EP1550353B1 - Verbundkörper und verfahren zu dessen herstellung - Google Patents

Verbundkörper und verfahren zu dessen herstellung Download PDF

Info

Publication number
EP1550353B1
EP1550353B1 EP03788951A EP03788951A EP1550353B1 EP 1550353 B1 EP1550353 B1 EP 1550353B1 EP 03788951 A EP03788951 A EP 03788951A EP 03788951 A EP03788951 A EP 03788951A EP 1550353 B1 EP1550353 B1 EP 1550353B1
Authority
EP
European Patent Office
Prior art keywords
heating coating
base body
layer
composite body
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03788951A
Other languages
English (en)
French (fr)
Other versions
EP1550353A2 (de
Inventor
Herbert Günther
Christel Kretschmar
Uwe Partsch
Peter Otschik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guenther and Co GmbH
Original Assignee
Guenther and Co GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guenther and Co GmbH filed Critical Guenther and Co GmbH
Priority to SI200330652T priority Critical patent/SI1550353T1/sl
Publication of EP1550353A2 publication Critical patent/EP1550353A2/de
Application granted granted Critical
Publication of EP1550353B1 publication Critical patent/EP1550353B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/46Heating elements having the shape of rods or tubes non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a composite body having a base body of steel and a heating coating applied thereto in accordance with the preamble of claim 1 and a method for the production thereof according to the preamble of claim 17.
  • thick film heaters have been developed which are fixedly mounted as a coating on the surface of a metal substrate or a steel body.
  • the most of an array of electrical resistance tracks existing heating elements are electrically insulated from the metal substrate or the steel body by an insulating layer of dielectric material or a glass ceramic. All layers are solidified after application by baking into a composite layer, which forms a composite body together with the steel body. Examples of this are described in DE-A1-35 36 268 or DE-A1-35 45 445.
  • WO-A1-00 23 245 proposes for this purpose to apply the heating device in the so-called fine-film printing process, wherein the individual layers are applied by means of a dispenser.
  • a dispenser for this purpose to drive the entire surface of the ceramic sleeve or the material tube exactly to produce self-contained layers. The latter therefore do not always have a uniform thickness or density, so that cracks are difficult to avoid.
  • the heating coating has been applied to an uncured steel (auxiliary) body, which is then placed on the material pipe.
  • auxiliary uncured steel
  • such a separate heater has no direct solid contact with the material pipe, which leads to a high heat transfer resistance and thus to a less efficient heat transfer from the heating element to the tubular flow channel. This in turn affects the overall temperature setting and the associated control effort.
  • the aim of the invention is to overcome these and other disadvantages of the prior art and to provide a steel body with a heating coating that withstands even extreme loads permanently.
  • the aim is in particular an equally inexpensive and easy to implement method for crack-free application of the individual, temperature changes exposed layers on a tubular or curved steel body.
  • a heating coating should be permanently functional on a material pipe of a hot runner nozzle.
  • the invention provides according to claim 1, that in a composite body with a base made of steel and a heating coating applied thereto, the base body is made of a precipitation-hardening steel.
  • Precipitation-hardening steels have the property that intermetallic precipitates form on cooling, which, in addition to the purely temperature-related volume reduction, lead to a further reduction of the steel body volume.
  • a precipitation-hardening steel therefore shrinks during the aging process, so that the compressive prestress of a heating coating previously applied to the surface of a base body is enhanced after hardening.
  • the coating is always permanently bonded to the steel body surface, even when the composite is subjected to extremely high temperature or pressure loads.
  • the size and distribution of the pressure bias within the insulating layer can be adjusted very precisely, which is especially important if the steel body has a round or curved surface for receiving the insulating layer, or if the steel body a has tubular shape and the heating coating is applied to the outer wall.
  • the main body is a distributor or material pipe of a hot runner system. Especially in the field of hot runner technology, it is important that the injection molding compound to be supplied to a mold cavity is precisely and uniformly tempered into the nozzle or gate area. Cracks in the heating coating would immediately lead to failure of the nozzle and interruptions in the manufacturing process, which is effectively avoided by the inventive design of the composite body.
  • the heating coating is preferably a layer composite composed of a plurality of layers and / or layer elements, which has an insulation layer applied to the base body according to claim 4.
  • the latter is in accordance with claim 5, a ceramic or glass-ceramic insulating layer, depending on the application method and the desired layer thickness of one or - as claim 6 provides - may consist of two or more individual layers.
  • an array of resistive elements is applied on the insulation layer according to claim 7, an array of resistive elements is applied. The latter form a heater, which is at least partially covered by an insulating cover layer for the protection of the resistance paths (claim 8).
  • the insulating layer, the resistive elements and / or the cover layer according to claim 9 branded dispersions, such as thick-film pastes. These can be uniformly and precisely applied, which is important for the subsequent adhesion and functionality of the heater.
  • the individual layers or partial layers of the heating coating according to claim 10 may also be formed as baked-on films.
  • claim 11 In order to determine both the temperature distribution and their development within the heater or within the body, the formation of claim 11 provides that in the plane of the heating coating at least one temperature sensor is arranged. This is therefore housed in the layer composite, which leads to no significant volume increase. At the same time, temperature changes can be detected extremely promptly and precisely.
  • connecting contacts for the resistance elements and / or the temperature sensors are integrated in the heating coating.
  • the entire heater can thus be integrated directly into a control circuit.
  • a composite body according to the invention as an externally heated material pipe in a hot runner manifold and / or a hot runner nozzle.
  • the cohesive application of the heater in layers ensures a permanently fixed connection to the wall of the body and thus for a firm grip on the hot runner manifold or the hot runner nozzle.
  • the invention avoids extremely effective flaking or loosening of the heating, namely by the pressure bias in the Heating coating is selectively increased by precipitation hardening of the body.
  • the heating coating as a whole takes up only a small amount of space, so that extremely compact designs can be realized with virtually the same performance features as compared to conventional heating devices.
  • the power density can be increased significantly, because the heat is generated and removed directly on the surface of the heated H exertkanaldements. Overheating of the most sensitive heating elements is reliably avoided.
  • the invention according to claim 13 provides that a compressive prestress previously generated in the heating coating is reinforced by precipitation hardening of the base body.
  • This method which is simple and inexpensive to implement, leads to a permanently fixed connection between the base body and the heating coating, because the latter is contracted again within definable limits by the contraction movement of the base body during cooling in the hardening process, whereby a particularly effective stress-tolerant connection is formed.
  • All layers or partial layers of the heater have an extremely good adhesion.
  • the insulation layer can withstand even extreme mechanical and thermal stresses permanently, so that always optimal production results are guaranteed.
