EP1568525B1 - Brennkammerheizung mit örtlich variierender Heizleistung - Google Patents

Brennkammerheizung mit örtlich variierender Heizleistung Download PDF

Info

Publication number
EP1568525B1
EP1568525B1 EP04004476A EP04004476A EP1568525B1 EP 1568525 B1 EP1568525 B1 EP 1568525B1 EP 04004476 A EP04004476 A EP 04004476A EP 04004476 A EP04004476 A EP 04004476A EP 1568525 B1 EP1568525 B1 EP 1568525B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
heater
heating
ignition
heating surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04004476A
Other languages
English (en)
French (fr)
Other versions
EP1568525A1 (de
Inventor
Thomas Gschwind
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DBK David and Baader GmbH
Original Assignee
DBK David and Baader GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DBK David and Baader GmbH filed Critical DBK David and Baader GmbH
Priority to EP04004476A priority Critical patent/EP1568525B1/de
Priority to DE502004005356T priority patent/DE502004005356D1/de
Priority to AT04004476T priority patent/ATE376940T1/de
Publication of EP1568525A1 publication Critical patent/EP1568525A1/de
Application granted granted Critical
Publication of EP1568525B1 publication Critical patent/EP1568525B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/06Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs structurally associated with fluid-fuel burners
    • F23Q7/08Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs structurally associated with fluid-fuel burners for evaporating and igniting liquid fuel, e.g. in hurricane lanterns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D3/00Burners using capillary action
    • F23D3/02Wick burners
    • F23D3/18Details of wick burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D5/00Burners in which liquid fuel evaporates in the combustion space, with or without chemical conversion of evaporated fuel
    • F23D5/12Details
    • F23D5/18Preheating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2207/00Ignition devices associated with burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/10Burner material specifications ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/31005Wick burners using oil as a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/31023Vapour burners where the vaporiser is heated by conduction

