EP1567305B1 - Method for shaping an optical surface - Google Patents

Method for shaping an optical surface Download PDF

Info

Publication number
EP1567305B1
EP1567305B1 EP03779955.8A EP03779955A EP1567305B1 EP 1567305 B1 EP1567305 B1 EP 1567305B1 EP 03779955 A EP03779955 A EP 03779955A EP 1567305 B1 EP1567305 B1 EP 1567305B1
Authority
EP
European Patent Office
Prior art keywords
tool
head
plate
zone
active surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03779955.8A
Other languages
German (de)
French (fr)
Other versions
EP1567305A1 (en
Inventor
Ruy Blas Menart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Comadur SA
Original Assignee
Comadur SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comadur SA filed Critical Comadur SA
Priority to EP03779955.8A priority Critical patent/EP1567305B1/en
Publication of EP1567305A1 publication Critical patent/EP1567305A1/en
Application granted granted Critical
Publication of EP1567305B1 publication Critical patent/EP1567305B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/02Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor by means of tools with abrading surfaces corresponding in shape with the lenses to be made
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/01Specific tools, e.g. bowl-like; Production, dressing or fastening of these tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/02Wheels in one piece

Definitions

  • the present invention generally relates to the machining of shapes in mineral materials, especially hard materials such as sapphire, corundum or spinel. More particularly, the present invention relates to a method for machining such mineral materials, in particular adapted for shaping an optical surface in a watch crystal.
  • a method, according to the preamble of claim 1, for forming an optical surface in the form of a convergent lens comprised in the thickness of a plate of a transparent mineral material is known from the document EP 0 123 891 , in the name of this Depositor.
  • This method essentially consists of rotating the plate around a first axis perpendicular to the area where the lens is to be formed and machining the desired area by means of an abrasive wheel driven in rotation about a second axis distinct from the first axis and intersecting this first axis at the center of curvature of the desired lens.
  • Oscillating movement of the tool or plate about a third axis perpendicular to the plane containing the first and second axes of rotation and remote from the area by a value equal to the desired radius of curvature of the lens is preferably set work, this oscillating movement ensuring a self-sharpening of the grinding wheel.
  • the rotary tool used for shaping the lens is a substantially cylindrical (or even frustoconical) grinding wheel carrying, at its active end, abrasive material preferably consisting of diamond.
  • abrasive material preferably consisting of diamond.
  • the cost of this tool is relatively high given the material to be machined (especially in the case of a hard mineral material such as sapphire), the corresponding abrasive material necessarily having to be incorporated on the head of the tool (typically a diamond powder or a carbide-based compound for machining sapphire), and the complexity of the manufacture of this tool.
  • the life of such a tool is relatively short and that its replacement must be carried out periodically. The aforementioned points therefore weigh significantly on the manufacturing costs of the artifact.
  • the object of the present invention is to propose such a solution, namely a method for machining hard materials, in particular adapted to shaping a lens, or other optical surface, in a watch crystal made of hard mineral material (sapphire , corundum, spinel or the like).
  • the present invention also aims to propose a solution with both a low cost and a great simplicity of implementation.
  • the present invention relates to a method for forming a deforming optical surface in a transparent mineral material, in particular sapphire, corundum or spinel, employing a rotary tool and whose characteristics are set forth in claim 1.
  • the tool comprises a body terminated with a head comprising an active surface intended to come into contact with an area of the mineral material where it is desired to shape the desired shape, the head of the tool having at least a first slot, preferably several, opening on the active surface to form an opening allowing abrasive particles conveyed to the area to be shaped the desired shape to be lodged on the active surface and form, throughout the opening or openings formed on this active surface, one or more cutting edges contribute to the shaping of the desired shape.
  • the rotary tool is not strictly speaking an abrasive tool for the mineral material in question.
  • the abrasive power of the tool is created jointly by the tool (in particular by the slot or slots on the head of the tool and the corresponding openings on the active surface of the head) and the abrasive particles conveyed on the machining area.
  • Each opening on the active surface formed by the corresponding slot allows the abrasive particles to lodge and accumulate therein to form, on the active surface of the head of the tool, a excrescence with high abrasive power having the function of a cutting edge.
  • the rotary tool itself thus constitutes a matrix for fixing or freezing the abrasive particles in a suitable configuration allowing the abrasion of the mineral material to be shaped.
  • the head of the tool is advantageously formed of a non-abrasive material for the mineral material considered and having a compromise between hardness and softness in order to maintain and guarantee the shape of the head and, respectively, allow the abrasive particles to implanted.
  • This material may for example be a metal selected from the group consisting of Cu copper, Zn zinc, Sn tin and Fe iron (or a metal alloy comprising at least one of these metals).
  • the arrangement of the openings of the slots on the active surface of the tool head can follow any suitable geometric arrangement, the simplest being an arrangement of one or more slots of substantially straight geometry. Slits forming diametrical or parallel openings on the active surface of the tool head may be provided in adequate number on the head of the tool.
  • each slot it is preferable to arrange each slot so that, during a rotation of the tool, the cutting edge thus formed covers a surface of revolution defined only by an outline. external, that is to say a solid surface having no central recess.
  • a considerable advantage of the present invention lies in the fact that the rotary tool is very simple and very inexpensive to manufacture, particularly because of the type of material that can be used for the manufacture of the tool and because of the absence of any abrasive incorporated on the head of the tool, this abrasive being conveyed directly to the machining area in the form of abrasive particles carried by a fluid or a liquid.
  • an advantageous variant consists in providing at least one slot so that it also plays the role of routing channel abrasive particles.
  • the costs associated with shaping the desired shape in the mineral material in question can thus be very substantially reduced.
  • This advantage is particularly decisive in the shaping of hard mineral materials, such as sapphire, corundum or spinel, used in particular in the watch industry for the manufacture of watch glass.
  • the present invention is therefore particularly suitable for shaping optical surfaces, or diopters, (especially deforming optical surfaces such as magnifying lenses) in transparent mineral materials having a high hardness, including sapphire.
  • the machining installation illustrated in the figure 1 is essentially similar to the installation shown in the document EP 0 123 891 mentioned above. It comprises a support frame 10 on which are mounted a bracket 12 and a doll 14.
  • the bracket 12 carries a pin 16 at the end of which is a rotary tool 20, of the same axis, designated 42, as the spindle, comprising a substantially cylindrical body terminated by a head 20a intended to come into contact with a zone of the mineral material to be machined.
  • a pulley 18, mounted on the spindle 16 can drive it in rotation about the axis 42 by means of a motor not shown.
  • the bracket 12 further comprises slides 22, 24 and 26 allowing, in a manner quite conventional, the displacement of the tool 20 along three orthogonal axes.
  • the slide 22 makes it possible, with the aid of a micrometer screw 23, to move the tool vertically along its axis of rotation, whereas the slides 24 and 26 make it possible, with the aid of the micrometer screws 25 and 27, respectively, to move the tool 20 in a horizontal plane in two perpendicular directions.
  • the doll 14 carries a pin 28 whose end 28a adjacent to the bracket 12 is, thanks to a bend 28b, offset downwardly relative to the axis of rotation, designated 44, of the pin 28.
  • a table 30 is mounted on a shaft 32 which is perpendicular to the axis 44 of the pin 28 and which pivots in the end 28a.
  • This shaft carries a pulley 34 which drives it in rotation about an axis of rotation, designated 40, by means of a motor not shown in the figure.
  • a posture 36, integral with the table 30, makes it possible to fix a plate 38 of mineral material.
  • This plate 38 may for example be made of a hard and transparent mineral material of the sapphire, corundum or spinel type, such as a watch ice plate that it is desired to provide a lens or other deforming optical surface.
  • the tool 20 and the setting 36 are both rotated in opposite directions of rotation.
  • the setting 36 here has a thickness such that the distance between the axis of the pin 28 and the end point of the spherical surface that is desired to shape (located on the axis of rotation 40 of the shaft 32 ) is equal to the radius of curvature, designated R, that must present this spherical surface.
  • the pin 28 may be associated with unrepresented drive means for printing an oscillating movement of low amplitude or at least adjust its inclination relative to the horizontal plane.
  • the installation has several possibilities for driving and positioning the tool 20 and the plate 38. It will be seen later that various operating procedures of the installation can be envisaged, these various procedures all having in common at least the rotation of the tool 20 about its axis of rotation 42. This rotation may, if necessary, be accompanied by a rotation or an oscillating movement of the plate 38 around its axis of rotation 40 and / or an oscillating movement of the plate 38 around the axis of the spindle 28 (this oscillating movement can alternatively be printed with the tool 20 if the stem was fitted 12 adequate means). With regard to details relating to the particular mode of operation consisting of simultaneously rotating the tool 20 and the plate 38, and to impart an oscillating movement to this plate, reference may be made to the method described in the document EP 0 123 891 already mentioned.
  • the machining installation comprises means for conveying abrasive particles over the area of the mineral material where the desired shape is to be shaped.
  • These conveying means are schematically illustrated on the figure 1 and essentially comprise a reservoir 50 containing a carrier fluid of abrasive particles (for example a diamond powder suspended in an oil) and a supply conduit 52 for conveying this fluid to the machining zone.
  • a carrier fluid of abrasive particles for example a diamond powder suspended in an oil
  • a supply conduit 52 for conveying this fluid to the machining zone.
  • the Figures 2 to 4 show respectively a perspective view, a front view and a sectional view of the end portion of a rotary tool 20.
  • the body of the rotary tool 20 is terminated by a head 20a comprising an active surface 200 intended to come into contact with the zone of the mineral material where it is desired to shape the desired shape.
  • the active surface 200 of the tool has the shape of a concave spherical cap whose radius of curvature corresponds to the radius of curvature R of the shape to be shaped, in this example a convex spherical optical surface.
  • the implementation of the tool in the installation illustrated in the figure 1 implies that the axis 40 of the shaft 32, the axis 42 of the pin 16 and the axis 44 of the pin 28 intersect at a point C corresponding to the center of curvature of the convex spherical surface to be shaped in the plate 38 of mineral material (as illustrated in more detail in the figure 5 ).
  • the active surface 200 of the tool 20 could have a shape other than strictly spherical.
  • the active surface 200 of the head 20a could take the form of a portion of torus, by analogy with the shape of the wheel considered as a second variant in the document EP 0 123 891 (This particular form then requires a specific adjustment of the installation).
  • the active surface of the tool can take any suitable form. It will be understood in any event that the shaped shape in the mineral material will depend not only on the shape of the active surface of the tool but also on the movement or movements printed on the tool and / or the plate.
  • the shape of the active surface of the head of the tool is not necessarily shaped to the shape of the surface to be shaped.
  • the head 20a of the tool has at least a first slot opening on the active surface 200 to form an opening.
  • the head 20a of the tool here has a pair of diametrical slots 210, 220, that is to say two substantially rectilinear slots provided in two diametrical planes passing through the axis of rotation 42 of the tool 20.
  • These diametrical slots 210, 220 which run through the end of the head 20a are here arranged substantially perpendicular and consequently form a pair of perpendicular openings corresponding 210a, 220a on the active surface 200 of the tool.
  • the active surface 200 of the rotary tool 20 is subdivided, in this example, into four distinct parts having, here, substantially equal areas.
  • the head of the tool could be provided with a single slot, this slot does not necessarily cover the entire width of the active surface.
  • the slot is configured so that, during a rotation of the tool, the cutting edge formed by the corresponding opening of this slot covers a surface of revolution delimited only by a contour external, that is to say a solid surface without central recess, this configuration being preferable from the point of view of the surface quality of the shaped form. It will be understood that a configuration of diametrical slot, as illustrated in the Figures 2 to 4 , meets this definition.
  • the way in which the slots extend in the head of the tool is relatively unimportant. Indeed, the essential lies mainly in the manner in which these slots open on the active surface of the head of the tool. It is indeed through the active surface of the tool, and the supply of abrasive particles on this active surface during machining, that the mineral material can be shaped.
  • each opening on the active surface formed by the corresponding slot allows the abrasive particles to lodge therein and accumulate thereon to form, on the active surface of the head of the tool, a protrusion to a strong abrasive power having the function of a cutting edge, the rotary tool thus constituting a matrix for fixing or freezing the abrasive particles in a suitable configuration for abrasion of the mineral material to be shaped.
  • the tool 20 may advantageously be made in a non-abrasive material for the mineral material in question, preferably in a material having a compromise between hardness and softness to maintain and guarantee the shape of the head and, respectively, allow the abrasive particles to implant.
  • This material may thus be a metal or a metal alloy comprising at least one metal selected from the group comprising copper Cu, zinc Zn, tin Sn and iron Fe.
  • a slot of the tool so that it also acts as a channel for conveying the abrasive particles onto the machining area.
  • This slot shaped conveyor channel would, in this case, be part of the abrasive particles conveying means and could replace or supplement the supply conduit 52 of the figure 1 .
  • FIG. figure 5 One embodiment of the invention, for machining a convergent lens (that is to say a convex spherical surface with a circular periphery) will now briefly be presented with reference to FIG. figure 5 .
  • the tool illustrated in Figures 2 to 4 can be implemented very easily to shape a convergent lens in the thickness of a plate of transparent mineral material.
  • a the pin 28 of the figure 1 defined angle, designated ⁇
  • also corresponding to the angle formed by the axis 42 of the tool 20 relative to the axis of rotation 40 of the plate 38 (that is to say the perpendicular to the zone where the lens must be formed and which passes through the center of this zone)
  • the axes 40, 42 passing both through the center of curvature C of the spherical surface to be shaped, designated 380 in the figure 5 .
  • reference numeral 500 generally designates a mixture conveyed to the machining zone containing abrasive particles.
  • the simultaneous rotation of the tool 20 and the plate 38 around their respective axes of rotation and the adjustment of the angle ⁇ between these axes of rotation ensures that the active surface 200 of the tool shapes a portion of convex spherical surface of radius of curvature R having a circular periphery (in other words a convex spherical cap). Since no oscillating movement is printed on the tool or the plate, it will be understood that the diameter of the head of the tool, designated d, must have a minimum value which is greater than half the diameter, designated D, of the lens to be shaped.
  • the diameter d of the tool 20, in this particular embodiment, must be at least equal to the diameter D of the desired lens divided by the cosine of the angle ⁇ .
  • the angle ⁇ is in practice less than 20 °, preferably less than 10 °.
  • a movement oscillating about an axis perpendicular to the axes of rotation 42, 40 and passing through the center of curvature C of the lens to be shaped (namely a movement oscillating around the axis 44 of the pin 28 in the figure 1 ) can be printed on the plate 38 (or even the tool).
  • ⁇ max the maximum angle of inclination of the plate 38 relative to the tool 20, designated ⁇ max .
  • ⁇ max the maximum angle of inclination of the plate 38 relative to the tool 20, designated ⁇ max .
  • the active surface of the head of the tool may have a shape other than spherical insofar as it is not desired to subject the tool to a relative movement with respect to the plate of mineral material to be machined. It is thus possible to give the active surface of the tool a non-spherical shape of revolution and to shape a corresponding shape in the mineral material by only rotating the tool (or even by also rotating the plate of material mineral around an axis coincident with the axis of rotation of the tool).
  • the particularly simple spherical shape of the active surface of the head of the tool as presented above, however, is a particularly simple solution to implement, flexible to use and which allows to shape recesses of various forms in the material.
  • the arrangement of the slot (s) on the active surface of the tool head may follow any suitable geometrical arrangement, the simplest of these geometrical arrangements being constituted by one or more essentially rectilinear slots. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention concerne de manière générale l'usinage de formes dans des matériaux minéraux, notamment des matériaux durs tel le saphir, le corindon ou le spinelle. Plus particulièrement, la présente invention concerne un procédé pour l'usinage de tels matériaux minéraux notamment adapté pour le façonnage d'une surface optique dans une glace de montre.The present invention generally relates to the machining of shapes in mineral materials, especially hard materials such as sapphire, corundum or spinel. More particularly, the present invention relates to a method for machining such mineral materials, in particular adapted for shaping an optical surface in a watch crystal.