  • each layer or each layer element of the heating coating is applied to the base body, dried and baked or formed, wherein the composite body is cooled to room temperature after each baking process.
  • all process parameters can be individually adapted to the respective heating layer, which - depending on the power requirement - can always be applied optimally.
  • the invention further provides in claim 15 that the steel alloy of the base body is homogenized or solution-annealed during the baking process, which has a particularly favorable effect on the process economy.
  • This is also a claim 16, when the baking temperature is equal to the temperature for the homogenization or solution heat treatment of the base body. While the individual layers or layer elements of the heating coating are formed, the solution annealing produces stable homogeneous mixed crystals ( ⁇ crystals). Separately controlled production steps are no longer necessary.
  • each layer or each layer element is baked or formed under an air atmosphere, wherein the stoving temperature according to claim 19 is between 750 ° C and 900 ° C.
  • Claim 20 provides that the surface of the base body is roughened before applying the heating coating, for example by means of sandblasting. As a result, the mechanical adhesion of the insulating layer is improved.
  • the chemical adhesion can be optimized by cleaning the base body according to claim 21 before applying the coating and oxidized.
  • the steel alloy of the base body is aged or annealed in accordance with claim 22 by re-annealing.
  • a compressive stress is created which is capable of permanently compensating mechanical loads on the base body, for example the internal pressure loads of a material pipe of a hot runner nozzle.
  • Auslagerungstemperstur is smaller than the baking temperature for the individual layers of the heating coating.
  • the pressure bias in the heating coating is optimally increased without their performance parameters or functionality is impaired.
  • the entire process can be precisely controlled with simple means, which keeps the process costs low.
  • the aging process is carried out according to claim 24 under an air or nitrogen atmosphere.
  • the base body with Ni, Co, Mo, Ti and / or Al highly alloyed precipitation hardening steel, for example, X 3 Cr Ni Al Mo 12 9 2 1.
  • the main body forms, for example Material tube with a round surface for an externally heated hot runner nozzle, which is used in an injection mold.
  • heating coating On the body a heating coating is applied. This consists of a directly on the body lying glass-ceramic insulating layer, an applied thereon of resistance paths as a heating element and an overlying cover layer to protect the heater against external influences. Heating coating and body are inextricably linked together and thus form a composite body.
  • the precipitation hardening of the material pipe usually takes place in 2 steps, namely the solution annealing of the alloy and the subsequent aging or aging,
  • the individual layers or layer elements of the heating coating are applied in the form of thick-film pastes and baked or formed, wherein simultaneously with the stoving of the thick-film pastes, the solution annealing of the metal alloy is carried out.
  • the still uncured steel body is first sandblasted after completion of the mechanical processing in order to improve the mechanical adhesion properties for the heating coating, wherein a certain surface roughness is observed.
  • the material tube is cleaned with ethanol and hot nitric acid (HNO 3) and oxidized at about 850 ° C. hereby creates a thin oxide film on the surface of the body, which improves the adhesion of the insulating layer.
  • HNO 3 hot nitric acid
  • the heating coating is produced.
  • the starting material for the insulating layer is preferably a dispersion, in particular an electrically insulating thick-film paste, which is printed on the base surface with a uniform thickness in the screen printing process.
  • a dispersion in particular an electrically insulating thick-film paste
  • four individual layers are applied in succession, each layer being dried separately.
  • the material tube with the insulating layer is formed in a suitable kiln under an air atmosphere at about 850 ° C., so that a glass kerosene structure which is homogeneous in itself is produced.
  • the baking temperature corresponds to the temperature required for the homogenization or solution heat treatment of the base body. Both processes - burn-in and solution heat treatment - take place at the same time.
  • the resulting stress-tolerant compound in the composite body sets the insulating layer as a carrier layer of the heater already in a position to withstand the technologically caused by the injection molding pulsating internal pressure loads in the material pipe within certain limits without cracks or damage to the heater occur.
  • the terminal contacts for the current-conducting resistance elements and optionally for a temperature sensor are applied and dried. Starting from the terminal contacts the mostly meandering or spiral resistance tracks for the heating and for the temperature sensor are applied, this - as well as for the terminal contacts - electrically conductive pastes used, which are applied either by screen printing or with a dispenser on the insulating layer. The drying takes place in each case after the application of the individual layers. All conductive layer elements are then fired together and cooled to room temperature. Also here the base body is solution-annealed again, but this has no final effect on its structure.
  • the cover layer is also an electrically insulating glass ceramic, which is printed by screen printing on the resistor elements, the terminal contacts and in some areas still exposed insulation layer, dried and then formed at about 750 to 900 ° C.
  • the main body together with the already applied heating coating under nitrogen atmosphere is heated again to about 525 ° C and held for a defined time at this temperature. After the holding time, the composite body is cooled, preferably at a cooling rate of 10 K / min.
  • the precipitation-hardening steel shrinks by about 0.07% on all sides during cure at 525 ° C and again by about 11 ppm / K upon cooling, further pressurizing the previously applied and formed layers of the heater.
  • the precipitation hardening thus leads to an additional compression bias, so that the entire heating coating can withstand even extreme temperature and internal pressure loads in the material pipe permanently.
  • the hot runner nozzle is always optimally tempered by the materially applied heating in each stage of the process.
  • the hardness of the base body reached after the hardening process is about HRC 52.
  • the temperature sensor is preferably in the same plane as the resistor tracks of the heater. He is therefore integrated as well as the terminal contacts in the heating coating.
  • the latter forms a layer composite composed of a plurality of layers or layer elements, which forms a heatable composite body in permanent detachable connection with the base body.
  • the heating resistor itself can also serve as a temperature sensor.
  • voltage taps are led out of desired regions of the meandering or spiral resistance paths to the outside. If the current is known, the temperature in the relevant area can be determined via the determined partial voltage.
  • the invention is not limited to one of the above-described embodiments, but can be modified in many ways.
  • individual or all layers or layer elements of the heating coating can also be applied by spraying or dipping.
  • films which are baked in the same way as the thick-film pastes can also be used.
  • the steel alloy of the base body may also be a nickel-cobalt hot-work tool steel. It is important that the steel is suitable for a peak temperature of up to 850 to 900 ° C with respect to the baking or sintering of the heating coating. He must also withstand operating conditions temperatures of up to 450 ° C and internal pressure loads of up to 2000 bar.
  • precipitation-hardening steels are used as starting material for the steel body.
  • intermetallic precipitations take place, which can be precisely controlled by alloy choice.
  • the contraction that occurs during curing increases the compressive stress in the insulating layer or in the entire heating coating, which substantially improves the durability and functional reliability of the heating.

