht von der Lehre der FR 2 591 621 A1 aus, aus welcher ein Verfahren gemäß dem Oberbegriff des Anspruches 1 bekannt ist. Bei dieser bekannten Verfahrensweise wird jedoch ein Primärvlies mit ausgehärtetem Bindemittel einer mechanischen Zerkleinerung unterzogen.
  • Dem gegenüber liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung von Produkten aus Mineralwolle zu schaffen, bei dem die Auswirkungen der bei den unterschiedlichen Herstellungsverfahren produktionstechnisch unvermeidbaren Inhomogenitäten im Endprodukt derart minimiert sind, daß optimale produktspezifische Eigenschaften bei minimal möglichem Mineralwolleaufwand erzielt werden können, wobei insbesondere damit auch mehrschichtige Produkte mit unterschiedlichen Eigenschaften der einzelnen Schichten und hochwertige einschichtige Produkte herstellbar sein sollen.
  • Diese Aufgabe wird durch ein Verfahren nach Anspruch 1 gelöst.
  • Das Mineralwollematerial des Primärvlieses wird aus seinem Verbund heraus mechanisch in einzelne Mineralwolleflocken zerkleinert. Diese werden danach zur Bildung des Endvlieses erneut so abgelegt, daß das Mineralwollematerial im Endvlies isotrop vorliegt. Unter isotrop ist hierbei zu verstehen, daß einzelne theoretisch vereinzelte, z.B. würfelförmige Elemente des Endvlieses nach allen Richtungen im Raum hin gleiche Eigenschaften wie Belastbarkeit usw. aufweisen. Bei der Bestimmung "gleicher" Eigenschaften nach allen Richtungen ist natürlich zu berücksichtigen, daß Mineralwolle aus zufällig angeordneten und orientierten Einzelfasern aufgebaut ist und somit statistisch unvermeidbare Schwankungen auftreten.
  • Die Herstellung eines solchen Produkts wird dadurch erreicht, daß die Zerkleinerung des Mineralwollematerials des Primärvlieses durch einen kombinierten Schlag- und Schneidvorgang erfolgt.
  • Aus der US 3,050,427 ist ein Verfahren zur Herstellung eines Verbundproduktes aus geschäumtem Material und Mineralfasern bekannt, bei dem ein Primärvlies aus Glasfasern mechanisch aufgeschlossen und anschließend unter Bildung eines plattenförmigen Endprodukts zusammen mit dem aufschäumenden Material kombiniert wird. Mit der Lehre dieser Druckschrift soll die Aufgabe gelöst werden, geschäumte Produkte durch möglichst viele Verstärkungsfasern in der Form von Glaswolle zu armieren, wozu man ein Primärvlies aus Glaswolle mittels Kardierwalzen zerkleinert und bei diesem Vorgang gleichzeitig das aufschäumbare Material beimischt.
  • Die vorliegende Erfindung geht gegenüber diesem Stand der Technik einen ganz anderen Weg: man geht von einem vorzugsweise laminaren Primärvlies aus Mineralwolle aus, das gezielt in einzelne Mineralwolleflocken zerkleinert wird, um anschließend ein verbessertes Produkt zu erhalten, das in seiner Struktur ausschließlich wieder aus Mineralwolle besteht. Dabei wurde überraschenderweise erkannt, daß durch eine bestimmte Zerkleinerung des Primärvlieses, nämlich durch einen kombinierten Schlag- und Schneidvorgang, einzelne Mineralwolleflocken erhalten werden, die bei einer erneuten Ablage zu einem Endvlies ein Produkt liefern, das eine gegenüber dem Primärvlies geringere Rohdichte aufweist, aber dennoch mindestens die sonstigen Dämm- und Festigkeitswerte des Primärvlieses besitzt. Das bedeutet Rohdichteeinsparung ohne Qualitätsverlust.
  • Dabei wird bei der Erzeugung des Primärvlieses den Mineralwollefasem Bindemittel zugesetzt. Hierdurch kommen die Vorteile des erfindungsgemäßen Verfahrens ebenfalls zum Tragen, da hiermit auch die Bindemittelverteilung homogenisiert wird, welche sich insbesondere auf die Festigkeit des Produktes vorteilhaft auswirkt.
  • Die gezielte Zerkleinerung des Primärvlieses in bestimmte Mineralwolleflocken kann bei einer Ausführungsform der Erfindung erreicht werden, wenn bei dem Schlag- und Schneidvorgang in ihrer Form unterschiedlich ausgebildete Zinken verwendet werden, die Bestandteil von auf einer Walze umfangsseitig achsparallel angeordneten Leisten sind und die beim Zerkleinerungsvorgang mit korrespondierenden Vorsprüngen eines Niederhalters für das Primärvlies mit einem Spiel kämmen. Hierbei wird das Primärvlies über eine Fördereinrichtung, insbesondere ein Förderband, dem Schlag- und Schneidvorgang derart zugeführt, daß es zwischen dem Förderband und dem Niederhalter zwangsgeführt wird, wobei dazu zweckmäßigerweise das Förderband und der Niederhalter zueinander konisch verlaufen.
  • Die Zinken der auf der Walze vorgesehenen Leisten können dabei alternierend als Schlagfinger und als Schneidmesser ausgebildet sein, wobei die Schlagfinger und die Schneidmesser an ihren Schlagflächen bzw. Schneidkanten mit einer hochverschleißfesten Beschichtung ausgestattet sein sollen, da dadurch der Verschleiß minimiert werden kann, den glasige Mineralwollefasem hervorrufen können. Die als Schneidmesser ausgebildeten Zinken können dagegen alternierend unterschiedlich groß ausgebildet und mit ihren konischen Spitzen in Richtung des Walzenradius ausgerichtet sein, um dadurch unterschiedlich große Lücken für den Gegenpart in der Form von alternierenden Gleitfingern und stabförmigen Förderorganen zu schaffen. Hierbei sollten die Gleitfinger starr an dem Niederhalter vorgesehen sein und jeweils bis nahe der kleineren Schneidmesser reichen, wogegen die stabförmigen Förderorgane, z. B. als endlos umlaufende Ketten ausgebildet, sich bis nahe der größeren Schneidmesser erstrecken sollten.
  • Durch den Einsatz der Schlagfinger werden die beim Zerkleinern entstehenden Mineralwolleflocken vorteilhaft in einem gewissen Grad vorverdichtet, wobei diese Vorverdichtung mehr als 50 % bezogen auf die Dichte des Primärvlieses betragen kann, z. B. eine Rohdichteerhöhung von ursprünglich 30 kg/m3 auf 50 kg/m3. Ferner wurde erkannt, daß die Größe der erzeugten Mineralwolleflocken von Bedeutung ist, um im Endvlies eine isotrope Struktur zu erhalten, und zwar wurde aus vielen Versuchen ermittelt, daß die Mineralwolleflocken vorzugsweise eine mittlere radiale Ausdehnung von 10 bis 30 mm, insbesondere 15 +/- 5 mm aufweisen sollen.
  • Bei der Bestimmung der Größe der erzeugten Mineralwolleflocken zeigte sich, daß bei der Verwendung von zu großen Mineralwolleflocken die Festigkeit des Endvlieses dadurch leidet, daß die einzelnen Flocken Teilbereiche mit einer vom Primärvlies stammenden laminaren Faserstruktur besitzen können, die den angestrebten isotropen Charakter nicht aufweisen, d. h. diese Mineralwolleflocken verhalten sich nicht gleich unter z.B. gleichen Belastungen aus verschiedenen Richtungen. Auf der anderen Seite erhöht sich die Rohdichte des Endvlieses, wenn die erzeugten Mineralwolleflocken in ihrer mittleren radialen Ausdehnung zu klein gewählt werden.
  • Dazu kommt, daß bei der Rekombination des Mineralwollematerials zur Bildung des Endvlieses die Mineralwolleflocken vorteilhaft beeinflusst durch die Vorverdichtung zufallsbedingt abgelegt werden, so daß diese zufällige bzw. chaotische Verteilung einer erneuten Bildung von Inhomogenitäten entgegenwirkt. Es ergibt sich im Endvlies somit eine Ablage, welche die bei der Ablage im Fallschacht produktionstechnisch unvermeidbaren Inhomogenitäten vermeidet und so zu einem erheblich homogeneren Produkt führt. Ferner erhält man ein Endvlies, das trotz der Vorverdichtung der einzelnen Mineralwolleflocken im Zusammenspiel von chaotischer Ablage, geeigneter Flockengröße und eben der Vorverdichtung eine geringere Rohdichte bei etwa gleicher Druckfestigkeit und etwa gleichem Wärmedämmvermögen als es das Primärvlies besessen hat, was ein wesentlicher wirtschaftlicher Vorteil ist.