ARRIÈRE-PLAN TECHNOLOGIQUETECHNOLOGICAL BACKGROUND

Un procédé, selon le préambule de la revendication 1, pour former une surface optique se présentant sous la forme d'une lentille convergente comprise dans l'épaisseur d'une plaque d'un matériau minéral transparent est connu du document EP 0 123 891 , au nom du présent Déposant. Ce procédé consiste essentiellement à mettre en rotation la plaque autour d'un premier axe perpendiculaire à la zone où doit être formée la lentille et à usiner la zone désirée au moyen d'une meule abrasive entraînée en rotation autour d'un second axe distinct du premier axe et coupant ce premier axe au centre de courbure de la lentille désirée. Un mouvement oscillant de l'outil ou de la plaque autour d'un troisième axe perpendiculaire au plan contenant les premier et second axes de rotation et distant de la zone d'une valeur égale au rayon de courbure désiré de la lentille est préférablement mis en oeuvre, ce mouvement oscillant assurant un auto-affûtage de la meule.A method, according to the preamble of claim 1, for forming an optical surface in the form of a convergent lens comprised in the thickness of a plate of a transparent mineral material is known from the document EP 0 123 891 , in the name of this Depositor. This method essentially consists of rotating the plate around a first axis perpendicular to the area where the lens is to be formed and machining the desired area by means of an abrasive wheel driven in rotation about a second axis distinct from the first axis and intersecting this first axis at the center of curvature of the desired lens. Oscillating movement of the tool or plate about a third axis perpendicular to the plane containing the first and second axes of rotation and remote from the area by a value equal to the desired radius of curvature of the lens is preferably set work, this oscillating movement ensuring a self-sharpening of the grinding wheel.