Description

  • Die Erfindung betrifft einen Verbundkörper mit einem Grundkörper aus Stahl und einer darauf aufgebrachten Heizungsbeschichtung gemäß dem Oberbegriff von Anspruch 1 sowie ein Verfahren zu dessen Herstellung gemäß dem Oberbegriff von Anspruch 17.
  • Für verschiedene Anwendungen sind Heizvorrichtungen in Dickschichttechnik entwickelt worden, die als Beschichtung auf der Oberfläche eines Metallsubstrats oder eines Stahlkörpers fest angebracht werden. Die meist aus einer Anordnung von elektrischen Widerstandsbahnen bestehenden Heizelemente sind gegenüber dem Metallsubstrat bzw. dem Stahlkörper durch eine Isolationsschicht aus dielektrischem Material oder einer Glaskeramik elektrisch isoliert. Sämtliche Schichten werden nach dem Auftragen durch Einbrennen zu einem Schichtverbund verfestigt, der zusammen mit dem Stahlkörper einen Verbundkörper bildet. Beispiele hierfür sind in DE-A1-35 36 268 oder DE-A1-35 45 445 beschrieben.
  • Probleme ergeben sich immer dann, wenn der Stahlkörper eine runde oder gewölbte Oberfläche aufweist und gehärtet werden muß, wie dies beispielsweise bei Heißkanalsystemen in Spritzgießwerkzeugen oft der Fall ist. Letztere besitzen gewöhnlich ein verzweigtes Netz von Verteilerkanälen und Heißkanaldüsen mit aus Stahl gefertigten Materialrohren, die je nach Anwendungsfall extrem hohen Innendrücken ausgesetzt sein können. Damit sich die heiße Masse im Verteilersystem nicht vorzeitig abkühlt, sind die Materialrohre umfangsseitig mit einer Heizvorrichtung versehen.
  • WO-A1-00 23 245 schlägt hierzu vor, die Heizvorrichtung im sogenannten Fine-Film-Printing-Verfahren aufzubringen, wobei die einzelnen Schichten mittels eines Dispensers aufgetragen werden. Ein solches Verfahren ist relativ aufwendig, weit die Kanüle des Dispensers für das Aufbringen der Isolations- und Deckschichten die gesamte Oberfläche der Keramikhülse bzw. des Materialrohrs exakt abfahren muß, um in sich geschlossene Schichten zu erzeugen. Letztere weisen folglich nicht immer eine einheitliche Dicke bzw. Dichte auf, so daß Rißbildungen kaum zu vermeiden sind.
  • Ein weiterer Nachteil ergibt sich im Betrieb des Heißkanalsystems, wenn nämlich das Materialrohr bei Betriebstemperatur der durch den Spritzgießprozeß technologisch bedingten pulsierenden Innendruckbelastung ausgesetzt wird. Diese Belastung und die zum Erreichen der Betriebstemperaturen erforderliche Erwärmung der Strömungskanal-Wandung auf Temperaturen zwischen 300 und 450 °C führen zu elastischen Dehnungsvorgängen, die unmittelbar auf die Heizung übertragen werden. Deren Schichten können ganz rasch in den Bereich von Zugspannungen gelangen, was zu Rissen in der Isolierschicht, zu Kurzschlüssen oder gar zum Abplatzen der gesamten Heizung führen kann.
  • Um dem zu begegnen, hat man die Heizungsbeschichtung auf einem ungehärteten Stahl(hilfs)körper aufgebracht, der anschließend auf das Materialrohr aufgesetzt wird. Eine solche separate Heizung besitzt jedoch keinen unmittelbaren Festkörperkontakt mit dem Materialrohr, was zu einem hohen Wärmeübergangswiderstand und damit zu einem wenig effizienten Wärmeübergang von dem Heizelement auf den rohrförmigen Strömungskanal führt. Dies wiederum beeinflußt die gesamte Temperatureinstellung und den damit verbundenen Regelungsaufwand.
  • Aus DE-A1-199 41 038 ist es bekannt, das Heizschichtsystem direkt auf das Materialrohr aufzubringen und derart auszubilden, daß es nach dem Einbrennen (Formieren) gegenüber der Materialrohrwandung unter einer definierten Druckvorspannung steht. Diese wird erzeugt, indem in Abhängigkeit von den dehnungsrelevanten Kenngrößen des Heißkanalrohres eine spezifische Fehlanpassung des linearen Ausdehnungskoeffizienten der glaskeramischen Isolationsschicht an den entsprechenden Wert des metallischen Heißkanalrohres vorgegeben wird. Eine solche spannungstolerante Verbindung hält den elastischen Dehnungsvorgängen im Materialrohr in Grenzen durchaus stand. Bei hohen Belastungen können jedoch weiterhin Risse oder sonstige Beschädigungen in der Isolationsschicht auftreten.
  • Ziel der Erfindung ist es, diese und weitere Nachteile des Standes der Technik zu überwinden und einen Stahlkörper mit einer Heizungsbeschichtung zu versehen, die selbst Extrembelastungen dauerhaft standhält. Angestrebt wird insbesondere ein ebenso kostengünstiges wie leicht zu realisierendes Verfahren zum rißfreien Aufbringen der einzelnen, Temperaturwechseln ausgesetzter Schichten auf einem rohrförmigen oder gewölbten Stahlkörper. Insbesondere soll auf einem Materialrohr einer Heißkanaldüse eine Heizungsbeschichtung dauerhaft funktionstüchtig sein.
  • Hauptmerkmale der Erfindung sind im kennzeichnenden Teil der Ansprüche 1 und 13 angegeben. Ausgestaltungen sind Gegenstand der Ansprüche 2 bis 12 und 14 bis 24.
  • Als Lösung sieht die Erfindung laut Anspruch 1 vor, daß bei einem Verbundkörper mit einem Grundkörper aus Stahl und einer darauf aufgebrachten Heizungsbeschichtung der Grundkörper aus einem ausscheidungshärtenden Stahl gefertigt ist.
  • Ausscheidungshärtende Stähle haben die Eigenschaft, daß sich beim Abkühlen intermetallische Ausscheidungen bilden, die neben der rein temperaturbedingten Volumenreduktion zu einer weitergehenden Reduzierung des Stahlkörpervolumens führen. Ein ausscheidungshärtender Stahl schrumpft daher beim Auslagerungsprozeß, so daß die Druckvorspannung einer zuvor auf der Oberfläche eines Grundkörpers aufgebrachten Heizungsbeschichlung nach dem Härten verstärkt wird. Die Beschichtung ist stets dauerhaft fest mit der Stahlkörperoberfläche verbunden, selbst wenn der Verbundkörper extrem hohen Temperatur- oder Druckbelastungen ausgesetzt wird.
  • Durch die Verwendung von hochlegierten Stählen gemäß Anspruch 2 läßt sich die Größe und Verteilung der Druckvorspannung innerhalb der Isolationsschicht besonders präzise einstellen, was vor allem dann wichtig ist, wenn der Stahlkörper eine runde oder gewölbte Oberfläche zur Aufnahme der Isolationsschicht aufweist, oder wenn der Stahlkörper eine rohrförmige Gestalt hat und die Heizungsbeschichtung auf der Außenwandung aufzubringen ist.
  • Der Grundkörper ist ein Verteiler- oder Materialrohr eines Heißkanalsystems. Gerade im Bereich der Heißkanaltechnik ist es wichtig, daß die einem Formnest zuzuführende Spritzgußmasse bis in den Düsen- bzw. Anschnittbereich hinein präzise und gleichmäßig temperiert ist. Risse in der Heizungsbeschichtung würden sofort zum Ausfall der Düse und zu Unterbrechungen im Fertigungsprozeß führen, was jedoch durch die erfindungsgemäße Ausbildung des Verbundkörpers wirksam vermieden wird.
  • Bevorzugt ist die Heizungsbeschichtung laut Anspruch 3 ein aus mehreren Schichten und/oder Schichtelementen aufgebauter Schichtverbund, der gemäß Anspruch 4 eine auf dem Grundkörper aufgebrachte Isolationsschicht aufweist. Letztere ist im Einklang mit Anspruch 5 eine keramische bzw. glaskeramische Isolationsschicht, die je nach Auftragsmethode und gewünschter Schichtdicke aus einer oder - wie Anspruch 6 vorsieht - aus zwei oder mehr Einzelschichten bestehen kann. Auf der lsolationsschicht ist gemäß Anspruch 7 eine Anordnung von Widerstandselementen aufgebracht. Letztere bilden eine Heizung, die zum Schutz der Widerstandsbahnen zumindest abschnittsweise von einer isolierenden Deckschicht abgedeckt ist (Anspruch 8).