Definitions

  • the invention relates to a combustion chamber heating with an electric heating element forming an area heater, by which a heating surface adjoining the combustion chamber can be heated during operation, and with an ignition zone which, during operation, can be heated to an ignition temperature above the temperature of the heating surface.
  • Such a combustion chamber heater is installed, for example, in diesel-powered auxiliary heaters for motor vehicles, where they are needed to start the firing process.
  • the combustion chamber heater heats the combustion chamber so that the combustion process can be maintained independently and stably, without the need for any further external energy supply, solely on the basis of the self-ignition of the diesel.
  • the self-ignition temperature of the fuel must be reached in at least one place in the combustion chamber.
  • a glow plug arranged in the combustion chamber is ignited for heating the combustion chamber, which heats the interior of the combustion chamber and leads to a local exceeding of the ignition temperature in the ignition zone.
  • a fleece is also arranged, on the large surface of the fuel can evaporate more easily.
  • a well-known combustion chamber heater for example, in the DE-B-102 51 438 described having a Schuetzlan extract with an ignition region and a heating area.
  • a combustion heater is described which includes an evaporator for vaporizing the fuel and an igniter for igniting the vaporized fuel.
  • Another burner heater is in the US-A-5,722,588 described, which comprises a burner with a combustion tube, wherein the combustion tube is provided at one axial end with a ceramic fiber evaporator plate. Furthermore, in the DE-A-37 22 093 a burner with a heating plug is described, which has a lying in a sputtering chamber heating part and located in a combustion chamber ignition part.
  • the invention has for its object to improve the above-mentioned combustion chamber heaters so that in a simple to install and maintain a faster onset of auto-ignition in the combustion chamber is possible.
  • This object is achieved according to the invention for the aforementioned combustion chamber heater in that the ignition zone is heated by the heating element and that the heating element has a local distribution of the heating power corresponding substantially to the temperature distribution of heating surface and ignition zone.
  • This solution is simple and allows to dispense with the commonly used glow plug, so that production and installation of the combustion chamber heating can be simplified.
  • the function of the glow plug is perceived by the ignition zone heated by the heating element, wherein the heating power in the ignition zone is adjusted accordingly.
  • the solution according to the invention with Heating surface and ignition zone to shorten the time within which a stable auto-ignition is achieved in the combustion chamber.
  • the inventive design of the combustion chamber heating can be further developed by the below described, each independently advantageous embodiments.
  • the various configurations can be combined with each other as desired.
  • the heating element of the ignition zone associated ignition heater with increased heating power can be integrally integrated in order to produce the surface heater and the Zündheizer in one step.
  • the surface heater and / or the ignition heater can be made of a substantially meander-shaped heating conductor.
  • the term "meandering" is intended to include spiral, loop-shaped, helical and differently shaped heating conductor windings, which pass through a heating surface for the purpose of heating them on curved webs.
  • the heating conductor is preferably located in a substantially plane plane or the surface heater runs essentially parallel to the heating surface.
  • the heating conductor can be made of a band-shaped material having a rectangular or rectangular cross section, wherein the larger area of this cross section serves as a heat delivery surface to the combustion chamber, to allow a good heat to the combustion chamber.
  • the heating conductor can be punched from a board or made of bent conductor material.
  • a simple production can be achieved if the heating element extends integrally through the surface heater and the Zündheizer, so both consist of the same heating element.
  • the distance between the heating conductor windings in the ignition heater may be reduced and / or the heating conductor in the ignition heater may have a higher resistance.
  • the Zündheizer and the surface heater can be electrically connected in series, which also represents a lower production cost.
  • the combustion chamber heater according to the invention when used in auxiliary heaters for motor vehicles, the electric energy supplied to the electrical heating element is usually limited by the performance of the car battery. In addition, especially in the cold season, when the auxiliary heater is to be used, the performance of the car battery is limited and is required to start the motor vehicle. In order to keep the energy consumption of the heater in the frame, it is therefore provided according to a further embodiment that the proportion of heated with a higher energy density ignition zone at the Brennschbigdung is smaller than the proportion of the heating surface. In particular, the proportion of the area occupied by the ignition zone towards the combustion chamber can be less than 40% , preferably between 25%. and 35%, the heating surface amount.
  • the heating power in the ignition zone can be bundled sufficiently to obtain sufficiently high ignition temperatures.
  • the temperature of the surface heating remains at a reasonable energy consumption high enough to heat the combustion chamber and the combustion chamber wall to the operating temperature.
  • the power of the surface heater can be between 50 W and 150 W, that of the ignition heater between 40 W and 80 W.
  • the heating power can be controlled by means of a control unit via a pulse width modulation.
  • the heating surface is advantageously made of a heat-stable material, in particular a ceramic material.
  • the heating power of the surface heater can be distributed substantially uniformly in the heating surface, if the material of the heating surface is good heat conducting.
  • This embodiment simultaneously leads to a loss of heat output from the heating element in the combustion chamber and to a higher efficiency of the combustion chamber heating.
  • a ceramic material with a thermal conductivity of at least 15 W / (m K), preferably of at least 40 W / (m K) can be used for the heating surface.
  • sintered silicon nitride or non-pressure sintered silicon carbide may be used, and care should be taken to ensure high density during sintering.
  • the ignition zone can be designed as a protrusion projecting from the combustion chamber wall into the combustion chamber.
  • This embodiment also has the advantage that the flame is displaced more strongly into the interior of the combustion chamber.
  • a nonwoven layer can be arranged around the projection, through which the projection protrudes into the combustion chamber. The nonwoven layer facilitates vaporization of the fuel due to its large surface area.
  • the projection may be surrounded by the heating surface, ie projecting from the heating surface into the combustion chamber.
  • the igniting fuel in the ignition zone of already preheated Surrounding fuel from the area of the heating surface which also stabilizes the firing process in the startup phase.
  • the evaporation of the fuel can be further improved in the start-up phase by the fact that the non-woven layer rests on the heating surface and is mitbeprooft so.
  • the ceramic body forming the ignition zone can form a pocket on the side remote from the combustion chamber, in which at least a portion of the ignition heater is accommodated.
  • the heating power of the ignition heater can be particularly easily concentrated in the ignition zone.
  • the ignition zone can be integrally formed with the heating surface in the body, for example by sintering, casting or other primary molding process.
  • a supporting body may be provided on the side of the combustion chamber heating facing away from the combustion chamber and the heating surface, so that the heating element is arranged between the supporting body and the heating surface.
  • the support body insulates the combustion chamber heater to the outside and secures the heating element.
  • the support body in a development consists of an at least ceramic-containing, heat-insulating material, preferably a full ceramic. Such a material combines good heat resistance with temperature insulation, so that a higher efficiency can be achieved, since the heat is conducted to the heating surface.
  • the support body can be sintered or cast preformed or potted on the side facing away from the combustion chamber of the heating surface. In the latter case, the heating element may be cast in the support body.
  • the support body may form a projecting into the projection of the ignition zone holder projection, which is looped around by the heating element.
  • the holder projection of the support body forms a holder for the Zündheizer, to which it is easy to attach.
  • the heating surface with the ignition zone can be preassembled together with the heating element and the supporting body to form a heating module which can be handled in one piece and mounted in the combustion chamber heater. This allows easy installation of the combustion chamber heater, which can also be preassembled at any location in this embodiment and shipped easily for mounting.
  • the body forming the heating surface can have a feed line through which the fuel can be introduced into the combustion chamber during operation.
  • the heating of the inflowing fuel can advantageously be further increased by the surface heater in the area immediately adjacent to the supply line to the body forming the heating surface, so that the heat transfer can take place directly over short distances to the fuel flowing into the combustion chamber.
  • the supply line can be designed meander-shaped, so that the longest possible flow path is formed, along which the fuel is heated by the heating element.
  • one side of the flow path can be directly adjacent to the heating element.
  • the flow path may extend in a plane, preferably parallel to the heating surface, so that the heating element may be configured as a simple plate or disk. The heating surface can be heated simultaneously via the wall of the flow path.
  • the ignition zone can be arranged adjacent to the inlet line, so that the fuel ignites when it flows in and burns continues to flow into the interior of the combustion chamber.
  • Fig. 1 shows schematically a combustion chamber 1 in a heat exchanger 2, as it is used in a variety of devices, such as a heater 3 for a motor vehicle.
  • a heating fluid 4 which flows through the heat exchanger 2 in a flow channel 5 adjacent to the combustion chamber 1, heated and discharged for heating, for example, a passenger cabin of the motor vehicle as reheated heating fluid 6.
  • a heating fluid circuit can be maintained.
  • the temperature of the heating fluid 6 can be monitored via a temperature sensor 8, which detects, for example, the fluid temperature in the flow channel 5.
  • the heating energy for heating the heating fluid is generated by a flame 9 in the combustion chamber 1, in which a fed according to the arrow 10 fuel, such as diesel, is burned. Via a metering unit 11, the amount of fuel burned per unit time is controlled in dependence on the temperature of the heating fluid detected by the temperature sensor 8.
  • the fuel is introduced before entering the combustion chamber 1 in a mixing chamber 13, preferably sprayed, as indicated by the arrow 12.
  • the mixing chamber 13 is further a combustion gas 14, such as ambient air supplied, as indicated by the arrow 15.
  • the ambient air 14 is sucked in by a conveyor 16, for example a fan.
  • the combustion gas 14 and the fuel 12 mix and enter through a supply line 17 into the combustion chamber 1 a.