Selon le procédé résumé ci-dessus, on notera que l'outil rotatif utilisé pour le façonnage de la lentille est une meule essentiellement cylindrique (voire tronconique) portant, à son extrémité active, de la matière abrasive constituée de préférence par de la poudre de diamant. On comprendra aisément que le coût de cet outil est relativement élevé compte tenu de la matière à usiner (notamment dans le cas d'un matériau minéral dur tel le saphir), du matériau abrasif correspondant devant nécessairement être incorporé sur la tête de l'outil (typiquement une poudre de diamant ou un composé à base de carbures pour l'usinage du saphir), et de la complexité de la fabrication de cet outil. On notera encore que la durée de vie d'un tel outil est relativement courte et que son remplacement doit être effectué périodiquement. Les points susmentionnés pèsent en conséquence de manière sensible sur les coûts de fabrication de l'objet façonné.According to the method summarized above, it will be noted that the rotary tool used for shaping the lens is a substantially cylindrical (or even frustoconical) grinding wheel carrying, at its active end, abrasive material preferably consisting of diamond. It will be readily understood that the cost of this tool is relatively high given the material to be machined (especially in the case of a hard mineral material such as sapphire), the corresponding abrasive material necessarily having to be incorporated on the head of the tool (typically a diamond powder or a carbide-based compound for machining sapphire), and the complexity of the manufacture of this tool. It should also be noted that the life of such a tool is relatively short and that its replacement must be carried out periodically. The aforementioned points therefore weigh significantly on the manufacturing costs of the artifact.

RÉSUMÉ DE L'INVENTIONSUMMARY OF THE INVENTION

Une solution plus simple à mettre en oeuvre et plus rentable doit donc être recherchée. La présente invention a pour but de proposer une telle solution, à savoir un procédé pour l'usinage de matériaux durs, en particulier adapté au façonnage d'une lentille, ou autre surface optique, dans une glace de montre en matériau minéral dur (saphir, corindon, spinelle ou analogue). La présente invention a également pour but de proposer une solution présentant à la fois un coût de revient faible et une grande simplicité de mise en oeuvre.A simpler solution to implement and more profitable must therefore be sought. The object of the present invention is to propose such a solution, namely a method for machining hard materials, in particular adapted to shaping a lens, or other optical surface, in a watch crystal made of hard mineral material (sapphire , corundum, spinel or the like). The present invention also aims to propose a solution with both a low cost and a great simplicity of implementation.

La présente invention a pour objet un procédé pour le façonnage d'une surface optique déformante dans un matériau minéral transparent, notamment le saphir, le corindon ou le spinelle, employant un outil rotatif et dont les caractéristiques sont énoncées dans la revendication 1.The present invention relates to a method for forming a deforming optical surface in a transparent mineral material, in particular sapphire, corundum or spinel, employing a rotary tool and whose characteristics are set forth in claim 1.

On notera ainsi que l'outil comporte un corps terminé par une tête comprenant une surface active destinée à venir en contact avec une zone du matériau minéral où l'on désire façonner la forme souhaitée, la tête de l'outil présentant au moins une première fente, préférablement plusieurs, débouchant sur la surface active pour y former une ouverture permettant à des particules abrasives acheminées sur la zone où doit être façonnée la forme souhaitée de se loger sur la surface active et former, tout au long de la ou des ouvertures formées sur cette surface active, une ou plusieurs arêtes de coupe contribuant au façonnage de la forme désirée.It will thus be noted that the tool comprises a body terminated with a head comprising an active surface intended to come into contact with an area of the mineral material where it is desired to shape the desired shape, the head of the tool having at least a first slot, preferably several, opening on the active surface to form an opening allowing abrasive particles conveyed to the area to be shaped the desired shape to be lodged on the active surface and form, throughout the opening or openings formed on this active surface, one or more cutting edges contribute to the shaping of the desired shape.

On comprendra ainsi que l'outil rotatif ne constitue pas à proprement parler un outil abrasif pour le matériau minéral considéré. Au contraire, le pouvoir abrasif de l'outil est créé conjointement par l'outil (en particulier par la ou les fentes ménagées sur la tête de l'outil et les ouvertures correspondantes sur la surface active de la tête) et les particules abrasives acheminées sur la zone d'usinage. Chaque ouverture sur la surface active formée par la fente correspondante permet aux particules abrasives de s'y loger et s'y accumuler pour former, sur la surface active de la tête de l'outil, une excroissance à fort pouvoir abrasif ayant la fonction d'une arête de coupe. L'outil rotatif lui-même constitue ainsi une matrice permettant de fixer ou figer les particules abrasives dans une configuration adéquate permettant l'abrasion du matériau minéral à façonner.It will thus be understood that the rotary tool is not strictly speaking an abrasive tool for the mineral material in question. On the contrary, the abrasive power of the tool is created jointly by the tool (in particular by the slot or slots on the head of the tool and the corresponding openings on the active surface of the head) and the abrasive particles conveyed on the machining area. Each opening on the active surface formed by the corresponding slot allows the abrasive particles to lodge and accumulate therein to form, on the active surface of the head of the tool, a excrescence with high abrasive power having the function of a cutting edge. The rotary tool itself thus constitutes a matrix for fixing or freezing the abrasive particles in a suitable configuration allowing the abrasion of the mineral material to be shaped.

La tête de l'outil est avantageusement formée d'un matériau non abrasif pour le matériau minéral considéré et présentant un compromis entre dureté et mollesse afin de maintenir et garantir la forme de la tête et, respectivement, permettre aux particules abrasives de s'y implanter. Ce matériau peut par exemple être un métal sélectionné dans le groupe comprenant le cuivre Cu, le zinc Zn, l'étain Sn et le fer Fe (ou un alliage de métaux comprenant au moins l'un des ces métaux).The head of the tool is advantageously formed of a non-abrasive material for the mineral material considered and having a compromise between hardness and softness in order to maintain and guarantee the shape of the head and, respectively, allow the abrasive particles to implanted. This material may for example be a metal selected from the group consisting of Cu copper, Zn zinc, Sn tin and Fe iron (or a metal alloy comprising at least one of these metals).

La disposition des ouvertures des fentes sur la surface active de la tête de l'outil peut suivre tout agencement géométrique adéquat, le plus simple étant un agencement d'une ou plusieurs fentes de géométrie essentiellement rectiligne. Des fentes formant des ouvertures diamétrales ou parallèles sur la surface active de la tête de l'outil peuvent être ménagées en nombre adéquat sur la tête de l'outil.The arrangement of the openings of the slots on the active surface of the tool head can follow any suitable geometric arrangement, the simplest being an arrangement of one or more slots of substantially straight geometry. Slits forming diametrical or parallel openings on the active surface of the tool head may be provided in adequate number on the head of the tool.

Pour obtenir de meilleurs résultats en termes de qualité de surface, il est préférable de ménager chaque fente de sorte que, lors d'une rotation de l'outil, l'arête de coupe ainsi formée couvre une surface de révolution délimitée uniquement par un contour externe, c'est-à-dire une surface pleine ne comportant pas d'évidement central.To obtain better results in terms of surface quality, it is preferable to arrange each slot so that, during a rotation of the tool, the cutting edge thus formed covers a surface of revolution defined only by an outline. external, that is to say a solid surface having no central recess.

Un avantage considérable de la présente invention réside dans le fait que l'outil rotatif est d'une grande simplicité et très peu coûteux à fabriquer, notamment en raison du type de matériau pouvant être utilisé pour la fabrication de l'outil et en raison de l'absence d'un quelconque abrasif incorporé sur la tête de l'outil, cet abrasif étant acheminé directement sur la zone d'usinage sous forme de particules abrasives véhiculées par un fluide ou un liquide. A ce titre, une variante avantageuse consiste à ménager au moins une fente de sorte qu'elle joue en outre le rôle de canal d'acheminement des particules abrasives.A considerable advantage of the present invention lies in the fact that the rotary tool is very simple and very inexpensive to manufacture, particularly because of the type of material that can be used for the manufacture of the tool and because of the absence of any abrasive incorporated on the head of the tool, this abrasive being conveyed directly to the machining area in the form of abrasive particles carried by a fluid or a liquid. As such, an advantageous variant consists in providing at least one slot so that it also plays the role of routing channel abrasive particles.