  • Fertigungstechnisch ist es günstig, wenn die Isolationsschicht, die Widerstandselemente und/oder die Deckschicht laut Anspruch 9 eingebrannte Dispersionen, beispielsweise Dickschicht-Pasten sind. Diese lassen sich gleichmäßig und präzise aufbringen, was für die spätere Haftfestigkeit und Funktionsfähigkeit der Heizung wichtig ist. Alternativ können die einzelnen Schichten bzw. Teilschichten der Heizungsbeschichtung gemäß Anspruch 10 auch als eingebrannte Folien ausgebildet sein.
  • Um sowohl die Temperaturverteilung als auch deren Entwicklung innerhalb der Heizung bzw. innerhalb des Grundkörpers ermitteln zu können, sieht die Ausbildung von Anspruch 11 vor, daß in der Ebene der Heizungsbeschichtung wenigstens ein Temperaturfühler angeordnet ist. Dieser ist mithin im Schichtverbund untergebracht, was zu keiner merklichen Volumenzunahme führt. Gleichzeitig lassen sich Temperaturveränderungen äußerst zeitnah und präzise erfassen.
  • Laut Anspruch 12 sind in der Heizungsbeschichtung Anschlußkontakte für die Widerstandselemente und/oder die Temperaturfühler integriert. Die gesamte Heizung kann dadurch unmittelbar in einen Regelungsschaltkreis integriert werden.
  • Weitere wichtige Vorteile ergeben sich bei der Verwendung eines erfindungsgemäßen Verbundkörpers als außenbeheiztes Materialrohr in einem Heißkanalverteiler und/oder einer Heißkanaldüse Das stoffschlüssige Aufbringen der Heizung in Schichten sorgt für eine dauerhaft feste Verbindung mit der Wandung des Grundkörpers und damit für einen festen Halt auf dem Heißkanalverteiler oder der Heißkanaldüse. Darüber hinaus vermeidet die Erfindung äußerst wirkungsvoll ein Abplatzen oder Lösen der Heizung, indem nämlich die Druckvorspannung in der Heizungsbeschichtung durch Ausscheidungshärten des Grundkörpers gezielt erhöht wird.
  • Aufgrund der durch die Direktbeschichtung erzielten geringen Dickenabmessungen nimmt die Heizungsbeschichtung insgesamt nur wenig Raum ein, so daß sich im Vergleich zu herkömmlichen Heizvorrichtungen bei nahezu gleichen Leistungsmerkmalen äußerst kompakte Bauformen realisieren lassen. Zudem kann die Leistungsdichte deutlich erhöht werden, weil die Wärme direkt auf der Oberfläche des zu beheizenden Heißkanaletements erzeugt und abgenommen wird. Eine Überhitzung der meist empfindlichen Heizelemente wird zuverlässig vermieden.
  • Bei einem Verfahren zum Herstellen eines Verbundkörpers mit einem Grundkörper aus Stahl und einer darauf aufgebrachten Heizungsbeschichtung, für das selbständiger Schutz beansprucht wird, sieht die Erfindung laut Anspruch 13 vor, dass eine zuvor in der Heizungsbeschichtung erzeugte Druckvorspannung durch Ausscheidungshärten des Grundkörpers verstärkt wird.
  • Diese ebenso einfach wie kostengünstig zu realisierende Verfahrensweise führt zu einer dauerhaft festen Verbindung zwischen dem Grundkörper und der Heizungsbeschichtung, denn letztere wird durch die beim Abkühlen im Härtungsprozeß entstehende Kontraktionsbewegung des Grundkörpers in definierbaren Grenzen nochmals kontrahiert, wodurch eine besonders wirksame spannungstolerante Verbindung entsteht. Sämtliche Schichten bzw. Teilschichten der Heizung besitzen eine außerordentlich gute Haftfestigkeit. Insbesondere die lsolationsschicht hält selbst extremen mechanischen und thermischen Belastungen dauerhaft stand, so daß stets optimale Produktionsergebnisse gewährleistet sind.
  • Gemäß Anspruch 14 wird jede Schicht bzw. jedes Schichtelement der Heizungsbeschichtung auf dem Grundkörper aufgebracht, getrocknet und eingebrannt bzw. formiert, wobei der Verbundkörper nach jedem Einbrennprozeß auf Raumtemperatur abgekühlt wird. Auf diese Weise lassen sich sämtliche Verfahrensparameter individuell an die jeweilige Heizungsschicht anpassen, die - je nach Leistungsanforderung - stets optimal aufgebracht werden kann.
  • Die Erfindung sieht ferner in Anspruch 15 vor, daß die Stahllegierung des Grundkörpers während dem Einbrennprozeß homogenisiert bzw. lösungsgeglüht wird, was sich besonders günstig auf die Verfahrensökonomie auswirkt. Dazu trägt auch Anspruch 16 bei, wenn nämlich die Einbrenntemperatur gleich der Temperatur für das Homogenisieren bzw. Lösungsglühen des Grundkörpers ist. Während die einzelnen Schichten bzw. Schichtelemente der Heizungsbeschichtung formiert werden, entstehen durch das Lösungsglühen stabile homogene Mischkristalle (α-Kristalle). Separat zu kontrollierende Fertigungsschritte sind nicht mehr notwendig.
  • Von besonderem Vorteil ist die Ausgestaltung von Anspruch 17, wonach die einzelnen Schichten mittels Siebdruck, mittels Dispensen, durch Tauchen oder durch Sprühen aufgetragen werden können. Mithin kann man für jede Schicht das jeweils optimale Verfahren auswählen. Sämtliche Schichtparameter wie Schichtdicke, Dichte, Form u.dgl. lassen sich gleichmäßig und präzise einstellen, so daß eine stets funktionsfähige Heizungsbeschichtung entsteht.
  • In der Ausbildung von Anspruch 18 wird jede Schicht bzw. jedes Schichtelement unter Luftatmosphäre eingebrannt bzw. formiert, wobei die Einbrenntemperatur laut Anspruch 19 zwischen 750 °C und 900 °C liegt.
  • Anspruch 20 sieht vor, daß die Oberfläche des Grundkörpers vor dem Aufbringen der Heizungsbeschichtung aufgerauht wird, beispielsweise mittels Sandstrahlen. Hierdurch wird die mechanische Haftung der Isolationsschicht verbessert. Die chemische Haftung läßt sich optimieren, indem der Grundkörper laut Anspruch 21 vor dem Aufbringen der Beschichtung gereinigt und oxidiert wird.
  • Nach dem Aufbringen der Heizungsbeschichtung wird die Stahllegierung des Grundkörpers in Einklang mit Anspruch 22 durch erneutes Glühen ausgelagert bzw. gealtert. Hierdurch bilden sich feine intermelallische Ausscheidungen, die zu einer gezielten Reduzierung des Grundkörpervolumens führen. Mithin entsteht innerhalb der auf dem Grundkörper aufgebrachten Heizungsbeschichtung eine Druckspannung, die in der Lage ist, mechanische Belastungen des Grundkörpers dauerhaft auszugleichen, beispielsweise die Innendruckbelastungen eines Materialrohrs einer Heißkanaldüse.
  • Wichtig hierbei ist, daß die Auslagerungstemperstur laut Anspruch 23 kleiner ist als die Einbrenntemperatur für die einzelnen Schichten der Heizungsbeschichtung. Hierdurch wird weder die Formierung der einzelnen Schichten bzw. Schichtelemente der Heizungsbeschichtung noch deren Zusammenhalt gestört. Femer wird die Druckvorspannung in der Heizungsbeschichtung optimal erhöht, ohne daß deren Leistungsparameter oder Funktionsfähigkeit beeinträchtigt wird. Der gesamte Prozeß läßt sich mit einfachen Mitteln präzise steuern, wodurch die Verfahrenskosten gering bleiben.
  • Zweckmäßig wird der Auslagerungsprozeß laut Anspruch 24 unter Luft- oder Stickstoffatmosphäre durchgeführt.
  • Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus dem Wortlaut der Ansprüche sowie aus der folgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnungen.
  • In einer bevorzugten Ausführungsform der Erfindung verwendet man als Ausgangsmaterial für die Herstellung des Grundkörpers einen mit Ni, Co, Mo, Ti und/oder Al hochlegierten, ausscheidungshärtenden Stahl, beispielsweise X 3 Cr Ni Al Mo 12 9 2 1. Der Grundkörper bildet beispielsweise ein Materialrohr mit einer runden Oberfläche für eine außenbeheizte Heißkanaldüse, die in einem Spritzgießwerkzeug Verwendung findet.