  • the supply line 17 is located in a partition wall 18 which separates the combustion chamber 1 from the mixing chamber 13.
  • the gas-fuel mixture burns in the flame 9.
  • the partition 18 is configured as a combustion chamber heater.
  • the combustion chamber heater 18 forms on its surface 1 facing the combustion chamber 1 a heating surface which heats the fuel-gas mixture in the combustion chamber 1.
  • the fuel gas mixture flowing through the supply line 17 in the combustion chamber heater 18 is heated.
  • the combustion chamber heater 18 is supplied via electrical lines 23 with energy from, for example, the car battery and automatically switched off as soon as a stable combustion occurs in the combustion chamber 1.
  • the stable combustion can be detected, for example, via a flame sensor, not shown in FIG. 1.
  • burners 2 are possible, for example, those that have no mixing chamber 13, but only a conduit through which a fuel-gas mixture is passed directly into the combustion chamber 1.
  • the fuel heater 18 may also be integrated in the wall 22 of the combustion chamber 1 and form, for example, a bottom or end face.
  • combustion chamber heater 18 The structure of the combustion chamber heater 18 will now be explained in more detail with reference to an embodiment with reference to Figures 2 to 4.
  • FIG. 2 shows the combustion chamber heater 18 embodied as a structural unit in the expanded state in a schematic perspective view.
  • the combustion chamber heater 18 is, as can be seen in Fig. 1, used in operation in the combustion chamber 1, wherein the heating surface 21 faces the combustion chamber.
  • the combustion chamber heater 18 is penetrated by the supply line 17 in the axial direction.
  • the structural unit formed by the combustion chamber heater 18 is essentially disc-shaped, which facilitates the frontal installation in a hollow-cylindrical combustion chamber.
  • the heating surface 21 is formed by a ceramic body 24, which is formed from a highly conductive ceramic material and extends to the mouth of the opening 17. Instead of the ceramic body 24, a body made of another material can also be used.
  • the thermal conductivity of the ceramic body 24 is at least 15 W / (m K), preferably at least 40 W / (m K).
  • the ceramic body 24 is densely sintered and has a density of at least 3 kg / dm 3 .
  • the ceramic body is preferred 24 made of a sintered silicon nitride or a non-pressure sintered silicon carbide.
  • the heating surface 21 is largely flat or flat.
  • a projection 26 protruding from the heating surface 21 into the combustion chamber 1 (see FIG. As shown in Fig. 2, the projection 26 may have a substantially cylindrical shape.
  • the height at which the protrusion 26 protrudes into the combustion chamber corresponds approximately to its diameter, but may also be slightly larger than the diameter.
  • a support body 27 is attached to the ceramic body 24.
  • the support body 27 is made of a poor thermal conductivity material, such as a ceramic with a thermal conductivity of less than 10 W / (m K), for example, sintered or cast.
  • the support body 27 serves for a heat insulation, so that the heat from the combustion chamber 1 can not drain.
  • the support body serves as a substrate for an electrical heating element, of which only a pair 28 of electrical connections can be seen in FIG. 2, which can be electrically conductively connected to the power supply line 23.
  • the electrical connections 28 are electrically conductively connected to an electrical heating element 29, preferably formed integrally directly on the electric heating element 29.
  • the construction of the electric heating element 29 will be described with reference to FIG.
  • the heating element 29 has a locally varying heating power, wherein the distribution of the heating power of the temperature distribution of the combustion chamber heater corresponds to: Thus forms a first area larger area lower heating power forms a surface heater 30; a second areal smaller area 31 of higher heating power forms an ignition heater.
  • the surface heater 30 is made of a substantially flat meander of substantially band-shaped heating conductor material and extends between the ceramic body 24 and the body 27 in the greatest possible overlap with the heating surface 21.
  • the Schuleiterermaterial from which the meanders, arcs, spirals or spiral curves of the heating element are made, can be punched or bent by plastic deformation, the punching process is preferred due to the lower production costs.
  • the surface heater 30 is flat against the ceramic body 24 at its side facing away from the combustion chamber 1 side and is located in a plane parallel to the heating surface 21 level. To the mouth region of the feed line 17 extend portions 32 of the surface heater 30th
  • the Zündheizer 31 is wound around a projection 33 of the support body 27, that this is looped by the meanders of the heating element.
  • the projection 33 extends from the support body 27 in the form of a pillar or pin in the direction of the combustion chamber 1 (see FIG. 1) and together with the ignition heater 31 placed around it is formed in a shaft formed by the projection 26 on the side remote from the combustion chamber 1 Can be used as a pocket-shaped holder. In this way, the projection 26 is heated from the inside of the ignition heater 31.
  • the ignition heater 31 Since the ignition heater 31 has a higher heating power than the surface heater 30, its temperature is greater than the temperature of the surface heater 30 during operation. Accordingly, in operation, the temperature of the ignition zone 26 associated with the ignition heater 31 is higher than the temperature of the heating surface associated with the surface heater 30.
  • the surface heater 30 and the firing heater 31 are connected in series, with the heat conductor continuing as a continuous body from the surface heater 30 into the firing heater 31.
  • the surface heater 30 can be subdivided into two series-connected sections 34, 35, between which the firing heater 31 is likewise arranged in series.
  • the support body 27 may have at its outer edge 25 a peripheral shoulder 36 into which a corresponding projection (not shown) of the ceramic body 24 engages.
  • the support body 27 may have a recess 37 in the region of the feed line 17, into which extends in the assembled state of the ceramic body 24, so that the mouth region of the supply line 17 is heated.
  • the combustion chamber heater 18 In order to vaporize and ignite the fuel in the combustion chamber 1 during the starting phase of the burner 2 (see Fig. 1), the combustion chamber heater 18 has two different temperature levels.
  • the lower temperature level is formed by the heating surface 21, on which a fleece 38, as indicated in Fig. 2 by dotted lines, can be arranged.
  • the heating surface 21 heats the nonwoven 38, which in turn accelerates the evaporation of the fuel due to its large surface area.
  • the higher temperature level is in the ignition zone 26, which is heated to a temperature above the ignition temperature of the fuel. As a result, a flame forms at the ignition zone 26 during the starting process.
  • the ignition zone 26 extends through the nonwoven 38 into the interior of the combustion chamber 1 and is preferably not covered by the nonwoven 38, so that the position of the flame during the starting process at the projecting into the combustion chamber 1 region of the ignition zone remains stable. For this reason, the ignition zone 26 is formed on the projection of the ceramic body 24, which extends through the non-woven 38 to the combustion chamber 1.
  • the heating power of the heating element 28 varies locally substantially according to the temperature distribution in the heating surface 21 and the ignition zone 26.
  • the ignition zone 26 with the high temperature level is associated with the ignition heater with the high heating power; the heating surface 21 with the low temperature level is associated with the surface heater 30 with the lower heating power.
  • the heating power per unit area can be increased, for example, by reducing the distance of the Schuleiterbögen each other or by increasing the Schuleiterwiderstands compared to the surface heater.
  • the heating power of the surface heater can correspond to about twice the heating power of the ignition heater.
  • FIGS. 4 and 5 show a further embodiment of the heating device 18 according to the invention. For the sake of simplicity, only the differences from the embodiment of FIGS. 2 and 3 are discussed below.
  • the heating board 30 is inserted in the ceramic body 24, as shown in FIG. 5.
  • the ceramic body 24 forms a cup-shaped receptacle.
  • the terminals 28 project beyond the edge 39 of the ceramic body 24 to the outside.
  • a projection 40 completely surrounds the feed line 17, wherein the height of the projection 40 corresponds approximately to the height of the edge 39.
  • the heating conductor 30 is encapsulated in the ceramic body 24 in a temperature-resistant casting compound 41.
  • a separate support body 27 is no longer necessary.
  • the casting compound 41 is simply filled during manufacture into the annular space formed between the projection 40 and the edge 39.
  • combustion chamber heater 18 forms an integrally manageable unit.
  • FIG. 6 shows a perspective view from the side facing away from the combustion chamber 1 (cf., FIG. 1) of a further embodiment of a combustion chamber heater 18.
  • FIG. 7 shows a cross section along the line VII-VII of FIG. 6.
  • the embodiment of FIG 6 and 7, taken separately, are advantageous regardless of the embodiments described above. For the sake of clarity, only the differences from the above embodiments will be discussed below.
  • the supply line 17 for the fuel or the fuel-gas mixture is incorporated into the body 24 in a spiral from the outside to the inside channel.
  • the turns of the feed line 17 are located on the side facing away from the heating surface 21 of the body 24 and are preferably in a plane parallel to the heating surface 21.
  • a radially extending channel 42 connects the radially outermost turn of the heating cable 17 with a fluid plug 43 on Outer circumference of the body 24. Via the fluid connector 43, the supply line 17 can be connected to a fuel source.
  • the flow cross section of the supply line 17 in the body 24 is at most 1 or 2 mm 2 , the width in the radial direction less than 1 mm.
  • the spiral-shaped feed line 17 is bounded on the side facing away from the combustion chamber 1 by a heating element 29 which directly heats the fuel in the channels and via the webs arranged between the channels.
  • the heating element 29 may be a pipe heater incorporated in a plate or a disk-shaped PTC element or a thick film heater.
  • a support body 27 or a potted layer 41 isolates the heating element 29 to the side facing away from the combustion chamber 1 side.
  • the heating element 29 and the support body 27 and the casting layer 41 are omitted for clarity, to release the view of the configuration of the supply line 17.
  • a lead 17 around a non-woven layer 38 is placed on the heating surface 21.
  • the heating element 29 simultaneously heats the heating surface 21 and the nonwoven 38 resting on the heating surface 21, so that the fuel in the nonwoven 38 also evaporates.
  • a fuel-gas mixture enters the combustion chamber heater 18 via a line piece 44 of the fluid connector 43, as indicated by the arrow 45. Via the channel 42, the fuel-gas mixture enters the outside of the supply line 17 and flows inwardly along the spiral. During the flow through the combustion chamber heater 18, the fuel or the fuel-gas mixture is heated by the heating element 29, so that the fuel passes into the vapor state. Via the tubular end portion of the supply line 17, the fuel or the fuel-gas mixture enters the combustion chamber 1 in the vapor state and burns.
  • an ignition zone may be integrated in the combustion chamber heater 18.
  • the ignition zone may also be provided at another location.
  • another embodiment, for example in the form of the heating line of FIG. 3, may also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Stoves And Ranges (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