Grâce à l'invention, les coûts liés au façonnage de la forme désirée dans le matériau minéral considéré peuvent ainsi être réduits de manière très substantielle. Cet avantage est particulièrement déterminant dans le cadre du façonnage de matériaux minéraux durs, tel le saphir, le corindon ou le spinelle, utilisés notamment dans l'industrie horlogère pour la fabrication de glaces de montre. La présente invention est donc particulièrement adaptée pour le façonnage de surfaces optiques, ou dioptres, (notamment des surfaces optiques déformantes telles des lentilles grossissantes) dans des matériaux minéraux transparents présentant une grande dureté, dont le saphir.Thanks to the invention, the costs associated with shaping the desired shape in the mineral material in question can thus be very substantially reduced. This advantage is particularly decisive in the shaping of hard mineral materials, such as sapphire, corundum or spinel, used in particular in the watch industry for the manufacture of watch glass. The present invention is therefore particularly suitable for shaping optical surfaces, or diopters, (especially deforming optical surfaces such as magnifying lenses) in transparent mineral materials having a high hardness, including sapphire.

DESCRIPTION SOMMAIRE DES DESSINSSUMMARY DESCRIPTION OF THE DRAWINGS

D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description détaillée qui suit d'un mode de réalisation préféré de l'invention, donné uniquement à titre d'exemple non limitatif et illustré par les dessins annexés où :

  • la figure 1 représente une installation d'usinage adaptée spécifiquement au façonnage d'une surface optique déformante (par exemple une lentille à surface sphérique convexe) dans un matériau minéral dur et transparent, en particulier dans une glace de montre, cette installation utilisant un outil rotatif selon la présente invention ;
  • la figure 2 est une vue en perspective de la partie terminale, ou tête, d'un outil rotatif ;
  • la figure 3 est une vue de face de la surface active de la tête de l'outil rotatif de la figure 2 ;
  • la figure 4 est une vue en coupe de l'outil rotatif, prise selon la ligne A-A dans la figure 3 ; et
  • la figure 5 est un exemple de mise en oeuvre de l'outil rotatif selon l'invention pour l'usinage d'une lentille sphérique convexe à pourtour circulaire dans une plaque de matériau minéral transparent.
Other features and advantages of the present invention will appear more clearly on reading the following detailed description of a preferred embodiment of the invention, given solely by way of non-limiting example and illustrated by the accompanying drawings in which: :
  • the figure 1 represents a machining installation specifically adapted to shaping a deforming optical surface (for example a convex spherical surface lens) in a hard and transparent mineral material, in particular in a watch glass, this installation using a rotary tool according to the present invention;
  • the figure 2 is a perspective view of the end portion, or head, of a rotary tool;
  • the figure 3 is a front view of the active surface of the rotary tool head of the figure 2 ;
  • the figure 4 is a sectional view of the rotary tool, taken along the line AA in the figure 3 ; and
  • the figure 5 is an example of implementation of the rotary tool according to the invention for machining a circular convex spherical lens around a plate of transparent mineral material.

MODES DE RÉALISATIONSMODES OF ACHIEVEMENTS

L'installation d'usinage illustrée dans la figure 1 est essentiellement similaire à l'installation présentée dans le document EP 0 123 891 mentionné plus haut. Elle comprend un bâti-support 10 sur lequel sont montées une potence 12 et une poupée 14. La potence 12 porte une broche 16 à l'extrémité de laquelle se trouve un outil rotatif 20, de même axe, désigné 42, que la broche, comportant un corps essentiellement cylindrique terminé par une tête 20a destinée à venir en contact avec une zone du matériau minéral à usiner. Une poulie 18, montée sur la broche 16, permet d'entraîner celle-ci en rotation autour de l'axe 42 au moyen d'un moteur non représenté. La potence 12 comporte en outre des coulisses 22, 24 et 26 permettant, d'une manière tout à fait classique, le déplacement de l'outil 20 selon trois axes orthogonaux. De manière plus précise, la coulisse 22 permet, à l'aide d'une vis micrométrique 23, de déplacer l'outil verticalement selon son axe de rotation, tandis que les coulisses 24 et 26 permettent, à l'aide des vis micrométriques 25 et 27, respectivement, de déplacer l'outil 20 dans un plan horizontal selon deux directions perpendiculaires.The machining installation illustrated in the figure 1 is essentially similar to the installation shown in the document EP 0 123 891 mentioned above. It comprises a support frame 10 on which are mounted a bracket 12 and a doll 14. The bracket 12 carries a pin 16 at the end of which is a rotary tool 20, of the same axis, designated 42, as the spindle, comprising a substantially cylindrical body terminated by a head 20a intended to come into contact with a zone of the mineral material to be machined. A pulley 18, mounted on the spindle 16, can drive it in rotation about the axis 42 by means of a motor not shown. The bracket 12 further comprises slides 22, 24 and 26 allowing, in a manner quite conventional, the displacement of the tool 20 along three orthogonal axes. More precisely, the slide 22 makes it possible, with the aid of a micrometer screw 23, to move the tool vertically along its axis of rotation, whereas the slides 24 and 26 make it possible, with the aid of the micrometer screws 25 and 27, respectively, to move the tool 20 in a horizontal plane in two perpendicular directions.

La poupée 14 porte une broche 28 dont l'extrémité 28a voisine de la potence 12 est, grâce à un coude 28b, décalée vers le bas par rapport à l'axe de rotation, désigné 44, de la broche 28. Une table 30 est montée sur un arbre 32 qui est perpendiculaire à l'axe 44 de la broche 28 et qui pivote dans l'extrémité 28a. Cet arbre porte une poulie 34 qui permet de l'entraîner en rotation autour d'un axe de rotation, désigné 40, grâce à un moteur non représenté dans la figure. Un posage 36, solidaire de la table 30, permet de fixer une plaque 38 en matériau minéral. Cette plaque 38 peut par exemple être constituée d'un matériau minéral dur et transparent du type saphir, corindon ou spinelle, telle une plaque formant glace de montre que l'on désire munir d'une lentille ou de toute autre surface optique déformante.The doll 14 carries a pin 28 whose end 28a adjacent to the bracket 12 is, thanks to a bend 28b, offset downwardly relative to the axis of rotation, designated 44, of the pin 28. A table 30 is mounted on a shaft 32 which is perpendicular to the axis 44 of the pin 28 and which pivots in the end 28a. This shaft carries a pulley 34 which drives it in rotation about an axis of rotation, designated 40, by means of a motor not shown in the figure. A posture 36, integral with the table 30, makes it possible to fix a plate 38 of mineral material. This plate 38 may for example be made of a hard and transparent mineral material of the sapphire, corundum or spinel type, such as a watch ice plate that it is desired to provide a lens or other deforming optical surface.

On notera que l'outil 20 ainsi que le posage 36 sont tous deux entraînés en rotation selon des sens de rotation opposés. De plus, le posage 36 a ici une épaisseur telle que la distance entre l'axe de la broche 28 et le point extrême de la surface sphérique que l'on désire façonner (situé sur l'axe de rotation 40 de l'arbre 32) soit égale au rayon de courbure, désigné R, que doit présenter cette surface sphérique. Enfin, la broche 28 peut être associée à des moyens d'entraînement non représentés permettant de lui imprimer un mouvement oscillant de faible amplitude ou tout du moins régler son inclinaison par rapport au plan horizontal.Note that the tool 20 and the setting 36 are both rotated in opposite directions of rotation. In addition, the setting 36 here has a thickness such that the distance between the axis of the pin 28 and the end point of the spherical surface that is desired to shape (located on the axis of rotation 40 of the shaft 32 ) is equal to the radius of curvature, designated R, that must present this spherical surface. Finally, the pin 28 may be associated with unrepresented drive means for printing an oscillating movement of low amplitude or at least adjust its inclination relative to the horizontal plane.

De ce qui précède, on aura compris que l'installation présente plusieurs possibilités d'entraînement et de positionnement de l'outil 20 et de la plaque 38. On verra par la suite que divers modes opératoires de l'installation peuvent être envisagés, ces divers modes opératoires ayant tous pour point commun au moins la mise en rotation de l'outil 20 autour de son axe de rotation 42. Cette rotation peut, le cas échéant, s'accompagner d'une rotation ou d'un mouvement oscillant de la plaque 38 autour de son axe de rotation 40 et/ou d'un mouvement oscillant de la plaque 38 autour de l'axe de la broche 28 (ce mouvement oscillant pouvant alternativement être imprimé à l'outil 20 si l'on équipait la potence 12 de moyens adéquats). En ce qui concerne des détails touchant au mode de mise en oeuvre particulier consistant à simultanément entraîner en rotation l'outil 20 et la plaque 38, et à imprimer un mouvement oscillant à cette plaque, on pourra se référer au procédé décrit dans le document EP 0 123 891 déjà mentionné.From the above, it will be understood that the installation has several possibilities for driving and positioning the tool 20 and the plate 38. It will be seen later that various operating procedures of the installation can be envisaged, these various procedures all having in common at least the rotation of the tool 20 about its axis of rotation 42. This rotation may, if necessary, be accompanied by a rotation or an oscillating movement of the plate 38 around its axis of rotation 40 and / or an oscillating movement of the plate 38 around the axis of the spindle 28 (this oscillating movement can alternatively be printed with the tool 20 if the stem was fitted 12 adequate means). With regard to details relating to the particular mode of operation consisting of simultaneously rotating the tool 20 and the plate 38, and to impart an oscillating movement to this plate, reference may be made to the method described in the document EP 0 123 891 already mentioned.