  • Auf dem Grundkörper wird eine Heizungsbeschichtung aufgebracht. Diese besteht aus einer unmittelbar auf dem Grundkörper liegenden glaskeramischen Isolierschicht, einer darauf aufgebrachten Anordnung von Widerstandsbahnen als Heizelement und einer darüber liegenden Deckschicht, um die Heizung gegen Einflüsse von außen zu schützen. Heizungsbeschichtung und Grundkörper sind unlösbar miteinander verbunden und bilden mithin einen Verbundkörper.
  • Das Ausscheidungshärten des Materialrohrs erfolgt gewöhnlich in 2 Schritten, nämlich dem Lösungsglühen der Legierung und dem anschließenden Auslagern bzw. Altern,
  • Zuvor werden jedoch die einzelnen Schichten bzw. Schichtelemente der Heizungsbeschichtung in Form von Dickschichtpasten aufgetragen und eingebrannt bzw. formiert, wobei gleichzeitig mit dem Einbrennen der Dickschichtpasten das Lösungsglühen der Metallegierung durchgeführt wird.
  • Zu Beginn des Verfahrens wird der noch ungehärtete Stahlkörper nach Abschluß der mechanischen Bearbeitung zunächst sandgestrahlt, um die mechanischen Haftungseigenschaften für die Heizungsbeschichtung zu verbessern, wobei eine bestimmte Oberflächenrauheit einzuhalten ist. Anschließend wird das Materialrohr mit Ethanol und warmer Salpetersäure (HN03) gereinigt und bei etwa 850 °C oxidiert. Hierdurch entsteht ein dünner Oxidfilm auf der Oberfläche des Grundkörpers, der die Haftung der Isolationsschicht verbessert.
  • Nach Abschluß der Vorbehandlung wird die Heizungsbeschichtung hergestellt.
  • Das Ausgangsmaterial für die lsolationsschicht ist bevorzugt eine Dispersion, insbesondere eine elektrisch isolierende Dickschichtpaste, die mit gleichmäßiger Dicke im Siebdruckverfahren auf die Grundkörperoberfläche aufgedruckt wird. Bevorzugt werden nacheinander vier Einzelschichten aufgetragen, wobei jede Schicht separat getrocknet wird. Ist die gewünschte Schichtdicke erreicht, wird das Materialrohr mit der Isolationsschicht in einem geeigneten Brennofen unter Luftatmosphäre bei etwa 850 °C formiert, so daß ein in sich homogenes Glaskeramilkgefüge entsteht.
  • Die Einbrenntemperatur entspricht hierbei der Temperatur, die für das Homogenisieren bzw. Lösungsglühen des Grundkörpers erforderlich ist. Beide Prozesse - Einbrennen und Lösungsglühen - finden mithin zeitgleich statt.
  • Ferner wird durch eine spezifische Fehlanpassung des linearen thermischen Ausdehnungskoeffizienten der Isolationsschicht an den linearen thermischen Ausdehnungskoeffizienten des Materialrohrs beim Einbrennen der Isolationsschicht innerhalb dieser eine mechanische Druckvorspannung erzeugt. Die hierdurch entstehende spannungstolerante Verbindung im Verbundkörper setzt die Isolationsschicht als Trägerschicht der Heizung bereits in die Lage, den durch den Spritzgießprozeß technologisch bedingten pulsierenden Innendruckbelastungen im Materialrohr in gewissen Grenzen standzuhalten, ohne daß Risse oder Beschädigungen an der Heizung auftreten.
  • Hat sich der Grundkörper mit der eingebrannten Isolationsschicht auf Raumtemperatur abgekühlt, werden zunächst die Anschlußkontakte für die stromleitenden Widerstandselemente und gegebenenfalls für einen Temperaturfühler aufgetragen und getrocknet. Ausgehend von den Anschlußkontakten werden die meist mäander- oder spiralförmigen Widerstandsbahnen für die Heizung sowie für den Temperaturfühler aufgetragen, wobei man hierzu - ebenso wie für die Anschlußkontakte - elektrisch leitfähige Pasten verwendet, die entweder im Siebdruckverfahren oder mit einem Dispenser auf der Isolierschicht aufgetragen werden. Die Trocknung erfolgt jeweils nach dem Auftrag der Einzelschichten. Alle leitfähigen Schichtelemente werden anschließend gemeinsam gebrannt und auf Raumtemperatur abgekühlt. Auch hierbei wird der Grundkörper erneut lösungsgeglüht, was jedoch noch keine endgültige Auswirkung auf dessen Gefüge hat.
  • Die Deckschicht ist ebenfalls eine elektrisch isolierende Glaskeramik, die im Siebdruckverfahren auf den Widerstandselementen, den Anschlußkontakten und der in Teilbereichen noch freiliegenden Isolationsschicht aufgedruckt, getrocknet und sodann bei etwa 750 bis 900 °C formiert wird.
  • Nach dem letzten Einbrennprozeß wird der Grundkörper mitsamt der bereits aufgetragenen Heizungsbeschichtung unter Stickstoffatmosphäre erneut auf etwa 525 °C erwärmt und für eine definierte Zeit bei dieser Temperatur gehalten. Nach Ablauf der Haltezeit wird der Verbundkörper abgekühlt, vorzugsweise mit einer Abkühlrate von 10 K/min.
  • Der ausscheidungshärtende Stahl schrumpft während der Härtung bei 525 °C um etwa 0,07% allseitig und beim Abkühlen nochmals um etwa 11 ppm/K, wodurch die zuvor aufgebrachten und formierten Schichten der Heizung weiter unter Druckspannung gesetzt werden. Die Ausscheidungshärtung führt mithin zu einer zusätzlichen Druckvorspannung, so daß die gesamte Heizungsbeschichtung selbst extremen Temperaturund Innendruckbelastungen im Materialrohr dauerhaft standhalten kann. Die Heißkanaldüse wird durch die stoffschlüssig aufgebrachte Heizung in jedem Verfahrensstadium stets optimal temperiert.
  • Die nach dem Härtungsprozeß erreichte Härte des Grundkörpers beträgt etwa HRC 52.
  • Der Temperaturfühler liegt bevorzugt in der gleichen Ebene wie die Widerstandsbahnen der Heizung. Er ist mithin ebenso wie die Anschlußkontakte in der Heizungsbeschichtung integriert. Letztere bildet einen aus mehreren Schichten bzw. Schichtelementen aufgebauten Schichtverbund, der in unlösbarer Verbindung mit dem Grundkörper einen beheizbaren Verbundkörper bildet.
  • Aufgrund des hohen TKR kann auch der Heizwiderstand selbst als Temperatursensor dienen. Hierzu werden Spannungsabgriffe aus gewünschten Regionen der mäander- oder spiralförmig verlaufenden Widerstandsbahnen nach außen geführt. Bei bekanntem Strom kann über die ermittelte Teilspannung die Temperatur in dem betreffenden Bereich ermittelt werden.
  • Die Erfindung ist nicht auf eine der vorbeschriebenen Ausführungsformen beschränkt, sondern in vielfältiger Weise abwandelbar. So können einzelne oder alle Schichten bzw. Schichtelemente der Heizungsbeschichtung auch durch Sprühen oder Tauchen aufgetragen werden. Alternativ lassen sich aber auch Folien verwenden, die in gleicher Weise wie die Dickschichtpasten eingebrannt werden.
  • Die Stahllegierung des Grundkörpers kann auch ein Nickel-Kobalt-Warmarbeitsstahl sein. Wichtig ist, daß der Stahl im Hinblick auf das Einbrennen bzw. Sintern der Heizungsbeschichtung für eine Spitzentemperatur von bis zu 850 bis 900 °C geeignet ist. Er muß ferner unter Einsatzbedingungen Temperaturen von bis zu 450 °C sowie Innendruckbelastungen von bis zu 2000 bar aushalten.
  • Man erkennt, daß als Ausgangsmaterial für den Stahlkörper ausscheidungshärtende Stähle verwendet werden. Bei diesen finden - anders als bei der üblichen Härtung über Kohlenstoffmartensit - intermetallische Ausscheidungen statt, die sich über die Legierungswahl exakt steuern lassen. Die beim Aushärten eintretende Kontraktion vergrößert die Druckspannung in der Isolationsschicht bzw. in der gesamten Heizungsbeschichtung, was die Haltbarkeit und die Funktionssicherheit der Heizung wesentlich verbessert.
  • Normalhärtende Stähle können all dies nicht leisten, es sei denn man kühlt den Stahlkörper mit kritischer Abkühlgeschwindigkeit ab. Die erforderliche hohe Temperatur und die hohe Abkühlrate zerstören aber die Heizbeschichtung, was die Erfindung auf einfache und kostengünstige Weise vermeidet.

Claims (24)

  1. Verbundkörper mit einem Grundkörper aus Stahl und einer darauf aufgebrachten Heizungsbeschichtung, dadurch gekennzeichnet, daß der Grundkörper ein Verteiler- oder Materialrohr eines Heißkanalsystems ist, wobei der Grundkörper aus einem ausscheidungshärtenden Stahl gefertigt ist.
  2. Verbundkörper nach Anspruch 1, dadurch gekennzeichnet, daß der Stahl ein hochlegierter Stahl ist.
  3. Verbundkörper nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Heizungsbeschichtung ein aus mehreren Schichten und/oder Schichtelementen aufgebauter Schichtverbund ist.
  4. Verbundkörper nach Anspruch 3, dadurch gekennzeichnet, daß die Heizungsbeschichtung eine auf dem Grundkörper aufgebrachte lsolationsschicht aufweist.
  5. Verbundkörper nach Anspruch 4, dadurch gekennzeichnet, daß die Isolationsschicht eine Keramik oder eine Glaskeramik ist.
  6. Verbundkörper nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Isolationsschicht aus wenigstens zwei Einzelschichten besteht.
  7. Verbundkörper nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß auf der Isolationsschicht eine Anordnung von Widerstandselementen aufgebracht ist.
  8. Verbundkörper nach Anspruch 7, dadurch gekennzeichnet, daß die Widerstandselemente zumindest abschnittsweise von einer isolierenden Deckschicht abgedeckt sind.
  9. Verbundkörper nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß die lsolationsschicht, die Widerstandselemente und/oder die Deckschicht eingebrannte Dispersionen, beispielsweise Dickschicht-Pasten sind.
  10. Verbundkörper nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß die Isolationsschicht, die Widerstandselemente und/oder die Deckschicht eingebrannte Folien sind.
  11. Verbundkörper nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, daß in der Ebene der Heizungsbeschichtung wenigstens ein Temperaturfühler integriert ist.
  12. Verbundkörper nach einem der Ansprüche 3 bis 11, dadurch gekennzeichnet, daß in der Heizungsbeschichtung Anschlußkontakte für die Widerstandselemente und/oder die Temperaturfühler integriert sind.
  13. Verfahren zum Herstellen eines Verbundkörpers mit einem Grundkörper aus Stahl und einer darauf aufgebrachten Heizungsbeschichtung nach einem der Ansprüche 1 bis 12. dadurch gekennzeichnet, dass eine zuvor in der Heizungsbeschichtung erzeugte Druckvorspannung durch Ausscheidungshärten des Grundkörpers verstärkt wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß jede Schicht bzw. jedes Schichtelement der Heizungsbeschichtung auf dem Grundkörper aufgebracht, getrocknet und eingebrannt bzw. formiert wird und daß der Verbundkörper nach jedem Einbrennprozeß auf Raumtemperatur abgekühlt wird.
  15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß die Stahllegierung des Grundkörpers während dem Einbrennprozeß homogenisiert bzw. lösungsgeglüht wird.
  16. Verfahren nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, daß die Einbrenntemperatur gleich der Temperatur für das Homogenisieren bzw. Lösungsglühen des Grundkörpers ist.
  17. Verfahren nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, daß die Schichten bzw. Schichtelemente der Heizungsbeschichtung mittels Siebdruck, mittels Dispensen, durch Tauchen oder durch Sprühen aufgetragen werden.
  18. Verfahren nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, daß jede Schicht bzw. jedes Schichtelement unter Luftatmosphäre eingebrannt bzw. formiert wird.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß die Einbrenntemperatur zwischen 750°C und 900 °C liegt.
  20. Verfahren nach einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, daß die Oberfläche des Grundkörpers vor dem Aufbringen der Heizungsbeschichtung aufgerauht wird, beispielsweise mittels Sandstrahlen.
  21. Verfahren nach einem der Ansprüche 13 bis 20, dadurch gekennzeichnet, daß der Grundkörper vor dem Aufbringen der Heizungsbeschichtung gereinigt und/oder oxidiert wird.
  22. Verfahren nach einem der Ansprüche 13 bis 21. dadurch gekennzeichnet, daß die Stahllegierung des Grundkörpers nach dem Aufbringen der Heizungsbeschichtung durch Glühen ausgelagert bzw. gealtert wird.
  23. Verfahren nach Anspruch 22. dadurch gekennzeichnet, daß die Auslagerungstemperatur kleiner ist als die Einbrenntemperatur für die einzelnen Schichten der Heizungsbeschichtung.
  24. Verfahren nach einem der Ansprüche 13 bis 23, dadurch gekennzeichnet, daß die Auslagerung unter Luft- oder Stickstoffatmosphäre durchgeführt wird.
EP03788951A 2002-10-11 2003-10-13 Verbundkörper und verfahren zu dessen herstellung Expired - Lifetime EP1550353B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200330652T SI1550353T1 (sl) 2002-10-11 2003-10-13 Kompozitno telo in postopek za njegovo pripravo