  • Bei herkömmlichen Verfahren zur Herstellung von Mineralwolleprodukten wird häufig angestrebt, die laminare Faserausrichtung durch eine andere Faserausrichtung zu ersetzen, welche zu besseren Produkteigenschaften insbesondere hinsichtlich der Festigkeit führt. So haben Mineralfaserplatten mit laminarer Faserausrichtung eben infolge dieser Faserausrichtung geringe Festigkeiten gegen Zug- und Druckkräfte an den Großflächen, welche die Platte zusammenzudrücken bzw. aufzureißen suchen. Daher werden mechanische Eigenschaften wie Druckfestigkeit und Abreißfestigkeit verbessert, oder insoweit geforderte Werte bereits bei geringerer Rohdichte erreicht, wenn ein erheblicher Teil der Fasern senkrecht zur Fertigungsebene verläuft. Weithin angewendet wird hierzu ein Aufstauchen der Fasern in einer Stauch- oder Crepage-Anlage. In diesem Verfahrensschritt werden vor der Aushärtung des Bindemittels die überwiegend waagerecht in der Fertigungsebene orientierten Fasern teilweise in Richtung der Senkrechten orientiert. Hierdurch ergibt sich in Längsrichtung sowie vor allem in Dickenrichtung des Produkts eine unkontrollierte, zufällige Wellung der Fasern und so deren Umorientierung, während in Breitenrichtung lediglich ein minimales "Verziehen" der Faserstränge oder "Ketten" erfolgt, und die Fasern im wesentlichen in ihrer laminaren gegenseitigen Lage verbleiben. Die Umorientierung der Fasern beim Stauchen erfolgt somit in nur zwei Dimensionen, ähnlich wie bei parallelen Oberflächenwellen auf einer Flüssigkeit, bei denen sich die zuvor glatte Flüssigkeitsoberfläche nur wölbt, die darauf befindlichen Teilchen aber ansonsten in Wellenlängsrichtung in gleicher Relativlage verbleiben.
  • Ein solcher Effekt kann beim erfindungsgemäßen Verfahren ebenfalls erreicht werden. Dadurch, daß die Mineralwolleflocken mit im wesentlichen chaotischer Faserorientierung im Endvlies im wesentlichen chaotisch abgelegt werden, liegen etwa gleiche Faseranteile in sämtlichen Hauptrichtungen des Produkts vor. Hierdurch wird im Gegensatz zu einem sehr feinen Aufschluß bis zu einzelnen Fasern vermieden, daß die Fasern bei der Ablage zum Endvlies erneut eine bevorzugte Faserausrichtung einnehmen. Auf diese Weise läßt sich also infolge der chaotischen Ablage erstmals ein gewissermaßen dreidimensional gestauchtes Produkt mit Orientierung etwa gleicher Faseranteile in allen drei Hauptrichtungen erzeugen, wobei aber der mit den bekannten Verfahren unvermeidbare Nachteil einer gleichzeitig einhergehenden Verdichtung bzw. Rohdichtezunahme vermieden ist.
  • Es ist ferner bekannt und für viele Mineralwolleprodukte wünschenswert, daß im Produkt Zonen unterschiedlicher Rohdichte erzeugt werden, etwa um die Oberfläche des Produktes stärker belasten zu können. Dabei wird entweder ein Teil des Primärvlieses abgespalten und einem Verdichtungsverfahren, Aufstauchung oder einer anderen Verfestigung unterzogen sowie danach wieder mit dem Grundvlies zusammengeführt, oder aber ein in einem separaten Fallschacht erzeugtes Vlies wird nach entsprechender Bearbeitung mit einem Grundvlies zusammengefahren. Im letzteren Falle kann das im separaten Fallschacht erzeugte Vlies unterschiedliche Eigenschaften aufweisen, wie etwa höheren Bindemittelgehalt.
  • Insoweit ist auch erfindungsgemäß vorteilhaft vorgesehen, daß das Endvlies mit seiner isotropen Struktur mit mindestens einem weiteren Mineralwollematerial, z. B. in der Form eines Vlieses, zur Bildung eines Verbundproduktes kombiniert wird. Im einfachsten Fall können dabei die erzeugten Mineralwolleflocken des Primärvlieses auf dem weiteren, ggf. andersartigen Mineralwollematerial einfach abgelegt und zusammen mit diesem weiteren Bearbeitungsschritten wie einer Verdichtung und/oder einem Stauchvorgang und/oder einem Aushärtevorgang unterzogen werden.
  • Hierbei gibt es eine Vielzahl von Möglichkeiten einer Kombination mit weiteren Mineralwolleschichten sowie der Behandlung der einzelnen Schichten, und zwar einzeln und/oder in Kombination. Auf diese Weise können Verbundprodukte mit sehr unterschiedlichen Eigenschaften der Schichten erzeugt werden, so etwa ein Verbundprodukt mit einem inneren Mineralwollekörper und wenigstens einer stabilen äußeren Schutzschicht, wobei letztere in ihrer Rohdichte nicht wesentlich von derjenigen des Grundkörpers abweicht.
  • So ist es z. B. möglich, das Primärvlies in einem separaten Fallschacht mit einem höheren Gehalt an Bindemittel und/oder sonstigen verstärkenden Stoffe im Vergleich zu dem weiteren Mineralwollematerial zu erzeugen und dann mit letzterem zu kombinieren. Hierdurch kann die Festigkeit der so erhaltenen Deckschicht auch bei annähernd gleicher Rohdichte noch weiter erhöht werden.
  • Wie aufgezeigt, bietet das erfindungsgemäße Verfahren vor allem in einfacher Weise die Möglichkeit, mehrschichtige Produkte herzustellen, die unter dem Begriff Bidensity-Platten bekannt sind, welche insbesondere ihren Einsatz beim Flachdach und an der Fassade finden. Hierbei zeichnet sich das erfindungsgemäße Produkt durch eine Schicht mit isotroper und einer Schicht mit laminarer Faserstruktur aus, wobei die Schicht mit der isotropen Struktur eine höhere Druckfestigkeit aufweist als die andere Schicht.
  • Ferner sind auch Produkte möglich, die plattenförmig ausgebildet sind und nur aus einer Schicht bestehen, die eine isotrope Faserstruktur besitzt, welche z. B. als sog. Trittschalldämmplatten im Estrichbereich Verwendung finden können.
  • Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnung.
  • Es zeigt:
  • Fig. 1
    in Seitenansicht eine prinzipielle Darstellung des erfindungsgemäßen Verfahrens an einer Zerkleinerungsstation hierfür;
    Fig. 2
    in Seitenansicht ein Detail des Schlag- und Schneidevorgangs einer bevorzugten Zerkleinerungsstation mit einer Einzelheit "Z",
    Fig. 2a
    eine Draufsicht auf die Zerkleinerungsstation nach Fig. 2,
    Fig. 3
    eine schaubildliche Darstellung eines gestauchten Produktes nach dem Stand der Technik unter Zug- und Druckbelastung,
    Fig. 4
    eine Fig. 3 entsprechende Darstellung eines erfindungsgemäß hergestellten Produktes,
    Fig. 5
    eine grafische Darstellung der Wärmeleitfähigkeit über der Rohdichte, und
    Fig. 6
    in einer den Fig. 3 und 4 entsprechenden Darstellung ein erfindungsgemäß hergestelltes Produkt mit verfestigter Oberflächenschicht.
  • In Fig. 1 ist eine insgesamt mit 1 bezeichnete Station zum Zerkleinern von Mineralwollematerial eines Primärvlieses 2 veranschaulicht. Die Zerkleinerungsstation 1 ist zwischen einer gemäß Förderrichtung Pfeil 3 stromauf liegenden Zerfaserungsstation und einem stromab liegenden Aushärteofen angeordnet. Die Zerfaserungsstation und der Aushärteofen können von jeder beliebigen bekannten Bauart sein und sind daher nicht näher dargestellt.
  • Das Primärvlies 2 wird in der Zerfaserungsstation dadurch hergestellt, daß aus einer Schmelze erzeugte Mineralfasern mittels eines großvolumigen Förder-Gasluftstroms an einem besaugten perforierten Element abgelegt werden, etwa einem Siebgewebe, welches in Produktionsrichtung fortschreitend bewegt wird. Hierdurch ergibt sich eine Faserablage im Primärvlies 2 derart, daß die Mineralfasern überwiegend parallel zur Auflagefläche bzw. zu den Großflächen des Primärvlieses 2 angeordnet sind, gewissermaßen also "liegen". Eine solche Faserablage wird als "laminar" bezeichnet.
  • Im Beispielsfalle möge zur Herstellung eines gebundenen Mineralwolleproduktes dem Faserstrom vor der Abscheidung auf dem perforierten Element ein Bindemittel zugegeben worden sein, welches in einem stromabliegenden üblichen Aushärteofen ausgehärtet wird, um so dem Mineralwolleprodukt seine stabile endgültige Form zu verleihen. Zwischen Zerfaserungsstation und Aushärteofen liegt das Bindemittel noch unausgehärtet vor, und sind die Fasern noch gegeneinander beweglich, und können im Sinne einer Umorientierung beeinflußt werden. Hierzu ist es bekannt, das Mineralwollematerial dadurch zu "stauchen", daß das Primärvlies 2 in einer Stauchstation oberflächenseitig zunehmend gebremst wird, so daß sich die Fasern unter diesem Stauchdruck aufzurichten beginnen und in größerer Anzahl eine Hauptrichtung senkrecht zu den Großflächen des Produkts erhalten. Hierdurch wird die Festigkeit des Produktes bei damit einhergehender Rohdichtezunahme gegen Flächendruck und Flächenzug deutlich gesteigert, jedoch nimmt umgekehrt die Biegefestigkeit ab.
