JPS63232946A - Abrasive method and polishing tool - Google Patents

Abrasive method and polishing tool

Info

Publication number
JPS63232946A
JPS63232946A JP6260387A JP6260387A JPS63232946A JP S63232946 A JPS63232946 A JP S63232946A JP 6260387 A JP6260387 A JP 6260387A JP 6260387 A JP6260387 A JP 6260387A JP S63232946 A JPS63232946 A JP S63232946A
Authority
JP
Japan
Prior art keywords
polishing
workpiece
magnetic fluid
fluid solution
polishing tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6260387A
Other languages
Japanese (ja)
Inventor
Manabu Ando
学 安藤
Nobuo Nakamura
宣夫 中村
Satoshi Yuasa
聡 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6260387A priority Critical patent/JPS63232946A/en
Publication of JPS63232946A publication Critical patent/JPS63232946A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To secure forming capacity for a highly accurate surface form and good surface roughness, by making a magnetic fluid solution collide with a workpiece surface with the relative motion of a polishing tool, having a member generating a magnetic field, to a workpiece, and polishing the workpiece. CONSTITUTION:A polishing tool 12 has a cylindrical turning shaft 14, and a spherical body 16 to be constituted of a member, whose material generates a magnetic field, is connected and fixed to the tip part. And, the spherical body 16 of the polishing tool 12 is rotated in a magnetic fluid solution 22, and the ambient magnetic fluid solution 22 is dragged by attraction by dint of magnetic force, whereby the necessary flow velocity is given to the magnetic fluid solution 22. Likewise, the sherical body 16 is approached to such a part that should like to polish a workpiece 20 whereby magnetite grains in the magnetic fluid solution 22 are made to collide with a work surface, thus polishing takes place. Accordingly, dragging efficiency of the magnetic fluid solution 22 can be raised up, so that forming capacity for a highly accurate surface form and very favorable surface roughness both are obtainable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学レンズ等に使用される光学素子の研摩加工
、又は高精度な金型の仕上げ加工に好適に利用される、
研摩方法及び研摩工具に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is suitably used for polishing optical elements used in optical lenses, etc., or for finishing high-precision molds.
This invention relates to a polishing method and a polishing tool.

〔従来の技術〕[Conventional technology]

従来、被加工物と研摩工具を研摩液中に配置し、前記研
摩工具に回転を与えて、前記研摩液を被加工物の加工表
面に衝突させて、前記被加工物の表面を研摩する研摩方
法が知られている。
Conventionally, polishing involves placing a workpiece and a polishing tool in a polishing liquid, rotating the polishing tool, and causing the polishing liquid to collide with the surface of the workpiece to polish the surface of the workpiece. method is known.

従来のこの種の研摩方法を、第4図を用いて説明する。A conventional polishing method of this type will be explained with reference to FIG.

同、第4図は従来の研摩方法を示す概略側面図である。FIG. 4 is a schematic side view showing a conventional polishing method.

図において、2は従来の研摩工具である。該研摩工具2
は円筒状の回転軸4を1し、該軸4の先端部にはポリウ
レタン等の樹脂で構成された球体のポリウレタン球6が
接続固定されている。
In the figure, 2 is a conventional polishing tool. The polishing tool 2
1 is a cylindrical rotating shaft 4, and a spherical polyurethane ball 6 made of resin such as polyurethane is connected and fixed to the tip of the shaft 4.

又、図示する8は被加工物である。該被加工物8は研摩
工具2のポリウレタン球6部と一緒に、研摩液10中に
配置されている。該研摩液10中には研摩砥粒が含まれ
ている。
Further, numeral 8 shown in the figure is a workpiece. The workpiece 8 together with the polyurethane bulb 6 of the polishing tool 2 is placed in a polishing liquid 10 . The polishing liquid 10 contains polishing abrasive grains.

そして、この研摩液10中でポリウレタン球6を回転さ
せ、周囲の研摩液10をつれ回シさせることによシ該研
摩液10に必要な流速を与え、ポリウレタン球6を被加
工物8の研摩加工したい部分に近づけることで、Iリウ
レタン球6と被加工物8の間に研摩液10の動圧を得て
、これによシ研摩加工を行う。
Then, by rotating the polyurethane ball 6 in this polishing liquid 10 and causing the surrounding polishing liquid 10 to circulate, a necessary flow velocity is given to the polishing liquid 10, and the polyurethane ball 6 is used to polish the workpiece 8. By approaching the part to be processed, dynamic pressure of the polishing liquid 10 is obtained between the I-urethane ball 6 and the workpiece 8, and polishing is thereby performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述の如き従来技術による研摩方法では
次の様な問題点を有する。
However, the conventional polishing method described above has the following problems.

即ち、問題点の1番目として、ポリウレタン球の加工精
度を上けることが困難なため、被加工物にポリウレタン
球をあまシ近づけることができない、なぜなら回転する
ポリウレタン球を被加工物に接触させてしまうと、被加
工物の表面に微小なキズがつき、良好な表面粗さを得る
ことができないため。
That is, the first problem is that it is difficult to improve the processing accuracy of polyurethane balls, so it is not possible to bring the polyurethane balls very close to the workpiece. Otherwise, minute scratches will occur on the surface of the workpiece, making it impossible to obtain a good surface roughness.

問題点の2番目として、従来のポリウレタン球を回転さ
せることによりて生ずる該ポリウレタン球の近傍の被加
工物との距離による研摩液流速の変化率は、第5図のグ
ラフに示す様に、ポリウレタン球の表面が被加工物の表
面から離れるにつれて急激に低下するので、加工点に十
分な動圧を与えようとすると、どうしてもポリウレタン
球を被加工物に近づけなくてはならない。即ち、このこ
とは前述の問題点の1番目と同様にポリウレタン球と被
加工物との接触の危険がある。又、球の加工精度が悪い
ので、このことからも近づけることができない。
The second problem is that when a conventional polyurethane ball is rotated, the rate of change in the polishing fluid flow rate due to the distance from the workpiece near the polyurethane ball is as shown in the graph in Figure 5. Since the surface of the ball decreases rapidly as it moves away from the surface of the workpiece, in order to apply sufficient dynamic pressure to the processing point, the polyurethane ball must be brought closer to the workpiece. That is, this poses a risk of contact between the polyurethane bulb and the workpiece, similar to the first problem mentioned above. Also, since the processing accuracy of the ball is poor, it is impossible to get close to it for this reason.

問題点の3番目として、従来例ではそれでも被加工物に
近づけなけれはならないので、非常に精密な工具移動系
を持たなけれはならない。
The third problem is that in the conventional example, the tool still has to be close to the workpiece, so it is necessary to have a very precise tool movement system.

問題点の4番目として、上記のことから適正な加工条件
を維持することが困難であるため、加工能率は非常に悪
い。
The fourth problem is that because of the above, it is difficult to maintain appropriate processing conditions, resulting in very poor processing efficiency.

従来例は以上の如くの問題点を有する。The conventional example has the above-mentioned problems.

〔目的〕〔the purpose〕

本発明は上述従来技術の問題点に鑑みなされたもので1
)、その目的は従来の研摩方法において、研*iのつれ
回シの効率を上けることによシ、高精度な表面形状の形
成能力と、非常に良好な表面粗さを得ることを可能とす
る、研摩方法及び研摩工具を提供することにある。
The present invention has been made in view of the problems of the prior art described above.
), its purpose is to improve the efficiency of polishing in conventional polishing methods, thereby making it possible to form highly accurate surface shapes and obtain very good surface roughness. An object of the present invention is to provide a polishing method and a polishing tool.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は本発明によれば、被加工物と、磁界を発生す
る部材を有する研摩工具とを磁性流体液中に配置し、前
記研摩工具の被加工物に対する相対的な運動により前記
磁性流体液を被加工物の表面に衝突せしめて研摩を行う
、研摩方法によって達成され、 又、上記方法に使用される研摩工具として、磁界を発生
する部材を有することを特徴とする、研摩工具が提供さ
れる。
According to the present invention, the above object is achieved by arranging a workpiece and a polishing tool having a member that generates a magnetic field in a magnetic fluid liquid, and moving the polishing tool relative to the workpiece to A polishing method is provided in which polishing is performed by colliding a workpiece with a surface of a workpiece, and the polishing tool used in the method is characterized by having a member that generates a magnetic field. Ru.

〔実施例〕〔Example〕

以下、本発明に係る研珍方法及び研摩工具の実施例を図
面に基づいて具体的且つ詳細に説明する。
Embodiments of the polishing method and polishing tool according to the present invention will be described in detail below with reference to the drawings.

第1図は本発明の研摩方法の一実施例を示す概略側面図
である。
FIG. 1 is a schematic side view showing an embodiment of the polishing method of the present invention.

図において、12は本発明の研摩工具である。In the figure, 12 is a polishing tool of the present invention.

該研摩工具12は円筒状の回転軸14を有する。The polishing tool 12 has a cylindrical rotating shaft 14 .

該軸14の先端部には、材料が磁界を発生する部材で構
成され且つ球状の形状を有する球体16が接続固定され
ている。
A spherical body 16, which is made of a material that generates a magnetic field and has a spherical shape, is connected and fixed to the tip of the shaft 14.

又、図示する20は被加工物である。該被加工物20は
研摩工具12の球体16部と一緒に、磁性流体液22中
に配置されている。
Further, the illustrated reference numeral 20 is a workpiece. The workpiece 20, together with the sphere 16 of the polishing tool 12, is placed in a ferrofluid liquid 22.

前述の磁性流体液22について説明する。この磁性流体
液とは液状で磁性を示す材料のことで、一般に液相中に
コロイド・サイズ(直径0.01μm程度)のマグネタ
イト粒子(強磁性微粒子)を安定分散させて成るもので
ある。この磁性流体液は、みかけ上、液体自体が磁性を
有するような性質を示す。又、マグネタイト粒子の他に
、フェライトの微粒子吟を液相中に分散させて成るもの
でも良い。
The aforementioned magnetic fluid liquid 22 will be explained. This magnetic fluid liquid is a material that exhibits magnetism in a liquid state, and is generally made by stably dispersing magnetite particles (ferromagnetic fine particles) of colloidal size (about 0.01 μm in diameter) in a liquid phase. This magnetic fluid liquid apparently exhibits properties such that the liquid itself has magnetism. Further, in addition to magnetite particles, a material made by dispersing fine ferrite particles in the liquid phase may also be used.

そして、上述の如き磁性流体液22の中で研摩工具12
の球体16を回転させ、周囲の磁性流体22を磁力によ
る吸引によってつれ回シさせることによシ該磁性流体液
22に必要な流速を与える。
Then, the polishing tool 12 is placed in the magnetic fluid liquid 22 as described above.
By rotating the sphere 16 and causing the surrounding magnetic fluid 22 to be drawn around by magnetic attraction, the necessary flow velocity is imparted to the magnetic fluid liquid 22.

史に、前にヒ球体16を被加工物20の切部加工したい
部分に近づけることで、該球体16と岐加工彷ノ20の
IIIJに七するfb磁性流体液22中マグネタイト教
子を、被加工物20の加エイ■ボ保I矢させることによ
シ幼屋加工を竹う。
First, by bringing the sphere 16 close to the part of the workpiece 20 that is to be cut, the magnetite particles in the fb magnetic fluid 22 are placed between the sphere 16 and the part of the workpiece 20 that is to be cut. By adding 20 parts to Boho's arrows, the child's processing is completed.

以上が、本発明のQ1鯵方法の基本的な加工原理の1明
である。
The above is one explanation of the basic processing principle of the Q1 horse mackerel method of the present invention.

以下、上述の研摩方法の効果についてに?明する。What follows is the effect of the polishing method mentioned above. I will clarify.

第2図#′i、不発明の研摩1具12を磁性流体液22
中で回転させたときのU工具の周囲における殉性苑トド
欣22のつtI、 [!;1シ速Δを示すグラフである
Figure 2 #'i, uninvented polishing tool 12 and magnetic fluid liquid 22
The amount of damage around the U tool when it is rotated inside, [! ; It is a graph showing 1 shift speed Δ.

第21>、lのグラフに下す様に、桐わが磁界を発生す
る酌材で檎成さtIている球体16ri絢囲の磁性vL
体液22を吸引によシつ7L仲1シするので、該磁g、
随体液22のつれ回シ速友か球イ↓16の衣(f(1か
らにLれても、急激に低下することViない。
As shown in the graph of No. 21>, the magnetic field of the 16 spheres surrounded by tI, which is formed by a cup material that generates a magnetic field.
Since the body fluid 22 is sucked into the 7L medium, the magnetic g,
The flow rate of the body fluid 22 is low. Even if it goes from 1 to 16, it will not drop suddenly.

その納釆、熔体16t−祖加工物20妙・ら十分縁して
も、能率を下けすに研摩加工を行うことが可能となる。
Even if the molten body (16t) and the processed material (20mm) are sufficiently connected, it is possible to perform the polishing process at a lower efficiency.

又、このことによυ、し触に幻する安全性も増すことに
なる。
This also increases the apparent safety.

又、磁性流体液22中に研摩剤(研摩砥粒)として、シ
リコン等の極微粉(粒径、数xoi)を含めれは、一段
と研摩能力を向上させることができる。
Furthermore, if ultrafine powder (particle size: several xoi) of silicon or the like is included as an abrasive (abrasive grain) in the magnetic fluid liquid 22, the polishing ability can be further improved.

以上が本発明の研摩方法の効果の説明である。The above is an explanation of the effects of the polishing method of the present invention.

次に、本発明の研摩方法を実際に実施する場合の装置例
を説明する。
Next, an example of an apparatus for actually carrying out the polishing method of the present invention will be described.

第3図は本発明の研摩方法を実施するための研摩装置の
一実施例を示す概略構成図である。
FIG. 3 is a schematic diagram showing an embodiment of a polishing apparatus for carrying out the polishing method of the present invention.

第3図において、50は基台であシ、核基台上には該基
台に対し相対的にX方向に往復移動可能なyテーブル5
2が取付けられている。54は該yテーブルの移動を駆
動するためのモータであシ、該モータにはエンコーダ5
6が付設されておシ、該エンコーダにより上記yテーブ
ルのX方向移動量が検出される。Xテーブル52上には
該yテーブルに対しX方向に相対的に往復移動可能なχ
テーブル58が取付けられている。60は該Xテーブル
の移動を駆動するためのモータであシ、該モータにはエ
ンコーダ62が付設されておシ、核エンコーダによシ上
記XテーブルのX方向移動量が検出される。
In FIG. 3, reference numeral 50 denotes a base, and a y-table 5 is mounted on the nuclear base and is movable back and forth in the X direction relative to the base.
2 is installed. 54 is a motor for driving the movement of the y-table, and an encoder 5 is attached to the motor.
6 is attached, and the amount of movement of the y table in the X direction is detected by the encoder. On the X table 52, there is a
A table 58 is attached. Reference numeral 60 denotes a motor for driving the movement of the X table. An encoder 62 is attached to the motor, and the amount of movement of the X table in the X direction is detected by the nuclear encoder.

該Xテーブル58上には研摩槽64が固設されている。A polishing tank 64 is fixedly installed on the X-table 58.

核研摩槽中には支持体66が固定されておシ、該支持体
には軸68によシ被研摩物保持体70が取付けられてい
る。該保持体はL字形状をなしておシ、その垂直面部分
に軸68が接続されている。該軸はX方向を向いていて
、従って保持体70はX方向のまわシに回動可能である
。上記支持体66にはモータ72が取付けられておシ、
その駆動回転軸は上記軸68に結合されている。
A support 66 is fixed in the nuclear polishing tank, and a polished object holder 70 is attached to the support by a shaft 68. The holder is L-shaped and has a shaft 68 connected to its vertical surface. The axis is oriented in the X direction, so the holding body 70 is rotatable in the X direction. A motor 72 is attached to the support 66.
Its drive rotation shaft is coupled to the shaft 68.

一方、上記Xテーブル58には上記@摩槽64の外側に
支持体74が固定されている。該支持体には上下方向即
ち2方向のガイド76が形成されておシ、該ガイドに沿
って上下方向に往復移動可能な様に研摩工具保持体78
が取付けられている。
On the other hand, a support 74 is fixed to the X-table 58 on the outside of the @mass tank 64. A vertical guide 76 is formed on the support, and an abrasive tool holder 78 is movable vertically along the guide.
is installed.

該保持体にはX方向のまわシに回動可能な様にモータ8
0が支持されている。該モータ80の回転軸82の下端
には磁界を発生する球体84が取シ付けられている。上
記保持体78にはモータ86が取付けられておシ、その
駆動回転軸は上記モータ80に接続されていて、該モー
タ80のX方向のまわシの回動を駆動することができる
。88fi上記保持体78をガイド76に沿って上下方
向に移動させるための駆動手段たるエアーシリンダでア
シ、該エアーシリンダのaラド90の先端が保持体78
と連結されている。
The holding body is equipped with a motor 8 so as to be rotatable in the X direction.
0 is supported. A sphere 84 that generates a magnetic field is attached to the lower end of the rotating shaft 82 of the motor 80. A motor 86 is attached to the holder 78, and its driving rotation shaft is connected to the motor 80, and can drive the rotation of the motor 80 in the X direction. 88fi is an air cylinder serving as a driving means for moving the holding body 78 in the vertical direction along the guide 76, and the tip of the a-rad 90 of the air cylinder is connected to the holding body 78.
is connected to.

92は制御装置であシ、上記エンコーダ56゜62から
のyテーブル移動量及びXテーブル移動量が該制御装置
92に入力され、更に上記モータ54.60,72,8
0.86及びエアーシリンダ88又はモータが該制御装
#92からの指令によシ駆動される。
Reference numeral 92 denotes a control device, into which the y-table movement amount and the X-table movement amount are inputted from the encoder 56.
0.86 and the air cylinder 88 or motor are driven by the command from the control device #92.

上記研雄装置を用いて研摩を行なう際には、保持体70
上に被研摩物100を戦前固定する。該被研摩物は前加
工により所定の表面粗さ及び形状に仕上げられている。
When polishing using the polishing device described above, the holding body 70
The object to be polished 100 is fixed on top. The object to be polished is finished to a predetermined surface roughness and shape by pre-processing.

本実施例においては被研摩物100の被U1摩面の形状
は凹トーリクク面とされている。
In this embodiment, the surface to be polished U1 of the object to be polished 100 has a concave shape.

又、研*槽64中には前述の母性流体液102が適宜の
量だけ注入されている。
Further, an appropriate amount of the aforementioned mother fluid 102 is injected into the polishing tank 64.

そして上述のイυを岸装置において、研摩工具を図示す
るA回υ方向に回転させて、磁性流体液102をつれ回
シによって流速を与えることにより、被研摩物100の
表面を研摩する。
The surface of the object to be polished 100 is polished by rotating the polishing tool in the A rotation direction shown in the figure in the above-mentioned A υ direction, and applying a flow velocity to the magnetic fluid 102 by rotating it.

又、本発明の他の実施例として、研摩工具の球体の部分
は必すしも球体である必要はなく、半球おるいはその他
の形状のものであっても良い。
Also, in other embodiments of the present invention, the spherical portion of the polishing tool does not necessarily have to be spherical, but may be hemispherical or other shapes.

又、球体の磁石の極方向は、回転軸に対しどのような方
向につけても良い。
Further, the pole direction of the spherical magnet may be placed in any direction with respect to the rotation axis.

又、磁界を発生する球体は電磁石でも良い。Further, the sphere that generates the magnetic field may be an electromagnet.

〔発明の効果〕〔Effect of the invention〕

以上計細且つ具体的に説明した様に、本発明によれば、
研摩液である磁性流体液のつれ回シの効率を上げること
ができるので、高精度な表面形状の形成能力と、非常に
良好な表面粗さを得ることが可能となる。
As explained above in detail and specifically, according to the present invention,
Since it is possible to increase the efficiency of the rotation of the magnetic fluid, which is the polishing liquid, it is possible to form a highly accurate surface shape and to obtain a very good surface roughness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の研摩方法の一実施例を示す概略側面図
、第2図は本発明によるつれ回シ速度を示すグラフ、第
3図は本発明による研摩装置の一実施例を示す概略構成
図、第4図は従来の研摩方法を示す概略側面図、第5図
は従来例によるつれ回り速度を示すグラフである。 12・・・研摩工具、16・・・磁界を発生する球体、
20・・・被加工物、22・・・磁性流体液。
FIG. 1 is a schematic side view showing an embodiment of the polishing method of the present invention, FIG. 2 is a graph showing the rotation speed of the present invention, and FIG. 3 is a schematic diagram showing an embodiment of the polishing apparatus of the present invention. FIG. 4 is a schematic side view showing the conventional polishing method, and FIG. 5 is a graph showing the trailing speed according to the conventional example. 12... Polishing tool, 16... Sphere that generates a magnetic field,
20... Workpiece, 22... Magnetic fluid liquid.

Claims (2)

【特許請求の範囲】[Claims] (1)被加工物と、本体内部に貫通された複数の貫通孔
を有する研摩工具とを研摩液中に配置し、前記貫通孔よ
り研摩工具の内部から高粘性物質を排出せしめ、且つ前
記研摩工具の被加工物に対する相対的な運動を行わしめ
ることにより前記研摩液を被加工物の表面に衝突せしめ
て研摩を行う、研摩方法。
(1) A workpiece and a polishing tool having a plurality of through holes penetrated inside the main body are placed in a polishing liquid, and a highly viscous substance is discharged from the inside of the polishing tool through the through holes, and A polishing method that performs polishing by causing the polishing liquid to collide with the surface of a workpiece by moving a tool relative to the workpiece.
(2)本体内部に貫通された複数の貫通孔を有すること
を特徴とする、研摩工具。
(2) A polishing tool characterized by having a plurality of through holes penetrated inside the main body.
JP6260387A 1987-03-19 1987-03-19 Abrasive method and polishing tool Pending JPS63232946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6260387A JPS63232946A (en) 1987-03-19 1987-03-19 Abrasive method and polishing tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6260387A JPS63232946A (en) 1987-03-19 1987-03-19 Abrasive method and polishing tool

Publications (1)

Publication Number Publication Date
JPS63232946A true JPS63232946A (en) 1988-09-28

Family

ID=13205067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6260387A Pending JPS63232946A (en) 1987-03-19 1987-03-19 Abrasive method and polishing tool

Country Status (1)

Country Link
JP (1) JPS63232946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507136A (en) * 2002-11-26 2006-03-02 コマデュア エス.エー. Rotating tools for shaping the shape of mineral materials such as sapphire, especially shaping the optical surface of a watch crystal
CN109773604A (en) * 2018-12-26 2019-05-21 河海大学常州校区 A kind of automatic controllable device and method of removal intersection hole bur

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507136A (en) * 2002-11-26 2006-03-02 コマデュア エス.エー. Rotating tools for shaping the shape of mineral materials such as sapphire, especially shaping the optical surface of a watch crystal
CN109773604A (en) * 2018-12-26 2019-05-21 河海大学常州校区 A kind of automatic controllable device and method of removal intersection hole bur

Similar Documents

Publication Publication Date Title
CN101352826B (en) Method for polishing inner concave surface of optical elements as well as device
CN101564824B (en) Method and device for polishing magneto-rheological inclined shaft
CN101559571A (en) Method and device for polishing magnetic field auxiliary flexible rotary brush for optical element
JPH11511395A (en) Deterministic magnetorheological finishing equipment
KR940007404B1 (en) Microscopic grinding method and device
WO1997014532A9 (en) Deterministic magnetorheological finishing
KR940007405B1 (en) Micro-abrading method and tool
JPS6138863A (en) Polishing apparatus
CN108544305A (en) A kind of device of the magnetorheological auxiliary V-groove high-efficiency high-accuracy polishing Ceramic Balls of cluster
CN108044495B (en) Directional polishing device and method for magnetic field remote control tool
KR101391810B1 (en) Polishing system using of mr fluid
CN107378648A (en) A kind of workpiece partial high-precision burnishing device based on magnetic rheology effect
JPH08192348A (en) Grinding and polishing method and device therefor
JPS63232946A (en) Abrasive method and polishing tool
JP2007098541A (en) Polishing tool and polish method
Kordonski et al. Magnetorheological suspension-based high precision finishing technology (MRF)
JP4458235B2 (en) Concave end machining method and apparatus
CN207387243U (en) A kind of Magnetorheological Polishing system of processing
JP2003062747A (en) Processing method using magnetic fluid and device therefor
KR101591569B1 (en) Polishing apparatus for the aspheric lens
JP2016137553A (en) Polishing apparatus and polishing method
JPS63272457A (en) Polishing method for workpiece
JPS63232950A (en) Polishing method and tool therefor
KR101351777B1 (en) Polishing system
Verma et al. Advancement in Magnetic Field Assisted Finishing Processes