EP1565728A1 - Verfahren zur bestimmung der menge an aus (meth)acrylsäure und/oder (meth)acryls ureestern abgeschiedenem polymer - Google Patents

Verfahren zur bestimmung der menge an aus (meth)acrylsäure und/oder (meth)acryls ureestern abgeschiedenem polymer

Info

Publication number
EP1565728A1
EP1565728A1 EP03753563A EP03753563A EP1565728A1 EP 1565728 A1 EP1565728 A1 EP 1565728A1 EP 03753563 A EP03753563 A EP 03753563A EP 03753563 A EP03753563 A EP 03753563A EP 1565728 A1 EP1565728 A1 EP 1565728A1
Authority
EP
European Patent Office
Prior art keywords
acrylic acid
meth
polymer
concentration
tert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03753563A
Other languages
English (en)
French (fr)
Inventor
Frank HÖFER
Sylke Haremza
Gerhard Wagenblast
Volker Schliephake
Ulrich JÄGER
Jürgen Schröder
Harald Keller
Cedric Dieleman
Rainer Diehl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1565728A1 publication Critical patent/EP1565728A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02416Solids in liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0251Solidification, icing, curing composites, polymerisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0255(Bio)chemical reactions, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature

Definitions

  • the present invention relates to a method for determining the amount of polymer preferably deposited from liquid (meth) acrylic acid and / or liquid (meth) acrylic acid esters.
  • (meth) acrylic acid stands for methacrylic acid and / or acrylic acid
  • (meth) acrylic acid ester for methacrylic acid ester and / or acrylic acid ester.
  • stabilizers are used in the thermal purification of the liquid (meth) acrylic acid and the liquid (meth) acrylic acid ester.
  • the decreasing throughput or the pressure loss is used as an indicator for the shutdown of the system.
  • a determination of the amount of soluble polymers as a measure of the "pre-damage" of the monomers such as (meth) acrylic acid and / or (meth) acrylic acid ester or the column occupancy is not yet known.
  • Polymer contents can be determined, among other things, by measuring the speed of propagation of sound waves, by changing the absorption behavior of electromagnetic radiation with, for example, IR, NIR, UV / Vis spectroscopy and by changing the emission spectrum recorded by Raman spectroscopy.
  • IR IR
  • NIR NIR
  • UV / Vis spectroscopy UV / Vis spectroscopy
  • Raman spectroscopy 2510-2520 report Cherfi et al. Using fiber-optic NIR measurements to monitor the homopolymerization of methyl methacrylate in a laboratory reactor.
  • Sivakumar et al. teach in synth. Metals 2002, 126 (2-3), 123-125 the use of UV / Vis spectroscopy to determine kinetic data in the oxidative polymerization of N-methylaniline in dilute sulfuric acid.
  • DE-A 2 931 282 relates to the continuous measurement of the turnover with ultrasound measurements using the example of the polymerization of vinyl chloride, in which the changes in the rheological properties such as complex viscosity, mean average and the partial shape in the polymerization system are determined.
  • Ultrasonic methods for controlling the course of the polymerization are used both in the conversion to polyethylene and polypropylene (Plast. Eng. 1999, 55 (10), 39-42) and in the bulk polymerization of styrene (Polym. React. Eng. 2000, 8 (3 ), 201-223) is used. ⁇
  • O-A 00/77515 relates to a method for determining the polymer concentration in the dispersion polymerization of p-phenylene terephthalamide.
  • the object was therefore to find a method for determining the amount of polymers deposited from liquid (meth) acrylic acid and / or liquid (meth) acrylic acid esters.
  • the invention was also based on the object of finding a process for the thermal separation of (meth) acrylic acid and / or (meth) acrylic acid esters, which makes it possible to carry out targeted process control, ie the operating conditions of the system, such as the type of stabilizer system, stabilizer concentration, Optimally adjust the co-stabilizer concentration, column pressure, bottom temperature and reflux ratio and thus achieve a lower column occupancy.
  • Another goal was to determine the point in time of the interruption of the system due to polymer accumulation and thus to optimize the economy of the system.
  • the object was achieved by a method for determining the amount of polymers deposited from (meth) acrylic acid and / or (meth) acrylic acid esters, in which, by means of transit time measurements of ultrasound waves, on the basis of changes in the absorption behavior of electromagnetic radiation with, for example, IR, NIR -, UV / Vis spectroscopy and Raman spectroscopy determine the concentration of polymeric impurity soluble in the monomer.
  • a polymer is all compounds from the respective acrylic monomer whose number of monomer units is> 2.
  • the process according to the invention is preferably used during the thermal purification of liquid (meth) acrylic acid and / or liquid (meth) acrylic acid esters following the preparation or upstream purification steps of the same.
  • (Meth) acrylic acid is generally prepared in a manner known per se by heterogeneously catalyzed gas phase partial oxidation of at least one C 3 or C 4 precursor of (meth) acrylic acid.
  • (Meth) acrylic acid esters are synthesized by processes known to those skilled in the art by acid-catalyzed esterification.
  • C 3 -alkanes, -alkenes, -alkanols and / or -alkanals and / or precursors thereof are suitable for the production of acrylic acid.
  • Propene, propane, propionaldehyde or acrolein are particularly advantageous.
  • those from which the actual C 3 starting compound only forms intermediately during the gas phase oxidation can also be used as the starting compounds.
  • propane is used as the starting material, this can be converted into a propene / propane mixture by known processes by catalytic oxide dehydrogenation, homogeneous oxide dehydrogenation or catalytic dehydrogenation.
  • Suitable propene / propane mixtures are also refinery products. pen (approx.
  • propane acts as a diluent gas and / or reactant.
  • the starting gas is usually mixed with gases which are inert under the selected conditions, such as, for. B. nitrogen (N), C0, saturated Ci-C ß hydrocarbons and / or water vapor and mixed with molecular oxygen (0) or an oxygen-containing gas at elevated temperatures, usually 200 to 450 ° C, and optionally increased Transition metallic pressure, e.g. B. Mo and V or Mo, W, Bi and Fe containing mixed oxide catalysts and oxidatively converted into acrylic acid " .
  • gases which are inert under the selected conditions, such as, for. B. nitrogen (N), C0, saturated Ci-C ß hydrocarbons and / or water vapor and mixed with molecular oxygen (0) or an oxygen-containing gas at elevated temperatures, usually 200 to 450 ° C, and optionally increased Transition metallic pressure, e.g. B. Mo and V or Mo, W, Bi and Fe containing mixed oxide catalysts and oxidatively converted into acrylic acid " .
  • These reactions can be carried out in several stages or in one stage.
  • the resulting reaction gas mixture contains, in addition to the desired acid, secondary components such as unreacted acrolein and / or propene, water vapor, carbon monoxide, carbon dioxide, nitrogen, oxygen, acetic acid, propionic acid, formaldehyde, further aldehydes and maleic acid or maleic anhydride: usually.
  • the reaction gas mixture usually contains, in each case on the entire reaction gas mixture,
  • Saturated Ci-Cö hydrocarbons such as methane and / or propane " , in addition to water vapor, carbon oxides and nitrogen, are particularly contained as inert diluent gases.
  • methacrylic acid can be prepared from C 4 -alkanes, -alkenes, -alkanols and / or -alkanals and / or precursors thereof, for example from tert. -Butanol, isobutene, isobutane, isobutyraldehyde, methacrolein, isobutyric acid or methyl tert-butyl ether. Numerous processes are known for removing the (meth) acrylic acid from such a reaction gas mixture. So z. B.
  • the absorbed (meth) acrylic acid can be subjected to a desorption or stripping process after absorption or before distillation in order to reduce the content of aldehydic or other carbonyl-containing secondary components.
  • gaseous (meth) acrylic acid mixture in other solvents such as, for example, solutions of (meth) acrylic acid in water or high-boiling solvents.
  • solvent mixtures that already have a high proportion of (meth) acrylic acid or recirculations from other material flows in the plant.
  • Absorption and purification can also be carried out in a suitable separation apparatus.
  • the (meth) acrylic acid mixture which can be used for the process according to the invention is preferred by absorption in diphenyl ether-biphenyl-phthalic acid ester mixture, for example in a weight ratio of 10:90 to 90:10 or from mixtures which additionally contain 0.1 to 25% by weight. -% (based on the total amount of biphenyl and diphenyl ether) of at least one ortho-phthalic acid ester, such as. B. ortho-phthalic acid dimethyl ester, ortho-phthalic acid diethyl ester or ortho-phthalic acid dibutyl ester were obtained.
  • ortho-phthalic acid dimethyl ester, ortho-phthalic acid diethyl ester or ortho-phthalic acid dibutyl ester were obtained.
  • the use of water as an absorbent is also preferred.
  • the mixture present after absorption generally contains 10 to 50% by weight of (meth) acrylic acid.
  • the (meth) acrylic acid absorbed in the absorbent can be directly or indirectly previously, for example by a quench, such as. B. spray coolers, venturi washers, bubble columns or other apparatus with sprinkled surfaces, or tube bundle or plate heat exchangers, are cooled or heated.
  • (meth) acrylic acid esters is carried out in a variety of ways in a manner known per se by esterification of (meth) acrylic acid with an alcohol, for. B. an alkanol.
  • (Meth) acrylic acid esters are generally obtained via a homogeneously or heterogeneously catalyzed esterification, as described, for example, in Kirk Oth er, Encyclopedia of Chemical Technology, 4th Ed., 1994, pages 301-302. There a method is described in which acrylic acid, alkanol and catalyst, such as. B. sulfuric acid, with recycle streams in a reactor with an attached reaction column in which the target ester, excess alkanol and the water formed in the reaction are removed overhead.
  • catalyst such as. B. sulfuric acid
  • DE-OS 1 468 932, 2 226 829 and 2 252 334 describe processes for the preparation of (meth) acrylic acid alkyl esters by reacting (meth) acrylic acid with monohydric alkanols having 1 to 5 carbon atoms in a homogeneous liquid phase at elevated temperature and in the presence of proton-providing catalysts.
  • the acidic catalysts that can be used are preferably sulfuric acid, p-toluenesulfonic acid, benzenesulfonic acid, dodecylbenzenesulfonic acid, methanesulfonic acid or mixtures thereof; acidic ion exchangers are also conceivable.
  • Sulfuric acid, p-toluenesulfonic acid and methanesulfonic acid are particularly preferably used; sulfuric acid and p-toluenesulfonic acid are very particularly preferred.
  • the catalyst concentration based on the reaction mixture is, for example, 1 to 20, preferably 5 to 15,% by weight.
  • Suitable alcohols for the reaction are those which have 1 to 8 carbon atoms.
  • Methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, dimethyla inoethanol and 2-ethylhexanol are preferably used, particularly preferably methanol, ethanol, n-butanol, diethyl inoethanol and 2-ethylhexanol.
  • the separation device into which the mixture containing (meth) acrylic acid and / or the (meth) acrylic acid ester is fed can be a distillation, rectification, absorption, desorption column or a column for fractional condensation.
  • Thermal separation devices such as distillation and rectification columns or devices for cooling the absorption mixture are of interest for the process according to the invention. These are of a type known per se with internally separable internals and at least one condensation option in the head region or apparatuses with a plurality of devices connected in series for cooling the absorption mixture.
  • column internals in particular trays, packings and / or packing elements.
  • bottoms bell bottoms, sieve bottoms, valve bottoms, Thormann bottoms and / or dual flow bottoms are preferred; of the fillings are those with rings, spirals, saddle bodies, Raschig, Intos or Pall rings, Barrel or Intolax saddles, Top-Pak etc. or braids preferred.
  • the total number of theoretical plates in the column is typically 5 to 100, preferably 10 to 80, particularly preferably 20 to 80 and very particularly preferably 30 to 70.
  • the operating pressure in the column in a rectification column is generally from 10 mbar to atmospheric pressure, preferably 20 mbar to atmospheric pressure, particularly preferably 20 to 800 mbar and very particularly preferably 20 to 500 mbar.
  • the mixture containing (meth) acrylic acid and / or (meth) acrylic acid ester is generally fed in in the lower half of the column, preferably in the lower third.
  • the reflux in which the column is operated can be, for example, 100: 1 to 1: 100, preferably 50: 1 to 1:50, particularly preferably 20: 1 to 1:20 and very particularly preferably 10: 1 to 1:10 ,
  • the gas loading factor F of such a column is usually in the range from 1 to 3 Pa 0 ' 5 , preferably from 1.5 to 2.5 Pa 0 ' 5 .
  • the liquid velocity is usually in the range from 1 to 50 m / h, preferably from 2 to 10 m / h.
  • the mixture to be separated in the column is usually stabilized with at least one stabilizer.
  • This at least one stabilizer can be added to the mixture containing the (meth) acrylic acid and / or (meth) crylic acid ester and / or during the separation, for example using a reflux stream.
  • Suitable stabilizers are, for example, phenolic compounds, N-oxyl compounds, aromatic amines, phenylenediamines, imines, sulfonamides, oximes, oxime ethers, hydroxylamines, urea derivatives, phosphorus-containing compounds, sulfur-containing compounds, complexing agents based on TAA (tetraazaannulene) and metal salts, and, if appropriate Mixtures of these.
  • Phenolic compounds are e.g. B. phenol, alkylphenols, for example o-, m- or p-cresol (methylphenol), 2-tert-butyl-4-methylphenol, 2, 6-di-tert. -butyl-4-methylphenol, 2-tert-butylphenol, 4-tert. -Butylphenol, pyrocatechol (1, 2-dihydroxy-benzene), 2-tert-butyl-6-methylphenol, 2, 4, 6-tris-tert. -butylphenol, 2, 6-di-tert-butylphenol, 2, 4-di-tert-butylphenol, 4-tert.
  • B. phenol, alkylphenols for example o-, m- or p-cresol (methylphenol), 2-tert-butyl-4-methylphenol, 2, 6-di-tert. -butyl-4-methylphenol, 2-tert-butylphenol, 4-tert. -Butylphenol, pyrocatechol (1, 2-
  • hydroquinone methyl hydroquinone, 4-methoxyphenol (hydroquinone mono ethyl ether), 2, 5-di-tert. -butyl hydroquinone, 2-methyl-p-hydroquinone, tert-butyl hydroquinone, benzoquinone.
  • N-oxyls (nitroxyl or N-oxyl radicals, compounds which have at least one> N-0 »group) are, for. B.
  • Aromatic amines are e.g. B. N, N-diphenylamine, N-nitrosodiphenylamine, nitrosodiethylaniline, phenylenediamines are z.
  • Imines are e.g. B. methylethylimine, (2-hydroxyphenyl) benzoquinonimine, (2-hydroxyphenyl) benzophenonimine, N, N-dimethylindoaniline, thionine (7-amino-3-imino-3H-phenothiazine), methylene violet (7-dimethylamino-3- phenothiazinon).
  • Sulfonamides which act as stabilizers are, for example, N-methyl-4-toluenesulfonamide, N-tert-butyl-4-toluenesulfonamide, N-tert-butyl-N-oxyl-4-toluenesulfonamide, N, N'-bis (4 -sulfanila-mid) piperidine, 3- ⁇ [5- (4-aminobenzoyl) -2, 4-dimethylbenzenesulfonyl] ethylamino ⁇ -4-methylbenzenesulfonic acid, as described in DE-A 102 58 329.
  • Oximes can, for example, be aldoximes, ketoximes or amidoximes, as described, for example, in DE-A 101 39 767, preference is given to diethyl ketoxime, acetone oxime, methyl ethyl ketoxime, cyclohexanone oxime, diethyl glyoxime, 2-pyridinal doxime, salicylaldoxime or other aliphatic or aromatic oximes or other methods their reaction products with alkyl transfer agents.
  • Hydroxylamines are e.g. B. N, N-diethylhydroxylamine.
  • Urea derivatives are, for example, urea or thiourea.
  • Phosphorus compounds are e.g. B. triphenylphosphine, triphenyl phosphite, hypophosphorous acid, trinonyl phosphite or triethyl phosphite.
  • Sulfur-containing compounds are e.g. B. diphenyl sulfide, phenothiazine and sulfur-containing natural products such as cysteine.
  • TAA tetraazaannulene
  • Metal salts are e.g. B. copper, manganese, cerium, nickel, chromium carbonate, chloride, dithiocarbamate, stearate, sulfate, salicylic lat, acetate or ethylhexanoate.