  • Es ist weiter bekannt, vor dem Einlauf in den Aushärteofen mehrere Primärvliese übereinander zu fahren oder Abschnitte desselben Primärvlieses pendelnd aufeinander abzulegen. Hierdurch kann jedes Primärvlies mit nur geringer Dicke unter produktionstechnisch optimierten Bedingungen hergestellt werden und anschließend zu einem komplexeren, dickeren Produkt kombiniert werden. Auch können dadurch gezielt die Eigenschaften von Schichten oder Lagen von Verbundprodukten beeinflußt werden. Die grundsätzlich laminare Faserablage ändert sich dadurch nicht. Bei Bedarf kann eine Stauchung (Crepage) zur Anwendung kommen.
  • Erfindungsgemäß ist nun zwischen Zerfaserungsstation und Aushärteofen die Zerkleinerungsstation 1 angeordnet. In dieser wird das Mineralwollematerial des Primärvlieses 2 mechanisch zerkleinert, also aus seinem Verbund heraus in Mineralwolleflocken vereinzelt, und dann diese neu zur Bildung eines Endvlieses 4 abgelegt.
  • Hierzu läuft das Primärvlies 2 beim Einlauf in die Zerkleinerungsstation 1 durch ein umlaufendes Preßorgan 5 in seiner Dicke komprimiert, und wird durch einen Niederhalter 6 im komprimierten Zustand gehalten. In dieser Position erfolgt eine Vereinzelung des Mineralwollematerials aus dem Verbund des Primärvlieses 2 heraus durch zwischen dem Niederhalter 6 hindurchgreifende Zinken 7 einer Zerflockungswalze 8, die das Primärvlies 2 von unten her beaufschlagen und zwischen Lücken des Niederhalters 6 unter Bildung von Mineralwolleflocken 9 vereinzeln.
  • Der einzelne Mineralwolleflocken 9 enthaltende Faserstrom, bezeichnet mit 10, wird im Beispielsfalle einem bodenseitigen perforierten Transportband 11 zugeführt und auf diesem abgelegt. Im Raum 12 unterhalb des Transportbandes 11 erfolgt eine Luftabsaugung, so daß die Faserablage auf dem Transportband 11 durch eine großvolumige Luftströmung unterstützt wird. Insofern ähnelt die Faserablage auf dem Transportband 11 derjenigen auf dem perforierten Element in der Zerfaserungsstation.
  • Erfindungsgemäß werden in der Zerkleinerungsstation 1 relativ kompakte Flocken erzeugt, die durch die Einwirkung der mit dem Niederhalter 6 kämmenden Zinken 7 bereits eine gewisse Vorverdichtung gegenüber der Rohdichte im Primärvlies 2 erfahren, wobei die Ablage der Flocken in einer zufälligen Orientierung erfolgt. Daher liegt die Faserausrichtung im Endvlies 4 chaotisch, d.h. isotrop vor. Im Beispielsfalle nach entsprechender, nicht näher dargestellter weiterer Vorverdichtung gelangt das Material mit dieser isotropen Ausrichtung in den Aushärteofen, in dem das Bindemittel aushärtet. Je nach Bedarf kann vor dem Aushärteofen auch noch eine weitere Faserbeeinflussung etwa durch eine Stauchung erfolgen.
  • An der Unterseite das Faserstromes 10 kann ein Führungselement 13 angeordnet werden, welches in seinem stromab liegenden Bereich den Faserstrom 10 in Richtung auf seine Ablagestelle auf dem Transportband 11 führt, und mit seinem stromaufseitigen Ende in nicht näher dargestellter Weise abgestützt ist und zwischen die Zinken 7 der Zerflockungswalze 8 eingreift, um eine Bildung von Faseransammlungen dort zu verhindern.
  • Weiterhin können in den lockeren Faserstrom 10 Zuschlagstoffe wie etwa Hydroxide oder Fremdfasern eingeführt werden, um gewünschte Eigenschaften zu erzeugen oder zu unterstützen.
  • Ebenso wie bei der Vliesbildung in der Zerfaserungsstation kann der das Transportband 11 umfassende Vliesbildner in nicht näher dargestellter Weise mit an sich bekannten, im Abstand zueinander verstellbaren Seitenwänden versehen werden, um das Endvlies 4 seitlich zu führen und zu begrenzen. Dem Vliesbildner kann weiter eine Vorrichtung zur Beeinflussung der Wolleverteilung zu- oder nachgeordnet werden. Insbesondere bei geringen Flächengewichten des Endvlieses 4 kann die Wolle dadurch weiter vergleichmäßigt werden, um bei der Ablage aus dem Faserstrom 10 etwa aufgetretene Inhomogenitäten der Wolleverteilung weiter zu vergleichmäßigen oder aber eine gewünschte Wolleverteilung herbeizuführen. Hierzu kann die Wolleverteilung durch lokal unterschiedlich wirksame Absaugleistungen oder auch durch Luftlanzen oder mechanische Einwirkung je nach Bedarf beeinflußt werden.
  • Wie ohne weiteres ersichtlich ist, können derartige Zerkleinerungsstationen 1 im Bereich zwischen Zerfaserungsstation und Aushärteofen vielfältig zur Anwendung gelangen. Eine Zerkleinerungsstation 1 kann zunächst einmal überall dort angewendet werden, wo bislang eine Stauchstation vorgesehen war. Sie kann auch jedes einzelne Primärvlies für sich homogenisieren und dabei isotrop umformen, wonach an Stelle von Primärvliesen 2 die so gebildeten Endvliese 4 sodann übereinander gefahren oder aufeinander abgelegt werden können. Es ist aber auch möglich, in Form eines weiteren Primärvlieses 2 oder Endvlieses 4 weiteres Mineralwollematerial auf das Transportband 11 zu fördern, und auf dessen Oberseite das Endvlies 4 als weitere Lage zu bilden.
  • Das erfindungsgemäße Verfahren schränkt somit die Anwendbarkeit bekannter Vorgehensweisen nirgends ein, sondern erweitert diese um die Möglichkeit, jedes beliebige Vlies, ob nun erfindungsgemäß oder anderweitig vorbehandelt oder nicht, als Primärvlies 2 einer Zerkleinerungsstation 1 zuzuführen und so in jedem Falle zu homogenisieren, und dabei in eine isotrope Faserorientierung umzuformen.
  • Der in Fig. 2 und 2a jeweils dargestellte Ausschnitt einer bevorzugten Zerkleinerungsstation 1' zeigt in der Seitenansicht eine Zerflockungswalze 8', die umfangseitig eine Vielzahl im gleichen Abstand zueinander angeordnete und achsparallel verlaufende Leisten 14 aufweist, welche an ihren freien Enden mit Zinken 7' versehen sind. Die Zinken 7' kämmen mit einem Niederhalter 6' und zwar mit einem Spiel 15 , um die Bildung der Mineralwolleflocken 9 (nicht gezeigt) zu ermöglichen. Das Spiel 15 ist in Fig. 2a deutlich zu erkennen und kann in seiner Größe eingestellt werden.
  • Das mit 2' bezeichnete Primärvlies wird dem Schlag- und Schneidvorgang mittels einem Förderband 12' und einem Niederhalter 6' zugeführt, wobei das Förderband 12' und der Niederhalter 6' in Transportrichtung konisch zueinander verlaufen, so daß das Primärvlies 2' zwangsgeführt wird.
  • Die Zinken 7' der Leisten 14 sind alternierend als Schlagfinger 16 und als eine Art Schneidmesser 17 ausgebildet, welche an ihren Schlag- und Schneidflächen mit einer hochverschleißfesten Beschichtung ausgestattet sind. Die Schneidmesser 17 sind wiederum alternierend unterschiedlich groß - 17a; 17b - ausgebildet und mit ihren konischen Spitzen radial bezüglich der Zerflockungswalze 8' ausgerichtet.
  • Der Niederhalter 6' wiederum besitzt alternierend angeordnete starre Gleitfinger 18, die jeweils bis in die Nachbarschaft der kleineren, radial relativ vorstehenden Schneidmesser 17a reichen, und stabförmige Förderorgane 19 in der Form von endlos umlaufenden Ketten, die bis in die Nachbarschaft der größeren, radial relativ inneren Schneidmesser 17b reichen.