  • Die Erfindung betrifft eine Brennkammerheizung mit einem einen Flächenheizer bildenden elektrischen Heizelement, durch das im Betrieb eine an die Brennkammer grenzende Heizfläche beheizbar ist, und mit einer Zündzone, die im Betrieb auf eine über der Temperatur der Heizfläche liegende Zündtemperatur aufheizbar ist.
  • Eine derartige Brennkammerheizung wird beispielsweise in Diesel betriebene Standheizungen für Kraftfahrzeuge eingebaut, wo sie zum Starten des Brennvorgangs benötigt werden. Die Brennkammerheizung heizt die Brennkammer so auf, dass ohne weitere Energiezufuhr von außen der Brennvorgang allein aufgrund der Selbstzündung des Diesels selbstständig und stabil aufrecht erhalten werden kann. Hierzu muss in der Brennkammer an wenigstens einer Stelle die Selbstzündungstemperatur des Brennstoffs erreicht werden.
  • Üblicherweise wird zum Aufheizen der Brennkammer eine in der Brennkammer angeordnete Glühkerze gezündet, welche den Innenraum der Brennkammer heizt und in der Zündzone zu einem lokalen Überschreiten der Zündtemperatur führt. An einer Wand der Brennkammer ist zudem ein Vlies angeordnet, an dessen großer Oberfläche der Brennstoff leichter verdampfen kann.
  • Bei dieser Ausgestaltung der Brennkammerheizung dauert es üblicherweise mehrere Minuten, bis eine Verbrennung in der Brennkammer selbständig aufrecht erhalten werden kann. Diese Zeitspanne steigt mit sinkenden Außentemperaturen nochmals an.
  • Folglich dauert es bei den herkömmlichen Brennkammerheizungen mit Glühkerze sehr lange, bis der Standheizer seine volle Heizwirkung entfalten kann.
  • Um die Zeit bis zur stabilen Selbstzündung zu verkürzen, hat man im Stand der Technik begonnen, eine zusätzliche Flächenheizung an einer als Heizfläche ausgebildeten Umwandung der Brennkammer einzusetzen, die zu einem schnellen Verdampfen des Brennstoffs und zu einem früheren Einsetzen der Selbstzündung führt. Tatsächlich kann durch eine als Heizfläche ausgestaltete Brennkammerwand, die beispielsweise mittels einer elektrischen Rohr- oder Mantelheizung beheizt wird, die Zeitspanne bis zur stabilen Verbrennung auf unter eine Minute gedrückt werden.
  • Diese Zeitspanne kann jedoch für höchste Komfortansprüche an Standheizungen noch immer zu lange sein. Zudem sind diese Brennkammerheizungen noch sehr aufwändig gebaut und weisen einen erhöhten Montage- und Wartungsaufwand auf.
  • Eine bekannte Brennkammerheizung ist beispielsweise in der DE-B-102 51 438 beschrieben, die eine Heizwendelanordnung mit einem Zündbereich und einem Heizbereich aufweist. In der DE-A-100 05 376 ist ein Verbrennungsheizer beschrieben, der einen Verdampfer zum Verdampfen des Brennstoffs und eine Zündeinrichtung zum Zünden des verdampften Brennstoffs aufweist.
  • Ein weiterer Brennheizer ist in der US-A-5,722,588 beschrieben, der einen Brenner mit einem Brennrohr umfasst, wobei das Brennrohr an einem axialen Ende mit einer Verdampferplatte aus Keramikfaser versehen ist. Weiterhin ist in der DE-A-37 22 093 ein Brenner mit einer Heizkerze beschrieben, die einen in einer Zerstäubungskammer liegenden Heizteil und einen in einer Verbrennungskammer liegenden Zündteil aufweist.
  • Der Erfindung liegt die Aufgabe zugrunde, die eingangs genannte Brennkammerheizungen so zu verbessern, dass bei einem einfach zu montierenden und zu wartenden Aufbau eine schneller einsetzende Selbstzündung in der Brennkammer möglich ist.
  • Diese Aufgabe wird für die eingangs genannte Brennkammerheizung erfindungsgemäß dadurch gelöst, dass die Zündzone vom Heizelement beheizt ist und dass das Heizelement eine im Wesentlichen der Temperaturverteilung von Heizfläche und Zündzone entsprechende örtliche Verteilung der Heizleistung aufweist.
  • Diese Lösung ist einfach und erlaubt es, auf die üblicherweise verwendete Glühkerze zu verzichten, so dass Fertigung und Montage der Brennkammerheizung vereinfacht werden. Erfindungsgemäß wird die Funktion der Glühkerze von der vom Heizelement beheizten Zündzone wahrgenommen, wobei die Heizleistung in der Zündzone entsprechend angepasst ist. Überraschenderweise scheint die erfindungsgemäße Lösung mit Heizfläche und Zündzone auch die Zeitspanne zu verkürzen, innerhalb der eine stabile Selbstzündung in der Brennkammer erreicht wird.
  • Die erfindungsgemäße Ausgestaltung der Brennkammerheizung kann durch die nachfolgend beschriebenen, jeweils voneinander unabhängig vorteilhaften Ausgestaltungen weiter entwickelt werden. Dabei sind die verschiedenen Ausgestaltungen beliebig miteinander kombinierbar.
  • So kann gemäß einer vorteilhaften Ausgestaltung in das Heizelement ein der Zündzone zugeordneter Zündheizer mit erhöhter Heizleistung einstückig integriert sein, um den Flächenheizer und den Zündheizer in einem Schritt fertigen zu können.
  • Ferner können der Flächenheizer und/oder der Zündheizer aus einem im Wesentlichen mäanderförmig verlaufenden Heizleiter gefertigt sein. Der Begriff "mäanderförmig" soll dabei auch spiralförmige, schlaufenförmige, wendelförmige und anders geformte Heizleiter-Wicklungen umfassen, welche eine Heizfläche zum Zwecke ihrer Beheizung auf gebogenen Bahnen durchlaufen. Vorzugsweise liegt der Heizleiter in einer im Wesentlichen planen Ebene bzw. verläuft der Flächenheizer im Wesentlichen parallel zur Heizfläche. Insbesondere kann der Heizleiter aus einem bandförmigen Material mit einem rechteckigen oder Rechteck ähnlichen Querschnitt gefertigt sein, wobei die größere Fläche dieses Querschnittes zur Brennkammer hin als Wärmeabgabefläche dient, um einen guten Wärmegang zur Brennkammer hin zu ermöglichen. Der Heizleiter kann aus einer Platine gestanzt oder aus gebogenem Leitermaterial gefertigt sein. Diese Ausgestaltungen stellen jeweils für sich eine hohe und gleichmäßige Heizleistung sicher. Des Weiteren können der Flächenheizer und/oder der Zündheizer wenigstens ein PTC-Element und/oder eine Dickschichtheizung umfassen.
  • Eine einfache Fertigung kann erreicht werden, wenn sich der Heizleiter einstückig durch den Flächenheizer und den Zündheizer erstreckt, also beide aus demselben Heizleiter bestehen. Um die Heizleistung des Zündheizers entsprechend zu erhöhen, kann der Abstand der Heizleiter-Wicklungen im Zündheizer verringert sein und/oder der Heizleiter im Zündheizer einen höheren Widerstand aufweisen.
  • Der Zündheizer und der Flächenheizer können elektrisch in Reihe geschaltet sein, was ebenfalls einen geringeren fertigungstechnischen Aufwand darstellt.
  • Insbesondere, wenn der erfindungsgemäße Brennkammerheizer in Standheizungen für Kraftfahrzeuge verwendet wird, ist die dem elektrischen Heizelement zuführbare elektrische Energie meist durch die Leistung der Autobatterie begrenzt. Hinzu kommt, dass gerade in der kalten Jahreszeit, wenn die Standheizung zum Einsatz kommen soll, die Leistung der Autobatterie eingeschränkt ist und zum Starten des Kraftfahrzeugs benötigt wird. Um den Energieverbrauch der Standheizung im Rahmen zu halten, ist es daher gemäß einer weiteren Ausgestaltung vorgesehen, dass der Anteil der mit einer höheren Energiedichte beheizten Zündzone an der Brennkammerumwandung kleiner ist als der Anteil der Heizfläche. Insbesondere kann der Anteil der von der Zündzone eingenommenen Fläche zur Brennkammer hin weniger als 40 %, vorzugsweise zwischen 25 % und 35 %, der Heizfläche betragen. Bei diesem Verhältnis kann bei einem verhältnismäßig geringen Verbrauch von elektrischer Energie die Heizleistung in der Zündzone ausreichend gebündelt werden, um ausreichend hohe Zündtemperaturen zu erhalten. Gleichzeitig bleibt die Temperatur der Flächenheizung bei einem vertretbaren Energieverbrauch ausreichend hoch, um die Brennkammer und die Brennkammerwand auf die Betriebstemperatur zu heizen. Die Leistung des Flächenheizers kann zwischen 50 W und 150 W liegen, die des Zündheizers zwischen 40 W und 80 W. Die Heizleistungen können mittels einer Steuereinheit über eine Pulsweitenmodulation geregelt werden.
  • Angesichts der in der Brennkammer herrschenden hohen Temperaturen ist die Heizfläche vorteilhafterweise aus einem hitzestabilen Werkstoff, insbesondere einem Keramikwerkstoff gefertigt.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung kann sich die Heizleistung des Flächenheizers im Wesentlichen gleichmäßiger in der Heizfläche verteilen, wenn der Werkstoff der Heizfläche gut wärmeleitend ist. Diese Ausgestaltung führt gleichzeitig zu einer verlustärmeren Wärmeabgabe vom Heizelement in die Brennkammer und zu einem höheren Wirkungsgrad der Brennkammerheizung. Insbesondere kann für die Heizfläche ein Keramikwerkstoff mit einer Wärmeleitfähigkeit von wenigstens 15 W/(m K), vorzugsweise von wenigstens 40 W/(m K), verwendet werden. Als Keramikwerkstoff können gesintertes Siliziumnitrid oder drucklos gesintertes Siliziumkarbid verwendet werden, wobei beim Sintern auf eine hohe Dichte geachtet werden sollte.
  • Um in der Startphase einen möglichst stabilen Brennvorgang zu erreichen, kann die Zündzone als ein aus der Brennkammerumwandung in die Brennkammer ragender Vorsprung ausgestaltet sein. Diese Ausgestaltung hat ferner den Vorteil, dass die Flamme stärker in das Innere der Brennkammer verschoben wird. Um den Vorsprung herum kann dabei eine Vliesschicht angeordnet sein, durch die der Vorsprung bis in die Brennkammer ragt. Die Vliesschicht erleichtert aufgrund ihrer großen Oberfläche das Verdampfen des Brennstoffs.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung kann der Vorsprung von der Heizfläche umgeben sein, also aus der Heizfläche in die Brennkammer ragen. Bei dieser Maßnahme ist der sich entzündende Brennstoff im Bereich der Zündzone von bereits vorgeheiztem Brennstoff aus dem Bereich der Heizfläche umgeben, was den Brennvorgang in der Startphase ebenfalls stabilisiert. Die Verdampfung des Brennstoffs kann in der Startphase ferner dadurch verbessert werden, dass die Vliesschicht auf der Heizfläche aufliegt und so mitbeheizt wird.
  • Bei der Ausgestaltung als Vorsprung kann der die Zündzone bildende Keramikkörper einen an der von der Brennkammer abgewandten Seite eine Tasche bilden, in der zumindest ein Abschnitt des Zündheizers aufgenommen ist. Durch diese Ausgestaltung kann die Heizleistung des Zündheizers besonders einfach im Bereich der Zündzone konzentriert werden.
  • Um die Anzahl der verwendeten Teile und damit die Fertigungskosten und die Anfälligkeit der erfindungsgemäßen Brennkammerheizung zu verringern, kann die Zündzone mit der Heizfläche einstückig im Körper ausgeformt sein, beispielsweise durch Sintern, Vergießen oder einen anderen Urformprozess.
  • In einer weiteren Ausgestaltung kann an der von der Brennkammer und der Heizfläche abgewandten Seite der Brennkammerheizung ein Tragkörper vorgesehen sein, so dass das Heizelement zwischen dem Tragkörper und der Heizfläche angeordnet ist. Der Tragkörper isoliert den Brennkammerheizer nach außen hin und sichert das Heizelement. Hierzu ist es von Vorteil, wenn der Tragkörper in einer Weiterbildung aus einem wenigstens keramikhaltigen, wärmeisolierenden Werkstoff, vorzugsweise einer Vollkeramik, besteht. Ein solcher Werkstoff kombiniert eine gute Hitzebeständigkeit mit einer Temperaturisolierung, so dass ein höherer Wirkungsgrad erzielt werden kann, da die Wärme zur Heizfläche hin geleitet wird. Der Tragkörper kann gesintert oder gegossen vorgeformt sein oder an der bezüglich der Brennkammer abgewandten Seite der Heizfläche vergossen sein. In letzterem Fall kann das Heizelement in den Tragkörper eingegossen sein.
  • In einer weiteren Ausgestaltung kann der Tragkörper einen in den Vorsprung der Zündzone ragenden Haltervorsprung bilden, der vom Heizelement umschlungen ist. Der Haltervorsprung des Tragkörpers bildet einen Halter für den Zündheizer, an den dieser einfach zu befestigen ist. Durch Einschieben des Haltervorsprungs in den Vorsprung der Zündzone von der von der Brennkammer abgewandten Seite her lässt sich auf einfache zu montierende Weise ein guter Wärmeübergang erzielen.
  • Die Heizfläche mit der Zündzone kann in einer weiteren Ausgestaltung zusammen mit dem Heizelement und dem Tragkörper zu einem einstückig handhabbaren und in die Brennkammerheizung zu montierenden Heizmodul vormontiert sein. Dies ermöglicht eine einfache Montage des Brennkammerheizers, der zudem bei dieser Ausgestaltung an beliebigen Orten vormontiert und zur Montage problemlos verschifft werden kann.
  • Um den Brennstoff bereits beim Einleiten in die Brennkammer zu erhitzen, kann erfindungsgemäß der die Heizfläche bildende Körper eine Zuleitung aufweisen, durch welche der Brennstoff während des Betriebs in die Brennkammer einleitbar ist. Die Beheizung des einströmenden Brennstoffs kann in vorteilhafter Weise nochmals dadurch erhöht werden, dass der Flächenheizer im Bereich unmittelbar um die Zuleitung an dem die Heizfläche bildenden Körper anliegt, so dass die Wärmeübertragung direkt über kurze Wege auf den in die Brennkammer einströmenden Brennstoff erfolgen kann.
  • Die Zuleitung kann insbesondere mäanderförmig ausgestaltet sein, so dass ein möglichst langer Strömungspfad entsteht, entlang dem der Brennstoff vom Heizelement beheizt ist. Insbesondere bei dieser Ausgestaltung kann eine Seite des Strömungspfades direkt an das Heizelement grenzen. Der Strömungspfad kann sich in einer Ebene erstrecken, vorzugsweise parallel zur Heizfläche, so dass das Heizelement als einfache Platte oder Scheibe ausgestaltet sein kann. Über die Wandung des Strömungspfades kann gleichzeitig die Heizfläche beheizt werden.
  • Schließlich kann in einer vorteilhaften Ausgestaltung die Zündzone benachbart zur Einlassleitung angeordnet sein, so dass sich der Brennstoff beim Einströmen entzündet und brennend in das Innere der Brennkammer weiterströmt.
  • Im Folgenden wird die Erfindung anhand von Ausführungsformen mit Bezug auf Zeichnungen beispielhaft erläutert. In den Zeichnungen werden für Elemente, die bei den verschiedenen Ausführungsformen die gleiche Funktion erfüllen oder den gleichen Aufbau aufweisen, dieselben Bezugszeichen verwendet. Die bei den einzelnen Ausführungsformen unterschiedlichen Merkmale können, wie aus den obigen Ausführungen hervorgeht, beliebig miteinander kombiniert werden.
  • Es zeigen:
  • Fig. 1
    eine schematische Perspektivansicht einer Ausführungsform einer Standheizung;
    Fig. 2
    eine erfindungsgemäße, als Baueinheit ausgestaltete Brennkammerheizung in einer zweien Ausführungsform einer erfindungsgemäß ausgestalteten Brennkammerheizung in einer schematischen Perspektivansicht;
    Fig. 3
    einen Teil der Brennkammerheizung der Fig. 2 in einer schematischen Perspektivansicht;
    Fig. 4
    eine erste Ausführungsform eines erfindungsgemäß ausgestalteten Heizelements in einer schematischen Perspektivansicht;
    Fig. 5
    die Brennkammerheizung der Fig. 4 vor der Fertigstellung in einer schematischen Perspektivansicht;
    Fig. 6
    eine weitere Ausführungsform einer erfindungsgemäßen Brennkammerheizung nur mit einer Flächenheizung;
    Fig. 7
    einen Querschnitt entlang der Linse XII - VII der Fig. 6.
  • Fig. 1 zeigt schematisch eine Brennkammer 1 in einem Wärmetauscher 2, wie er in einer Vielzahl von Geräten, wie beispielsweise einer Standheizung 3 für ein Kraftfahrzeug, verwendet wird. In dem Wärmetauscher 2 wird ein Heizfluid 4, das den Wärmetauscher 2 in einem Strömungskanal 5 benachbart zur Brennkammer 1 durchströmt, erhitzt und zur Beheizung beispielsweise einer Fahrgastkabine des Kraftfahrzeugs als aufgewärmtes Heizfluid 6 abgeleitet. Über eine Pumpe 7 kann ein Heizfluidkreislauf aufrecht erhalten werden. Die Temperatur des Heizfluids 6 kann über einen Temperatursensor 8, der beispielsweise die Fluidtemperatur im Strömungskanal 5 erfasst, überwacht werden.
  • Die Heizenergie zur Erwärmung des Heizfluids wird von einer Flamme 9 in der Brennkammer 1 erzeugt, in der ein gemäß dem Pfeil 10 zugeleiteter Brennstoff, beispielsweise Diesel, verbrannt wird. Über eine Dosiereinheit 11 wird die pro Zeiteinheit verbrannte Menge von Brennstoff in Abhängigkeit von der vom Temperatursensor 8 erfassten Temperatur des Heizfluids gesteuert.
  • Der Brennstoff wird vor dem Eintritt in die Brennkammer 1 in eine Mischkammer 13 eingeleitet, vorzugsweise versprüht, wie durch den Pfeil 12 angedeutet ist. Der Mischkammer 13 wird ferner ein Verbrennungsgas 14, wie Umgebungsluft, zugeführt, wie durch den Pfeil 15 angedeutet ist. Die Umgebungsluft 14 wird dabei durch eine Fördereinrichtung 16, beispielsweise einen Ventilator, angesaugt.
  • In der Mischkammer 13 vermischen sich das Verbrennungsgas 14 und der Brennstoff 12 und treten durch eine Zuleitung 17 in die Brennkammer 1 ein. Die Zuleitung 17 befindet sich in einer Trennwand 18, welche die Brennkammer 1 von der Mischkammer 13 trennt. Nach dem Eintreten in die Brennkammer 1 verbrennt das Gas-Brennstoff-Gemisch in der Flamme 9. Im Betrieb herrscht in der Brennkammer 1 eine Temperatur, die oberhalb der Selbstzündungstemperatur des Brennstoffs liegt, so dass sich dieser beim Durchtritt durch die Zuleitung 17 selbst entzündet. Auf diese Weise wird der Heizvorgang selbsttätig aufrecht erhalten, so lange Brennstoff 10 und Verbrennungsgas 14 zugeführt werden.
  • Die Abgase aus dem Brennvorgang strömen, wie durch die Pfeile 19 angedeutet ist, aus der Brennkammer 1 aus, treten in eine Abgasleitung 20 und werden beispielsweise mittels einer Abgasreinigungsanlage (nicht gezeigt) gereinigt.
  • Beim Starten des Brenners 2 muss dieser zunächst auf Betriebstemperatur aufgeheizt werden, so dass sich die Flamme 9 durch Selbstentzündung aufrecht erhält. Zum Aufheizen des Brenners 2 ist die Trennwand 18 als eine Brennkammerheizung ausgestaltet. Die Brennkammerheizung 18 bildet an ihrer der Brennkammer 1 zugewandten Fläche 21 eine Heizfläche aus, die das Brennstoff-Gas-Gemisch in der Brennkammer 1 beheizt. Gleichzeitig wird das durch die Zuleitung 17 in der Brennkammerheizung 18 strömende Brennstoff-Gas-Gemisch erwärmt. Die Brennkammerheizung 18 wird über elektrische Leitungen 23 mit Energie von beispielsweise der Autobatterie versorgt und automatisch abgeschaltet, sobald sich in der Brennkammer 1 eine stabile Verbrennung einstellt. Die stabile Verbrennung kann beispielsweise über einen in Fig. 1 nicht dargestellten Flammensensor festgestellt werden.
  • Neben der in Fig. 1 gezeigten Ausführungsform sind natürlich auch andere Ausgestaltungen von Brennern 2 möglich, beispielsweise solche, die keine Mischkammer 13 aufweisen, sondern lediglich eine Leitung, durch die ein Brennstoff-Gas-Gemisch direkt in die Brennkammer 1 geleitet wird. In diesem Fall kann die Brennstoffheizung 18 auch in die Umwandung 22 der Brennkammer 1 integriert sein und beispielsweise eine Boden- oder Stirnfläche bilden. Auch bei dieser Ausgestaltung ist es jedoch von Vorteil, wenn das Brennstoff-Gas-Gemisch durch die Zuleitung 17 in der Brennkammerheizung 18 in die Brennkammer 1 strömt, da auf diese Weise der Brennstoff bereits beim Einströmen aufgeheizt werden kann.
  • Der Aufbau der Brennkammerheizung 18 wird nun anhand einer Ausführungsform mit Bezug auf die Figuren 2 bis 4 genauer erläutert.
  • Fig. 2 zeigt die als eine Baueinheit ausgestaltete Brennkammerheizung 18 im ausgebauten Zustand in einer schematischen perspektivischen Ansicht. Die Brennkammerheizung 18 ist, wie in Fig. 1 zu erkennen ist, im Betrieb in die Brennkammer 1 eingesetzt, wobei die Heizfläche 21 der Brennkammer zugewandt ist. Die Brennkammerheizung 18 ist von der Zuleitung 17 in axialer Richtung durchdrungen.
  • Wie in Fig. 2 zu erkennen ist, ist die von der Brennkammerheizung 18 gebildete Baueinheit im Wesentlichen scheibenförmig, was den stirnseitigen Einbau in eine hohlzylindrische Brennkammer erleichtert.
  • Die Heizfläche 21 wird von einem Keramikkörper 24 gebildet, der aus einem gut leitenden Keramikwerkstoff geformt ist und sich bis zur Mündung der Öffnung 17 erstreckt. Anstelle des Keramikkörpers 24 kann auch ein Körper aus einem anderen Werkstoff verwendet werden. Die Wärmeleitfähigkeit des Keramikkörpers 24 beträgt wenigstens 15 W/(m K), vorzugsweise wenigstens 40 W/(m K). Der Keramikkörper 24 ist dicht gesintert und weist eine Dichte von wenigstens 3 kg/dm3 auf. Bevorzugt ist der Keramikkörper 24 aus einem gesinterten Siliziumnitrid oder aus einem drucklos gesinterten Siliziumcarbid gefertigt. Die Heizfläche 21 ist weitgehend eben bzw. plan.
  • In einem Bereich nahe der Zuleitung 17, insbesondere näher an der Zuleitung als an dem äußeren Rand 25 des Keramikkörpers 24 ist am Keramikkörper 24 ein von der Heizfläche 21 in die Brennkammer 1 (vgl. Fig. 1) ragender Vorsprung 26 ausgeformt. Wie in Fig. 2 dargestellt ist, kann der Vorsprung 26 im Wesentlichen zylindrische Gestalt haben. Die Höhe, mit der der Vorsprung 26 in die Brennkammer ragt, entspricht in etwa seinem Durchmesser, kann jedoch auch etwas größer als der Durchmesser sein.