Outre les moyens d'entraînement et de positionnement susmentionnés, on notera encore que l'installation d'usinage comporte des moyens d'acheminement de particules abrasives sur la zone du matériau minéral où doit être façonnée la forme désirée. Ces moyens d'acheminement sont illustrés schématiquement sur la figure 1 et comprennent essentiellement un réservoir 50 contenant un fluide porteur de particules abrasives (par exemple une poudre de diamant en suspension dans une huile) et un conduit d'amenée 52 pour acheminer ce fluide sur la zone d'usinage. Des moyens non représentés permettent de régler la quantité de particules abrasives acheminées sur la zone d'usinage. On comprendra, dans ce qui va suivre, que l'acheminement de particules abrasives sur la zone d'usinage ainsi que l'outil rotatif selon l'invention contribuent ensemble au façonnage de la forme désirée dans la plaque de matériau minéral.In addition to the aforementioned drive and positioning means, it will also be noted that the machining installation comprises means for conveying abrasive particles over the area of the mineral material where the desired shape is to be shaped. These conveying means are schematically illustrated on the figure 1 and essentially comprise a reservoir 50 containing a carrier fluid of abrasive particles (for example a diamond powder suspended in an oil) and a supply conduit 52 for conveying this fluid to the machining zone. Means not shown to adjust the amount of abrasive particles transported to the machining area. It will be understood, in what follows, that the routing of abrasive particles on the machining area and the rotary tool according to the invention together contribute to the shaping of the desired shape in the plate of mineral material.

Les figures 2 à 4 montrent respectivement une vue en perspective, une vue de face et une vue en coupe de la partie terminale d'un outil rotatif 20. Comme on peut le voir dans les figures 2 à 4, le corps de l'outil rotatif 20 est terminé par une tête 20a comprenant une surface active 200 destinée à venir en contact avec la zone du matériau minéral où l'on désire façonner la forme souhaitée. Dans cet exemple particulier, la surface active 200 de l'outil présente la forme d'une calotte sphérique concave dont le rayon de courbure correspond au rayon de courbure R de la forme à façonner, dans cet exemple une surface optique sphérique convexe. Dans ce cas, la mise en oeuvre de l'outil dans l'installation illustrée dans la figure 1 implique que l'axe 40 de l'arbre 32, l'axe 42 de la broche 16 et l'axe 44 de la broche 28 se coupent en un point C correspondant au centre de courbure de la surface sphérique convexe à façonner dans la plaque 38 de matériau minéral (comme illustré plus en détail dans la figure 5).The Figures 2 to 4 show respectively a perspective view, a front view and a sectional view of the end portion of a rotary tool 20. As can be seen in the Figures 2 to 4 , the body of the rotary tool 20 is terminated by a head 20a comprising an active surface 200 intended to come into contact with the zone of the mineral material where it is desired to shape the desired shape. In this particular example, the active surface 200 of the tool has the shape of a concave spherical cap whose radius of curvature corresponds to the radius of curvature R of the shape to be shaped, in this example a convex spherical optical surface. In this case, the implementation of the tool in the installation illustrated in the figure 1 implies that the axis 40 of the shaft 32, the axis 42 of the pin 16 and the axis 44 of the pin 28 intersect at a point C corresponding to the center of curvature of the convex spherical surface to be shaped in the plate 38 of mineral material (as illustrated in more detail in the figure 5 ).

On notera que la surface active 200 de l'outil 20 pourrait présenter une forme autre que strictement sphérique. Ainsi, la surface active 200 de la tête 20a pourrait prendre la forme d'une partie de tore, par analogie à la forme de la meule envisagée au titre de deuxième variante dans le document EP 0 123 891 (cette forme particulière nécessitant alors un réglage spécifique de l'installation). De manière générale, la surface active de l'outil peut prendre toute forme adéquate. On comprendra en tout état de cause que la forme façonnée dans le matériau minéral dépendra non seulement de la forme de la surface active de l'outil mais également du ou des mouvements imprimés à l'outil et/ou à la plaque. La forme de la surface active de la tête de l'outil n'est donc pas nécessairement conformée à la forme de la surface à façonner.Note that the active surface 200 of the tool 20 could have a shape other than strictly spherical. Thus, the active surface 200 of the head 20a could take the form of a portion of torus, by analogy with the shape of the wheel considered as a second variant in the document EP 0 123 891 (This particular form then requires a specific adjustment of the installation). In general, the active surface of the tool can take any suitable form. It will be understood in any event that the shaped shape in the mineral material will depend not only on the shape of the active surface of the tool but also on the movement or movements printed on the tool and / or the plate. The shape of the active surface of the head of the tool is not necessarily shaped to the shape of the surface to be shaped.

La tête 20a de l'outil présente au moins une première fente débouchant sur la surface active 200 pour y former une ouverture. Dans l'exemple illustré dans les figures 2 à 4, la tête 20a de l'outil présente ici une paire de fentes diamétrales 210, 220, c'est-à-dire deux fentes sensiblement rectilignes ménagées selon deux plans diamétraux passant par l'axe de rotation 42 de l'outil 20. Ces fentes diamétrales 210, 220 qui parcourent l'extrémité de la tête 20a sont ici agencées de manière sensiblement perpendiculaires et forment en conséquence une paire d'ouvertures perpendiculaires correspondantes 210a, 220a sur la surface active 200 de l'outil. On aura noté que la surface active 200 de l'outil rotatif 20 est subdivisée, dans cet exemple, en quatre parties distinctes présentant, ici, des superficies sensiblement égales.The head 20a of the tool has at least a first slot opening on the active surface 200 to form an opening. In the example shown in the Figures 2 to 4 , the head 20a of the tool here has a pair of diametrical slots 210, 220, that is to say two substantially rectilinear slots provided in two diametrical planes passing through the axis of rotation 42 of the tool 20. These diametrical slots 210, 220 which run through the end of the head 20a are here arranged substantially perpendicular and consequently form a pair of perpendicular openings corresponding 210a, 220a on the active surface 200 of the tool. It will be noted that the active surface 200 of the rotary tool 20 is subdivided, in this example, into four distinct parts having, here, substantially equal areas.

On insistera sur le fait que la disposition ainsi que la géométrie des fentes 210, 220 illustrées dans cet exemple de réalisation ne sont nullement limitatives. Une seule fente ou plus de deux fentes pourraient ainsi être ménagées sur la tête. De plus, ces fentes, au lieu de se couper, pourraient être parallèles. Enfin, les fentes et les ouvertures correspondantes sur la surface active de la tête de l'outil pourraient ne pas être rectilignes, cette géométrie particulièrement simple étant néanmoins la plus aisée à réaliser.It will be emphasized that the arrangement as well as the geometry of the slots 210, 220 illustrated in this embodiment are in no way limiting. Only one slot or more than two slots could be provided on the head. In addition, these slots, instead of cutting, could be parallel. Finally, the slots and the corresponding openings on the active surface of the head of the tool may not be rectilinear, this particularly simple geometry being nevertheless the easiest to achieve.

A titre d'exemple, la tête de l'outil ne pourrait être munie que d'une unique fente, cette fente ne parcourant pas nécessairement toute la largeur de la surface active. On notera qu'il est préférable que la fente soit configurée de sorte que, lors d'une rotation de l'outil, l'arête de coupe formée par l'ouverture correspondante de cette fente couvre une surface de révolution délimitée uniquement par un contour externe, c'est-à-dire une surface pleine sans évidement central, cette configuration étant préférable du point de vue de la qualité de surface de la forme façonnée. On aura compris qu'une configuration de fente diamétrale, comme cela est illustré dans les figures 2 à 4, répond à cette définition.For example, the head of the tool could be provided with a single slot, this slot does not necessarily cover the entire width of the active surface. Note that it is preferable that the slot is configured so that, during a rotation of the tool, the cutting edge formed by the corresponding opening of this slot covers a surface of revolution delimited only by a contour external, that is to say a solid surface without central recess, this configuration being preferable from the point of view of the surface quality of the shaped form. It will be understood that a configuration of diametrical slot, as illustrated in the Figures 2 to 4 , meets this definition.