  • Beim eigentlichen Schlag- und Schneidvorgang zur Erzeugung der Mineralwolleflocken 9 wird das Primärvlies 2' über das Förderband 12' und den Niederhalter 6' der Zerflockungswalze 8' entsprechend den in Fig. 2 in Transportrichtung angegebenen Pfeilen zwangszugeführt, während die Zerflockungswalze 8' entgegen dem Uhrzeigersinn gemäß der Darstellung in Fig. 2 mit etwa 1000 Umdrehungen pro Minute angetrieben wird, was bei einem mittleren Walzendurchmesser von 800 mm eine Umfangsgeschwindigkeit von 32 Metern pro Minute bedeutet. Hierbei erfolgt beim Zerkleinern des Mineralwollematerials des Primärvlieses 2' in Mineralwolleflocken 9 insbesondere durch die Schlagfinger 16 eine gewisse Vorverdichtung der Mineralwolleflocken 9. Diese Vorverdichtung kann mehr als 50 % bezogen auf die Dichte des Primärvlieses 2' betragen, also z.B. eine Erhöhung der Rohdichte im Primarvlies 2' von 25 kg/m3 auf 50 kg/m3 in den Mineralwolleflocken 9 bewirken. Hierbei wird eine bevorzugte mittlere Ausdehnung der Mineralwolleflocken 9 von 15 +/- 5 mm erreicht, so daß das Endvlies 4 (nicht gezeigt) eine isotrope Faserstruktur erhält. Durch die zunächst lose Ablage der vorverdichteten Mineralfaserflocken 9 auf dem Transportband 11 wird vorteilhaft bewirkt, daß das Endvlies 4 eine geringere Rohdichte als das Primärvlies 2' aufweist, jedoch bei sonst etwa gleichen Parametern (Wärmeleitfähigkeit, mechanische Festigkeit).
  • In Fig. 3 ist schaubildartig eine konventionell gestauchte Platte dargestellt, wie sie Flächenzug bzw. Flächendruck ausgesetzt wird. Wie in der Zeichnung angedeutet, führt die Stauchung (Crepage) je nach Art der zur Stauchung verwendeten Einrichtung zu einer unterschiedlichen Ausbildung an der mit 21 bezeichneten Seitenfläche des Produkts 20, welches in einer Produktionsrichtung gemäß Pfeil 3 produziert wurde. Die Ausbildung der Seitenfläche 21 reicht je nach verwendeter Einrichtung von einer ausgeprägten Wellenform bis zu einer weitgehend regellosen Wirrlage, wie sie in Fig. 3 veranschaulicht ist. Eine solche weitgehend regellose Wirrlage an der Seitenfläche 21 läßt sich etwa mit einer Hochleistungs-Stauchanlage gemäß der EP 1 144 742 B1 erzielen, auf die wegen weiterer Einzelheiten insoweit vollinhaltlich verwiesen wird.
  • An den Großflächen 22 hingegen ist nur eine mehr oder weniger ausgeprägte Wellung erkennbar, welche von den Stauchwalzen oder Stauchbändern herrührt, die über diese Flächen die Stauchkräfte eingebracht haben.
  • An den mit 23 bezeichneten Stirnflächen des Produktes 20, die bei der Ablängung von Platten aus der gehärteten Mineralwollebahn entstehen, ist hingegen nach wie vor eine laminare Ablage der Fasern erkennbar. Alle bei der Stauchung aufgetretenen Kräfte haben nur senkrecht zu dieser Stirnfläche 23 gewirkt, so daß quer zur Produktionsrichtung gemäß Pfeil 3 liegende Faserstränge oder "Ketten" zwar möglicherweise gedreht oder gekippt wurden, so daß in Produktionsrichtung gemäß Pfeil 3 liegende Fasern in Richtung der Senkrechten orientiert wurden. Quer zur Produktionsrichtung gemäß Pfeil 3 liegende Fasern des laminaren Produktes wurden jedoch in ihrer Ausrichtung nicht beeinflußt. Insoweit ist das Produkt 20 über seine stirnseitige Breite an der Stirnfläche 23 gesehen auch nach der Stauchung noch laminar.
  • Das Produkt 20 muß für bestimmte Flächenzug- bzw. Flächendruckbelastungen ausgelegt werden, denen es im Einsatz ausgesetzt ist. Um diese Festigkeiten zu erzielen, muß eine gewisse Rohdichte eingehalten werden, da das Produkt mit höherer Rohdichte fester wird. Um beispielsweise eine Flächenzugfestigkeit von 30 kN/m2 zu erhalten, möge beim Produkt 20 eine Rohdichte von 130 kg/m3 erforderlich sein. Um eine Flächendruckfestigkeit von 60 kN/m2 zu erreichen, möge eine Rohdichte von 160 kg/m3 erforderlich sein. Erhöhte Rohdichte führt zu erhöhtem Materialeinsatz und damit erhöhten Kosten sowie oberhalb einer Rohdichte von etwa 50 bis 70 kg/m3 zu einer Verminderung des Wärmedurchlaßwiderstandes durch Erhöhung der Wärmebrücken an den Fasern, also zu einem Qualitätsabfall.
  • In Fig. 4 ist ein beispielhaftes erfindungsgemäß erhaltenes Produkt 30 in einer Darstellung entsprechend Fig. 3 dargestellt. Das Produkt 30 ist erhalten worden durch die mechanische Zerkleinerung eines Primärvlieses zur Bildung von Flocken sowie Rekombination der Flocken zu einem Endvlies 4, welches in gewünschter Weise vorverdichtet und sodann im Aushärteofen unter Verdichtung auf seine Enddicke ausgehärtet wurde.
  • In den einzelnen Mineralwolleflocken 9 liegen die Fasern in überwiegend nicht paralleler Anordnung, sondern so, wie sie die Zusammenwirkung der Zinken 7' mit dem Niederhalter 6' ausgebildet hat. Im Faserstrom 10 werden die Flocken gegeneinander bewegt und schließlich regellos auf dem Transportband 11 zur Bildung des Endvlieses 4 abgelegt. Auf diese Weise ist die zuvor laminare Faserablage des Primärvlieses 2 zu einer völlig regellosen, isotropen Faserablage im Endvlies 4 umorientiert worden. Nach Verdichtung des Endvlieses 4 sind die einzelnen Mineralwolleflocken 9 im Endvlies 4 nicht mehr erkennbar, sondern ist die abgelegte Flockenmasse zu einer homogenen und integralen neuen Struktur geworden.
  • Optisch zeigt sich dies daran, daß die Fasern an Seitenfläche 31, Großfläche 32 und Stirnfläche 33 völlig regellos angeordnet sind. Während bei einer Stauchung gemäß Fig. 3 eine lediglich zweidimensionale Umorientierung der Fasern erfolgt, welche die Breitenrichtung im wesentlichen unbeeinflußt läßt, erfolgt bei der Erfindung gemäß Fig. 4 somit eine vollständig dreidimensionale Umorientierung, welche alle drei Hauptrichtungen voll erfaßt.
  • Durch diese isotrope Ausrichtung der Fasern und ihre Freiheit von Inhomogenitäten ergibt sich bei gleichem Bindemittelgehalt wie bei einer gestauchten Platte gemäß Fig. 3 eine Flächenzugfestigkeit von 30 kN/m2 bereits bei einer Rohdichte von etwa 95 kg/m3, und eine Flächendruckfestigkeit von über 60 kN/m2 bereits bei einer Rohdichte von etwa 105 kg/m3. Dies ergibt somit eine Verminderung der Rohdichte von mehr als 25%, und infolge verminderten Materialeinsatzes eine dementsprechende Verminderung der Produktkosten.
  • Andererseits ergibt sich verbesserte Qualität infolge verbesserten Wärmedurchlaßwiderstandes: Bei gleichen Abmessungen und sonstigen Parametern der Produkte gemäß Fig. 3 und Fig. 4 ergab sich beim erfindungsgemäß hergestellten Produkt gemäß Fig. 4 eine um 4 bis 5 mW/(m K) verminderte Wärmeleitfähigkeit. Neben der homogenen Konsistenz des erfindungsgemäß hergestellten Produktes gemäß Fig. 4 ergibt sich die Verbesserung der Wärmeleitfähigkeit auch daraus, daß die Verminderung der Rohdichte oberhalb des Optimums von etwa 50 bis 70 kg/m3 regelmäßig zu einer Verminderung der Materialleitung von Wärme durch die Fasern und somit zur Erhöhung des Wärmedurchlaßwiderstandes führt.
  • Bei geringen Rohdichten unterhalb von etwa 50 kg/m3 steigt die Wärmeleitfähigkeit zwangsläufig wieder an, da mit geringerer Rohdichte der Einschluß ruhender Luft zwangsläufig immer schlechter gelingt. Produkte dämmen ja bekanntlich nicht durch das Dämmaterial selbst, sondern durch die vom Dämmaterial eingeschlossene ruhende Luft. Während bei hohen Rohdichten die Leitung durch das Dämmaterial selbst immer stärker in den Vordergrund tritt und die Wärmeleitfähigkeit erhöht, spielt dies bei geringen Rohdichten keine wesentliche Rolle mehr, dafür aber gelingt der Einschluß eines ruhendes Luftpolsters zwangsläufig immer schlechter.
  • Dies ist in der graphischen Darstellung gemäß Fig. 5 näher veranschaulicht. Die dortige strichpunktiert veranschaulichte Kurve 40 zeigt einen typischen Verlauf der Wärmeleitfähigkeit über der Rohdichte bei laminarem, mit innerer Zentrifugierung hergestelltem Mineralwollematerial. Dem gegenüber veranschaulicht die mit ausgezogener Linie gezeigten Kurve 41 den entsprechenden Verlauf bei einem erfindungsgemäß hergestellten, durch gezielte Zerkleinerung homogenisierten Materials mit isotroper Faserstruktur und sonst gleichen Parametern wie das Wollematerial der Kurve 40. Wie daraus ersichtlich ist, verschiebt sich ein Punkt A gleicher Wärmeleitfähigkeit bei erfindungsgemäß hergestelltem Material um einen Betrag a in Richtung auf verminderte Rohdichte. Dies bedeutet, daß Produkte, welche eine bestimmte Rohdichte zur Erzielung eines gewünschten Wärmeleitwertes bislang nicht unterschreiten konnten, erfindungsgemäß mit dem gegenüber verminderter Rohdichte hergestellt werden können, was zu entsprechenden Einsparungen führt. Gerade bei den Materialien mit hoher Rohdichte, wie sie etwa bei der Flachdachdämmung verwendet werden, ergibt jede zulässige Absenkung der Rohdichte infolge der hohen Produktionsmengen einen erheblichen Kostenvorteil.
  • Die zulässige Absenkung der Rohdichte bei leichten Materialien ergibt sich im wesentlichen durch die erfindungsgemäß erzielte Homogenisierung der Wolle- und Bindemittelverteilung im Produkt. Dadurch wird das Produkt immer weiter seinem theoretischen Idealzustand angenähert, und es braucht nicht mit Materialüberschüssen gefahren zu werden, nur um auch an Mangelstellen noch ausreichend Material vorliegen zu haben.
  • Umgekehrt kann aber auch gemäß Fig. 5 bei einem Punkt B gleicher Rohdichte gearbeitet werden. Dann ergibt sich eine Verbesserung b des Wärmeleitwertes, also bei gleichem Materialeinsatz eine erhebliche Verbesserung der Wärmedämmeigenschaften und ggf. eine bessere Wärmeleitfähigkeitsgruppe.
  • Schließlich kann sowohl die Rohdichte um einen gegenüber dem Wert a geringeren Wert a1 vermindert als auch die Wärmeleitfähigkeit um einen gegenüber dem Wert b verminderten Wert b1 verbessert werden, wie dies in Fig. 5 durch Pfeil c veranschaulicht ist. Dies empfiehlt sich etwa dann, wenn die Verbesserung der Wämleitfähigkeit um den Wert b1 bereits ausreicht, um eine angestrebte bessere Wärmeleitfähigkeitsgruppe zu erzielen, so daß eine weitere Absenkung der Wärmeleitfähigkeit nicht mehr erforderlich ist und stattdessen um den noch zur Verfügung stehenden Wert a1 an Rohdichte gespart werden kann.
  • Ein wesentliches weiteres Anwendungsgebiet der vorliegenden Erfindung liegt in Verbundprodukten, wobei der Einsatz der Erfindung zumindest immer dort erfolgen kann, wo konventionell mit Stauchvorgängen (Crepage) gearbeitet wurde.
  • Ein solches Verbundprodukt ist in Fig. 6 als Produkt 50 dargestellt. Ein solches Produkt, beispielsweise eine Fassadendämmplatte, weist eine laminare Dämmschicht 51 sowie eine feste Oberflächenschicht 52 auf. Die feste Oberflächenschicht 52, üblicherweise eine Stauchplatte relativ hoher Rohdichte, dient zum Schutz der Dämmschicht 51 gegen punktähnlich aufgebrachte Kräfte. Im Falle einer Fassadendämmplatte werden diese Kräfte von Haltedübeln aufgebracht, welche die Fassadendämmplatte mit der festen Oberflächenschicht nach außen gegen die Gebäudewand festlegen und gegen Schwerkraft und Windkräfte halten. Aus Gründen des Montageaufwandes ist dabei anzustreben, mit möglichst wenigen Dübeln auszukommen.
  • In einem solchen Falle treten in der festen Oberflächenschicht im Bereich der Ränder des Dübeltellers, der bei 53 angedeutet ist, erhebliche Scherkräfte auf. Die Dübeldurchzugsfestigkeit der Fassadendämmplatte ergibt sich aus der Aufnahmefähigkeit der festen Oberflächenschicht 52 gegen diese Scherkräfte an den Dübelrändem.
  • Wird die feste Oberflächenschicht 52 aus einer gestauchten Platte konventionell hergestellt, so enthält diese zwar eine Vielzahl in Dickenrichtung liegender Fasern, welche eine Einbuchtung der festen Oberflächenschicht im Bereich des Dübeltellers 53 (Matratzeneffekt) vermeiden, jedoch gegen Scherkräfte an den Dübelrändern nur sehr begrenzte Festigkeit aufweisen, da sie durch ebenfalls in Dickenrichtung wirkende Kräfte relativ leicht gegeneinander verschoben werden können. Daher sind sehr hohe Rohdichten und vergleichsweise hohe Dicken der festen Oberflächenschichten 52 erforderlich, was infolge des stark verminderten Wärmedurchlaßwiderstandes der festen Oberflächenschicht zu einer erhöhten erforderlichen Dicke der gesamten Fassadendämmplatte führt.
  • Wird die feste Oberflächenschicht 52, wie dies in Fig. 6 schaubildlich veranschaulicht ist, erfindungsgemäß dadurch hergestellt, daß ein Primärvlies 2 zur Bildung von Mineralwolleflocken 9 gezielt zerkleinert und dann zu einem Endvlies 4 rekombiniert wird, so ergibt die dreidimensionale, isotrope Faserablage eine Ausrichtung der Fasern in alle Richtungen. Auf diese Weise sind einerseits genügend Fasern vorhanden, welche einer Einbuchtung (Matratzeneffekt) entgegenwirken, jedoch auch ausreichende Fasern, welche im Bereich der Dübelränder quer zu den dort eingeleiteten Scherkräften verlaufen und diese somit sauber abfangen. So wurden an einem Produkt entsprechend dem Produkt 50 einmal mit gestauchter fester Oberflächenschicht und einmal mit erfindungsgemäß geflockter fester Oberflächenschicht 52 bei gleichen Bindemittelgehalten und Rohdichten die Dübeldurchzugsfestigkeit gemessen, also diejenige Dübelkraft, bei der die feste Oberflächenschicht 52 über den Dübelteller 53 geschoben oder gezogen wird. Dieser Vergleichsversuch ergab im Falle der gestauchten festen Oberflächenschicht eine Dübeldurchzugskraft von gut 500 N, im Falle der erfindungsgemäß hergestellten festen Oberflächenschicht 52 hingegen eine Dübeldurchzugskraft von fast 1000 N.
  • Somit wird die erforderliche Dübeldurchzugskraft bei einer erfindungsgemäß hergestellten festen Oberflächenschicht 52 bereits mit erheblich verminderter Dicke und/oder Rohdichte erzielt, was dementsprechend zu einer Verminderung des Materialeinsatzes bei gleichzeitiger Verbesserung der Dämmwirkung führt.
  • Hinzu kommt, daß bei einer festen Oberflächenschicht aus gestauchtem Material Inhomogenitäten vorhanden sind. Diese bestehen beispielsweise in Bereichen höherer und geringerer Bindemittelgehalts, also härteren und weicheren Stellen. Überdies kann auch die Rohdichte lokal erheblich variieren. Derartige Inhomogenitäten führen dazu, daß die lokale Aufnahmefähigkeit für Scherkräfte drastisch absinkt. Wenn also eine derartige Dichteschwankung in den Bereich eines Dübelrandes kommt, so kann der Dübel ausreißen, obwohl die Dübeldurchzugsfestigkeit der gesamten Platte, gemessen an vielen anderen Stellen, ausreicht. Aus diesem Grund muß Dübeldurchzugsfestigkeit in der gestauchten Platte gewissermaßen "vorgehalten" werden, um auch für den Fall, daß der Dübel an einer Schwachstelle zu sitzen kommt, noch ausreichende Dübeldurchzugsfestigkeit zu haben. Dies führt wiederum zu höheren erforderlichen Dicken oder Rohdichten der festen Oberflächenschicht.
  • Erfindungsgemäß hergestellte Harthäute sind infolge des Aufschlusses und der damit einhergehenden Auflösung von Inhomogenitäten im Primärvlies 2 erheblich homogener und weisen so gut wie keine Fehlstellen auf. Sowohl die Bindemittelverteilung als auch die Wolleverteilung sind erheblich gleichmäßiger. Damit schwanken die Dübeldurchzugsfestigkeiten an verschiedenen Stellen einer Fassadendämmplatte auch nur unwesentlich, so daß keine Dübeldurchzugsfestigkeit "vorgehalten" werden muß, um Schwachstellen auszugleichen. Dies ist ein zusätzlicher Grund dafür, warum erfindungsgemäß hergestellte feste Oberflächenschichten 52 mit gegenüber der obigen Schilderung noch weiter verminderten Dicken und/oder Rohdichten auskommen können.
  • Neben einem Verbundprodukt können nach dem erfindungsgemäßen Verfahren auch Produkte aus Mineralwolle, insbesondere Steinwolle hergestellt werden, die ausschließlich eine isotrope Faserstruktur aufweisen. Ein typischer Anwendungsfall wären sogenannte Trittschälldämmplatten oder Flachdachdämmplatten, wobei letztere zu einer weiteren Erhöhung ihrer Druckfestigkeit zwei- oder dreidimensional gestaucht werden können.

Claims (16)

  1. Verfahren zur Herstellung von Produkten aus Mineralwolle, bei dem zunächst ein Primärvlies mit einer vorzugsweise laminaren Faserstruktur dadurch erzeugt wird, dass Fasern bei ihrem Weg durch einen Fallschacht mit einem Bindemittel besprüht werden, wobei das Primärvlies sodann zu einem Endvlies weitergebildet wird, wobei das Mineralwollematerial des Primärvlieses (2, 2') aus seinem Verbund heraus mechanisch derart in Mineralwolleflocken (9) zerkleinert wird und danach die Mineralwolleflocken (9) zur Bildung des Endvlieses (4) erneut derart abgelegt werden, dass das Mineralwollematerial nach seiner erneuten Ablage im Endvlies (4) isotrop vorliegt, wobei das Bindemittel bei der Zerkleinerung des Mineralwollematerials des Primärvlieses noch unausgehärtet vorliegt,
    dadurch gekennzeichnet,
    daß die Zerkleinerung des Mineralwollematerials des Primärvlieses (2, 2') durch einen kombinierten Schlag- und Schneidvorgang erfolgt, und
    daß das Primärvlies (2, 2') über eine Fördereinrichtung, insbesondere ein Förderband (12'), dem Schlag- und Schneidvorgang derart zugeführt wird, daß es zwischen dem Förderband (12') und dem Niederhalter (6,6') zwangsgeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei dem Schlag- und Schneidvorgang in ihrer Form unterschiedlich ausgebildete Zinken (7, 7'), die Bestandteil von auf einer Zerflockungswalze (8, 8') umfangseitig achsparallel angeordneten Leisten (14) sind, mit korrespondierenden Vorsprüngen eines Niederhalters (6, 6') für das Primärvlies (2, 2') mit einem Spiel (15) kämmen.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Förderband (12') und der Niederhalter (6') in Transportrichtung konisch zueinander verlaufen.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zinken (7, 7') alternierend als Schlagfinger (16) und als Schneidmesser (17) ausgebildet sind.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Schlagfinger (16) und die Schneidmesser (17) an ihren Schlag- bzw. Schneidflächen mit einer hochverschleißfesten Beschichtung versehen sind.
  6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Schneidmesser (17) alternierend unterschiedlich groß (17a, 17b) ausgebildet und mit ihren konischen Spitzen jeweils radial zur Zerflockungswalze (8, 8') ausgerichtet sind.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Niederhalter (6, 6') alternierend durch starre Gleitfinger (18), die jeweils bis in die Nachbarschaft der kleineren Schneidmesser (17a) reichen und durch stabförmige Förderorgane (19), die bis in die Nachbarschaft der größeren Schneidmesser (17b) reichen, gebildet sind.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß als stabförmige Förderorgane (19) endlos umlaufende Ketten dienen.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß beim Zerkleinern des Mineralwollematerials des Primärvlieses (2, 2') in Mineralwolleflocken (9) insbesondere durch die Schlagfinger (16) eine Vorverdichtung der Mineralwolleflocken (9) erfolgt.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Vorverdichtung der Mineralwolleflocken (9) mehr als 50 % bezogen auf die Dichte des Primärvlieses (2, 2') beträgt.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Mineralwolleflocken (9) eine mittlere Ausdehnung von 10 bis 30 mm aufweisen.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Mineralwolleflocken (9) eine mittlere Ausdehnung von 10 bis 20 mm aufweisen.
  13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Endvlies (4) eine geringere Rohdichte als das Primärvlies (2, 2') aufweist.
  14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Endvlies (4) mit seiner isotropen Struktur mit mindestens einem weiteren Mineralwollevlies (51) kombiniert wird.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Kombination aus Endvlies (4) und dem weiteren Mineralwollevlies (51) gemeinsam einem Stauchvorgang unterzogen wird.
  16. Verfahren nach den Ansprüchen 14 oder 15, dadurch gekennzeichnet, daß das weitere Mineralwollevlies (51) eine laminare Faserstruktur aufweist.
EP04030194.7A 2003-12-19 2004-12-20 Verfahren zur Herstellung von Produkten aus Mineralwolle, insbesondere ein- und mehrschichtige Produkte Active EP1571247B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04030194T PL1571247T5 (pl) 2003-12-19 2004-12-20 Sposób wytwarzania produktów z wełny żużlowej, w szczególności produktów jedno- i wielowarstwowych

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10359902A DE10359902A1 (de) 2003-12-19 2003-12-19 Verfahren zur Herstellung von Mineralwolleprodukten
DE10359902 2003-12-19

Publications (4)

Publication Number Publication Date
EP1571247A2 EP1571247A2 (de) 2005-09-07
EP1571247A3 EP1571247A3 (de) 2006-03-29
EP1571247B1 EP1571247B1 (de) 2009-06-24
EP1571247B2 true EP1571247B2 (de) 2013-12-04

Family

ID=34683606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04030194.7A Active EP1571247B2 (de) 2003-12-19 2004-12-20 Verfahren zur Herstellung von Produkten aus Mineralwolle, insbesondere ein- und mehrschichtige Produkte

Country Status (6)

Country Link
EP (1) EP1571247B2 (de)
AT (1) ATE434676T1 (de)
DE (2) DE10359902A1 (de)
DK (1) DK1571247T4 (de)
ES (1) ES2329129T5 (de)
PL (1) PL1571247T5 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005040076A1 (de) * 2005-08-24 2007-03-01 Saint-Gobain Isover G+H Ag Mineralwolle mit Steinwolleflocken und Glaswollefasern
DE102007018774A1 (de) 2007-04-20 2008-10-23 Saint-Gobain Isover G+H Ag Fassadendämmplatte für die Dämmung von Außenfassaden von Gebäuden, Wärmedamm-Verbundsystem mit derartigen Fassadendämmplatten sowie Verfahren zur Herstellung einer Fassadendämmplatte
GB201012860D0 (en) * 2010-07-30 2010-09-15 Rockwool Int Method for manufacturing a fibre-containing element and element produced by that method
DE102012017092B4 (de) * 2012-08-29 2014-08-21 TRüTZSCHLER GMBH & CO. KG Zuführsystem für textile Verarbeitungsmaschinen
CN104032413B (zh) * 2014-05-28 2016-04-13 苏州潮盛印花制版实业有限公司 一种拍打式棉花除杂装置
FI127694B (fi) * 2016-11-16 2018-12-14 Paroc Group Oy Menetelmä kaksi- tai useampikerroksisen mineraalivillaeristeen valmistamiseksi
CN111455560B (zh) * 2020-04-27 2022-07-05 邵庆河 一种智能化的纸尿裤棉絮加工设备
CN115418751B (zh) * 2022-08-16 2023-11-03 库车利华纺织有限公司 一种纺织机械单轴流开棉机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2589008A (en) 1947-07-03 1952-03-11 Owens Corning Fiberglass Corp Apparatus for forming fibrous mats
GB923715A (en) 1958-08-26 1963-04-18 I S Kahler And Co Porous structures and production thereof from mineral wool
GB2204385A (en) 1987-05-02 1988-11-09 Bosch Gmbh Robert Electromagnetic actuable valve
EP1111113A2 (de) 1996-03-25 2001-06-27 Rockwool International A/S Verfahren und Vorrichtung zur Herstellung einer Mineralfaserplatte