  • Preferred stabilizers are phenothiazine, o-, - or p-cresol (methylphenol), 2-tert-butyl-4-methylphenol, 2, 6-di-tert. -butyl-4-methylphenol, 2-tert-butylphenol, 4-tert. -Butylphenol, 2, 4-di-tert. -butylphenol, pyrocatechol (1, 2-dihydroxybenzene), 2, 6-di-tert-butylphenol, 4-tert. -Butyl-2, 6-dimethylphenol,
  • Phenothiazine, o-, m- or p-cresol (methylphenol), 2-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-methylphenol, 4-tert are particularly preferred.
  • Phenothiazine, o-, - or p-cresol (methylphenol), 2, 6-di-tert are very particularly preferred.
  • the way of adding the stabilizer is not limited.
  • the stabilizer added can be added individually or as a mixture, in liquid or in dissolved form in a suitable solvent, which solvent itself can be a stabilizer, such as. B. described in DE-A 102 00 583.
  • the stabilizer can be added, for example, in a suitable formulation at any point in the column, an external cooling circuit or a suitable reflux stream.
  • the addition directly into the column or in a reflux stream is preferred.
  • stabilizers can either be supplied independently of one another at different or the same metering points as mentioned above, or they can be dissolved independently of one another in different solvents.
  • the stabilizers can also advantageously be used together with a compound known as a costabilizer, for example with oxygen-containing gases.
  • the stabilizer concentration in the column can be between 1 and 10,000 ppm, preferably between 10 and 5000 ppm, particularly preferably between 30 and 2500 ppm and in particular between 50 and 1500 ppm. In the area of the side deductions, the stabilizer concentration is preferably 100 to 1000 ppm.
  • the dissolved stabilizer (mixture) is sprayed onto any column internals, individual trays of the separating device or column cover.
  • the process according to the invention is preferably used during the thermal purification of the mixture containing (meth) acrylic acid and / or (meth) acrylic acid ester.
  • the crude (meth) acrylic acid and / or crude (meth) acrylic acid esters removed from the columns can have any purities which are not essential according to the invention, for example at least 90% by weight, preferably at least 93% by weight, particularly preferably at least 94 % By weight based on the total reaction mixture.
  • the value for the content of the material to be examined is constant over the course of the measurement.
  • the preferred crude acrylic acid taken off in the side draw as a medium boiler contains, in addition to acrylic acid, secondary components, these are generally 0.05 to 2% by weight of lower carboxylic acids, for example
  • the crude (meth) acrylic acid esters taken off at the top contain, in addition to at least 93.2% by weight (meth) acrylic acid esters (based on the entire reaction mixture), also secondary components.
  • these are condensation products of the alcohols with one another under acidic conditions, impurities in the monomers and alcohols used or secondary components of the ester preparation.
  • the method according to the invention for determining the amount of polymers deposited from liquid (meth) acrylic acid and / or liquid (meth) acrylic acid esters is preferably part of an overall method for producing (meth) acrylic acid and / or (meth) acrylic acid esters. What has been said above applies to the production processes of the same.
  • These methods are preferably non-invasive methods which enable the polymer content to be determined inline and / or online.
  • the methods according to the invention can also be invasive, ie. H. by interfering with the system z. B. be carried out by taking a sample, and the determination of the content of polymers is carried out discontinuously.
  • the invasive offline determination is usually not carried out using a turbidity test, but can be carried out, for example, by evaporating the liquid and weighing out the remaining polymer or using one of the aforementioned measurement methods such as ultrasound measurements. gene, by means of IR, NIR, UV / Vis spectroscopy and Raman spectroscopy.
  • the speed of propagation of an ultrasonic wave train, the absorption behavior of electromagnetic radiation and the emission measured using Raman methods depend on the medium, ie (meth) acrylic acid and / or (meth) acrylic acid ester or polymer, with a changing composition changed and thus enables detection or concentration determination of polymer.
  • Ultrasonic measurements are carried out in a known manner in which the polymer content is measured with the aid of the speed of propagation of sound waves. These spread in solid, liquid and gaseous phases so that measurements can be carried out in all physical states.
  • the process according to the invention is preferably carried out in the liquid phase.
  • ultrasonic measuring devices for example from SensoTech GmbH, consisting of a probe which has a transmitter and a receiver.
  • the measured speed of the ultrasonic wave train can be used to calculate the speed of sound, which is directly related to the concentration of dissolved polymeric contamination.
  • the amount of polymer deposited is related to the dissolved polymer concentration ( Figure 1).
  • the frequency range of the ultrasonic wave train is probe-specific and is usually in the range of 1 to 2 GHz.
  • the preferred pressure range in which the measurements are carried out corresponds to the top pressure of the separating device and is 100 to 700 mbar, particularly preferably 150 to 400 mbar.
  • the pressure at the measuring point usually fluctuates no more than 20 mbar, preferably no more than 10 mbar, particularly preferably no more than 5 mbar, very particularly preferably no more than 2 mbar around the value for which the calibration line was recorded.
  • the preferred measuring temperature in the separating device is in the range between 20 and 200 ° C., preferably between 25 and 100 ° C. and very particularly preferably between 30 and 95 ° C. and in the region of the side deductions preferably between 80 and 90 ° C., the temperature being on the measuring point usually fluctuates no more than 10 ° C, preferably no more than 5 ° C and particularly preferably no more than 1 ° C around the value for which the calibration curve was recorded.
  • the suitable sensor can be installed at any point in the production process, but preferably at points where the medium to be measured is already in liquid form.
  • the fluid is the condensable substances from the reaction gas or the condensable substances taken up in a liquid from the reaction gas or a mixture of receiving liquid and condensable substances from the reaction gas or the liquid reaction product of the ester production, the composition of which by thermal or mechanical separation process or addition of other substances was modified.
  • the probe is installed in the distillation column or at locations where the liquid from the distillation column is passed as unchanged as possible.
  • the installation of the measuring device at locations where the liquid to be measured is regularly replaced by natural or forced convection is very particularly preferred.
  • a suitable sensor can e.g. B. can be installed directly in the distillation column.
  • a suitable sensor can also be attached in a by-pass to liquid-carrying components in the separating device.
  • the senor can be attached in supply or discharge lines to the separation device. It is also possible to operate the detector as a “clamp-on” system, that is to say not inline, through a suitable supply line without being immersed in the medium to be determined.
  • the composition of the mixture to be measured and the quantitative content of (meth) acrylic acid and / or (meth) acrylic acid esters and further secondary components and stabilizers or stabilizer mixture is irrelevant for the method according to the invention and has no disruptive influence on the measurements.
  • the water content at the measuring point is preferably 50 to 1000 ppm, particularly preferably 100 to 700 ppm and particularly preferably 200 to 500 ppm.
  • the content of dissolved polymeric contamination at the measuring point is preferably in the concentration range below 5
  • % By weight, preferably below 4% by weight, particularly preferably below 3% by weight and very particularly preferably below 2.8% by weight, in each case based on (meth) acrylic acid and / or (meth) acrylate.
  • the concentration of dissolved polymeric impurities is determined under the conditions mentioned.
  • the concentration of poly (meth) acrylic acid and / or poly (meth) acrylic acid ester [% by weight] and speed of sound [m / s], which result directly from the measured transit time, are linearly dependent on one another. Linear regression gives a calibration curve by means of which the content of polymer dissolved in the monomer can be determined.
  • the concentration of dissolved polymer is directly related to the amount of polymer deposited (FIG. 1).
  • Such a device can be, for example, the Bruker spectrometer ISF66 with beam splitter CaF (NIR), KBr (MIR) or quartz (UV / Vis) or detector InSb (NIR), DTGS (MIR) or Si diode (ÜV / Vis) that can measure the near and middle wavelength range of the electromagnetic spectrum.
  • NIR beam splitter CaF
  • MIR KBr
  • NIR detector InSb
  • MIR DTGS
  • Si diode ÜV / Vis
  • the detector D413 in the NIR range, the detector D301 in the IR range and the detectors D510 or D520 in the UV / Vis range can be used, for example. Area can be used.
  • the aforementioned detectors are sold by the Bruker company.
  • the frequency range of the electromagnetic radiation comprises for IR and NIR spectroscopy the complete IR range of the electromagnetic spectrum, i.e. thus in the wavelength range from 1 m to 1 mm (cf. H. Günzler, H.-U. Gremlich, IR-Spectroscopy, An Introduction, Wiley-VCH, Weinheim, 2002, page 9ff) and for the UV / Vis Spectroscopy the ultraviolet range (wavelength section 200 to 400 nm) and the visible range (wavelength section 400 to 800 nm).
  • the concentration calculation for dissolved polymeric impurities is based on calibration curves that are recorded under the operating conditions or beforehand under controlled laboratory conditions.
  • the amount of polymer deposited can be deduced analogously to the ultrasound measurements.
  • the measuring conditions such as pressure and temperature, are the operating conditions of the separating device analogous to the ultrasonic measurements. What has been said above applies.
  • composition of the mixture to be measured and the quantitative content of (meth) acrylic acid and / or (meth) acrylic acid esters and further secondary components and stabilizers or stabilizer mixture is for the method according to the invention by measuring the absorption coefficient in infrared, near infrared, ultraviolet and / or visible range of the electromagnetic spectrum is irrelevant and has no disruptive influence on the measurements.
  • the water content at the measuring point is analogous to the method with ultrasound methodology.
  • the content of dissolved polymeric impurities at the measuring point is in the concentration range below 5% by weight, preferably below 4% by weight, very particularly preferably below 3% by weight and particularly preferably below 2.7% by weight. %, each based on (meth) acrylic acid and / or (meth) acrylic acid ester.
  • measuring unit installation of such a measuring unit is possible in a by-pass on liquid-carrying internals of the column.
  • a flow-through cell is preferably used, in which a continuous non-invasive measurement is carried out.
  • the measuring unit is built into a by-pass.
  • Another method according to the invention for determining the polymer impurity content is Raman spectroscopy.
  • Raman spectroscopic measurements are carried out in a known manner by determining the content of dissolved polymer with the aid of the emission of electromagnetic radiation.
  • Raman spectrometers are used in the method according to the invention, for example from the Bruker company.
  • a device can be, for example, the Bruker spectrometer ISF66 with Raman module FRA106.
  • the frequency range of electromagnetic radiation is known to be in the IR range of the electromagnetic spectrum (cf. general textbooks such as M. Hesse, H. Meier, B. Zeeh, Spectroscopic Methods in Organic Chemistry, Thieme Verlag, Stuttgart, 6th edition, 2002, Page 67ff), ie in the wavelength range from 1 ⁇ m to 1 mm.
  • the determination of the concentration of dissolved polymeric impurities and the determination of the amount of deposited polymer are carried out analogously to the measurements of the absorption coefficient of electromagnetic radiation.
  • the amount of polymer deposited can be concluded analogously to the ultrasound measurements.
  • the measuring conditions such as pressure and temperature, are the operating conditions of the separating device analogous to the ultrasonic measurements. What has been said above applies.
  • composition of the mixture to be measured and the quantitative content of (meth) acrylic acid and / or (meth) acrylic acid esters and further secondary components and stabilizers or stabilizer mixture is irrelevant for the method according to the invention by means of Raman spectroscopy and has no disruptive influence on the measurements.
  • the water content at the measuring point is analogous to the method with ultrasound methodology.
  • the content of dissolved polymeric impurities at the measuring point is in the concentration range below 5% by weight, preferably below 4% by weight, very particularly preferably below half of 3% by weight and particularly preferably below 2.7% by weight, based in each case on (meth) acrylic acid and / or (meth) acrylic acid ester.
  • a Raman measuring unit is installed at the installation locations mentioned in the same way as for ultrasonic measurements or measuring methods such as IR, NIR and UV / Vis spectroscopy.
  • the measurement methods according to the invention enable targeted control of the method, for example the determination of the type of stabilizer and the setting of the optimal amount of stabilizer. This is done in a target-actual comparison of the measured values on the basis of the calibration or calibration curves.
  • the content of polymer dissolved in the monomer and the amount of polymer separated out on the basis of this determine the type of stabilizer to be used and the amount of stabilizer required to stabilize the (meth) acrylic acid and / or (meth) acrylic acid ester. This can be metered or added, for example, controlled by a process control system.
  • the economically optimal point in time for shutting down the system for cleaning can be determined precisely, thus reducing the overall frequency of the shutdown.
  • a series of concentrations of polyacrylic acid in acrylic acid is measured at 25 ° C.
  • acrylic acid is placed in a flat-bottomed flask and polyacrylic acid (Aldrich, Order No. 32.366-7, molecular weight approx. 2000 g / mol) is added in several steps.
  • polyacrylic acid Aldrich, Order No. 32.366-7, molecular weight approx. 2000 g / mol
  • After a clear solution is available, use a LiquiSonic-30 ultrasonic measuring device in combination with a LiquiSonic immersion probe reactor, Ser.-No. 4682, protection class IP65, 1 60 cm, the speed of sound measured by SensoTech.
  • the measuring points can be fitted with a linear function
  • the samples with the concentration ranges from 0.1 to 2.7% by weight of polyacrylic acid are used for evaluation. Due to the clear spectral differences, inter alia due to the C a ii pr ⁇ -H and C 0 ⁇ ef -H vibrations, the following spectral ranges are used for the evaluation: 3177 to 2797 cm -1 , 1788 to 1561 cm -1 and 921 to 407 cm -1 . The absolute measurement error in the evaluated concentration range is max. 0.3%.
  • Double distilled, unstabilized acrylic acid is mixed with 10 ppm phenothiazine and stored in an oven in an oven at 120 ° C internal temperature.
  • the samples are removed from the drying cabinet after 35 minutes (beginning to turn pink) and a solution of co-stabilizer is metered in within 5 minutes, so that a total concentration of 35 ppm stabilizer is formed.
  • the samples are further annealed at 120 ° C and the time until complete, visible polymerization is determined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Nicht-invasives Verfahren zur inline und/oder online Bestimmung an aus (Meth)acrylsäure und/oder (Meth)acrylsäureestern abgeschiedenem Polymer mittels Schallgeschwindigkeitsmessungen, Messungen der Absorptionskoeffizienten im Infrarot-, Naheninfrarot-, Ultravioletten und/oder sichtbaren Bereich des Spektrums elektromagnetischer Strahlung sowie Ramanspektroskopie, das es gestattet, während der thermischen Aufreinigung eine gezielte Steuerung der Fahrparameter vorzunehmen.

Description

Verfahren zur Bestimmung der Menge an aus (Meth) acrylsäure und/ oder (Meth) acrylsäureestern abgeschiedenem Polymer
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung der Menge an bevorzugt aus flüssiger (Meth) crylsäure und/oder flüssigen (Meth) acrylsäureestern abgeschiedenem Polymer.
(Meth) acrylsäuren und (Meth) acrylsäureester sind wertvolle Ausgangsverbindungen zur Herstellung von Polymerisaten, die z. B. als Klebstoffe, Lacke oder Dispersionen Anwendung finden.
Der Begriff (Meth) acrylsäure steht in dieser Schrift verkürzend für Methacrylsäure und/oder Acrylsäure, (Meth) crylsäureester für Methacrylsäureester und/oder Acrylsäureester.
Zur Vermeidung der Polymerbildung der (Meth) acrylsäure und/oder (Meth) acrylsäureester, werden bei der thermischen Aufreinigung der flüssigen (Meth) acrylsäure und der flüssigen (Meth) acr lsäureester Stabilisatoren eingesetzt.
Dennoch treten nach längeren Laufzeiten in den Trennvorrichtungen Polymerisatbildungen auf, die zur regelmäßigen Abstellung und zu einer aufwendigen Reinigung der Anlage zwingen. Diese Reinigung kann bekannterweise mechanisch, thermisch oxidativ oder durch Laugenspülung erfolgen. Alle Verfahren sind jedoch zeitaufwendig und aufgrund des Anlagenausfalls auch sehr kostspielig.
Als Indikator für die Abstellung der Anlage wird die geringer werdende Durchsatzmenge oder der Druckverlust verwendet. Eine Bestimmung der Menge an löslichen Polymeren als Maß für die „Vorschädigung" der Monomere wie (Meth) acrylsäure und/oder (Meth) acrylsäureester oder der Kolonnenbelegung ist bisher nicht bekannt .
Polymergehalte lassen sich u. a. durch die Messung der Ausbreitungsgeschwindigkeit von Schallwellen, durch die Veränderung des Absorptionsverhaltens von elektromagnetischer Strahlung mit zum Beispiel IR-, NIR-, UV/Vis-Spektroskopie sowie durch die Veränderung im mittels Ramanspektroskopie aufgenommenem Emissionsspektrum bestimmen. In J. Appl. Polym. Sei. 2002, 85(12), 2510-2520 berichten Cherfi et al . über fiberoptische NIR-Messungen zur Verfolgung der Homo- polymerisation von Methylmethacrylat in einem Laborreaktor.
Das gleiche Messverfahren wird von Vieira et al . in einem Semi- Batc -Reaktor zur Umsatzbestimmung bei der Emulsionscopolymerisa- tion von Butylacrylat und Methylmethacrylat eingesetzt (J. Appl. Polym. Sei. 2002, 84(14), 2670-2682).
Faragalla et al . beschreiben in Polym. Bull. 2002, 47(5), 421-427 den Einsatz von FT-NIR-Spektroskopie zur Umsatzbes immung bei der Copolymerisation von 2-Hydroxyethylmethacrylat und N-Vinylpyrro- lidon.
Die Anwendung von Ramanspektroskopie zur Verfolgung chemischer Reaktionen, insbesondere der gezielten Polymerisation von Monomeren mit Radikalstartern, wird von Adar et al . in Appl. Spectr. Rev. 1997, 32(1-2), 45-101 beschrieben.
In Mol. Phys. 1975, 30(3), 911-919 beschreiben Jackson et al . den Einsatz von Absorptionsmethoden bei der thermischen Polymerisation von Styrol . Dieses Verfahren wird von Lousberg et al . mit NIR-Spektroskopie verfolgt (J. Appl. Polym. Sei. 2002, 84(1), 90-98) .
Sivakumar et al . lehren in Synth. Metals 2002, 126 (2-3), 123-125 den Einsatz der UV/Vis-Spektroskopie zur Ermittlung kinetischer Daten bei der oxidativen Polymerisation von N-Methylanilin in verdünnter Schwefelsäure.
DE-A 2 931 282 betrifft die kontinuierliche Messung des Umsatzes mit Ultraschallmessungen am Beispiel der Polymerisation von Vinylchlorid, in dem die Veränderungen der rheologischen Eigenschaften wie Komplexviskosität, Mitteldurchschnitt und der Teilσhengestalt im Polymerisationssystem bestimmt werden.
DD 159 673 und Dinger et al. in Plaste Kautsch. 1983, 30(12), 665-668 offenbaren die Anwendung von Ultraschallmessungen bei der E ulsionspolymerisation von Vinylacetat.
Die Bestimmung des Polymergehalts in Flüssigkeiten wird durch Untersuchung von Flüssigkeitseigenschaften in DE-A 3 420 794 beschrieben. Canagello et al . beschreiben in J. Appl. Polym. Sei. 1995, 57(1), 1333-1346 ein Verfahren zur Bestimmung des Umsatzgrades bei der Homopolymerisation von Vinylacetat und von Methylmethacrylat anhand von Ultraschallmessungen.
In Che . Tech. 1999, 28(3), 30,33-34 wird die Anwendung von Ultraschallmessungen bei der Umsatzbesti mung in flüssigen Stoffsystemen, speziell bei Polymerisationssystemen gelehrt.
Ultraschallmethoden zur Kontrolle des Polymerisationsverlaufs werden sowohl bei der Umsetzung zu Polyethylen und Polypropylen (Plast. Eng. 1999, 55(10), 39-42) als auch bei der Bulk Polymerisation von Styrol (Polym. React. Eng. 2000, 8(3), 201-223) verwendet .
O-A 00/77515 betrifft ein Verfahren zur Bestimmung der Polymerkonzentration bei der Dispersionspolymerisation von p-Phenylente- rephthalamid.
Diese Verfahren zeigen lediglich die Anwendbarkeit der Messmethoden bei Polymerisationsreaktionen, also bevorzugt in hohen Konzentrationsbereichen der Polymere.
Ein weiterer Nachteil ist die beschriebene Durchführung in Lösun- gen beziehungsweise in Emulsionen und nicht in Reinsubstanzen der eingesetzten Monomere.
Es ist bekannt, dass die Bildung von polymeren Ablagerungen durch eine radikalische Reaktion des Monomers erfolgt. Dadurch werden Polymere gebildet, deren Kettenlängen stark unterschiedlich sind. Daraus folgt, dass die Ablagerung von polymeren Bestandteilen in thermischen Trennapparaten mit der Bildung von löslichen Polymerketten einhergeht (Figur 1) .
Es bestand daher die Aufgabe, ein Verfahren zur Bestimmung der Menge an aus flüssiger (Meth) acrylsäure und/oder flüssigen (Meth) acrylsäureestern abgeschiedenen Polymeren zu finden.
Ferner lag der Erfindung die Aufgabe zugrunde, ein Verfahren zur thermischen Trennung von (Meth) acrylsäure und/oder (Meth) acrylsäureestern zu finden, welches es gestattet, eine gezielte Prozesssteuerung vorzunehmen, d.h. die Betriebsbedingungen der Anlage wie beispielsweise Art des Stabilisatorsystems, Stabilisatorkonzentration, Co-Stabilisatorkonzentration, Kolonnendruck, Sumpftemperatur und Rückflußverhältnis optimal einzustellen und so eine geringere Belegung der Kolonne zu erreichen. Weiterhin war ein Ziel, den Zeitpunkt der aufgrund von Polymeranfall erforderlichen Unterbrechung der Anlage zu ermitteln und so die Wirtschaftlichkeit der Anlage zu optimieren.
Die Aufgabe wurde gelöst durch ein Verfahren zur Bestimmung der Menge an aus (Meth) crylsäure und/oder (Meth) acrylsäureestern abgeschiedenen Polymeren, in dem man mittels Laufzeitmessungen von Ultraschallwellen, anhand von Veränderungen des Absorptionsverhaltens von elektromagnetischer Strahlung mit zum Beispiel IR-, NIR-, UV/Vis-Spektroskopie sowie mittels Ramanspektroskopie die Konzentration an im Monomer löslicher polymerer Verunreinigung bestimmt .
Als Polymer im Sinne dieser Erfindung gelten alle Verbindungen aus dem jeweiligen Acrylmonomer, deren Anzahl an Monomereinheiten > 2 ist.
Das erfindungsgemäße Verfahren findet vorzugsweise während der thermischen Aufreinigung von flüssiger (Meth) acrylsäure und/oder flüssigen (Meth) acrylsäureestern im Anschluss an die Herstellung oder vorgeschalteten Aufreinigungsschritten derselben Anwendung.
Ferner wurde ein Verfahren zur thermischen Aufreingung von flüs- siger (Meth) acrylsäure und/oder flüssigen (Meth) acrylsäureestern gefunden, welches dadurch gekennzeichnet ist, dass man den Gehalt an abgeschiedenen Polymeren aus flüssiger (Meth) acrylsäure und/ oder flüssigen (Meth) acrylsäureestern während der thermischen Trennung nicht-invasiv, d. h. ohne Probenentnahme inline und/oder online bestimmt und über den so ermittelten Gehalt die Betriebs- bedingungen der Anlage einstellt.
(Meth) acrylsäure wird auf an sich bekannte Weise in der Regel durch heterogen katalysierte Gasphasenpartialoxidation mindestens eines C3- beziehungsweise C4-Vorläufers der (Meth) acrylsäure her- gestellt. (Meth) acrylsäureester werden nach dem Fachmann bekannten Verfahren durch sauer katalysierte Veresterung synthetisiert.
Zur Herstellung von Acrylsäure sind C3-Alkane, -Alkene, -Alkanole und/oder -Alkanale und/oder Vorstufen davon geeignet. Besonders vorteilhaft sind Propen, Propan, Propionaldehyd oder Acrolein. Als AusgangsVerbindungen sind aber auch solche verwendbar, aus denen sich die eigentliche C3-Ausgangsverbindung erst während der Gasphasenoxidation intermediär bildet. Bei Einsatz von Propan als Ausgangsstoff kann dieses nach bekannten Verfahren durch kataly- tische Oxidehydrierung, homogene Oxidehydrierung oder katalyti- sche Dehydrierung zu einem Propen-/Propan-Gemiseh umgesetzt werden. Geeignete Propen-/Propan-Gemisehe sind auch Raffinerie-Pro- pen (ca. 70 % Propen und 30 % Propan) oder Crackerpropen (ca. 95 % Prσpen und 5 % Propan) . Bei Einsatz eines Propen-/Propan-Gemi- sches zur Herstellung der bevorzugten Acrylsäure wirkt Propan als Verdünnungsgas und/oder Reaktand.
Bei der Herstellung der Acrylsäure wird in der Regel das Ausgangsgas mit unter den gewählten Bedingungen inerten Gasen wie z . B. Stickstoff (N ) , C0 , gesättigten Ci-Cß-Kohlenwasserstoffen und/oder Wasserdampf verdünnt und im Gemisch mit molekularem Sau- erstoff (0 ) oder einem Sauerstoffhaltigen Gas bei erhöhten Temperaturen, üblicherweise 200 bis 450 °C, sowie gegebenenfalls erhöhtem Druck über übergangsmetallische, z. B. Mo und V beziehungsweise Mo, W, Bi und Fe enthaltende Mischoxidkatalysatoren geleitet und oxidativ in Acrylsäure" umgewandelt. Diese Umsetzungen können mehrstufig oder einstufig durchgeführt werden.
Das entstehende Reaktionsgasgemisch enthält neben der gewünschten Säure Nebenkomponenten wie nicht umgesetztes Acrolein und/oder Propen, Wasserdampf, Kohlenmonoxid, Kohlendioxid, Stickstoff, Sauerstoff, Essigsäure, Propionsäure, Formaldehyd, weitere Aldehyde und Maleinsäure beziehungsweise Maleinsäureanhydr: ä. Üblicherweise enthält das Reaktionsgasgemisch, jeweils bezogen auf das gesamte Reaktionsgasgemisch,
1 bis 30 Gew.-% Acrylsäure
0,01 bis 1 Gew.-% Propen
0,05 bis 1 Gew.-% Acrolein
0,05 bis 10 Gew.-% Sauerstoff
0,01 bis 3 Gew.-% Essigsäure 0,01 bis 2 Gew.-% Propionsäure
0,05 bis 1 Gew.-% Formaldehyd
0,05 bis 2 Gew.-% sonstige Aldehyde
0,01 bis 0,5 Gew.-% Maleinsäure und Maleinsäureanhydrid
sowie geringe Mengen Aceton. und als Restmenge inerte Verdünnungsgase. Als inerte Verdünnungsgase sind insbesondere gesättigte Ci-Cö-Kohlenwasserstoffe, wie Methan und/oder Propan", daneben Wasserdampf, Kohlenoxide und Stickstoff enthalten.
Analog kann Methacrylsäure aus C4-Alkanen, -Alkenen, -Alkanolen und/oder -Alkanalen und/oder Vorstufen davon hergestellt werden, beispielsweise aus tert . -Butanol , Isobuten, Isobutan, Isobutyr- aldehyd, Methacrolein, Isobuttersäure oder Methyl-tert .-butyle- ther . Zur Abtrennung der (Meth) acrylsäure aus einem solchen Reaktionsgasgemisch sind zahlreiche Verfahren bekannt. So wird z. B. in DE-C 2 136 396 oder DE-A 2 449 780 die (Meth) acrylsäure aus den bei der katalytischen Gasphasenoxidation erhaltenen Reaktionsga- sen durch Gegenstro absorption mit einem hochsiedenden hydrophoben Lösemittel abgetrennt. Aus dem anfallenden (meth) crylsäu- rehaltigen Gemisch wird die Roh- (Meth) acrylsäure destillativ abgetrennt. Absorption von (Meth) acrylsäure in hochsiedenden Lösemitteln ist z. B. auch in der DE-OS 2 241 714 und DE-OS 4 308 087 beschrieben.
Weit verbreitet ist auch die Absorption des Reaktionsgases in Wasser oder wässriger (Meth) acrylsäurelösung als Absorptionsmittel . Anschließend wird die Roh- (Meth) acrylsäure durch destillative Abtrennung vom Absorptionsmittel erhalten.
Dabei kann die absorbierte (Meth) acrylsäure nach der Absorption oder vor der Destillation noch einem Desorptions- oder Stripppro- zess unterworfen werden, um den Gehalt an aldehydischen oder an- deren carbonylhaltigen Nebenkomponenten zu verringern.
Ebenso ist es möglich, das gasförmige (Meth) acrylSäuregemisch in anderen Lösemitteln wie beispielsweise Lösungen von (Meth) acrylsäure in Wasser oder hochsiedenden Lösemitteln einzubringen. Da- runter werden auch Lösemittelgemische verstanden, die bereits einen hohen Anteil an (Meth) acrylsäure haben oder Rückführungen aus anderen Stoffströmen der Anlage.
Weiterhin ist es möglich, das (meth) aσrylsäurehaltige Gasgemisch ohne Strippvorgang in die Kolonne einzubringen.
Ebenso ist eine Durchführung von Absorption und Aufreinigung in einem geeigneten Trennapparat möglich.
Bevorzugt wird das für das erfindungsgemäße Verfahren verwendbare (Meth)acrylsäuregemisc durch Absorption in Diphenylether-Biphe- nyl-Phthalsäureester-Gemisehen, beispielsweise im Gewichtsverhältnis von 10:90 bis 90:10 oder aus solchen Gemischen, denen zusätzlich 0,1 bis 25 Gew.-% (bezogen auf die Gesamtmenge an Biphenyl- und Diphenylether) mindestens eines ortho-Phthalsäure- esters, wie z. B. ortho-Phthalsäuredimethylester, ortho-Phthal- säurediethylester oder ortho-Phthalsäuredibutylester zugesetzt wurden, erhalten. Ebenfalls bevorzugt ist die Verwendung von Wasser als Absorptionsmittel .
Das nach Absorption vorliegende Gemisch enthält in der Regel 10 bis 50 Gew.-% (Meth) acrylsäure. Die im Absorptionsmittel absorbierte (Meth) acrylsäure kann zuvor direkt oder indirekt, beispielweise durch einen Quench, wie z. B. Sprühkühler, Venturiwäscher, Blasensäulen oder sonstige Apparate mit berieselten Oberflächen, oder Rohrbündel- oder Plattenwärme- tauscher, abgekühlt oder erwärmt werden.
Die Herstellung von (Meth) acrylsäureestern erfolgt vielfältig auf an sich bekannte Weise durch Veresterung von (Meth) crylsäure mit einem Alkohol, z. B. einem Alkanol . (Meth) acrylsäureester werden in der Regel über eine homogen oder heterogen katalysierte Veresterung erhalten, wie beispielsweise in Kirk Oth er, Encyclopedia of Chemical Technology, 4th Ed., 1994, Seiten 301-302, beschrieben. Dort wird ein Verfahren beschrieben, in dem Acrylsäure, Alkanol und Katalysator, wie z. B. Schwefelsäure, mit Rückführströmen in einem Reaktor mit angeschlossener Reaktionskolonne, in der der Zielester, überschüssiges Alkanol und das bei der Reaktion gebildete Wasser über Kopf abgetrennt werden, umgesetzt werden.
Höhere (Meth) acrylsäureester werden häufig durch Umesterung niederer (Meth) acrylsäureester oder ebenfalls durch eine Vereiterung erhalten. In Ulimann' s Encyclopedia of Industrial Cherαistry, 6th Ed., 2000 Electronic Release, Kapitel: Acrylic Acid and Derivatives - Esterification, ist ein Verfahren zur Herstellung höherer Alkylacrylate beschrieben, das in Gegenwart eines organischen Solvens als Schleppmittel und Schwefelsäure als Katalysator ausgeführt wird. Das bei der Reaktion entstehende Wasser wird über eine Azeotropdestillation abgeführt.
In den DE-OS 1 468 932, 2 226 829 und 2 252 334 werden Verfahren zur Herstellung von (Meth) acrylsäurealkylestern durch Umsetzung von (Meth) acrylsäure mit 1 bis 5 C-Atomen aufweisenden einwertigen Alkanolen in homogener flüssiger Phase bei erhöhter Temperatur und in Gegenwart Protonen liefernder Katalysatoren be- schrieben.
Weitere Verfahren zur Herstellung von (Meth) acrylsäureestern sind z. B. in DE-A 19 604 252, DE-A 19 604 253, GB-1 017 522, US 4 280 010, DE-A 19 935 453, DE-A 19 851 983 und EP-A 779 268 und der darin zitierten Literatur beschrieben.
Bevorzugte Herstellungsverfahren für (Meth) crylsäureester sind in DE-A 102 46 869 und DE-A 101 44 490 beschrieben. Die verwendbaren sauren Katalysatoren sind bevorzugt Schwefelsäure, p-Toluolsulfonsäure, Benzolsulfonsäure, Dodecylbenzol- sulfonsäure, Methansulfonsäure oder Gemische davon, denkbar sind auch saure Ionenaustauscher.
Besonders bevorzugt werden Schwefelsäure, p-Toluolsulfonsäure und Methansulfonsäure verwendet, ganz besonders bevorzugt sind Schwefelsäure, und p-Toluolsulfonsäure.
Die Katalysatorkonzentration bezogen auf das Reaktionsgemisch beträgt beispielsweise 1 bis 20, bevorzugt 5 bis 15 Gew.-%.
Für die Reaktion geeignete Alkohole sind solche, die 1 bis 8 Kohlenstoffato e aufweisen.
Bevorzugt werden Methanol, Ethanol, n-Propanol, iso-Propanol, n- Butanol, iso-Butanol, Dimethyla inoethanol und 2-Ethylhexanol verwendet, besonders bevorzugt Methanol, Ethanol, n-Butanol, Di ethyla inoethanol und 2-Ethylhexanol .
Bei der Trennvorrichtung, in die das (Meth) acrylsäure und/pder (Meth) acrylsäureester enthaltende Gemisch geführt wird, kann es sich um eine Destillations-, Rektifikations-, , Absorptions-, De- sorptionskolonne oder um eine Kolonne zur fraktionierenden Kondensation handeln.
Für das erfindungsgemäße Verfahren bevorzugt sind thermische TrennVorrichtungen wie Destillations- und Rektifikationskolonnen oder Einrichtungen zur Abkühlung des Absorptionsgemisches von In- teresse. Dabei handelt es sich um solche von an sich bekannter Bauart mit trennwirksamen Einbauten und mindestens einer Kondensationsmöglichkeit im Kopfbereich oder Apparate mit mehreren hintereinander geschalteten Vorrichtungen zur Abkühlung des Absorptionsgemisches .
Als Kolonneneinbauten kommen prinzipiell alle gängigen Einbauten in Betracht, insbesondere Böden, Packungen und/oder Füllkörper. Von den Böden sind Glockenböden, Siebböden, Ventilböden, Thormannböden und/oder Dual-Flow-Böden bevorzugt, von den Schüttungen sind solche mit Ringen, Wendeln, Sattelkörpern, Raschig-, Intos- oder Pall-Ringen, Barrel- oder Intolax-Sätteln, Top-Pak etc. oder Geflechten bevorzugt. Selbstverständlich sind auch Kombinationen trennwirksamer Einbauten möglich. In typischer Weise beträgt die Gesamtzahl an theoretischen Trennböden bei der Kolonne 5 bis 100, bevorzugt 10 bis 80, besonders bevorzugt 20 bis 80 und ganz besonders bevorzugt 30 bis 70.
Der in der Kolonne herrschende Betriebsdruck beträgt bei einer Rektifikationskolonne in der Regel von 10 mbar bis Atmosphärendruck, bevorzugt 20 mbar bis Atmosphärendruck, besonders bevorzugt 20 bis 800 mbar und ganz besonders bevorzugt 20 bis 500 mbar.
Der Zulauf des (Meth) acrylsäure und/oder (Meth) acrylsäureester enthaltenden Gemisches erfolgt in der Regel in der unteren Hälfte der Kolonne, bevorzugt im unteren Drittel.
Der Rücklauf, bei dem die Kolonne betrieben wird, kann beispielsweise 100:1 bis 1:100, bevorzugt 50:1 bis 1:50, besonders bevorzugt 20:1 bis 1:20 und ganz besonders bevorzugt 10:1 bis 1:10 betragen.
Der Gasbelastungsfaktor F einer solchen Kolonne ist üblicherweise im Bereich von 1 bis 3 Pa0 ' 5, vorzugsweise von 1,5 bis 2,5 Pa0 ' 5. Die Flüssigkeitsgeschwindigkeit ist üblicherweise im Bereich von 1 bis 50 m/h, vorzugsweise von 2 bis 10 m/h.
Das in der Kolonne au zutrennende Gemisch wird üblicherweise mit mindestens einem Stabilisator stabilisiert. Dieser mindestens eine Stabilisator kann mit dem (Meth) acrylsäure und/oder (Meth) crylsäureester enthaltenden Gemisch und/oder während der Trennung zusätzlich in die Kolonne zugegeben werden, beispiels- weise mit einem Rücklaufström.
Als Stabilisatoren sind beispielsweise geeignet phenolische Verbindungen, N-OxylVerbindungen, aromatische Amine, Phenylen- diamine, Imine, Sulfonamide, Oxime, Oximether, Hydroxylamine, Harnstoffderivate, phosphorhaltige Verbindungen, schwefelhaltige Verbindungen, Komplexbildner auf TAA-Basis (Tetraazaannulen) und Metallsalze, sowie gegebenenfalls Gemische davon.
Phenolische- erbindungen sind z. B. Phenol, Alkylphenole, beispielsweise o-, m- oder p-Kresol (Methylphenol), 2-tert.-Bu- tyl-4-methylphenol, 2 , 6-Di-tert . -butyl-4-methylphenol , 2-tert.- Butylphenol, 4-tert . -Butylphenol , Brenzcatechin (1, 2-Dihydroxy- benzol) , 2-tert .-Butyl-6-methylphenol, 2 , 4, 6-Tris-tert. -butylphenol, 2, 6-Di-tert .-butylphenol, 2, 4-Di-tert.-butylphenol, 4-tert. - Butyl-2 , 6-dimethylphenol , 2-Methyl-4-tert .-butylphenol, Octyl- phenol [140-66-9], Nonylphenol [11066-49-2], 2 , 6-Dimethylphenol , 2, 6-Di-tert. -butyl-p-kresol, Bisphenol A, Irganox® 565, 1010, 1076, 1141, 1192, 1222 und 1425 der Firma Ciba Spezialitätenchemie, tert .-Butylcatechol, p-Aminophenol, p-Nitrosophenol, Alkoxy- phenσle, beispielsweise 2-Methoxyphenol (Guajacol, Brenzcatechin- monomethylether) , Tocopherole, Chinone und Hydrochinone, wie z. B. Hydrochinon, Methylhydrochinon, 4-Methoxyphenol (Hydrochinon- mono ethylether) , 2 , 5-Di-tert . -butylhydrochinon, 2-Methyl-p-hy- drochinon, tert .-Butylhydrochinon, Benzochinon.
N-Oxyle (Nitroxyl- oder N-Oxyl-Radikale, Verbindungen, die wenig- stens eine >N-0» -Gruppe aufweisen) sind z. B.
4-Hydroxy-2 ,2,6, 6-tetramethyl-piperidin-N-oxyl, 4-0xo-2 ,2,6, 6-te- tramethyl-piperidin-N-oxyl, 4-Methoxy-2 ,2,6, 6-tetramethyl-piperi- din-N-oxyl, 2 , 2 , 6, 6-Tetramethyl-piperidin-N-oxyl, Uvinul® 4040P der BASF Aktiengesellschaft.
Aromatische Amine sind z. B.. N,N-Diphenylamin, N-Nitrosodiphe- nylamin, Nitrosodiethylanilin, Phenylendiamine sind z. B. N,N'- Dialkyl-p-phenylendiamin, wobei die Alkylreste gleich oder verschieden sein können und jeweils unabhängig voneinander aus 1 bis 4 Kohlenstoffatomen bestehen und geradkettig oder verzweigt sein können, beispielsweise N,N'-Di-iso-butyl-p-phenylendiamin.χ
Imine sind z. B. Methylethylimin, (2-Hydroxyphenyl)benzochinoni- min, (2-Hydroxyphenyl)benzophenonimin, N,N-Dimethylindoanilin, Thionin (7-Amino-3-imino-3H-phenothiazin) , Methylen violett (7-Dimethylamino-3-phenothiazinon) .
Als Stabilisator wirksame Sulfonamide sind beispielsweise N-Me- thyl-4-toluolsulfonamid, N-tert .-Butyl-4-toluolsulfonamid, N- tert .-Butyl-N-oxyl-4-toluolsulfonamid, N,N'-Bis (4-sulfanila- mid)piperidin, 3-{ [5-(4-Aminobenzoyl) -2, 4-dimethylbenzolsulfo- nyl] ethylamino}-4-methylbenzolsulfonsäure, wie in DE-A 102 58 329 beschrieben.
Oxime können beispielsweise Aldoxime, Ketoxime oder Amidoxime sein, wie beispielsweise in DE-A 101 39 767 beschrieben, bevorzugt sind Diethylketoxim, Acetonoxim, Methylethylketoxim, Cylcohexanonoxim, Di ethylglyoxim, 2-Pyridinaldoxim, Salicylald- oxim oder andere aliphatische oder aromatische Oxime bezie- hungsweise deren Reaktionsprodukte mit Alkylübertragungsrea- genzien.
Hydroxylamine sind z. B. N,N-Diethylhydroxylamin.
Harnstoffderivate sind beipielsweise Harnstoff oder Thioharn- stoff. Phosphorhaltige Verbindungen sind z. B. Triphenylphosphin, Tri- phenylphosphit, Hypophosphorige Säure, Trinonylphosphit oder Tri- ethylphosphit .
Schwefelhaltige Verbindungen sind z. B. Diphenylsulfid, Pheno- thiazin und schwefelhaltige Naturstoffe wie Cystein.
Komplexbildner auf Basis von Tetraazaannulen (TAA) sind z . B Di- benzotetraaza[14]annulene und Porphyrine wie sie in Chem. Soc. Rev. 1998, 27, 105-115 genannt werden.
Metallsalze sind z. B. Kupfer-, Mangan-, Cer-, Nickel-, Chrom- -carbonat, -chlorid, -dithiocarbamat, -stearat, -sulfat, -salicy- lat, -acetat oder -ethylhexanoat.
Bevorzugte Stabilisatoren sind Phenothiazin, o-, - oder p-Kresol (Methylphenol) , 2-tert .-Butyl-4-methylphenol, 2, 6-Di-tert. -butyl-4-methylphenol, 2-ter .-Butylphenol, 4-tert . -Butylphenol, 2, 4-Di-tert. -butylphenol, Brenzcatechin (1, 2-Dihydroxybenzol) , 2, 6-Di-tert .-butylphenol, 4-tert . -Butyl-2 , 6-dimethylphenol,
Octylphenol [140-66-9], Nonylphenol [11066-49-2], 2 , 6-Dimethyl- phenol, 2 , 6-Di-tert .-butyl-p-kresol, Bisphenol A, tert .-Butylcatechol, Hydrochinon, Hydrochinonmonomethylether oder Methylhydro- chinon, sowie Mangan(II) acetat, Cer (III) carbonat, Cer (III) acetat oder Cer (III) ethylhexanoat, Cer (III) stearat sowie Gemische davon in unterschiedlicher Zusammensetzung.
Besonders bevorzugt sind Phenothiazin, o-, m- oder p-Kresol (Methylphenol) , 2-tert.-Butyl-4-methylphenol, 2, 6-Di-tert.-bu- tyl-4-methylphenol , 4-tert .-Butylphenol, 2, -Di-tert .-butylphenol, 4-tert .-Butyl-2, 6-dimethylphenol, Brenzcatechin (1, 2-Dihydroxybenzol) , Octylphenol [140-66-9], Nonylphenol [11066-49-2], 2,6-Dimethylphenol, 2 , 6-Di-tert.-butyl-p-kresol, tert .-Butylcatechol, Hydrochinon, Hydrochinonmonomethylether oder Methylhydrochinon, sowie Cer (III) acetat, Cer (III) ethylhexanoat oder Cer (III) stearat und Gemische davon in unterschiedlicher Zusammensetzung.
Ganz besonders bevorzugt sind Phenothiazin, o-, - oder p-Kresol (Methylphenol), 2 , 6-Di-tert . -butyl-4-methylphenol , 4-tert .-Butylphenol, 4-tert .-Butyl-2, 6-dimethylphenol, Octylphenol [140-66-9], Nonylphenol [11066-49-2], 2 , 6-Dimethylphenol , 2 , 6-Di-tert . -butyl- p-kresol, tert .-Butylcatechol, Hydrochinon, Hydrochinonmonomethylether oder Methylhydrochinon sowie Cer (III) acetat oder Cer (III) ethylhexanoat und Gemische aus wenigstens zwei der genannten Komponenten. Die Art der Zugabe des Stabilisators ist nicht beschränkt. Der zugesetzte Stabilisator kann jeweils einzeln oder als Gemisch zugesetzt werden, in flüssiger oder in gelöster Form in einem geeigneten Lösungsmittel, wobei dieses Lösungsmittel selber ein Stabilisator sein kann, wie z. B. in DE-A 102 00 583 beschrieben.
Der Stabilisator kann beispielsweise in geeigneter Formulierung an beliebiger Stelle der Kolonne, einem externen Kühlkreislauf oder einem geeigneten Rücklaufstrom zugegeben werden. Bevorzugt ist die Zugabe direkt in die Kolonne oder in einem Rücklaufström.
Wird ein Gemisch von mehreren Stabilisatoren verwendet, so können diese sowohl unabhängig voneinander an verschiedenen oder gleichen der vorgenannten Dosierstellen zugeführt werden als auch un- abhängig voneinander in unterschiedlichen Lösungsmitteln gelöst werden .
Die Stabilisatoren können auch vorteilhaft zusammen mit einer als Costabilisator bekannten Verbindung verwendet werden, beispiels- weise mit Sauerstoffhaltigen Gasen.
Die Stabilisatorkonzentration in der Kolonne kann je nach Einzelsubstanz zwischen 1 und 10000 ppm betragen, bevorzugt zwischen 10 und 5000 ppm, besonders bevorzugt zwischen 30 und 2500 ppm und insbesondere zwischen 50 und 1500 ppm. Im Bereich der Seitenabzüge liegt die Stabilisatorkonzentration bevorzugt bei 100 bis 1000 ppm.
In besonders bevorzugter Weise wird der/das gelöste Stabilisa- tor(gemisch) auf gegebenenfalls vorhandene Kolonneneinbauten, einzelne Böden der Trennvorrichtung oder Kolonnendeckel gesprüht .
Das erfindungsgemäße Verfahren findet bevorzugt während der thermischen Aufreinigung des (Meth) crylsäure und/oder (Meth) acryl- säureester enthaltenden Gemisches Anwendung. Die den Kolonnen entnommene Roh- (Meth) acrylsäure und/oder Roh- (Meth) acrylsäureester können beliebige Reinheiten aufweisen, die erfindungsgemäß nicht wesentlich sind, beispielsweise mindestens 90 Gew.-%, bevorzugt mindestens 93 Gew.-%, besonders bevorzugt mindestens 94 Gew.-% jeweils bezogen auf das gesamte Reaktionsgemisch. Der Wert für den Gehalt des zu untersuchenden Materials ist über den zeitlichen Verlauf der Messung konstant.
Die im Seitenabzug als Mittelsieder entnommene bevorzugte Roh- Acrylsäure enthält neben Acrylsäure noch Nebenkomponenten, diese sind in der Regel 0,05 bis 2 Gew.-% Niedere Carbonsäuren, z.B.
Essigsäure 0,01 bis 5 Gew.-% Wasser
0,01 bis 1 Gew.-% niedermolekulare Aldehyde, wie z.B. Benzaldehyd, Furfural
0,01 bis 1 Gew.-% Maleinsäure und/oder deren Anhydrid 1 bis 500 ppm Stabilisator,
jeweils bezogen auf das Gewicht der Roh-Acrylsäure.
Die über Kopf entnommenen Roh- (Meth) acrylsäureester enthalten neben mindestens 93,2 Gew.-% (Meth) acrylsäureester (bezogen auf das gesamte Reaktionsgemisch) noch Nebenkomponenten. In der Regel handelt es- -sich dabei um unter sauren Bedingungen entstehende Kondensationsprodukte der Alkohole untereinander, um Verunreinigungen der eingesetzten Monomere und Alkohole oder um Nebenkomponenten der EsterdarStellung.
Das erfindungsgemäße Verfahren zur Bestimmung der Menge an aus flüssiger (Meth) acrylsäure und/oder flüssigen (Meth) acrylsäureestern abgeschiedenen Polymeren ist bevorzugt Teil eines Gesam - verfahrens zur Herstellung von (Meth) crylsäure und/oder (Meth) acrylsäureestern. Für die Herstellungsverfahren derselben gilt das oben Gesagte.
Die Detektion an polymerer Vorbelastung von flüssiger (Meth) acrylsäure und/oder flüssigen (Meth) acrylsäureestern und deren zeitlicher Verlauf erfolgt mit Ultraschallmessungen sowie mit allen gängigen optischen Messmethoden, bevorzugt sind Ultra- Schallmessungen, IR-, NIR- und UV/Vis-Spektroskopie sowie Ramanspektroskopie.
Bei diesen Methoden handelt es sich vorzugsweise um nicht-inva- sive Verfahren, die eine Bestimmung des Polymergehalts inline und/oder online ermöglichen.
Selbstverständlich können die erfindungsgemäßen Methoden auch in- vasiv, d. h. durch den Eingriff in das System z. B. durch Probenentnahme durchgeführt werden, und die Bestimmung des Gehalts an Polymeren diskontinuierlich erfolgen.
Die invasiv offline Bestimmung erfolgt üblicherweise nicht mit einem Trübungstest, sondern kann beispielsweise durch Abdampfen der Flüssigkeit und Auswiegen des verbleibenden Polymers oder nach einem der vorgenannten Messmethoden wie Ultraschallmessun- gen, mittels IR-, NIR-, UV/Vis-Spektroskopie sowie Ramanspektroskopie durchgeführt werden.
Erfindungsgemäß wurde gefunden, dass sich die Ausbreitungsge- schwindigkeit eines Ultraschallwellenzuges, das Absorptionsverhalten von elektromagnetischer Strahlung sowie die mittels Raman- methoden gemessene Emission in Abhängigkeit vom Medium, also (Meth) acrylsäure und/oder (Meth) acrylsäureester beziehungsweise Polymer, mit sich ändernder Zusammensetzung verändert und so eine Detektion beziehungsweise Konzentrationsbestimmung an Polymer ermöglicht.
Ultraschallmessungen werden in bekannter Weise durchgeführt, in dem der Polymergehalt mit Hilfe der Ausbreitungsgeschwindigkeit von Schallwellen gemessen wird. Diese breiten sich in fester, flüssiger und gasförmiger Phase aus, so dass Messungen in allen Aggregatzuständen durchgeführt werden können.
Die Durchführung des erfindungsgemäßen Verfahrens erfolgt bevor- zugt in flüssiger Phase.
Beim erfindungsgemäßen Verfahren kommen handelsübliche Ultraschallmessgeräte, beispielsweise der Firma SensoTech GmbH, zum Einsatz, bestehend aus einer Sonde, die einen Sender und einen Empfänger aufweist. Bei einem solchen Gerät kann es sich beispielsweise um das LiquiSonic-30 Ultraschallmessgerät in Kombination mit einem LiquiSonic Tauchsonde Reaktor, Ser.-No. 4682, Schutzart IP65, 1 = 60 cm, der Firma Sensotech GmbH handeln.
Bei konstantem, gerätespezifischem Abstand zwischen Sender und Empfänger der Sonde sowie bei konstantem Druck und Temperatur kann von der gemessenen Laufzeit des Ultraschallenwellenzugs die Schallgeschwindigkeit errechnet werden, die in direktem Zusammenhang zur Konzentration an gelöster polymerer Verunreinigung steht. Die Menge an abgeschiedenem Polymer steht in Relation zur gelösten Polymerkonzentration (Figur 1) .
Der Frequenzbereich des Ultraschallwellenzuges ist sondenspezifisch und liegt in der Regel im Bereich von 1 bis 2 GHz .
Der bevorzugte Druckbereich, in dem die Messungen durchgeführt werden, entspricht dem Kopfdruck der Trennvorrichtung und liegt bei 100 bis 700 mbar, besonders bevorzugt bei 150 bis 400 mbar.
Der Druck an der Messstelle schwankt üblicherweise nicht mehr als 20 mbar, bevorzugt nicht mehr als 10 mbar, besonders bevorzugt nicht mehr als 5 mbar, ganz besonders bevorzugt nicht mehr als 2 mbar um den Wert, für den die Kalibrationsgerade aufgenommen wurde.
Die bevorzugte Messtemperatur in der Trennvorrichtung liegt im Bereich zwischen 20 und 200 °C, bevorzugt zwischen 25 und 100 °C und ganz besonders bevorzugt zwischen 30 und 95 °C und im Bereich der Seitenabzüge bevorzugt zwischen 80 und 90 °C, wobei die Temperatur an der Messstelle üblicherweise nicht mehr als 10 °C, bevorzugt nicht mehr als 5 °C und besonders bevorzugt nicht mehr als 1 °C um den Wert schwankt, für den die Kalibrationskurve aufgenommen wurde.
Der Einbau des geeigneten Sensors kann an einer beliebigen Stelle des Produktionsprozesses erfolgen, bevorzugt aber an Stellen, in denen das zu messende Medium bereits flüssig vorliegt. Bei dem Fluid handelt es sich um die kondensierbaren Substanzen aus dem Reaktionsgas oder die in einer Flüssigkeit aufgenommenen kondensierbaren Substanzen aus dem Reaktionsgas oder einer Mischung aus aufnehmender Flüssigkeit und kondensierbaren Sub- stanzen aus dem Reaktionsgas oder um das flüssige Reaktionsprodukt der Esterherstellung, deren Zusammensetzung durch thermische oder mechanische Trennverfahren oder Zuführung weiterer Substanzen modifiziert wurde.
In einer besonders bevorzugten Ausführung findet der Einbau der Sonde in der Destillationskolonne oder an Stellen statt, an denen die Flüssigkeit aus der Destillationskolonne möglichst unverändert vorbeigeführt wird.
Ganz besonders bevorzugt ist der Einbau der Messvorrichtung an solchen Stellen, an denen die zu messende Flüssigkeit durch natürliche oder erzwungene Konvektion regelmäßig ausgetauscht wird.
Ein geeigneter Sensor kann z. B. direkt in die Destillationsko- lonne eingebaut werden.
Ebenso kann ein geeigneter Sensor in einem By-Pass an flüssigkeitsführenden Einbauten in der Trennvorrichtung angebracht werden.
In einer anderen Form der Durchführung des erfindungsgemäßen Verfahrens kann der Sensor in Zu- oder Ableitungen zur Trennvorrichtung angebracht werden. Es ist ebenso möglich, den Detektor als „Clamp-on"-System, also nicht inline, durch eine geeignete Zuleitung zu betreiben, ohne dass dieser in das zu bestimmende Medium eingetaucht wird.
Die Zusammensetzung des zu vermessenden Gemisches sowie der quantitative Gehalt an (Meth) acrylsäure und/oder (Meth) acrylsäureestern sowie weiteren Nebenkomponenten und Stabilisatoren beziehungsweise Stabilisatorgemisch ist für das erfindungsgemäße Verfahren unerheblich und hat keinen störenden Einfluss auf die Messungen. Der Wasseranteil an der Messstelle beträgt bevorzugt 50 bis 1000 ppm, besonders bevorzugt 100 bis 700 ppm und insbesondere bevorzugt 200 bis 500 ppm.
Der Gehalt an gelöster polymerer Verunreinigung an der Messstelle liegt vorzugsweise im Konzentrationsbereich unterhalb von 5
Gew.-%, bevorzugt unterhalb von 4 Gew.-%, besonders bevorzugt unterhalb von 3 Gew.-% und ganz besonders bevorzugt unterhalb von 2,8 Gew.-%, jeweils bezogen auf (Meth) acrylsäure und/oder (Meth) acrylsäureester.
Die Konzentrationsbestimmung an gelöster polymerer Verunreinigung erfolgt unter den genannten Bedingungen. Die Konzentration an Poly(meth) acrylsäure und/oder Poly(meth) crylsäureester [Gew.-%] und Schallgeschwindigkeit [m/s] , die sich aus der gemessenen Laufzeit direkt ergibt, sind linear voneinander abhängig. Durch lineare Regression erhält man eine Eichkurve, mittels derer der Gehalt an im Monomer gelöstem Polymer bestimmt werden kann.
Wie bereits erwähnt, steht die Konzentration an gelöstem Polymer im direkten Zusammenhang zur Menge an abgeschiedenem Polymer (Figur 1) .
Weiterhin ist die Bestimmung des Gehalts an polymerer Verunreinigung durch Messung des Absorptionskoeffizienten im Infrarot-, Na- heninfrarot-, Ultravioletten und/oder sichtbaren Bereich des Spektrums elektromagnetischer Strahlung möglich.
Beim erfindungsgemäßen Verfahren kommen handelsübliche Spektrome- ter zum Einsatz. Bei einem solchen Gerät kann es sich beispiels- weise um das Bruker Spektrometer ISF66 mit Strahlenteiler CaF (NIR), KBr (MIR) oder Quartz (UV/Vis) oder Detektor InSb (NIR), DTGS (MIR) oder Si-Diode (ÜV/Vis) handeln, das den nahen und mittleren Wellenlängenbereich des elektromagnetischen Spektrums vermessen kann. Bei den Messungen der Absorptionsspektren können beispielsweise der Detektor D413 im NIR-Bereich, der Detektor D301 im IR-Bereich und die Detektoren D510 bzw. D520 im UV/Vis- Bereich eingesetzt werden. Die genannten Detektoren werden von der Firma Bruker vertrieben.
Der Frequenzbereich der elektromagnetischen Strahlung umfasst für die IR- und NIR-Spektroskopie den vollständigen IR-Bereich des elektromagnetischen Spektrums, d.h. also im Wellenlängenbereich von 1 m bis 1 mm (vgl. H. Günzler, H.-U. Gremlich, IR-Spectro- scopy, An Introduction, Wiley-VCH, Weinheim, 2002, Seite 9ff) sowie für die UV/Vis-Spektroskopie den ultravioletten Bereich (Wel- lenlängenabschnitt 200 bis.400 nm) und den sichtbaren Bereich (Wellenlängenabschnitt 400 bis 800 nm) .
Die Konzentrationsberechnung an gelöster polymerer Verunreinigung erfolgt anhand von Kalibrationskurven, die bei den Betriebs- bedingungen oder vorher unter kontrollierten Laborbedingungen aufgenommen werden. Auf die Menge an abgeschiedenem Polymer kann analog zu den Ultraschallm.essungen geschlossen werden.
Die Messbedingungen wie Druck und Temperatur sind analog zu den Ultraschallmessungen die Betriebsbedingungen der Trennvorrichtung. Es gilt das oben Gesagte.
Die Zusammensetzung des zu vermessenden Gemisches sowie der quantitative Gehalt an (Meth) acrylsäure und/oder (Meth) acrylsäure- estern sowie weiteren Nebenkomponenten und Stabilisatoren beziehungsweise Stabilisatorgemisch ist für das erfindungsgemäße Verfahren durch Messung des Absorptionskoeffizienten im Infrarot-, Naheninfrarot-, Ultravioletten und/oder sichtbaren Bereich des elektromagnetischen Spektrums unerheblich und hat keinen stören- den Einfluss auf die Messungen. Der Wasseranteil an der Messstelle ist analog zu dem Verfahren mit Ultraschallmethodik.
Der Gehalt an gelöster polymerer Verunreinigung an der Messstelle liegt im Konzentrationsbereich unterhalb von 5 Gew.-%, bevorzugt unterhalb von 4 Gew.-%, ganz besonders bevorzugt unterhalb von 3 Gew.-% und insbesondere bevorzugt unterhalb von 2,7 Gew.-%, jeweils bezogen auf (Meth) acrylsäure und/oder (Meth) acrylsäureester.
Für den Einbauort der IR-, NIR- oder UV/Vis-Zellen und/oder -Sonden gilt das für die Ultraschall essungen Gesagte analog.
Der Einbau einer solchen Messeinheit ist in einem By-Pass an flüssigkeitsführenden Einbauten der Kolonne möglich. Es wird bevorzugt eine Durchflussküvette eingesetzt, in der eine kontinuierliche nicht-invasive Messung durchgeführt wird. In einer anderen Form der Durchführung wird die Messeinheit in einen By-Pass eingebaut.
Eine weitere erfindungsgemäße Methode zur Bestimmung des Gehalts an polymerer Verunreinigung ist die Ramanspektroskopie.
Ramanspektroskopische Messungen werden in bekannter Weise durchgeführt, indem der Gehalt an gelöstem Polymer mit Hilfe der Emission von elektromagnetischer Strahlung bestimmt wird. Der Raman- Effekt beruht auf der Polarisierbarkeit des Moleküls während der Schwingung und ist daher besonders gut für unpolare oder wenig polare Bindungen wie z. B. der C=C-Bindung in (Meth) acrylsäure und/oder (Meth) acrylsäureestern geeignet.
Beim erfindungsgemäßen Verfahren kommen handelsübliche Ramanspek- trometer zum Einsatz, beipielsweise von der Firma Bruker. Bei einem solchen Gerät kann es sich beispielsweise um das Bruker Spektrometer ISF66 mit Raman-Modul FRA106 handeln.
Der Frequenzbereich der elektromagnetischen Strahlung liegt bekannterweise im IR-Bereich des elektromagnetischen Spektrums (vgl. allgemeine Lehrbücher wie M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der Organischen Chemie, Thieme Verlag, Stuttgart, 6. Auflage, 2002, Seite 67ff) , also im Wellen- längenbereich von 1 um bis 1 mm.
Die Konzentrationsbestimmung an gelöster polymerer Verunreinigung sowie die Ermittlung der Menge an abgeschiede Polymer erfolgt analog zu den Messungen des Absorptionskoeffizienten von elektro- magnetischer Strahlung. Auf die Menge an abgeschiedenem Polymer kann analog zu den Ultraschallmessungen geschlossen werden.
Die Messbedingungen wie Druck und Temperatur sind analog zu den Ultraschallmessungen die Betriebsbedingungen der Trennvorrich- tung. Es gilt das oben Gesagte.
Die Zusammensetzung des zu vermessenden Gemisches sowie der quantitative Gehalt an (Meth) crylsäure und/oder (Meth) acrylsäureestern sowie weiteren Nebenkomponenten und Stabilisatoren bezie- hungsweise Stabilisatorgemisch ist für das erfindungsgemäße Verfahren mittels Ramanspektroskopie unerheblich und hat keinen störenden Einfluss auf die Messungen. Der Wasseranteil an der Messstelle ist analog zu dem Verfahren mit Ultraschallmethodik.
Der Gehalt an gelöster polymerer Verunreinigungen an der Mess- stelle liegt im Konzentrationsbereich unterhalb von 5 Gew.-%, bevorzugt unterhalb von 4 Gew.-%, ganz besonders bevorzugt unter- halb von 3 Gew.-% und insbesondere bevorzugt unterhalb von 2,7 Gew.-%, jeweils bezogen auf (Meth) acrylsäure und/oder (Meth) acrylsäureester.
Der Einbau einer Ramanmesseinheit erfolgt an den genannten Einbauorten analog zu den Ultraschallmessungen beziehungsweise Messmethoden wie IR-, NIR- und UV/Vis-Spektroskopie.
Die erfindungsgemäßen Messmethoden ermöglichen eine gezielte Steuerung des Verfahrens, beispielsweise die Bestimmung der Stabilisatorart sowie die Einstellung der optimalen Stabilisatormenge. Dies geschieht in einem Soll-Ist-Vergleich der gemessenen Werte anhand der Eich- beziehungsweise Kalibrationskurven. Durch den dadurch bestimmten Gehalt an im Monomer gelöstem Polymer und die aufgrund dessen ermittelte Menge an abgschiedenem Polymer ist die Bestimmung der einzusetzenden Stabilisatorart sowie die Berechnung der zur Stabilisierung der (Meth) acrylsäure und/oder (Meth) acrylsäureester erforderlichen Menge an Stabilisator möglich. Diese kann beispielsweise durch ein Prozessleitsystem ge- steuert dosiert beziehungsweise zugesetzt werden.
Weiterhin kann der wirtschaftlich optimale Zeitpunkt zur Abstellung der Anlage zur Reinigung genau bestimmt und so insgesamt die Häufigkeit der Abstellung verkürzt werden.
Beispiel 1
Schallgeschwindigkeitsmessungen, Polyacrylsäure in Acrylsäure
Zur Bestimmung des Polymergehaltes wird eine Konzentrationsreihe von Polyacrylsäure in Acrylsäure bei 25 °C vermessen. Dazu wird in einem Planschiffkolben Acrylsäure vorgelegt und in mehreren Schritten Polyacrylsäure (Aldrich, Best. -Nr. 32,366-7, Molekluar- gewicht ca. 2000 g/mol) zugegeben. Nachdem eine klare Lösung vor- liegt, wird mit einem LiquiSonic-30 Ultraschallmessgerät in Kombination mit einem LiquiSonic Tauchsonde Reaktor, Ser.-No. 4682, Schutzart IP65, 1 = 60 cm, der Firma SensoTech die Schallgeschwindigkeit gemessen.
Die Messpunkte lassen sich mit einer linearen Funktion fitten
(Figur 2, R2 = 0,9997). Zur Kontrolle werden die ermittelten Werte den Einwaagen gegenübergestellt. Der absolute Fehler beträgt max. 0,05 %.
Die Zugabe von 500 ppm Phenothiazin beeinflusst die Messung nicht . Beispiel 2
Ramanspektroskopische Messungen, Polyacrylsäure in Acrylsäure
Es werden 25 Probenmischungen mit Polyacrylsäure (Aldrich, Best.- Nr. 32,366-7, mittleres Molekulargewicht ca. 2000 g/mol) und stabilisierter Acrylsäure, Stabilisator: Hydrochinonmonomethylether, 200 ppm, im Konzentrationsbereich von 0,1 bis 4,6 Gew.-% Polyacrylsäure bezogen auf (Meth) acrylsäure hergestellt und mit einem Bruker-Spektrometer ISF66 mit Raman-Modul FRA106 in GC-Ampullen vermessen. Die Messungen werden mit 200 Scans durchgeführt.
Zur Auswertung werden die Proben mit den Konzentrationsbereichen von 0,1 bis 2,7 Gew.-% Polyacrylsäure herangezogen. Aufgrund der deutlichen spektralen Unterschiede u. a. durch die Caiiprι-H- und C0ιef-H-Schwingungen werden folgende Spektralbereiche für die Auswertung herangezogen: 3177 bis 2797 cm-1, 1788 bis 1561 cm-1 und 921 bis 407 cm-1. Der absolute Messfehler im ausgewerteten Konzentrationsbereich liegt bei max. 0,3 %.
Die Auswertung der gemessenen Proben („Wahr") im Vergleich^zu den eingesetzten Mengen an Polyacrylsäure („Vorhersage") liefert eine Gerade (Figur 3 , R2 = 0,9902), die zur Kalibr^tion und zur Auswertung unbekannter Mischungen dient.
Beispiel 3
Wiederstabilisierung bei beginnender Polymerisation Vorgehensweise bei Anstieg der Schallgeschwindigkeit
Zweifach destillierte, unstabilisierte Acrylsäure wird mit 10 ppm Phenothiazin versetzt und unter einer Luftatmosphäre in einem Ofen bei 120 °C Innentemperatur gelagert. Die Proben werden nach 35 Minuten (beginnende Rosafärbung) aus dem Trockenschrank ent- nommen und innerhalb von 5 Minuten eine Lösung von Co-Stabilisa- tor zudosiert, sodass eine Gesamtkonzentration von 35 ppm Stabilisator entsteht. Die Proben werden weiter bei 120 °C getempert und der Zeitpunkt bis zur vollständigen, sichtbaren Polymerisation bestimmt.
Es zeigt sich, daß die Zugabe verschiedener Stabilisatoren zu Phenothiazin nach beginnender Polymerisation einen positiven Effekt hat (Tabelle 1) .
Tabelle 1
PTZ = Phenothiazin «Q MeHQ = Methylhydrochinon
4-HO-TEMPO = 4-Hydroxy-2,2,6, 6-tetramethyl-piperidin-N-oxyl 4-MeO-TEMPO = 4-Methoxy-2 , 2, 6 , 6-tetramethyl-piperidin-N-oxyl BHT = 2, 6-Di-tert. -butyl-4-methylphenol
-g Beispiel 4
Schallgeschwindigkeitsmessungen, Polybutylacrylat in Butylacrylat
Zur Bestimmung des Polymergehaltes wird eine Konzentrationsreihe
20 von Polybutylacrylat, welches durch Einengen einer ca. 50 %igen Lösung in Toluol (Aldrich, Best. -Nr. 18,140-4, mittleres Molekulargewicht ca. 99000 g/mol) gewonnen wird, in Butylacrylat^ (Betriebsmasse der BASF Aktiengesellschaft mindestens 99,7 %ig) bei 25 °C vermessen. Dazu wird in einem Planschiffkolben Butyl- «c acrylat vorgelegt und in mehreren Schritten Polybutylacrylat zugegeben. Nachdem eine klare Lösung vorliegt, wird mit einem Li- quiSonic-30 Ultraschallmessgerät in Kombination mit einem Liqui- Sonic Tauchsonde Reaktor, Ser.-No. 4682, Schutzart IP65, 1 = 60 cm, der Firma SensoTech die Schallgeschwindigkeit gemessen.
30
Die Messpunkte lassen sich mit einer linearen Funktion fitten (Figur 4, R2 = 0,9994) . Zur Kontrolle werden die ermittelten Werte den Einwaagen gegenübergestellt. Der absolute Fehler beträgt max. 0,05 %.
35
40
45

Claims

Patentansprüche
1. Verfahren zur Bestimmung der Menge an aus (Meth) acrylsäure und/oder (Meth) acrylsäureestern abgeschiedenem Polymer, dadurch gekennzeichnet, dass man die Konzentration an gelöstem Polymer durch Messung
a) der Ausbreitungsgeschwindigkeit von Schallwellen und/oder b) des Absorptionskoeffizienten im Infrarot-, Naheninfrarot-, Ultravioletten und/oder sichtbaren Bereich des Spektrums elektromagnetischer Strahlung und/oder c) mittels Ramanspektroskopie
bestimmt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die Messung in einer thermischen Trennvorrichtung durchführt.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass man aus dem gemessenen Wert die Art und Menge des Stabilisatorsystems ableitet und einstellt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man zur Stabilisierung der (Meth) acrylsäure und/oder (Meth) acrylsäureester Verbindungen aus den Gruppen der Phenole, N-Oxyl- verbindungen, aromatischen Amine, Phenylendiamine, Imine, Sulfona ide, Oxime, Oximether, Hydroxylamine, Harnstoffderivate, phosphorhaltigen Verbindungen, schwefelhaltigen Verbindungen, Komplexbildner auf Basis von Tetraazaannulen und Metallsalze und/oder Mischungen aus den genannten Gruppen einsetzt.
5. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeich- net, dass man aus dem gemessenen Wert den wirtschaftlich optimalen Zeitpunkt zur Unterbrechung des Trennverfahrens ableitet.
6. Verfahren nach den Ansprüchen 1 und 2-, dadurch gekennzeich- net, dass man die Konzentration an gelöstem Polymer invasiv und/oder nicht-invasiv online bestimmt.
7. Verfahren zur Bestimmung der Menge an aus (Meth) acrylsäure und/oder (Meth) acrylsäureestern abgeschiedenem Polymer, da- durch gekennzeichnet, dass man die Konzentration an gelöstem Polymer invasiv offline bestimmt, mit der Maßgabe, dass man keinen Trübungstest durchführt.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass man die Konzentration an gelöstem Polymer durch Messung
a) der Ausbreitungsgeschwindigkeit von Schallwellen und/oder b) des Absorptionskoeffizienten im Infrarot-, Naheninfrarot-, Ultravioletten und/oder sichtbaren Bereich des Spektrums elektromagnetischer Strahlung und/oder c) mittels Ramanspektroskopie
bestimmt .
EP03753563A 2002-10-23 2003-10-18 Verfahren zur bestimmung der menge an aus (meth)acrylsäure und/oder (meth)acryls ureestern abgeschiedenem polymer Withdrawn EP1565728A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10249507 2002-10-23
DE10249507A DE10249507A1 (de) 2002-10-23 2002-10-23 Verfahren zur Bestimmung der Menge an aus (Meth)acrylsäure und/oder (Meth)acrylsäureestern abgeschiedenem Polymer
PCT/EP2003/011579 WO2004038391A1 (de) 2002-10-23 2003-10-18 Verfahren zur bestimmung der menge an aus (meth)acrylsäure und/oder (meth)acrylsäureestern abgeschiedenem polymer

Publications (1)

Publication Number Publication Date
EP1565728A1 true EP1565728A1 (de) 2005-08-24

Family

ID=32087142

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03753563A Withdrawn EP1565728A1 (de) 2002-10-23 2003-10-18 Verfahren zur bestimmung der menge an aus (meth)acrylsäure und/oder (meth)acryls ureestern abgeschiedenem polymer

Country Status (7)

Country Link
US (1) US20040082737A1 (de)
EP (1) EP1565728A1 (de)
CN (1) CN1705872A (de)
AU (1) AU2003271733A1 (de)
BR (1) BR0315251A (de)
DE (1) DE10249507A1 (de)
WO (1) WO2004038391A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008000237A1 (de) 2007-02-06 2008-08-07 Basf Se Phenol-Imidazolderivate zur Stabilisierung von polymerisationsfähigen Verbindungen
CN102006334B (zh) 2007-06-11 2013-01-02 华为技术有限公司 安装软件组件的方法、系统及装置
DE102008039836B4 (de) * 2008-08-27 2012-08-09 Manfred Dausch Vorrichtung und Verfahren zur Bestimmung des Säuregehalts
CN101498667B (zh) * 2009-02-16 2011-05-25 浙江大学 乙丙共聚聚丙烯中乙烯或乙丙橡胶含量的检测方法
CN102095715B (zh) * 2010-12-03 2012-06-06 江南大学 抗氧化剂bht的表面增强拉曼光谱检测方法
EP2955506A1 (de) * 2014-06-11 2015-12-16 Casale SA Verfahren zur quantitativen In-Line-Analyse eines Stroms in einer Produktionsanlage zur Synthese von Harnstoff
WO2017032699A1 (de) 2015-08-21 2017-03-02 Basf Se Verfahren zur herstellung von niedrigsiedenden (meth)acrylsäureestern
CN105301029B (zh) * 2015-09-17 2017-07-14 常州大学 一种测定乙交酯和d,l‑丙交酯共聚单体转化率的方法
CN109232595B (zh) * 2018-09-25 2020-03-03 万华化学集团股份有限公司 一种罗丹明b类自由基荧光探针、制备方法及其在丙烯酸及酯生产过程中自由基检测的应用
US20220003679A1 (en) * 2018-11-29 2022-01-06 Basf Se Prediction of physical properties of superabsorbent polymers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD210125B1 (de) * 1982-06-17 1993-05-19 Peter Doz Dr Sc Nat Hauptmann Verfahren zur quantitativen beschreibung des emulsions-, suspensions- und loesungspolymerisationsverlaufes
DD251626A1 (de) * 1986-07-30 1987-11-18 Buna Chem Werke Veb Verfahren zur ermittlung des verzweigungs- und vernetzungsgrades von polymeren
CA2078277C (en) * 1992-09-15 1999-09-14 Luc Piche Ultrasonic characterization of polymer melts under processing conditions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004038391A1 *

Also Published As

Publication number Publication date
BR0315251A (pt) 2005-08-23
AU2003271733A1 (en) 2004-05-13
CN1705872A (zh) 2005-12-07
US20040082737A1 (en) 2004-04-29
WO2004038391A1 (de) 2004-05-06
DE10249507A1 (de) 2004-05-06

Similar Documents

Publication Publication Date Title
EP2872475B1 (de) Verfahren zur herstellung von acrylsäure aus ethylenoxid und kohlenmonoxid
DE69813394T2 (de) Verfahren zur Herstellung von Methylmethacrylat
EP1565728A1 (de) Verfahren zur bestimmung der menge an aus (meth)acrylsäure und/oder (meth)acryls ureestern abgeschiedenem polymer
DE102012212424A1 (de) Verfahren zur Herstellung von Acrylsäure durch eine mit wenigstens einer molekularen Wirkverbindung katalysierte Thermolyse von Poly-3-hydroxypropionat
DE102009047228A1 (de) Verfahren zur Herstellung von (Meth)acrylaten von C17-Alkoholgemischen
WO2004063138A1 (de) Thermisches trennverfahren zwischen wenigstens einem gasförmigen und wenigstens einem flüssigen stoffstrom, von denen wenigstens einer( meth)acrylmonomere enthält
EP1567471B1 (de) Verfahren zur rektifikativen auftrennung von (meth)acrylmonomere enthaltenden flüssigkeiten in einer rektifikationskolonne
TW201619116A (zh) (甲基)丙烯酸c-c烷基酯之製備
WO2012163931A1 (de) Wässrige lösung, enthaltend acrylsäure und deren konjugierte base
EP3558923B1 (de) Verfahren zur destillativen gewinnung von rein-2-ethylhexylacrylat oder rein-2-propylheptylacrylat aus dem entsprechenden roh-alkylacrylat
WO2004007065A1 (de) Verfahren zur herstellung leicht polymerisationsfähiger verbindungen
EP3052467B1 (de) Verfahren zur herstellung von (meth)acrylierten benzophenonen
EP3558921B1 (de) Verfahren zur destillativen gewinnung von rein-butylacrylat aus roh-butylacrylat, wobei butyl für n-butyl oder iso-butyl steht
DE10138630A1 (de) Verfahren zur Herstellung von Rein-(Meth)acrylsäure und Methacrylsäureestern
EP1487773B1 (de) Verfahren zur messung des drucks in einer (meth)acryls ure, deren ester und/ oder deren nitrile enthaltenden gasphase von rektifikations- und/ oder absorptionskolonnen
DE102008000237A1 (de) Phenol-Imidazolderivate zur Stabilisierung von polymerisationsfähigen Verbindungen
EP3041603A2 (de) Verfahren zur herstellung von acrylsäure
WO2005083421A1 (ja) アクリル酸中の不純物の定量方法
DE10036958A1 (de) Verfahren zur Herstellung von tert.-C4-C8-Alkylestern der (Meth)acrylsäure
WO2006114428A1 (de) Verfahren der rektifikativen auftrennung einer acrylsäure und/oder methacrylsäure enthaltenden flüssigkeit
DE10154714A1 (de) Verfahren zur Herstellung von (Meth)acrylsäureestern
WO2003076385A1 (de) Verfahren zur reinigung von bodenkolonnen, die zur rektifikativen behandlung von (meth) acrylsäure und/oder deren ester enthaltenden flüssigkeiten verwendet worden waren
DE10064641A1 (de) Verfahren zur Herstellung von Acrylsäure
WO2014009113A1 (de) Biobasierte, ketogruppenhaltige (meth)acrylate und verfahren zu ihrer herstellung
WO2006092405A1 (de) Verfahren zur abtrennung von methacrylsäure aus acrylsäure als hauptbestandteil sowie zielprodukt und methacrylsäure als nebenkomponente enthaltender flüssiger phase

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: DIEHL, RAINER

Inventor name: DIELEMAN, CEDRIC

Inventor name: KELLER, HARALD

Inventor name: SCHROEDER, JUERGEN

Inventor name: JAEGER, ULRICH

Inventor name: SCHLIEPHAKE, VOLKER

Inventor name: WAGENBLAST, GERHARD

Inventor name: HAREMZA, SYLKE

Inventor name: DR. FRANK HOEFER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20070209