On notera également que la manière avec laquelle les fentes se prolongent dans la tête de l'outil n'a que relativement peu d'importance. En effet, l'essentiel réside surtout dans la manière avec laquelle ces fentes débouchent sur la surface active de la tête de l'outil. C'est en effet par le biais de la surface active de l'outil, et de l'apport de particules abrasives sur cette surface active lors de l'usinage, que le matériau minéral peut être façonné.Note also that the way in which the slots extend in the head of the tool is relatively unimportant. Indeed, the essential lies mainly in the manner in which these slots open on the active surface of the head of the tool. It is indeed through the active surface of the tool, and the supply of abrasive particles on this active surface during machining, that the mineral material can be shaped.

Comme déjà mentionné plus haut, chaque ouverture sur la surface active formée par la fente correspondante permet aux particules abrasives de s'y loger et s'y accumuler pour former, sur la surface active de la tête de l'outil, une excroissance à fort pouvoir abrasif ayant la fonction d'une arête de coupe, l'outil rotatif constituant ainsi une matrice permettant de fixer ou figer les particules abrasives dans une configuration adéquate permettant l'abrasion du matériau minéral à façonner.As already mentioned above, each opening on the active surface formed by the corresponding slot allows the abrasive particles to lodge therein and accumulate thereon to form, on the active surface of the head of the tool, a protrusion to a strong abrasive power having the function of a cutting edge, the rotary tool thus constituting a matrix for fixing or freezing the abrasive particles in a suitable configuration for abrasion of the mineral material to be shaped.

L'outil 20 peut avantageusement être réalisé dans un matériau non abrasif pour le matériau minéral considéré, préférablement en un matériau présentant un compromis entre dureté et mollesse afin de maintenir et garantir la forme de la tête et, respectivement, permettre aux particules abrasives de s'y implanter. Ce matériau peut ainsi être un métal ou un alliage de métaux comprenant au moins un métal sélectionné dans le groupe comprenant le cuivre Cu, le zinc Zn, l'étain Sn et le fer Fe.The tool 20 may advantageously be made in a non-abrasive material for the mineral material in question, preferably in a material having a compromise between hardness and softness to maintain and guarantee the shape of the head and, respectively, allow the abrasive particles to implant. This material may thus be a metal or a metal alloy comprising at least one metal selected from the group comprising copper Cu, zinc Zn, tin Sn and iron Fe.

Au titre de variante avantageuse, on notera encore que l'on peut configurer une fente de l'outil de sorte qu'elle joue en outre le rôle de canal d'acheminement des particules abrasives sur la zone d'usinage. Cette fente conformée en canal d'acheminement ferait, dans ce cas, partie intégrante des moyens d'acheminement des particules abrasives et pourrait remplacer ou compléter le conduit d'amenée 52 de la figure 1.As an advantageous variant, it will also be noted that it is possible to configure a slot of the tool so that it also acts as a channel for conveying the abrasive particles onto the machining area. This slot shaped conveyor channel would, in this case, be part of the abrasive particles conveying means and could replace or supplement the supply conduit 52 of the figure 1 .

Un mode de mise en oeuvre de l'invention, pour l'usinage d'une lentille convergente (c'est-à-dire une surface sphérique convexe à pourtour circulaire) va maintenant brièvement être présenté en référence à la figure 5.One embodiment of the invention, for machining a convergent lens (that is to say a convex spherical surface with a circular periphery) will now briefly be presented with reference to FIG. figure 5 .

L'outil illustré dans les figures 2 à 4 peut être mis en oeuvre de manière très aisée pour façonner une lentille convergente dans l'épaisseur d'une plaque de matériau minéral transparent. Pour ce faire, il convient par exemple d'incliner la plaque 38 au moyen de la broche 28 de la figure 1 d'un angle déterminé, désigné α, correspondant également à l'angle que forme l'axe 42 de l'outil 20 par rapport à l'axe de rotation 40 de la plaque 38 (c'est-à-dire la perpendiculaire à la zone où doit être formée la lentille et qui passe par le centre de cette zone), les axes 40, 42 passant tous deux par le centre de courbure C de la surface sphérique à façonner, désignée 380 dans la figure 5. Il convient ensuite de mettre en rotation l'outil 20 et la plaque 38 autour de leurs axes respectifs 42 et 40 (au moyen de la broche 16, de l'arbre 32 et des moyens d'entraînement associés) et d'amener la surface active 200 de la tête de l'outil 20 au contact de la plaque 38. Dans la figure 5, on notera que la référence numérique 500 désigne globalement un mélange acheminé sur la zone d'usinage contenant des particules abrasives.The tool illustrated in Figures 2 to 4 can be implemented very easily to shape a convergent lens in the thickness of a plate of transparent mineral material. For this purpose, it is appropriate for example to incline the plate 38 by means of the pin 28 of the figure 1 defined angle, designated α, also corresponding to the angle formed by the axis 42 of the tool 20 relative to the axis of rotation 40 of the plate 38 (that is to say the perpendicular to the zone where the lens must be formed and which passes through the center of this zone), the axes 40, 42 passing both through the center of curvature C of the spherical surface to be shaped, designated 380 in the figure 5 . It is then necessary to rotate the tool 20 and the plate 38 around their respective axes 42 and 40 (by means of the pin 16, the shaft 32 and the associated drive means) and to bring the surface active 200 of the head of the tool 20 in contact with the plate 38. In the figure 5 It should be noted that reference numeral 500 generally designates a mixture conveyed to the machining zone containing abrasive particles.

Comme schématisé dans la figure 5, la mise en rotation simultanée de l'outil 20 et de la plaque 38 autour de leurs axes de rotation respectifs et le réglage de l'angle α entre ces axes de rotation assure que la surface active 200 de l'outil façonne une portion de surface sphérique convexe de rayon de courbure R présentant un pourtour circulaire (en d'autres termes une calotte sphérique convexe). Dans la mesure où aucun mouvement oscillant n'est imprimé à l'outil ou à la plaque, on comprendra que le diamètre de la tête de l'outil, désigné d, doit présenter une valeur minimale qui est supérieure à la moitié du diamètre, désigné D, de la lentille à façonner. Plus précisément, le diamètre d de l'outil 20, dans ce mode de mise en oeuvre particulier, doit au moins être égal au diamètre D de la lentille désirée divisé par le cosinus de l'angle α. On notera que l'angle α est en pratique inférieur à 20°, préférablement inférieur à 10°.As schematized in the figure 5 , the simultaneous rotation of the tool 20 and the plate 38 around their respective axes of rotation and the adjustment of the angle α between these axes of rotation ensures that the active surface 200 of the tool shapes a portion of convex spherical surface of radius of curvature R having a circular periphery (in other words a convex spherical cap). Since no oscillating movement is printed on the tool or the plate, it will be understood that the diameter of the head of the tool, designated d, must have a minimum value which is greater than half the diameter, designated D, of the lens to be shaped. More specifically, the diameter d of the tool 20, in this particular embodiment, must be at least equal to the diameter D of the desired lens divided by the cosine of the angle α. Note that the angle α is in practice less than 20 °, preferably less than 10 °.

Comme mentionné dans le document EP 0 123 891 , plutôt que de fixer une inclinaison déterminée de la plaque par rapport à l'outil, un mouvement oscillant autour d'un axe perpendiculaire aux axes de rotation 42, 40 et passant par le centre de courbure C de la lentille à façonner (à savoir un mouvement oscillant autour de l'axe 44 de la broche 28 dans la figure 1) peut être imprimé à la plaque 38 (voire à l'outil). Dans ce cas, l'angle maximal d'inclinaison de la plaque 38 par rapport à l'outil 20, désigné αmax, peut être exprimé par la formule suivante, qui est valable pour des mouvements de faible amplitude (angles α faibles) : tan α max 2 R D - d / 4 R 2 + D d

Figure imgb0001

Cette relation (1) est également valable pour le mode de mise en oeuvre précédent à inclinaison fixe.As mentioned in the document EP 0 123 891 , rather than setting a determined inclination of the plate relative to the tool, a movement oscillating about an axis perpendicular to the axes of rotation 42, 40 and passing through the center of curvature C of the lens to be shaped (namely a movement oscillating around the axis 44 of the pin 28 in the figure 1 ) can be printed on the plate 38 (or even the tool). In this case, the maximum angle of inclination of the plate 38 relative to the tool 20, designated α max , can be expressed by the following formula, which is valid for low amplitude movements (low angles α): tan α max 2 R D - d / 4 R 2 + D d
Figure imgb0001

This relation (1) is also valid for the previous implementation mode with fixed inclination.