  • An der der Brennkammer 1 abgewandten Seite ist an dem Keramikkörper 24 ein Tragkörper 27 angebracht. Der Tragkörper 27 ist aus einem schlecht wärmeleitenden Werkstoff, wie beispielsweise einer Keramik mit einer Wärmeleitfähigkeit von weniger als 10 W/(m K) gefertigt, beispielsweise gesintert oder gegossen. Der Tragkörper 27 dient zum einen der Wärmeisolation, so dass die Wärme aus der Brennkammer 1 nicht abfließen kann. Zum anderen dient der Tragkörper als Substrat für ein elektrisches Heizelement, von dem in Fig. 2 lediglich ein Paar 28 von elektrischen Anschlüssen zu sehen ist, welche elektrisch leitend mit der Energieversorgungsleitung 23 verbunden werden können.
  • Die elektrischen Anschlüsse 28 sind mit einem elektrischen Heizelement 29 elektrisch leitend verbunden, vorzugsweise einstückig direkt am elektrischen Heizelement 29 angeformt. Der Aufbau des elektrischen Heizelements 29 wird mit Bezug auf die Fig. 3 beschrieben.
  • Das Heizelement 29 weist eine örtlich variierende Heizleistung auf, wobei die Verteilung der Heizleistung der Temperaturverteilung der Brennkammerheizung entspricht: So bildet ein erster, flächenmäßig größerer Bereich niedrigerer Heizleistung bildet einen Flächenheizer 30; ein zweiter, flächenmäßig kleinerer Bereich 31 höherer Heizleistung bildet einen Zündheizer.
  • Der Flächenheizer 30 ist aus einem im Wesentlichen ebenen Mäander aus im Wesentlichen bandförmigen Heizleitermaterial gefertigt und erstreckt sich zwischen dem Keramikkörper 24 und dem Körper 27 in möglichst großer Überlappung mit der Heizfläche 21. Das Heizleitermaterial, aus denen die Mäander, Bögen, Wendeln oder Spiralkurven des Heizleiters gefertigt sind, kann gestanzt oder durch plastische Verformung gebogen sein, wobei der Stanzprozess aufgrund der günstigeren Herstellungskosten bevorzugt ist.
  • Der Flächenheizer 30 liegt flächig am Keramikkörper 24 an dessen von der Brennkammer 1 abgewandten Seite an und liegt in einer parallel zur Heizfläche 21 verlaufenden Ebene. Um den Mündungsbereich der Zuleitung 17 erstrecken sich Abschnitte 32 des Flächenheizers 30.
  • Der Zündheizer 31 ist so um einen Vorsprung 33 des Tragkörpers 27 gewickelt, dass dieser von den Mäandern des Heizleiters umschlungen ist. Der Vorsprung 33 erstreckt sich vom Tragkörper 27 säulen- bzw. zapfenförmig in Richtung der Brennkammer 1 (vgl. Fig. 1) und ist mitsamt dem darum gelegten Zündheizer 31 in eine vom Vorsprung 26 an der von der Brennkammer 1 abgewandten Seite gebildete schacht- bzw. taschenförmige Aufnahme einsetzbar. Auf diese Weise wird der Vorsprung 26 von innen vom Zündheizer 31 beheizt.
  • Da der Zündheizer 31 eine höhere Heizleistung aufweist als der Flächenheizer 30, ist im Betrieb seine Temperatur größer als die Temperatur des Flächenheizers 30. Entsprechend ist im Betrieb die Temperatur der dem Zündheizer 31 zugeordneten Zündzone 26 höher als die Temperatur der dem Flächenheizer 30 zugeordneten Heizfläche.
  • Wie in Fig. 3 zu erkennen ist, sind der Flächenheizer 30 und der Zündheizer 31 in Reihe geschaltet, wobei sich der Heizleiter als ein durchgängiger Körper vom Flächenheizer 30 in den Zündheizer 31 fortsetzt. Wie der Fig. 3 ferner zu entnehmen ist, kann der Flächenheizer 30 in zwei in Reihe geschaltete Abschnitte 34, 35 unterteilt sein, zwischen denen der Zündheizer 31 ebenfalls in Reihe angeordnet ist.
  • Um den Keramikkörper 24 auf dem Tragkörper 27 sicher zu zentrieren und halten, kann dieser an seinem äußeren Rand 25 einen umlaufenden Absatz 36 aufweisen, in den ein entsprechender Vorsprung (nicht gezeigt) des Keramikkörpers 24 greift. Ebenso kann der Tragkörper 27 im Bereich der Zuleitung 17 eine Vertiefung 37 aufweisen, in die sich im montierten Zustand der Keramikkörper 24 erstreckt, so dass der Mündungsbereich der Zuleitung 17 beheizt wird.
  • Im Folgenden wird die Funktion des Heizelements 18 erläutert.
  • Um während der Startphase des Brenners 2 (vgl. Fig. 1) den Brennstoff in der Brennkammer 1 zu verdampfen und zu entzünden, weist die Brennkammerheizung 18 zwei unterschiedliche Temperaturniveaus auf.
  • Das niedrigere Temperaturniveau wird von der Heizfläche 21 gebildet, auf der ein Vlies 38, wie in Fig. 2 durch strichpunktierte Linien angedeutet ist, angeordnet sein kann. Die Heizfläche 21 beheizt das Vlies 38, das wiederum aufgrund seiner großen Oberfläche das Verdampfen des Brennstoffs beschleunigt.
  • Das höhere Temperaturniveau befindet sich in der Zündzone 26, die auf eine Temperatur oberhalb der Zündtemperatur des Brennstoffs aufgeheizt wird. Dadurch bildet sich an der Zündzone 26 während des Startvorgangs eine Flamme. Die Zündzone 26 erstreckt sich durch das Vlies 38 bis in den Innenraum der Brennkammer 1 und ist vorzugsweise nicht vom Vlies 38 bedeckt, so dass die Lage der Flamme während des Startvorgangs an dem in die Brennkammer 1 ragenden Bereich der Zündzone stabil bleibt. Aus diesem Grund ist die Zündzone 26 am Vorsprung des Keramikkörpers 24 ausgebildet, der sich durch das Vlies 38 bis zur Brennkammer 1 erstreckt.
  • Die Heizleistung des Heizelements 28 variiert örtlich im Wesentlichen entsprechend der Temperaturverteilung in der Heizfläche 21 und der Zündzone 26. Der Zündzone 26 mit dem hohen Temperaturniveau ist der Zündheizer mit der hohen Heizleistung zugeordnet; der Heizfläche 21 mit dem niedrigen Temperaturniveau ist der Flächenheizer 30 mit der niedrigeren Heizleistung zugeordnet. Am Zündheizer kann die Heizleistung pro Flächeneinheit beispielsweise durch eine Verringerung des Abstands der Heizleiterbögen voneinander oder durch eine Erhöhung des Heizleiterwiderstands gegenüber dem Flächenheizer erhöht werden. Die Heizleistung des Flächenheizers kann etwa dem Doppelten der Heizleistung des Zündheizers entsprechen.
  • Die Figuren 4 und 5 zeigen eine weitere Ausführungsform der erfindungsgemäßen Heizvorrichtung 18. Der Einfachheit halber wird im Folgenden lediglich auf die Unterschiede zur Ausführungsform der Figuren 2 und 3 eingegangen.
  • Im Unterschied zu der vorangegangenen Ausführungsform ist bei der Ausführungsform der Figuren 4 und 5 die Heizplatine 30 in den Keramikkörper 24 eingelegt, wie in Fig. 5 gezeigt ist. Hierzu bildet der Keramikkörper 24 eine schalenförmige Aufnahme. Die Anschlüsse 28 ragen über den Rand 39 des Keramikkörpers 24 nach außen. Ein Vorsprung 40 umgibt die Zuleitung 17 vollständig, wobei die Höhe des Vorsprungs 40 in etwa der Höhe des Rands 39 entspricht.
  • Der Heizleiter 30 ist im Keramikkörper 24 in einer temperaturbeständigen Gussmasse 41 vergossen. Ein separater Tragkörper 27 ist nicht mehr notwendig. Die Gussmasse 41 wird bei der Herstellung einfach in den zwischen dem Vorsprung 40 und dem Rand 39 gebildeten Ringraum gefüllt.
  • Auch bei dieser Ausführungsform bildet die Brennkammerheizung 18 eine einstückig handhabbare Baueinheit.
  • Fig. 6 zeigt eine perspektivische Ansicht von der der Brennkammer 1 (vgl. Fig. 1) abgewandten Seite auf eine weitere Ausführungsform einer Brennkammerheizung 18. Fig. 7 zeigt einen Querschnitt entlang der Linie VII-VII der Fig. 6. Die Ausführungsform der Fig. 6 und 7 ist für sich betrachtet, unabhängig von den oben beschrieben Ausführungen vorteilhaft. Der Übersichtlichkeit halber wird im Folgenden lediglich auf die Unterschiede zu den obigen Ausführungsformen eingegangen.
  • Bei der Ausführungsform der Fig. 6 und 7 ist die Zuleitung 17 für den Brennstoff bzw. das Brennstoff-Gas-Gemisch in einem spiralförmig von außen nach innen verlaufenden Kanal in den Körper 24 eingearbeitet. Die Windungen der Zuleitung 17 befinden sich an der von der Heizfläche 21 abgewandten Seite des Körpers 24 und liegen vorzugsweise in einer Ebene parallel zu der Heizfläche 21. Ein radial verlaufender Kanal 42 verbindet die in radialer Richtung äußerste Windung der Heizleitung 17 mit einem Fluidstecker 43 am Außenumfang des Körpers 24. Über den Fluidstecker 43 kann die Zuleitung 17 an eine Brennstoffquelle angeschlossen werden. Der Strömungsquerschnitt der Zuleitung 17 im Körper 24 beträgt höchstens 1 oder 2 mm2, die Breite in radialer Richtung weniger als 1 mm.
  • In radialer Richtung innen mündet die Spirale 17 in etwa in der Mitte der Heizfläche 21, wie insbesondere aus der Fig. 7 hervorgeht. Von dort setzt sich die Zuleitung 17 in einem Kanülen- oder Rohrabschnitt fort, der sich axial in die Brennkammer 1 erstreckt. Wie ferner in Fig. 7 zu erkennen ist, ist die spiralförmige Zuleitung 17 an der von der Brennkammer 1 abgewandten Seite von einem Heizelement 29 begrenzt, das direkt den Brennstoff in den Kanälen und über die zwischen den Kanälen angeordneten Stege die Heizfläche 21 beheizt. Das Heizelement 29 kann eine in einer Platte eingearbeitete Rohrheizung oder ein scheibenförmiges PTC-Element oder eine Dickschichtheizung sein.
  • Ein Tragkörper 27 oder eine vergossene Schicht 41 isoliert das Heizelement 29 zu der von der Brennkammer 1 abgewandten Seite hin. In Fig. 6 sind das Heizelement 29 sowie der Tragkörper 27 bzw. die Gussschicht 41 der Übersichtlichkeit halber weggelassen, um den Blick auf die Ausgestaltung der Zuleitung 17 freizugeben.
  • Um die rohr- bzw. kanülenförmige, sich in axialer Richtung A erstreckende Zuleitung 17 herum ist auf die Heizfläche 21 eine Vliesschicht 38 gelegt. Das Heizelement 29 heizt gleichzeitig die Heizfläche 21 und das an der Heizfläche 21 aufliegende Vlies 38 an, so dass der im Vlies 38 sich befindliche Brennstoff ebenfalls verdampft.
  • Bei der Brennkammerheizung der Fig. 6 und 7 tritt ein Brennstoff-Gas-Gemisch über ein Leitungsstück 44 des Fluidsteckers 43 in die Brennkammerheizung 18 ein, wie durch den Pfeil 45 angedeutet ist. Über den Kanal 42 tritt das Brennstoff-Gas-Gemisch außen in die Zuleitung 17 ein und strömt entlang der Spirale nach innen. Während der Durchströmung der Brennkammerheizung 18 wird der Brennstoff bzw. das Brennstoff-Gas-Gemisch durch das Heizelement 29 aufgeheizt, so dass der Brennstoff in den dampfförmigen Zustand übergeht. Über den rohrförmigen Endabschnitt der Zuleitung 17 tritt der Brennstoff bzw. das Brennstoff-Gas-Gemisch im Dampfzustand in die Brennkammer 1 ein und verbrennt.
  • Um das Brennstoff-Gemisch in der Brennkammer 1 leichter zünden zu können, kann, wie bei den vorangegangenen Ausführungsformen eine Zündzone in der Brennkammerheizung 18 integriert sein. Alternativ kann die Zündzone allerdings auch an einer anderen Stelle vorgesehen sein. Ferner kann anstelle einer spiralförmigen Ausgestaltung der Zuleitung 17 auch eine andere Ausgestaltung, beispielsweise in Form der Heizleitung der Fig. 3., verwendet werden.

Claims (25)

  1. Brennkammerheizung (18) für eine Brennkammer (1) mit einem einen Flächenheizer (30) bildenden elektrischen Heizelement (28), durch das im Betrieb eine an die Brennkammer (1) grenzende Heizfläche (21) beheizbar ist, und mit einer Züridzone (26), die im Betrieb auf eine über der Temperatur der Heizfläche (21) liegende Zündtemperatur aufheizbar ist, wobei die Zündzone (26) vom Heizelement beheizt ist, dadurch gekennzeichnet, dass das Heizelement (28) eine im Wesentlichen der Temperaturverteilung von Heizfläche (21) und Zündzone (26) entsprechende örtliche Verteilung der Heizleistung aufweist.
  2. Brennkammerheizung (18) nach Anspruch 1, dadurch gekennzeichnet, dass in das Heizelement (28) ein der Zündzone (26) zugeordneter Zündheizer (31) mit gegenüber dem Flächenheizer erhöhter Heizleistung pro Flächeneinheit integriert ist.
  3. Brennkammerheizung (18) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Flächenheizer (30) und/oder der Zündheizer (31) aus einem im Wesentlichen mäanderförmig verlaufenden Heizleiter gefertigt sind.
  4. Brennkammerheizung (18) nach Anspruch 3, dadurch gekennzeichnet, dass sich der Heizleiter einstückig durch den Flächenheizer (30) und den Zündheizer (31) erstreckt.
  5. Brennkammerheizung (18) nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass die Heizleiterwindungen im Zündheizer dichter nebeneinander angeordnet sind als beim Flächenheizer.
  6. Brennkammerheizung (18) nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass der Zündheizer (31) und der Flächenheizer (30) elektrisch in Reihe geschaltet sind.
  7. Brennkammerheizung (18) nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass der Anteil der Zündzone (26) an der an die Brennkammer (1) angrenzenden Fläche der Brennkammerheizung (18) kleiner ist als der Anteil der Heizfläche (21).
  8. Brennkammerheizung (18) nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass die Heizfläche (21) aus einem Keramikwerkstoff gefertigt ist.
  9. Brennkammerheizung (18) nach Anspruch 8, dadurch gekennzeichnet, dass die Wärmeleitfähigkeit des Keramikwerkstoffs wenigstens 15 W/(m K) beträgt.
  10. Brennkammerheizung (18) nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass die Zündzone (26) als ein aus einer Umwandung (22) der Brennkammer (1) in die Brennkammer (1) ragender Vorsprung ausgestaltet ist.
  11. Brennkammerheizung (18) nach Anspruch 10, dadurch gekennzeichnet, dass der Vorsprung (26) von der Heizfläche (21) umgeben ist.
  12. Brennkammerheizung (18) nach einem oben genannten Ansprüche, durch gekennzeichnet, dass die Zündzone (26) mit der Heizfläche (21) einstückig ausgeformt ist.
  13. Brennkammerheizung (18) nach einem der Ansprüche 10-12, dadurch gekennzeichnet, dass der Vorsprung (26) an der von der Brennkammer (1) abgewandten Seite eine Tasche bildet, in der zumindest ein Abschnitt des Zündheizers (31) aufgenommen ist.
  14. Brennkammerheizung (18) nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass das Heizelement (30) zwischen einem Tragkörper (27) und einem die Heizfläche (21) bildenden Keramikkörper (24) angeordnet ist.
  15. Brennkammerheizung (18) nach Anspruch 14, dadurch gekennzeichnet, dass der Tragkörper (27) aus einem wenigstens keramikhaltigen, wärmeisolierenden Werkstoff besteht.
  16. Brennkammerheizung (18) nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass der Tragkörper (27) einen in den Vorsprung (26) der Zündzone (26) aufgenommenen Vorsprung (33) bildet.
  17. Brennkammerheizung (18) nach Anspruch 16, dadurch gekennzeichnet, dass das Heizelement (28) den Vorsprung (33) des Tragkörpers (27) umschlingt.
  18. Brennkammerheizung (18) nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass der Heizkörper (30) an der von der Brennkammer (1) abgewandten Seite eines die Heizfläche (21) bildenden Keramikkörpers (24) mittels einer Gussmasse (41) einzementiert ist.
  19. Brennkammerheizung (18) nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass ein die Heizfläche (21) und die Zündzone (26) bildender Keramikkörper und das Heizelement zu einem einstückig in die Brennkammer (1) einsetzbaren Heizmodul vormontiert sind.
  20. Brennkammerheizung (18) nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass die Heizfläche (21) eine Einlasszuleitung (17) aufweist, durch welche im Betrieb Brennstoff in die Brennkammer (1) einleitbar ist.
  21. Brennkammerheizung (18) nach Anspruch 20, dadurch gekennzeichnet, dass das Heizelement (30) die Zuleitung (17) beheizt.
  22. Brennkammerheizung (18) nach Anspruch 20 oder 21, dadurch gekennzeichnet, dass die Zündzone (26) benachbart zur Zuleitung (17) angeordnet ist.
  23. Brennkammerheizung (18) nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass der Flächenheizer (30) vom Brennstoff durchströmt ausgestaltet ist.
  24. Brennkammerheizung (18) nach Anspruch 23, dadurch gekennzeichnet, dass der Flächenheizer (30) wenigstens einen durchströmbaren Fluidkanal (17) ausbildet.
  25. Brennkammerheizung (18) nach Anspruch 23 oder 24, dadurch gekennzeichnet, dass der Fluidkanal den Flächenheizer (30) bogenförmig durchsetzt.
EP04004476A 2004-02-27 2004-02-27 Brennkammerheizung mit örtlich variierender Heizleistung Expired - Lifetime EP1568525B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04004476A EP1568525B1 (de) 2004-02-27 2004-02-27 Brennkammerheizung mit örtlich variierender Heizleistung
DE502004005356T DE502004005356D1 (de) 2004-02-27 2004-02-27 Brennkammerheizung mit örtlich variierender Heizleistung
AT04004476T ATE376940T1 (de) 2004-02-27 2004-02-27 Brennkammerheizung mit örtlich variierender heizleistung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04004476A EP1568525B1 (de) 2004-02-27 2004-02-27 Brennkammerheizung mit örtlich variierender Heizleistung

Publications (2)

Publication Number Publication Date
EP1568525A1 EP1568525A1 (de) 2005-08-31
EP1568525B1 true EP1568525B1 (de) 2007-10-31

Family

ID=34745918

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04004476A Expired - Lifetime EP1568525B1 (de) 2004-02-27 2004-02-27 Brennkammerheizung mit örtlich variierender Heizleistung

Country Status (3)

Country Link
EP (1) EP1568525B1 (de)
AT (1) ATE376940T1 (de)
DE (1) DE502004005356D1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005003653A1 (de) 2005-01-26 2006-08-03 J. Eberspächer GmbH & Co. KG Verdampferanordnung, insbesondere für ein Fahrzeugheizgerät oder einen Reformer
DE102011077891B3 (de) * 2011-06-21 2012-12-06 J. Eberspächer GmbH & Co. KG Verdampferbaugruppe, insbesondere für ein Fahrzeugheizgerät
CN110432557A (zh) * 2019-09-10 2019-11-12 苏州晶品新材料股份有限公司 多加热通路雾化器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1551752A1 (de) * 1967-02-01 1970-03-19 Webasto Werk Baier Kg W Brennstoffversorgungseinrichtung von mit OEl,vorzugsweise Dieseloel od.dgl. betriebenen Fahrzeugheizgeraeten
DE3233319C2 (de) * 1982-09-08 1986-08-07 Webasto-Werk W. Baier GmbH & Co, 8035 Gauting Verdampfungsbrenner
JPH0619212B2 (ja) * 1986-07-08 1994-03-16 いすゞ自動車株式会社 燃焼器
US5722588A (en) * 1994-04-13 1998-03-03 Nippon Soken Inc. Combustion heater
DE10005376A1 (de) * 1999-02-12 2000-08-17 Denso Corp Verbrennungsheizer zur Verwendung in einem Kraftfahrzeug
US6726114B2 (en) * 2001-06-26 2004-04-27 J. Eberspacher Gmbh & Co., Kg Evaporative burner
DE10251438C5 (de) * 2002-11-05 2009-06-18 J. Eberspächer GmbH & Co. KG Verdampferbrenner, insbesondere für ein Heizgerät

Also Published As

Publication number Publication date
EP1568525A1 (de) 2005-08-31
DE502004005356D1 (de) 2007-12-13
ATE376940T1 (de) 2007-11-15

Similar Documents

Publication Publication Date Title
EP1275901B1 (de) Verdampferbrenner
EP1394102B1 (de) Verdampferanordnung, insbesondere zur Erzeugung eines in einem Reformer zur Wasserstoffgewinnung zersetzbaren Kohlenwasserstoff/Mischmaterial-Gemisches
DE3010591C2 (de)
EP1598595B1 (de) Verdampferanordnung
EP0260575B1 (de) Zündvorrichtung für eine luftverdichtende Brennkraftmaschine
WO1984004567A1 (en) Device for the injection of fuel into combustion chambers
EP3794279A1 (de) Verdampferbaugruppe für mobile heizgeräte
WO2001057446A1 (de) Heizgerät, insbesondere motorunabhängige fahrzeugheizung
DE10014092B4 (de) Katalytische Verbrennungsvorrichtung mit Vergasungsfunktion
DE10130638A1 (de) Verdampferbrenner
EP1686317B1 (de) Brennkammerbaugruppe für ein Farhzeugheizgerät
DE10251438C5 (de) Verdampferbrenner, insbesondere für ein Heizgerät
EP1484552B1 (de) Brennkammeranordnung für einen Verdampferbrenner, insbesondere für ein Fahrzeugheizgerät
EP1568525B1 (de) Brennkammerheizung mit örtlich variierender Heizleistung
EP1363070B1 (de) Verdampferbrenner und Verfahren zum Abtragen von Ablagerungen an einem Verdampferbrenner
DE102006060669B4 (de) Katalytische Verdampfung von flüssigen Brennstoffen
DE10136292A1 (de) Verdampferbrenner
DE10347509B4 (de) Heizgerät mit einer Zerstäuberdüse
DE3335144A1 (de) Einlassbrenner
DE3716411A1 (de) Verdampferkerze
EP3014183B1 (de) Glühstiftkerze und verfahren zu deren herstellung
EP3848212B1 (de) Fahrzeugheizgerät und verfahren zum betreiben des fahrzeugheizgerätes
DE102004049902B4 (de) Verdampfungsbrenner für flüssigen Brennstoff und Verfahren zu seinem Betrieb
DE19524261B4 (de) Verfahren zum Starten eines Verdampfungsbrenners
DE102006019061B4 (de) Verdampferbaugruppe zur Erzeugung von Brennstoffdampf

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004005356

Country of ref document: DE

Date of ref document: 20071213

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080123

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080131

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080131

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080331

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

BERE Be: lapsed

Owner name: DBK DAVID + BAADER G.M.B.H.

Effective date: 20080228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20080801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080201

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100315

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100210

Year of fee payment: 7

Ref country code: GB

Payment date: 20100219

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110227

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004005356

Country of ref document: DE

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901