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10247618 2002-10-11
DE2002147618 DE10247618A1 (de) 2002-10-11 2002-10-11 Verbundkörper und Verfahren zu dessen Herstellung
PCT/EP2003/011318 WO2004036956A2 (de) 2002-10-11 2003-10-13 Verbundkörper und verfahren zu dessen herstellung

Publications (2)

Publication Number Publication Date
EP1550353A2 EP1550353A2 (de) 2005-07-06
EP1550353B1 true EP1550353B1 (de) 2006-12-27

Family

ID=32038559

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03788951A Expired - Lifetime EP1550353B1 (de) 2002-10-11 2003-10-13 Verbundkörper und verfahren zu dessen herstellung

Country Status (13)

Country Link
US (1) US7569799B2 (de)
EP (1) EP1550353B1 (de)
JP (1) JP2006502882A (de)
KR (1) KR20050071566A (de)
CN (1) CN1703935B (de)
AT (1) ATE349877T1 (de)
AU (1) AU2003293613A1 (de)
CA (1) CA2501868A1 (de)
DE (2) DE10247618A1 (de)
DK (1) DK1550353T3 (de)
ES (1) ES2279211T3 (de)
PT (1) PT1550353E (de)
WO (1) WO2004036956A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662122B2 (en) * 2005-03-07 2010-02-16 Bellacure, Inc. Orthotic or prosthetic devices with adjustable force dosimeter and sensor
DE102006049667A1 (de) 2006-10-18 2008-04-24 Günther Heisskanaltechnik Gmbh Elektrische Heizeinrichtung für Heißkanalsysteme
DE102008032509A1 (de) * 2008-07-10 2010-01-14 Epcos Ag Heizungsvorrichtung und Verfahren zur Herstellung der Heizungsvorrichtung
US10259152B2 (en) 2014-12-11 2019-04-16 Otto Männer Innovation GmbH Injection molding apparatus with heated mold cavities
JP6530663B2 (ja) * 2015-07-17 2019-06-12 イビデン株式会社 構造体の製造方法及び構造体
CN106982480B (zh) * 2016-08-30 2021-02-26 广东天物新材料科技有限公司 一种多层厚膜发热元件

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3533730A1 (de) * 1985-09-21 1987-03-26 Schneider Carl Gmbh & Co Kg Heisskanal fuer spritzgiessvorrichtungen
DE3536268A1 (de) 1985-10-11 1987-04-16 Bayer Ag Flaechenheizelemente
DE3545445A1 (de) * 1985-12-20 1987-06-25 Bosch Siemens Hausgeraete Heizelement insb. fuer kochstellen
JPH01120483A (ja) * 1987-11-02 1989-05-12 Nisshin Steel Co Ltd メタルガスケット材料とその製法
JPH02282424A (ja) * 1989-04-20 1990-11-20 Uchiyama Mfg Corp メタルガスケットの製造方法
DE4127036C2 (de) 1991-08-16 1995-05-04 Guenther Herbert Gmbh Heißkanaldüse
JPH0994911A (ja) * 1995-09-29 1997-04-08 Ntn Corp 硬質カーボン膜成形体
JP3773000B2 (ja) * 1996-09-30 2006-05-10 株式会社ジェイテクト 転がり軸受および転がり軸受の耐食膜形成方法
US6069910A (en) * 1997-12-22 2000-05-30 Eckert; C. Edward High efficiency system for melting molten aluminum
US5973296A (en) * 1998-10-20 1999-10-26 Watlow Electric Manufacturing Company Thick film heater for injection mold runner nozzle
DE19908936C2 (de) 1999-03-02 2002-10-31 Feinwerktechnik Wetzlar Gmbh Spritzgießvorrichtung und Verfahren zur Herstellung präzisionsoptischer und präzisionsmechanischer Teile aus einem thermoplastischen Kunststoff
DE19941038A1 (de) * 1999-08-28 2001-03-01 Guenther Heiskanaltechnik Gmbh Elektrische Heizung für Heißkanalsysteme und Verfahren zur Herstellung einer solchen Heizung
JP4412875B2 (ja) * 2000-01-31 2010-02-10 ギュンター・ハイスカナルテヒニク・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング 射出成形金型用ノズルおよびノズル構造体
DE10004072C2 (de) * 2000-01-31 2002-07-25 Guenther Heiskanaltechnik Gmbh Düse für Spritzgießwerkzeuge und Düsen-Anordnung
DE10029244A1 (de) * 2000-06-14 2002-01-03 Elias Russegger Elektrische Heizvorrichtung

Also Published As

Publication number Publication date
US20060165901A1 (en) 2006-07-27
DK1550353T3 (da) 2007-05-07
KR20050071566A (ko) 2005-07-07
WO2004036956A2 (de) 2004-04-29
CN1703935A (zh) 2005-11-30
DE10247618A1 (de) 2004-04-22
CN1703935B (zh) 2011-03-09
PT1550353E (pt) 2007-03-30
DE50306133D1 (de) 2007-02-08
ES2279211T3 (es) 2007-08-16
CA2501868A1 (en) 2004-04-29
EP1550353A2 (de) 2005-07-06
AU2003293613A1 (en) 2004-05-04
US7569799B2 (en) 2009-08-04
WO2004036956A3 (de) 2004-06-24
JP2006502882A (ja) 2006-01-26
ATE349877T1 (de) 2007-01-15
AU2003293613A8 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
DE19941038A1 (de) Elektrische Heizung für Heißkanalsysteme und Verfahren zur Herstellung einer solchen Heizung
DE10162276B4 (de) Verfahren zum Herstellen einer elektrisch leitenden Widerstandsschicht sowie Heiz- und/oder Kühlvorrichtung
DE102005018062B4 (de) Verfahren zur Produktion von Heizeinrichtungen für Komponenten für Spritzgussgeräte
EP2080415B1 (de) Elektrische heizeinrichtung für heisskanalsysteme
DE4026065C2 (de) Verfahren zur Herstellung eines Versorgungsrohres für eine Flüssigkeit unter hohem Druck
DE3607888C2 (de)
EP1550353B1 (de) Verbundkörper und verfahren zu dessen herstellung
WO2008046465A1 (de) Elektrische heizeinrichtung für heisskanalsysteme
EP1148985A1 (de) Verfahren zur wärmeleitung in einer düse
EP2255130B1 (de) Glührohr für eine glühstiftkerze und verfahren zu dessen herstellung
DE102015107322A1 (de) Heizwiderstand und Verfahren zur Herstellung eines Heizwiderstands
DE102015225028A1 (de) Spritzgiessvorrichtung mit beheizten Formhohlräumen
DE102011007375A1 (de) Haarformgerät-Heizplatte
DE102007010395A1 (de) Verfahren zur Herstellung einer elektrischen Heizung und/oder eines Temperaturfühlers für Heißkanalsysteme
EP1719386B1 (de) Elektrischer heizkörper in form eines verdichteten heizelementes mit dauerhaften federeigenschaften
DE3243780A1 (de) Heizkoerper und verfahren zu seiner herstellung
EP1213540B1 (de) Glühstiftkerze für Brennkraftmaschinen
DE102006053001A1 (de) Heizvorrichtung zur Beheizung von Werkstücken
DE10326711B4 (de) Vorrichtung zum Trocknen einer Auskleidungsmasse
DE102004012364A1 (de) Keramische Glühstiftkerze mit in Glühstift integriertem Drucksensor
DE2851130C2 (de)
DE102013014030A1 (de) Keramisches Heizelement und Umformwerkzeug sowie Verfahren zur Herstellung eines keramischen Heizelements
DE102020203166A1 (de) Sensoraufbau zur Bestimmung hoher Temperaturen und Verfahren zur Herstellung des Sensoraufbaus
DE2622435A1 (de) Keramischer elektrischer einbett- heizwiderstand und verfahren zu seiner herstellung
DE102015122390A1 (de) Verfahren zur konduktiven Erwärmung eines flächig ausgebildeten metallischen Bauteils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050419

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50306133

Country of ref document: DE

Date of ref document: 20070208

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070131

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PA ALDO ROEMPLER

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070327

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070228

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070400945

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E001418

Country of ref document: HU

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2279211

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20081008

Year of fee payment: 6

Ref country code: DK

Payment date: 20081015

Year of fee payment: 6

Ref country code: IE

Payment date: 20081023

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081027

Year of fee payment: 6

Ref country code: FI

Payment date: 20081015

Year of fee payment: 6

Ref country code: SK

Payment date: 20081010

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20081014

Year of fee payment: 6

Ref country code: BE

Payment date: 20081120

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20081017

Year of fee payment: 6

Ref country code: SI

Payment date: 20081001

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091015

Year of fee payment: 7

Ref country code: CH

Payment date: 20091026

Year of fee payment: 7

Ref country code: LU

Payment date: 20091120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20091016

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20091007

Year of fee payment: 7

Ref country code: HU

Payment date: 20080930

Year of fee payment: 6

BERE Be: lapsed

Owner name: GUNTHER G.M.B.H. & CO., METALLVERARBEITUNG

Effective date: 20091031

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 1619

Country of ref document: SK

Effective date: 20091013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091013

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091013

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100504

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091013

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20101015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091014

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110323

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20110413

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091014

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110310

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101013

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091014

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20080922

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50306133

Country of ref document: DE

Representative=s name: PATENTANWAELTE OLBRICHT, BUCHHOLD, KEULERTZ PA, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091013

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211022

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211021

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221026

Year of fee payment: 20

Ref country code: DE

Payment date: 20221031

Year of fee payment: 20

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50306133

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221013