Au moyen de l'outil représenté dans les figures 2 à 4, on notera qu'il est possible de façonner des surfaces sphériques convexes ne présentant pas nécessairement un pourtour circulaire.Using the tool represented in the Figures 2 to 4 It should be noted that it is possible to shape convex spherical surfaces which do not necessarily have a circular periphery.

Ainsi, en se référant à la figure 5, il est parfaitement envisageable de soumettre la plaque 38 à un mouvement répété oscillant autour de l'axe 40, plutôt qu'à une rotation complète autour de cet axe. En limitant l'amplitude maximale de ce mouvement oscillant autour de l'axe 40, par exemple en soumettant la plaque à un mouvement angulaire oscillant de 180° environ, on peut façonner une portion d'une calotte sphérique présentant une forme générale en « C » dans le plan de la plaque.So, referring to the figure 5 it is perfectly possible to subject the plate 38 to a repeated movement oscillating about the axis 40, rather than a complete rotation about this axis. By limiting the maximum amplitude of this movement oscillating about the axis 40, for example by subjecting the plate to an angular movement oscillating by about 180 °, it is possible to shape a portion of a spherical cap having a general shape in "C" In the plane of the plate.

De même, il est parfaitement envisageable de ne pas mettre la plaque 38 en rotation autour de l'axe 40 et de soumettre uniquement cette plaque 38 à un mouvement oscillant autour d'un axe perpendiculaire à l'axe 42 de l'outil et passant par le centre de courbure C de la surface sphérique (par exemple un mouvement oscillant autour de l'axe 44 de la broche 28). De la sorte, on obtient une surface sphérique convexe de forme allongée ou oblongue.Similarly, it is perfectly conceivable not to turn the plate 38 about the axis 40 and to only subject this plate 38 to a movement oscillating about an axis perpendicular to the axis 42 of the tool and passing by the center of curvature C of the spherical surface (for example a movement oscillating about the axis 44 of the spindle 28). In this way, a convex spherical surface of elongate or oblong shape is obtained.

Concernant ce dernier exemple, il est envisageable d'incliner en outre l'outil rotatif 20 dans un plan contenant l'axe 44 autour duquel oscille la plaque 38 et de sorte que l'axe de rotation 42 de l'outil 20 coupe l'axe 44 au centre de courbure C de la surface sphérique à façonner. Ceci revient à incliner l'outil 20 dans le plan de la figure 1 et nécessite donc des moyens de positionnement non représentés dans la figure pour permettre ce réglage angulaire. De la sorte, on obtient une surface sphérique convexe également de forme allongée mais qui est toutefois inclinée dans le sens de la largeur par rapport au plan moyen de la plaque 38, au lieu d'une surface totalement symétrique comme dans l'exemple précédent.With regard to this last example, it is conceivable to incline further the rotary tool 20 in a plane containing the axis 44 around which the plate 38 oscillates and so that the axis of rotation 42 of the tool 20 cuts the axis 44 at the center of curvature C of the spherical surface to be shaped. This amounts to tilting the tool 20 in the plane of the figure 1 and therefore requires positioning means not shown in the figure to allow this angular adjustment. In this way, a convex spherical surface is also obtained which is elongated but which is inclined in the direction of the width relative to the average plane of the plate 38, instead of a totally symmetrical surface as in the previous example.

Dans les trois exemples susmentionnés, on aura donc compris que le mouvement de rotation de l'outil 20 autour de son axe 42 s'accompagne d'un mouvement relatif répété (ou oscillant) entre l'outil 20 et la plaque 38 pour façonner une surface optique sphérique présentant un pourtour non circulaire. Des formes plus compliquées pourraient être obtenues en synchronisant plusieurs mouvements oscillants autour de divers axes passant tous par le centre de courbure de la surface sphérique, on des axes non concourants si l'on désirait façonner une surface torique, par exemple.In the three aforementioned examples, it will therefore be understood that the rotational movement of the tool 20 about its axis 42 is accompanied by a repeated (or oscillating) relative movement between the tool 20 and the plate 38 to shape a spherical optical surface having a non-circular periphery. More complicated shapes could be obtained by synchronizing several oscillating motions around various axes all passing through the center of curvature of the spherical surface, or non-concordant axes if one wanted to shape a toric surface, for example.

On comprendra de manière générale que diverses modifications et/ou améliorations évidentes pour l'homme du métier peuvent être apportées au mode de réalisation décrit dans la présente description sans sortir du cadre de l'invention défini par les revendications annexées. En particulier, la surface active de la tête de l'outil peut présenter une forme autre que sphérique dans la mesure où l'on ne désire pas soumettre l'outil à un mouvement relatif par rapport à la plaque de matériau minéral à usiner. Il est ainsi possible de donner à la surface active de l'outil une forme de révolution non sphérique et de façonner une forme correspondante dans le matériau minéral en ne mettant en rotation que l'outil (voire en mettant également en rotation la plaque de matériau minéral autour d'un axe confondu à l'axe de rotation de l'outil). La forme sphérique particulièrement simple de la surface active de la tête de l'outil, telle qu'elle a été présentée plus haut, constitue toutefois une solution particulièrement simple à mettre en oeuvre, flexible d'utilisation et qui permet de façonner de évidements de formes variées dans le matériau.It will be understood in general that various modifications and / or improvements obvious to those skilled in the art can be made to the embodiment described in the present description without departing from the scope of the invention defined by the appended claims. In particular, the active surface of the head of the tool may have a shape other than spherical insofar as it is not desired to subject the tool to a relative movement with respect to the plate of mineral material to be machined. It is thus possible to give the active surface of the tool a non-spherical shape of revolution and to shape a corresponding shape in the mineral material by only rotating the tool (or even by also rotating the plate of material mineral around an axis coincident with the axis of rotation of the tool). The particularly simple spherical shape of the active surface of the head of the tool, as presented above, however, is a particularly simple solution to implement, flexible to use and which allows to shape recesses of various forms in the material.

On insistera enfin à nouveau sur le fait que la disposition de la ou des fentes sur la surface active de la tête de l'outil peut suivre tout agencement géométrique adéquat, le plus simple de ces agencements géométriques étant constitué par une ou plusieurs fentes essentiellement rectilignes.Finally, it will again be emphasized that the arrangement of the slot (s) on the active surface of the tool head may follow any suitable geometrical arrangement, the simplest of these geometrical arrangements being constituted by one or more essentially rectilinear slots. .

Claims (8)

  1. Method for forming an optical surface (380) in a zone of a plate (38) of a transparent mineral material, particularly sapphire, corundum or spinel, wherein a rotating tool (20) comprising a body ending in a head (20a) including an active surface (200) coming into contact with said zone of the mineral material is used,
    wherein said method comprises the simultaneous steps of:
    - setting said tool (20) in rotation about a first axis of rotation (42);
    - putting the active surface (200) of the tool head into contact with the plate (38) in a zone of the mineral material where said optical surface is required to be formed;
    - transporting abrasive particles (500) to said zone; and
    - moving the tool (20) and/or the plate (38) in relation to the other,
    characterized in that said head (20a) of the tool has at least one first slot (210, 220) opening onto said active surface (200) to form therein an aperture (210a, 220a) allowing abrasive particles (500) transported onto said zone to lodge in the active surface (200), wherein said head (20a) is formed of a material that is not abrasive for the mineral material concerned and exhibits a compromise between hardness and softness in order to maintain and guarantee the shape of the head and, respectively, to allow said abrasive particles to be implanted therein, and in that abrasive particles (500) transported onto said zone form, along said aperture (210a, 220a) on the active surface, a cutting edge contributing to forming the required shape.
  2. Method according to claim 1, characterised in that said active surface (200) of the head of the tool has essentially the shape of concave spherical surface the radius of curvature of which (R) corresponds to the radius of curvature of the optical surface to be formed, and in that the method further includes a simultaneous operation consisting in setting said plate (38) in rotation about a second axis of rotation (40) which is perpendicular to the zone where said optical surface is required to be formed and passes through the centre of said zone, said first and second axes of rotation (42, 40) passing through the centre of curvature (C) of the convex spherical surface to be formed.
  3. Method according to claim 1, characterised in that said active surface (200) of the head of the tool has essentially the shape of concave spherical surface the radius of curvature of which (R) corresponds to the radius of curvature of the optical surface to be formed, and in that the method further includes a simultaneous operation consisting in performing a repeated relative movement of said tool (20) in relation to said plate (38) to form a spherical optical surface having a non circular contour.
  4. Method according to claim 3, characterised in that said repeated relative movement is an oscillating movement of said plate (38) or of said tool (20) about an axis (40; 44) distinct from said first axis (42) and intersecting said first axis at the centre of curvature (C) of the convex spherical surface to be formed.
  5. Method according to claim 1, characterised in that said head (20a) of the tool has at least one pair of slots (210, 220) forming diametral or parallel apertures (210a, 220a) on said active surface (200).
  6. Method according to claim 1, characterised in that said material forming the head (20a) is a metal or metal alloy including at least one metal selected from the group including Cu, Zn, Sn and Fe.
  7. Method according to any of the preceding claims, characterised in that at least one of said slots also plays the part of a channel for transporting said abrasive particles to said zone.
  8. Method according to any of claims 1 to 6, characterised in that said optical surface (380) is situated in the thickness of the plate (38).
EP03779955.8A 2002-11-26 2003-11-17 Method for shaping an optical surface Expired - Lifetime EP1567305B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03779955.8A EP1567305B1 (en) 2002-11-26 2003-11-17 Method for shaping an optical surface