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3050427A (en) * 1957-04-29 1962-08-21 Owens Corning Fiberglass Corp Fibrous glass product and method of manufacture
FR2548695B1 (fr) * 1983-07-07 1986-06-20 Saint Gobain Isover Formation de feutres a structure isotrope
FR2591621B1 (fr) * 1985-12-17 1988-02-19 Saint Gobain Isover Formation de flocons fibreux mineraux et reconstitution de matelas isolants avec ces flocons
CA2032229C (fr) * 1989-12-19 2001-10-16 Paolo Baracchini Matelas thermo-isolant en fibres minerales a orientation aleatoire
FR2682403B1 (fr) * 1991-10-09 1996-06-07 Saint Gobain Isover Materiau isolant a souffler.
RU2152489C1 (ru) * 1994-01-28 2000-07-10 Роквул Интернэшнл А/С Способ изготовления отвержденного нетканого полотна из минерального волокна и устройство для его осуществления
DE19728523A1 (de) * 1997-07-04 1999-01-07 Erfurtgemuese E G Verfahren und Vorrichtung zur Herstellung textiler Flächengebilde
DE19834963A1 (de) * 1998-08-03 2000-02-17 Pfleiderer Daemmstofftechnik G Vorrichtung und Verfahren zur Herstellung von Mineralwollevlies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2589008A (en) 1947-07-03 1952-03-11 Owens Corning Fiberglass Corp Apparatus for forming fibrous mats
GB923715A (en) 1958-08-26 1963-04-18 I S Kahler And Co Porous structures and production thereof from mineral wool
CH371730A (de) 1958-08-26 1963-08-31 Kaehler & Co I Verfahren zur Herstellung steifer und formfester Platten oder Bänder aus Mineralwollfasern
GB2204385A (en) 1987-05-02 1988-11-09 Bosch Gmbh Robert Electromagnetic actuable valve
EP1111113A2 (de) 1996-03-25 2001-06-27 Rockwool International A/S Verfahren und Vorrichtung zur Herstellung einer Mineralfaserplatte

Also Published As

Publication number Publication date
EP1571247B1 (de) 2009-06-24
DE502004009648D1 (de) 2009-08-06
DK1571247T3 (da) 2009-11-02
EP1571247A3 (de) 2006-03-29
DK1571247T4 (da) 2014-02-17
ES2329129T3 (es) 2009-11-23
EP1571247A2 (de) 2005-09-07
ATE434676T1 (de) 2009-07-15
PL1571247T5 (pl) 2014-04-30
ES2329129T5 (es) 2014-03-12
PL1571247T3 (pl) 2009-12-31
DE10359902A1 (de) 2005-07-21

Similar Documents

Publication Publication Date Title
DE69708613T2 (de) Verfahren und vorrichtung zur herstellung von einer mineralfaserplatte
DE3026205A1 (de) Verfahren zum zerfasern von in stapeln angeordneten faserstoffboegen
DE102004062649C5 (de) Verfahren zur Herstellung einer Holzfaserdämmstoffplatte bzw.-matte und nach diesem Verfahren hergestellte Holzfaserdämmstoffplatten bzw.-matten
EP2963167B1 (de) Verfahren zur Herstellung von Faservliesmatten, insbesondere Dämmstoffmatten, sowie die nach diesem Verfahren erhältlichen Faservliesmatten
DE3886320T2 (de) Kreuzleger.
EP1571247B2 (de) Verfahren zur Herstellung von Produkten aus Mineralwolle, insbesondere ein- und mehrschichtige Produkte
DE4222207C3 (de) Verfahren zum Herstellen von Mineralfaserprodukten und Vorrichtung zur Durchführung des Verfahrens
DE4409416C1 (de) Mineralwolle-Dämmplatte, ihre Verwendungen und Verfahren zu ihrer Herstellung
EP1056892B1 (de) Vorrichtung und verfahren zur herstellung eines faserverbundes
EP3009551A1 (de) Verfahren zum ausbilden eines textilen materials unter verwendung von hanf und faserverbundwerkstoff aus diesem textilen material
DE10041481A1 (de) Dämmstoffelement sowie Verfahren und Vorrichtung zur Herstellung eines Dämmstoffelementes, insbesondere einer roll- und/oder wickelbaren Dämmstoffbahn aus Mineralfasern
EP1464238B1 (de) Verfahren zur Aufbereitung endlicher Fasern und Aufbereitungseinrichtung für endliche Fasern zur Verwedung bei der Herstellung von Filtern
DE102010037731A1 (de) Anlage und Verfahren zur Herstellung von Faservlies auf der Basis von Glasfasern und damit hergestelltes Faservlies
DE3325669A1 (de) Verfahren und vorrichtung zur herstellung von faservliesbahnen
EP1048887A2 (de) Verfahren und Vorrichtung zur Herstellung von Dämmstoffen aus Mineralfasern sowie Dämmstoffelement aus Mineralfasern
WO2011029904A1 (de) System zur überführung von holzfasern in einen durch dosiervorrichtungen verarbeitbaren zustand, sowie aufbereitetes holzfasermaterial und extrudat daraus
DE2854967B2 (de) Asbestfreie, auf Zementbasis nach dem Aufwickelverfahren hergestellte Bauplatten-Rohplatte und ein Verfahren zu deren Herstellung
EP2008785B1 (de) Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Faseragglomeraten
DE69901966T2 (de) Verfahren zur Herstellung eines Binder enthaltenden Mineralwolleproduktes, Vorrichtung zur Durchführung des Verfahrens
DE102004053131A1 (de) Flächiges Halbzeug aus einem Faserverbundwerkstoff und Verfahren zur Herstellung eines Formteils
EP0400359B1 (de) Verfahren und Vorrichtung zur Herstellung eines zusammenhängenden, nachfolgend zu Blöcken o. dergl. zu verpressenden Vlieses aus Langsplittern
DE1635572B2 (de) Verfahren zur Herstellung von Glasfaservliesstoffen und Vorrichtung zur Durchführung des Verfahrens
AT513506B1 (de) Flexible Vlieselemente auf Basis von Rohrkolben-Blattfasern für Dämmzwecke
DE19838860A1 (de) Verfahren zum Herstellen von Formkörpern
WO2012107053A1 (de) Formkörper auf basis von rohrkolben-blattfasern mit hochglatter oberfläche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: D04H 13/00 20060101AFI20050706BHEP

Ipc: D04H 1/72 20060101ALI20060209BHEP

17P Request for examination filed

Effective date: 20060809

17Q First examination report despatched

Effective date: 20060911

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060911

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004009648

Country of ref document: DE

Date of ref document: 20090806

Kind code of ref document: P

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2329129

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091024

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090924

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091024

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ROCKWOOL INTERNATIONAL A/S

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

BERE Be: lapsed

Owner name: SAINT-GOBAIN ISOVER

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20131204

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502004009648

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502004009648

Country of ref document: DE

Effective date: 20131204

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

Effective date: 20140214

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2329129

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20140312

REG Reference to a national code

Ref country code: PL

Ref legal event code: T5

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20211209

Year of fee payment: 18

Ref country code: FI

Payment date: 20211209

Year of fee payment: 18

Ref country code: FR

Payment date: 20211115

Year of fee payment: 18

Ref country code: NL

Payment date: 20211116

Year of fee payment: 18

Ref country code: GB

Payment date: 20211104

Year of fee payment: 18

Ref country code: RO

Payment date: 20211203

Year of fee payment: 18

Ref country code: SE

Payment date: 20211110

Year of fee payment: 18

Ref country code: CZ

Payment date: 20211129

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20211117

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220104

Year of fee payment: 18

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230421

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221220

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221220

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221221

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231031

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221220

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221220