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP02079950 2002-11-26
EP02079950A EP1424163A1 (en) 2002-11-26 2002-11-26 Rotative tool for machining a shape on a mineral material, like sapphire, in particular for machining an optical surface on a watch-glass
EP03779955.8A EP1567305B1 (en) 2002-11-26 2003-11-17 Method for shaping an optical surface
PCT/EP2003/012837 WO2004048034A1 (en) 2002-11-26 2003-11-17 Rotary tool for shaping a form in a mineral material, such as sapphire, and, in particular, for shaping an optical surface in a watch crystal

Publications (2)

Publication Number Publication Date
EP1567305A1 EP1567305A1 (en) 2005-08-31
EP1567305B1 true EP1567305B1 (en) 2014-04-16

Family

ID=32241332

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02079950A Withdrawn EP1424163A1 (en) 2002-11-26 2002-11-26 Rotative tool for machining a shape on a mineral material, like sapphire, in particular for machining an optical surface on a watch-glass
EP03779955.8A Expired - Lifetime EP1567305B1 (en) 2002-11-26 2003-11-17 Method for shaping an optical surface

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP02079950A Withdrawn EP1424163A1 (en) 2002-11-26 2002-11-26 Rotative tool for machining a shape on a mineral material, like sapphire, in particular for machining an optical surface on a watch-glass

Country Status (5)

Country Link
EP (2) EP1424163A1 (en)
JP (1) JP4851713B2 (en)
CN (1) CN1732067A (en)
AU (1) AU2003288087A1 (en)
WO (1) WO2004048034A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198623A (en) * 2011-05-09 2011-09-28 苏州大学 Elastic fine grinding device for aspherical part
CN102554762B (en) * 2012-02-13 2014-04-30 江苏智邦精工科技有限公司 Method for machining precision spherical parts
CN108620995B (en) * 2017-03-24 2020-05-15 蓝思科技(长沙)有限公司 Concave crystal hole machining method
CN110026877A (en) * 2018-01-11 2019-07-19 昆山瑞咏成精密设备有限公司 A kind of polishing machine and polishing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1515681A (en) * 1919-05-02 1924-11-18 American Optical Corp Lens grinder
EP0123891A2 (en) * 1983-03-31 1984-11-07 Comadur SA Method of shaping a convergent lens in a plate made of a transparent mineral material
JPS59201763A (en) * 1983-04-28 1984-11-15 Matsushita Electric Works Ltd Tool for automatic polishing device
DE10006052A1 (en) * 2000-02-10 2001-08-23 Zeiss Carl Body for abrasive surface grinding, lapping or polishing of optical surfaces has recesses in its own surface sunk in at edges relative to center

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1897546A (en) * 1930-03-15 1933-02-14 Cemented Tungsten Tool Company Cutting device
US1792800A (en) * 1930-03-15 1931-02-17 Conrad F Birgbauer Lapping device
US4114322A (en) * 1977-08-02 1978-09-19 Harold Jack Greenspan Abrasive member
JPS59188143U (en) * 1983-05-31 1984-12-13 遠州光学精機株式会社 Polishing plate for lens polishing
JPS62114866A (en) * 1985-11-08 1987-05-26 Matsushita Electric Ind Co Ltd Nonspherical surface working machine
JPS63232946A (en) * 1987-03-19 1988-09-28 Canon Inc Abrasive method and polishing tool
JPH0181271U (en) * 1987-11-18 1989-05-31
JP2941018B2 (en) * 1990-08-31 1999-08-25 キヤノン株式会社 Polishing tool
JPH04171168A (en) * 1990-11-01 1992-06-18 Canon Inc Rotary polishing device and grinding wheel thereof
JP3096342B2 (en) * 1992-01-10 2000-10-10 オリンパス光学工業株式会社 Electrolytic dressing grinding method and apparatus
JP3651527B2 (en) * 1996-11-20 2005-05-25 日本電気硝子株式会社 Curved surface polishing equipment for glass articles
JP2000334648A (en) * 1999-05-28 2000-12-05 Canon Inc Grinding and polishing tool and method
JP2001001262A (en) * 1999-06-22 2001-01-09 Olympus Optical Co Ltd Truing method for forming tool, and truer
JP2001025949A (en) * 1999-07-13 2001-01-30 Canon Inc Grinding tool
JP2002205254A (en) * 2001-01-10 2002-07-23 Canon Inc Shaping method for optical element grinding/polishing tool, and grinding tool for shaping of grinding/polishing tool
US20020137433A1 (en) * 2001-03-26 2002-09-26 Lee Lawrence K. Abrasive drill bit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1515681A (en) * 1919-05-02 1924-11-18 American Optical Corp Lens grinder
EP0123891A2 (en) * 1983-03-31 1984-11-07 Comadur SA Method of shaping a convergent lens in a plate made of a transparent mineral material
JPS59201763A (en) * 1983-04-28 1984-11-15 Matsushita Electric Works Ltd Tool for automatic polishing device
DE10006052A1 (en) * 2000-02-10 2001-08-23 Zeiss Carl Body for abrasive surface grinding, lapping or polishing of optical surfaces has recesses in its own surface sunk in at edges relative to center

Also Published As

Publication number Publication date
CN1732067A (en) 2006-02-08
AU2003288087A1 (en) 2004-06-18
EP1424163A1 (en) 2004-06-02
JP4851713B2 (en) 2012-01-11
JP2006507136A (en) 2006-03-02
EP1567305A1 (en) 2005-08-31
WO2004048034A1 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
EP0123891B1 (en) Method of shaping a convergent lens in a plate made of a transparent mineral material
EP0947895B1 (en) Watch glass with a lens and method for manufacturing such a glass
EP2076358B1 (en) Device for machining ophthalmic lenses comprising a plurality of machine tools positioned on an orientable module
EP2117773B1 (en) Spectacle lens trimming machine with a rotating tool carrier on which are mounted several working tools
EP1465749B1 (en) Tool for surface treatment of an optical surface
EP2760634B1 (en) Polishing apparatus for optical lenses
CH697657B1 (en) Beveling and engine turning machine for e.g. plane pieces, has motorized head comprising burin mounted at center of rotation axis for being oriented along machining path, without modification in its position
EP1567305B1 (en) Method for shaping an optical surface
EP1984147B1 (en) Method of satinizing a hard material
CH693983A5 (en) Cutting tool for watch lenses has head with groove forming accumulated particles into cutting edge
CH695801A5 (en) Watch glass with a non-circular lens and method of forming such a lens.
EP0805734A1 (en) Improved grinding wheel for ophthalmic lenses, and grinding machine therefor
EP1801627A2 (en) Assembly comprising an ophthalmic lens and a support, and method using same
FR2553019A1 (en) METHOD FOR MANUFACTURING A TOOTHED WHEEL TOOL, TOOTHED ROD OR ENDLESS SCREW TO WORK TO FINISH TOOTH SHEETS OF TOOTHED WHEELS, ESPECIALLY TEMPERED WHEELS, AND TOOL SO MANUFACTURED
EP2686135B1 (en) Piece of casing for a time piece and system for manufacturing same
EP2686134B1 (en) Polishing system for a piece of a watchcase
CH704656A2 (en) System for polishing concave surface of e.g. glass of watch, has fixing device including displacing unit for displacing support, and grinding device having abrasive units whose contact surface is curved for polishing covering part
FR3017813A1 (en) WHEEL MILLING DEVICE FOR RECTIFIER
FR2489959A1 (en) METHOD AND DEVICE FOR POLISHING A SOLID SAMPLE, AND POLISHED SAMPLE ACCORDING TO THIS METHOD
BE901840A (en) Wine-glass deburring and polishing grinder - has rotary abrasive discs with cores of spring steel plate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR LI

17Q First examination report despatched

Effective date: 20101018

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60346025

Country of ref document: DE

Effective date: 20140528

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60346025

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60346025

Country of ref document: DE

Effective date: 20150119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221021

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221020

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221201

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60346025

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL