EP1546560B1 - Rotationsmaschine mit kapselsystem - Google Patents

Rotationsmaschine mit kapselsystem Download PDF

Info

Publication number
EP1546560B1
EP1546560B1 EP03769566A EP03769566A EP1546560B1 EP 1546560 B1 EP1546560 B1 EP 1546560B1 EP 03769566 A EP03769566 A EP 03769566A EP 03769566 A EP03769566 A EP 03769566A EP 1546560 B1 EP1546560 B1 EP 1546560B1
Authority
EP
European Patent Office
Prior art keywords
sin
cos
profile
machine according
lobed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03769566A
Other languages
English (en)
French (fr)
Other versions
EP1546560A1 (de
Inventor
André KATZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
katz Andre
Original Assignee
Centre National de la Recherche Scientifique CNRS
Ecole Polytechnique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Ecole Polytechnique filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1546560A1 publication Critical patent/EP1546560A1/de
Application granted granted Critical
Publication of EP1546560B1 publication Critical patent/EP1546560B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/082Details specially related to intermeshing engagement type machines or engines
    • F01C1/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member

Definitions

  • the present invention relates to a rotary machine with capsulism.
  • Capsulism machine means a machine in which two profiled members have annular profiles which mesh with each other by defining between them chambers - or capsules - with variable volume.
  • the invention is more particularly concerned with machines in which one of the profiles is internal to the other, one being m-lobed and the other (m-1) -lobed, where the integer m is greater or equal to 2.
  • a "m-lobed" profile is called an annular profile defined by a pattern forming a lobe dome and a lobe hollow, this pattern repeating itself around the center of a pitch circle associated with this profile.
  • a (m-1) -lobed profile is an annular profile defined by a pattern forming a lobe dome and a lobe hollow, this pattern repeating itself (m-1) times around the center of a pitch circle associated with this profile. .
  • the profiles cooperate with each other by a kind of meshing in which their respective primary circles roll over each other at a running point which is fixed relative to a connecting member with respect to which the two profiled members, each along an axis passing through the center of its original circle.
  • Capsulism machines may for example be hydraulic motors, hydraulic pumps, compressors or expansion machines.
  • EP-A-0870926 discloses a capsulism machine of the type called "gerotor", that is to say in which the inner profile member is (m-1) -lobed.
  • the geometry of this machine is classic in itself.
  • the document relates more particularly to the realization of a determined game between the profiles.
  • EP-539273-B1 discloses various machines with capsulism, in particular machines with two lobes on the inner profile and three on the outer profile, and conversely machines with three lobes on the inner profile and two lobes only on the outer profile.
  • US-A-1 892 217 discloses the Sparrow pump. Instead of having cylindrical profiles, this gerotor type machine has helical profiled members with a total helix angle of several turns. The capsules are formed at one axial end of the profiled members and are transported without volume variation to the other end, where they disappear. Two remarkable results are obtained: The distribution is simplified to the extreme since it suffices that the capsules open freely on the intake at one end and the discharge at the other end. And on the other hand, the flow is strictly constant.
  • WO 93/08402 discloses improvements to the Moineau pump.
  • the object of the present invention is to seek an optimization with regard to the quality of the contacts between the profiles, the switching between the suction and the delivery by the distribution, and the progressivity of the birth and the disappearance of each capsule.
  • osculator contact means a point of contact where the curvatures of the two profiles are continuous, equal and in the same direction.
  • the osculating contact splits into two contacts between which the capsule is formed.
  • two distinct contacts come closer and closer to becoming a single osculator contact, then simple.
  • the proximal conjugate arc and the distal conjugate arc are obtained directly by their Cartesian coordinates originating from the center O of the pitch circle associated with the given arc.
  • the conjugate profile of the given arc is obtained by concatenation of the proximal conjugate arc and the distal conjugate arch.
  • the formulas automatically realize that the two arcs, proximal and distal, have not only the same tangent but also the curvature at their point of connection and this curvature is also the same as that at a corresponding end of the given arc.
  • the normal to the conjugate profile at the point of connection is tangent to the respective primitive circles of the selected arc and the conjugate profile at the point of rotation of these circles one over the other. Since the radius of the pitch circle of the given arc has been chosen arbitrarily equal to 1, the radius of the pitch circle of the conjugate profile is equal to (m-1) / m. The primitive circle of the conjugate profile is thus determined.
  • the complete conjugate profile is then obtained concatenating (m-1) times the pattern consisting of the proximal conjugate arc and the distal conjugate arc according to (m-2) rotations of angle 2 ⁇ / (m-1) around the center O 'of the pitch circle of the profile conjugate.
  • a first class of machines according to the invention is thus produced in which the inner profile has one lobe more than the outer profile.
  • the two conjugate arcs, proximal and respectively distal, defined by the formulas according to the invention are placed radially outside the given arc, and the complementary arc of the given arc completes the m-lobed profile within the conjugate (m-1) -lobed profile.
  • the m-lobed profile is exterior to the profile (m-1) -lobed; and the m-lobed pattern is completed by a distal complementary arc defined by the next set of Cartesian coordinates around the center O:
  • x VS p D ⁇ 2 ⁇ sin ⁇ + m ⁇ ⁇ ⁇ sin 2 ⁇ ⁇ m + ⁇ ⁇ + MCOS ⁇ ⁇ cos 2 ⁇ ⁇ m + ⁇ ⁇ / m there
  • VS p D ⁇ - 2 ⁇ sin ⁇ + m ⁇ ⁇ ⁇ cos 2 ⁇ ⁇ m + ⁇ ⁇ + MCOS ⁇ ⁇ sin 2 ⁇ ⁇ m + ⁇ ⁇ / m
  • the machine comprises an inner profiled member 1 and an outer profiled member 2 which surrounds the inner profiled member 1.
  • the inner profiled member 1 has on its outer periphery a lobed profile 3 and the outer profiled member 2 has on its inner periphery a lobed profile 4 which surrounds the lobed profile 3 of the inner profiled member 1.
  • One of the profiles has one lobe more than the other.
  • the inner profile 3 which has one lobe more than the outer profile 4. it is said that the inner profile 3 is m-lobed and that the outer profile 4 is (m-1) -lobed.
  • Each profile 3, 4 has rotational symmetry around the origin of the primitive circle associated with it and the order of this symmetry is the number of its lobes.
  • the profile 3 of the inner member 1 has a symmetry of order 6 around a center O
  • the profile 4 of the outer profiled member 2 has a symmetry of order 5 around a center O ' .
  • Each lobe is defined by a respective pattern, the profile 3 or 4 being defined by plotting m times or respectively (m-1) times its respective pattern by rotation of 2 ⁇ / m or respectively 2 ⁇ / (m-1) around the center of symmetry O or respectively O '.
  • Each of the profiles 3, 4, has a pitch circle 6, 7, of center O and respectively O '.
  • the rays of the primitive circles are proportional to the number of lobes of the profile with which they are respectively associated, so that they are tangent to each other at a point R located on the Ox axis.
  • Each pattern consists of a “lobe dome” and a “lobe hollow”.
  • a “lobe dome” is a protruding part, so a part radially away from the center when it comes to the inner profile and a part radially close to the center when it comes to the outer profile.
  • a “lobe hollow” is a generally concave part, so close to the center when it comes to the inner profile and away from the center when it comes to external profile.
  • the “peak of lobe” is the culmination of a lobe dome and "lobe bottom” the deepest point of a lobe hollow.
  • the profiles have mirror symmetry with respect to rays passing through the lobes and lobes, but this symmetry is not essential to the meaning of the invention, as will be seen later. .
  • the m-lobed profiled member 1 is articulated to a connecting member, not shown in Figure 1, along an axis of rotation coinciding with the center O.
  • the member section (m-1) -lobé 2 is articulated to the connecting member along an axis of rotation coinciding with the center O 'of its original circle.
  • the two profiled members perform relative to the connecting member a rotation about their respective axis of rotation O, O ', so that the two primitive circles 6, 7 roll one on the other at point R which remains motionless with respect to the connecting member. Therefore, the Ox mark, Oy is stationary relative to the connecting member, as are the centers O and O '. Furthermore, the description made up to now also implies that the m-lobed profiled member 1 executes (m-1) / m revolution when the profiled member (m-1) -lobed 2 performs a complete revolution.
  • each lobe dome of each profile 3 or 4 is in contact with the other profile.
  • each lobe dome of one of the profiles forms a single contact with a lobe dome of the other profile.
  • Such a single contact C 1 is shown in particular.
  • each lobe dome of one of the profiles is in contact with a lobe recess of the other profile.
  • contacts C 3 , C 5 , C 7 and C 9 are seen between a dome of the m-lobed profile and a hollow of the (m-1) -lobed profile, which alternate with contacts C 4 , C 6 and C 8. between a dome of the profile (m-1) -lobed and a hollow of the m-lobed profile.
  • Action curves are called the trajectories of the contact points with respect to the connecting member represented by the reference Oxy.
  • a single AC 1 action curve whose ends are points B N and B M located on the tangent T.
  • two AC 2 and AC 3 action curves that correspond to the trajectory of the contact points formed by the domes of the m-lobed profile 3, and respectively by the contact points. formed by the domes of the (m-1) -lobed profile 4.
  • the ends of the two AC 2 and CA 3 action curves are also constituted by the points B N and B M , which will be called bifurcation points of the curves. Action.
  • one of the points of contact coincides with the bifurcation point B N.
  • This point of contact marks the boundary between a hollow and a dome on a slope of the pattern of each of the two profiles.
  • a point of contact coincides with the bifurcation point B M and marks the limit between a hollow and a dome on the other side of the pattern of each of the two profiles.
  • the profiles determined in a manner to be described later, define an osculator contact between the two profiles when the contact point is made in B N or B M. This means that the profiles have at their point of contact located in B N or B M not only a common tangent, but also have continuous curvatures, equal and in the same direction.
  • the center of curvature common to the two profiles in their oscillation coincides with the rolling point R, so that their radius of curvature is equal to the distance between R and B N , or respectively B M.
  • This oscillation ensures between the two profiles a contact which is of excellent quality.
  • the contact such as C 1, the following CA action curve 1 until it comes to coincide with the branch point B N to form the aforementioned oscillation. From there, the contact splits into two distinct contacts each following one of the two AC 2 and AC 3 action curves. Then these two distinct contacts come again to merge into an osculating contact at the point of bifurcation B M.
  • Capsules - or chambers - are defined between the two profiles 3 and 4 and between the contact points successive.
  • a capsule is being born at the point of contact C 2 .
  • the capsule being born at the bifurcation point B N will successively form the capsules V 1 , V 2 , ... , V 9 .
  • the capsules V 1 to V 4 are in the volume growth phase whereas the capsules V 5 to V 9 are in a phase of volume decrease.
  • the growth phase extends over almost a complete turn, the decay phase also, so that the complete cycle extends over a little less than two turns.
  • the hydraulic fluid is at high pressure in the capsules V 1 to V 4 in the growth phase, and at low pressure in the capsules V 5 to V 9 in the decay phase.
  • the capsules in the growth phase and subjected to pressure alternate with the capsules in the decay phase and which are not subjected to pressure.
  • the hydraulic machine operates as a pump, the same alternation is observed except that it is the capsules in the decay phase that are subjected to pressure and the capsules in the growth phase that are in the process of admission of the fluid to be pumped.
  • Figures 2A to 2F show six successive angular positions of the two profiled members 1 and 2 of the machine of Figure 1, from the situation shown in Figure 1, which is also that of Figure 2A.
  • the situation shown in FIG. 2F corresponds to the passage of capsule V4 by its maximum volume.
  • the m-lobed profile 13 is now external to the profile (m-1) -lobed 14, and belongs to a profiled member 11 which is external and surrounds the profiled member 12 bearing the profile (m-1) -lobed 14.
  • FIGS. 4A to 4F represent six successive states of the machine of FIG. 3, from the situation shown in Figure 3, which is also that of Figure 4A.
  • the capsule V 4 has reached a position where it is symmetrical with respect to the axis Ox so that the direction of variation of its volume is changing. This is why it is to this figure that has also been shown the inlet ports 8 and discharge 9 made through a flange which, moreover, laterally closes the capsules.
  • the capsule V 4 communicates neither with the light 8 nor with the light 9.
  • the capsules in the growth phase communicate with the light 8 which extends to the point of rear contact C 4 of the capsule V 4 .
  • the capsules in decay phase communicate with the discharge light 9 which starts from the point of contact before C 5 of the capsule V 4 .
  • the flange (s) in which (or) are defined the lights 8, 9, are integral with the connecting member symbolized by the Oxy mark.
  • the circle of center O and radius 1 intended to constitute the primitive circle of the m-lobed profile.
  • the arc M 0 M ⁇ is chosen arbitrarily, which in the example of FIG. 5 is represented identical to the dome of a lobe of the profile 3, including as regards its distance and its orientation with respect to the center O, and a ray from this center.
  • one chooses arbitrarily one does not mean that any bow can agree, and one will give further necessary conditions that must verify this choice.
  • the quantities ( ⁇ , ⁇ , ⁇ ) are defined univocally by the point M.
  • the point M is univocally defined by these quantities: we build the half-line of origin O and of polar angle ⁇ , then the points P and D by taking the angles ⁇ ⁇ from this half-line.
  • the given arc as a differentiable arc on which the angle ⁇ is a coordinate between 0 and ⁇ . This means that when the point M traverses this arc, the angle ⁇ associated with it takes once and only one each value between 0 and ⁇ .
  • These arcs form two classes according to the relative direction of the course and the scan, and these two classes are associated with the two aforementioned classes of conjugated profiles and consequently of machines.
  • the profiles are generated, for one, by the concatenation (ie put end to end maintaining the relative orientation) of the given arc and one of the complementary arcs: it is the completed profile; for the other, by the concatenation of the two conjugated arcs: it is the conjugate profile.
  • the given arc is first class when: ⁇ '(0)> 0 and ⁇ ' ( ⁇ ) ⁇ 0
  • the completed profile is constituted by the concatenation of the given arc and the proximal complementary arc, repeated by rotations of 2 ⁇ / m around the origin.
  • the profile is of order m, that is to say, it is preserved by the rotation of 2 ⁇ / m (around the origin) and that it presents m lobes or teeth. This is the profile shown partially in Figure 5.
  • the conjugate profile is constituted by the concatenation of the proximal conjugate arc and the distal conjugate arc, repeated by rotations of 2 ⁇ / (m-1) around the center O 'of coordinates (1 / m, 0).
  • the profile is of order (m-1), in the same sense as before.
  • the ratio of rotation speeds is (m-1) / m.
  • the completed profile is internal to the conjugate profile.
  • the given arc is of second class when: ⁇ '(0) ⁇ 0 and ⁇ ' ( ⁇ )> 0.
  • the completed profile is constituted by the concatenation of the given arc and the distal complementary arc, repeated by rotations of 2 ⁇ / m around the origin.
  • the profile is of order m.
  • the conjugate profile is constituted, as for the first class, by the concatenation of the proximal conjugate arc and the distal conjugate arc, repeated by rotations of 2 ⁇ / (m-1) around the center O 'of coordinates (1 / m, 0).
  • the profile is of order (m-1).
  • the ratio of rotation speeds is (m-1) / m.
  • the completed profile is external to the conjugate profile.
  • arcs depend on three parameters: n is the order of the epicycloid, which can be chosen real (positive and not too small), ⁇ is an angular parameter between 0 and ⁇ / 2, which describes the shortening (or eccentricity); finally, ⁇ 0 is the parameter of parallelism, ie a parameter characterizing the distance to the basic epicycloid.
  • the given arc must have the following property: when it is traversed from its origin to its end, its normal "regularly scans" the primitive circle, and in particular, the normals at the origin and at the end of the arc are tangent to the primitive.
  • the possible arcs are divided into two disjoined classes: those whose normal sweeps the primitive circle "in the opposite direction” of the current point M and those whose normal sweeps it "in the same direction" as the current point M.
  • the first class consists of pairs of profiles such that the inner profile has one more lobe than the outer profile; the second, conversely, is such that the inner profile has a lobe less than the outer profile.
  • the formulas obtained for arcs are invertible, in that one can construct the family of four arcs that define the two profiles, from any one of them. This does not mean that they play completely symmetrical roles: in fact, of the two arcs that make up each profile, one of them comes into contact with the two arcs of the other profile, and the other with only one of them. them. This is the maximal conjugation, from which it follows that the action curves are formed of three arcs concurring at two points of bifurcation B M and B N. The passage of the contact by these "triple points" occurs at the connection between the two arcs which constitute each of the two profiles.
  • FIGS. 7A, 7B, 8A, 8B, 9A, 9B show different embodiments of machines of the first class. It appears that when the number of lobes is small, for example equal to 2 or 3, the lobar troughs are simply less prominent regions, whose profile can even be convex with respect to the inner profiled member.
  • FIGS. 10A to 10I represent nine variants of geometries for a quadrilobelled inner profile in a tri-lobed outer profiled member.
  • FIGS. 11A to 11C show three examples of a first-class machine with penta-lobed inner rotor.
  • FIG. 11B The embodiment of FIG. 11B is characterized by the fact that the two osculating contacts take place simultaneously, on either side of a capsule V 1 whose volume is then maximal.
  • FIG. 11A is analogous to that of FIG. 1, in the sense that a capsule V 2 whose rear edge has passed the bifurcation point B M and has therefore disappeared behind it. V capsule 1, has not yet reached its front edge the other bifurcation point B N which will be born before her future new capsule V 3 is therefore indicated by a dash.
  • the same capsule V 2 covers both of the two bifurcation points B N , B M so that it is still followed by a capsule V 1 dying and already preceded by a nascent capsule V 3 .
  • FIG. 12 the case of the machine of FIG. 11B is considered. It is considered that against each radial face of the profiled members 1 and 2 a flange laterally closing the capsules with the exception of the lights that will be described. These flanges are integral in rotation of the outer profile 2.
  • the lights From their point coinciding with the connection of the constituent arcs of the profile 4, the lights extend generally towards the axes O and O '. These lights 16, depending on whether they are covered or not by the profiled member m-lobed, selectively communicate the capsules with the admission.
  • lights 17 are made which are symmetrical with the lights 16 with respect to rays passing through the lobes of the profile (m -1) -lobed 4, and whose angular tip coincides with the connection of the two constituent arches of the profile (m-1) lobed 4 on the front slope of each lobe.
  • the lights 17 communicate with the hydraulic discharge of the machine.
  • the capsule V 1 is not isolated only for a short time while its volume is maximum and is therefore not changing.
  • the dying capsule still communicated with the light of delivery 17 neighbor while the capsule V 1 communicated with the intake port 16.
  • the new capsule will communicate with the corresponding intake port 16, while the capsule V1 will communicate with the discharge light 17.
  • FIG. 12A shows that, in place of or in addition to the lights 16 and 17, it is also possible to provide, in the profiled (m-1) -lobed member, intake and discharge channels 19 which open through the respective slopes; lobes of the outer profile 4, substantially to the connections between the two constituent arcs of the profile 4 so as to be closed when the profiles are in contact osculator, then to be gradually released by the capsule formed between the two contacts resulting from the disintegration of the osculator contact, in the case of the birth of a capsule for admission, or to be gradually closed with regard to the discharge, in the case of the death of a capsule.
  • the machine has a geometry corresponding to that of Figure 1, apart from the number of lobes.
  • the situation is also that shown in FIG. 11A, but when the profiled members 1 and 2 are in a different angle around their respective axes.
  • FIG. 13 corresponds substantially to that of Figure 2A.
  • the capsule V 4 whose rear edge has already passed the bifurcation point B M and therefore already communicates with the delivery light of a distribution according to FIG. 12 has not yet reached the point B N and always communicate with the intake light of such a distribution, which is also necessary since the volume of the capsule V 4 is still growing. It is therefore the communication with the light of repression that must be suppressed.
  • a mask 21 secured to the housing (the connecting member) and which extends over a certain angular distance forward relative to the direction of rotation defined by the arrow F, from the bifurcation point B M , to obscure the discharge light in this area.
  • a mask 22 is provided to obscure the intake ports over a certain angular zone from the B N bifurcation point back relative to the direction of rotation.
  • the capsule V 2 undergoes volume variations between the moment when its front edge comes to cover the bifurcation point B N and until its rear edge no longer covers the other point of Bifurcation B M.
  • FIG. 14 represents a particularly preferred embodiment for a machine having a profile according to FIG. 1.
  • the distribution principle is the same as in FIG. 12, and in each plane perpendicular to the axes the profiles 3 and 4 are those of FIG. 1. However, from one plane to another, each profile 3 or 4 is offset angularly by a determined pitch about its respective axis so as to give all the profiled members a helical shape.
  • the angular offset between the profiles of the two ends is such that in the situation shown, where the capsule V 5 on the intake side reaches the bifurcation point B N , this capsule itself having a spiral shape has just left its rear edge. other oscillation at the other bifurcation point B M.
  • FIG. 15 shows schematically an embodiment of a first class machine according to the invention.
  • the inner profiled member 1 is secured to a drive shaft 23 which is a motor in the case of a pump and receiver in the case of a hydraulic motor.
  • the shaft 23 is supported in rotation, on either side of the profiled member 1, by two bearings 24 in a fixed housing 25 which constitutes the connecting member according to the invention.
  • the outer profiled member 2 is supported in rotation by peripheral bearings 26 installed between the outer peripheral wall of the profiled member 2 and a peripheral ring 27 forming part of the housing 25.
  • the geometric axis of the shaft 23 corresponds to the center O whereas the geometric axis, not shown, of the bearings 26 corresponds to the center O '.
  • the profiled members 1 and 2 are installed between two flanges 28, 29 through which the inlet and discharge ports 16 and respectively 17 are formed.
  • the profiled members 1 and 2 have planar and coplanar end faces on which the corresponding flat end faces of the flanges 28 and 29 are sealingly and slidingly abutted so as to close the capsules except for the communications selectively set by lights 16 and 17.
  • each flange 28 or 29 and a corresponding end wall 31 or 32 of the casing There is between each flange 28 or 29 and a corresponding end wall 31 or 32 of the casing, a respective axial abutment 33, 34.
  • the flanges 28, 29 are connected in rotation with the outer profiled member 2 while being free in translation with respect to it thanks to grooves 36.
  • the internal space between the end wall 31 of the casing on the one hand and the flange 28 and the corresponding face of the profiled member 1 on the other hand is arranged in a chamber subjected to the inlet pressure .
  • a chamber subjected to the discharge pressure is formed between the other end wall 32 of the housing on the other hand and the other flange 29 and the other end face of the inner profiled member 1 on the other hand.
  • These two chambers are closed by dynamic sealing devices 38, 39, 41, 42 which prevent the hydraulic fluid from accessing the bearings 24 and 26, and prevent the two chambers from communicating with each other between the two. outer profiled member 2
  • the axial thrust thus created must be sufficient to balance the tendency of the profiled members to "unscrew” with respect to one another under the action of the forces of work exerted between the profiles 3 and 4.
  • the axial thrust retained is too strong, it can be radially outwardly beyond the axial abutments 33 and 34, so between each flange and the end wall. 31 corresponding to the housing, the sealing devices 41 and 42 shown acting in contact with the shaft 23.
  • the shaft 23 must be mounted with a certain freedom of axial sliding for allow the axial floating of the profiled member 1 between the flanges 31 and 32.
  • the outer profiled member 2 is free to rotate so that its drive results from its cooperation with the profiled member 1 and the working fluid.
  • the machine is variable displacement.
  • the profiled members 1 and 2 are axially sliding relative to each other.
  • the profiled member 2 is axially fixed while bearing against the casing 25 by means of an axial abutment 53 and a flange 51.
  • the profiled member 1 is axially sliding relative to the casing by means of an actuator 49 which is only schematically shown, acting on the member 1 by means of an axial stop 54 and a flange 52.
  • the flange 51 rests in a sealed manner against a flat end face of the outer profiled member 2 and has as a radially inner edge a profiled face 47 which is exactly complementary to the profile 3 of the profiled member 1.
  • the flange 51 is in sealing contact with the profile 3 all around the profiled member 1, to slide axially relative to the profiled member 1 while being rotated by the profiled member 1.
  • the flange 52 is sealingly supported against a flat end face of the profiled member 1 and has on its outer periphery a shaped face 48 which is exactly complementary to the profile 4 of the profiled member 2 so that to support it sealingly, axially sliding, and ensuring the rotational drive of the flange 52 with the profiled member 2.
  • the distribution is provided by channels 18, 19 according to the embodiment of Figure 12A.
  • FIGS. 17A to 22B show various embodiments, each in two operating states, for machines of the second class, with lobe numbers ranging from 1 for the inner profiled member and 2 for the outer profiled member (FIGS. 17A and 17B), to 7 for the inner profiled member and 8 for the outer profiled member ( Figures 22A and 22B).
  • FIGS. 23A to 25B represent three other possible geometries which illustrate the great variety of feasible geometries for second class machines.
  • capsular scission is likely to occur for capsules in the vicinity of their birth or death, that is to say when two lobes are strongly engaged one in the other side of the running point.
  • the volumes of the capsules concerned are small.
  • the course is as follows: at a point inside a capsule being closed, both profiles come into an exceptional osculator contact, and the capsule is cut into two sub-capsules.
  • the new osculator contact disintegrates into two simple contacts between which a new capsule is born. Each of these two contacts joins the corresponding edge of one of the two subcapsules being closed and these disappear (usually at different times), one in a normal way to the passage by the confluence of the curves of action, and the other exceptionally through an oscillation that disappears on the spot.
  • the new capsule coalesces with another new capsule that was born normally at the bifurcation of the action curves.
  • the case of the compressor is also one in which the properties of the fluid change between intake and delivery; moreover, the parameters to be optimized are not the same at intake (limitation of pressure drop) and at discharge (limitation of leaks). For these reasons, it may be preferable to use asymmetric profiles.
  • An example is given in Figures 27A and 27B.
  • an intermediate profiled member 62 comprises a first profile 64 of order m-1 on its radially inner face, and a second profile 74 of order (m-1) on its radially face. exterior. Both profiles have the same primitive circle centered in O '.
  • Each of the profiles (m-1) -lobed 64, 74 cooperates with an m-lobed profile 63, 73 of a profiled member 61 which is shown fixed in this example.
  • the two profiles 63, 73 also have a common pitch circle, which is centered at O.
  • the profiles 63 and 64 form a machine of the first class according to the invention and the profiles 73 and 74, a machine of the second class according to the invention. 'invention.
  • the difference is that the intermediate profiled member 82 carries two m-lobed profiles cooperating with two (m-1) -lobed profiles belonging to the profiled member 81.
  • Such a geometry could make it possible to manufacture an internal combustion engine in which, for example, the inner machine would be used for intake and compression, while the outer machine would serve for expansion and exhaust.
  • the inner profiled member is rotated and the outer profiled member rotates thanks to the moment of rotation transmitted to the points of contact between the inner profiled member and the inner profile member.
  • external shaped member which is free to rotate in the housing.
  • the pressure of the hydraulic fluid tends to make the cavities subjected to this pressure evolve in the direction of the enlargement of their volume, which contributes to urging the external profiled member in the direction of rotation. desired.
  • the invention is compatible with the Sparrow principle according to which, as described in US Pat. No. 1,892,217, the helical shape of the two profiled members extends over a sufficient number of helical steps so that no cavity simultaneously leads to two axial ends of the machine. Thanks to the precision and quality of the geometry according to the invention, it is possible to limit the total angular offset between the profiles at the two ends of the machine to a value barely greater than the lifetime of the capsule in each plane. perpendicular to the axes ..
  • the pitch of the helix is not necessarily the same all along the machine, and the profile can still be varied along the axes of the machine. This allows for example to achieve a compressor or a relaxation machine in which the volume of the capsules being transferred varies gradually.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Prostheses (AREA)
  • Apparatus For Making Beverages (AREA)
  • Rotary Pumps (AREA)
  • Centrifugal Separators (AREA)
  • Slot Machines And Peripheral Devices (AREA)
  • Medicinal Preparation (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Friction Gearing (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Formation And Processing Of Food Products (AREA)
  • Retarders (AREA)

Claims (34)

  1. Maschine mit Kapselsystem, umfassend:
    - zwei profilierte Organe (1, 2; 12, 11), und zwar ein inneres bzw. ein äußeres, die ein ringförmiges Innenprofil bzw. ein ringförmiges Außenprofil (3, 4; 14, 13) tragen,
    - ein Verbindungsorgan (25), das mit jedem der beiden profilierten Organe (1, 2; 12, 11) gemäß einer jeweiligen Drehachse (O, O'; O', O) drehbar verbunden ist,
    und bei der:
    - von den Profilen das eine (3; 13) m-lappig, das andere (4; 14) (m-1)-lappig ist und die Profile um die Drehachse ihrer jeweiligen profilierten Organs herum durch m bzw. (m-1) Motiv(e) definiert sind, die einen Lappenkuppenbogen und einen Lappenmuldenbogen umfassen,
    - jedes Profil die Hüllkurve des anderen bei Drehungen der profilierten Organe zueinander um ihre jeweilige Drehachse unter Ineinandergreifen ihrer Profile, die miteinander die Umrisse von Kapseln bilden, und Wälzbewegung ohne Gleiten zwischen zwei Wälzkreisen ist, die auf die jeweiligen Drehachsen zentriert sind,
    dadurch gekennzeichnet, dass in den Stellungen der profilierten Organe (1, 2; 12, 11) zueinander, in denen ein Kontaktpunkt (C2) zwischen den Profilen sich auf der Tangente (T) zu den beiden Wälzkreisen (6, 7) an ihrem gegenseitigen Wälzpunkt (R) befindet, die profilierten Organe (1, 2; 12, 11) an diesem Kontaktpunkt kontinuierliche gleiche und gleichsinnige Krümmungen besitzen, deren gemeinsamer Mittelpunkt dieser Wälzpunkt (R) ist.
  2. Maschine nach Anspruch 1, dadurch gekennzeichnet, dass:
    - die Punkte M eines gegebenen Bogens, der einer der beiden Bögen des m-lappigen Profils ist, durch zwei Funktionen ρ(δ) und σ(δ) definiert sind, die Parameter ρ, δ und σ verbinden, die bedeuten:
    ρ: der längs der Normalen zum Bogen im Punkt M gemessene Abstand zwischen dem Punkt M und der Mitte N zwischen den beiden Schnittpunkten P und D, dem proximalen bzw. dem distalen, dieser Normalen mit dem Wälzkreis mit dem Mittelpunkt O des m-lappigen Profils und mit dem als gleich 1 angenommenen Radius, wobei der proximale Schnittpunkt P zwischen dem Punkt M des gegebenen Bogens und dem distalen Schnittpunkt D gelegen ist,
    δ: der Halbwinkelabstand zwischen D und P bezüglich des Mittelpunkts O, gemessen in der direkten Richtung,
    σ: Polwinkel des proximalen Schnittpunkts bezüglich O minus δ,
    wobei die Funktionen ρ(δ) und σ(δ) einen Definitionsbereich von δ=0 bis δ=π haben,
    - zwei Bögen des Motivs des (m-1)-lappigen Profils ein konjugierter proximaler Bogen und ein konjugierter distaler Bogen, die im Nachstehenden in einem kartesischen Bezugssystem definiert sind, dessen Ursprung der Mittelpunkt O des dem m-lappigen Profil zugeordneten Wälzkreises ist:
    a) konjugierter proximaler Bogen: x C j P δ = 1 + sin δ - δ sin δ - δ m - 1 + m - 1 cos δ cos δ - δ m - 1 / m
    Figure imgb0092
    y C j P δ = sin δ - δ cos δ - δ m - 1 - m - 1 cos δ sin δ - δ m - 1 / m
    Figure imgb0093
    b) konjugierter distaler Bogen: x C j D δ = 1 + sin δ + δ sin δ + δ m - 1 + m - 1 cos δ cos δ + δ m - 1 / m
    Figure imgb0094
    y C j D δ = - sin δ + δ cos δ + δ m - 1 + m - 1 cos δ sin δ + δ m - 1 / m
    Figure imgb0095
  3. Maschine nach Anspruch 2, dadurch gekennzeichnet, dass die Ableitung ρ' nach δ bei δ = 0 und δ = π die folgenden strengen Ungleichungen erfüllt: 1 / m > ρʹ 0 > 0
    Figure imgb0096
    - 1 / m < ρʹ π < 0 ,
    Figure imgb0097

    dass das m-lappige Profil innerhalb des (m-1)-lappigen Profils liegt, und
    dass das m-lappige Motiv durch einen ergänzenden proximalen Bogen ergänzt ist, der durch seine Koordinaten in dem kartesischen System definiert ist: x C p P δ = 2 sin δ - δ sin 2 δ m - σ δ + mcos δ cos 2 δ m - σ δ / m
    Figure imgb0098
    y C p P δ = 2 sin δ - δ cos 2 δ m - σ δ - mcos δ sin 2 δ m - σ δ / m
    Figure imgb0099
  4. Maschine nach Anspruch 3, gekennzeichnet durch die Schaffung der folgenden Bedingungen auf dem gesamten Änderungsintervall ]0,π[ der Koordinate δ: ρ δ ρʹ δ / cos ( δ ) - sin ( δ ) 0
    Figure imgb0100
    δ - 2 sin ( δ ) ρʹ δ / mcos ( δ ) - 2 δ + m 2 - 4 sin ( δ ) / m 2 0
    Figure imgb0101
    δ - sin δ ρʹ δ / m - 1 cos ( δ ) - ρ ( δ ) + m - 2 sin ( δ ) / m - 1 0
    Figure imgb0102
    δ + sin δ ρʹ δ / m - 1 cos ( δ ) + ρ ( δ ) - m - 2 sin ( δ ) / m - 1 0
    Figure imgb0103
  5. Maschine nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Funktionen ρ(δ) und σ(δ) sind: ρ δ = 1 - 1 / n 1 / cos ϕ 2 - cos δ 2 1 / 2 + 1 / n sin δ + ρ 0
    Figure imgb0104
    σ δ = 1 - 1 / n arccos cos δ cos ϕ + δ / n
    Figure imgb0105

    die den gegebenen Bogen als eine zu einem verkürzten Epizykloid parallele Kurve definieren und worin:
    n eine reelle Zahl ist, die die Ordnung des Epizykloids ist,
    φ ein Winkelparameter zwischen 0 und π/2 ist,
    der die Verkürzung beschreibt,
    ρ0 ein Parameter ist, der den Abstand von dem Basisepizykloid kennzeichnet.
  6. Maschine nach Anspruch 5, dadurch gekennzeichnet, dass man n nahe 2m-2 nimmt.
  7. Maschine nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass sie umfasst:
    - zwei Wangen (28, 29), zwischen denen die profilierten Organe (1, 2) installiert sind und die bezüglich Drehung mit einem der profilierten Organe verbunden sind;
    - eine erste (28) der Wangen durchquerende Saugöffnungen (16) in Nähe einer Flanke jeder der Lappenkuppen des Profils des profilierten Organs, mit dem die Wangen (28, 29) in Drehung verbunden sind;
    - eine zweite der Wangen durchquerende Förderöffnungen (17) in Nähe einer anderen Flanke jeder der Lappenkuppen.
  8. Maschine nach Anspruch 7, dadurch gekennzeichnet, dass sie Mittel (21, 22) umfasst, um mindestens manche der Öffnungen in mindestens einer Winkelzone wahlweise zu verschließen, die einer Schnittstelle zwischen einer gemeinsamen Tangente (T) der Wälzkreise (6, 7) und andererseits der Aktionskurven (CA1, CA2, CA3) benachbart sind, die durch die Bewegungsbahnen der Kontaktpunkte zwischen Profilen definiert sind.
  9. Maschine nach Anspruch 7, dadurch gekennzeichnet, dass zwischen einem Profil der profilierten Organe (1, 2) auf der Seite einer der Wangen und einem Profil der profilierten Organe auf der Seite der anderen Wange eine solche Winkelversetzung besteht, dass jede Kapsel (V5-Fig.15), die das Maximum ihres Volumens passiert, aufhört, mit einer Öffnung (16) in einer der Wangen verbunden zu sein, und zwar im Wesentlichen zu dem Zeitpunkt, zu dem sie beginnt, mit einer Öffnung (17) in der anderen Wange verbunden zu sein.
  10. Maschine nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, dass sie in dem äußeren profilierten Organ Verteilungskanäle (18, 19) umfasst, die einerseits in dem Profil (4) an der Verbindung der Bögen ausmünden und bei einer Flanke der Lappenkuppen mit der Saugseite und bei der anderen Flanke der Lappenkuppen mit der Druckseite in Verbindung sind.
  11. Maschine nach Anspruch 2, dadurch gekennzeichnet, dass die Ableitung ρ' nach δ bei δ = 0 und δ = π die folgenden strengen Ungleichungen erfüllt: - 1 / m < ρʹ 0 < 0
    Figure imgb0106
    1 / m > ρʹ π > 0 ,
    Figure imgb0107

    dass das m-lappige Motiv außerhalb des (m-1)-lappigen Profils liegt und
    dass das m-lappige Motiv durch einen ergänzenden distalen Bogen ergänzt ist, der durch seine Koordinaten in dem kartesischen Bezugssystem mit dem Mittelpunkt O definiert ist: x C p D δ = 2 sin δ + δ sin 2 δ m + σ δ + mcos δ cos 2 δ m + σ δ / m
    Figure imgb0108
    y C p D δ = - 2 sin δ + δ cos 2 δ m + σ δ + mcos δ sin 2 δ m + σ δ / m
    Figure imgb0109
  12. Maschine nach Anspruch 11, gekennzeichnet durch die Schaffung der folgenden Bedingungen auf dem ganzen Änderungsintervall ]0,π[ der Koordinate δ: ρ δ ρʹ δ / cos ( δ ) - sin ( δ ) 0
    Figure imgb0110
    δ + 2 sin ( δ ) ρʹ δ / mcos ( δ ) + 2 δ - m 2 - 4 sin ( δ ) / m 2 0
    Figure imgb0111
    δ - sin δ ρʹ δ / m - 1 cos ( δ ) - ρ ( δ ) + m - 2 sin ( δ ) / m - 1 0
    Figure imgb0112
    δ + sin δ ρʹ δ / m - 1 cos ( δ ) + ρ ( δ ) - m - 2 sin ( δ ) / m - 1 0
    Figure imgb0113
  13. Maschine nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Profile nur einen einzigen Tangierungspunkt mit der äußersten Bewegungsbahn (CB3) der Kontaktpunkte passieren.
  14. Maschine nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Funktionen ρ(δ) und σ(δ) sind: ρ δ = 1 + 1 / n 1 / cos φ 2 - cos δ 2 1 / 2 - 1 / n sin δ + ρ 0
    Figure imgb0114
    σ δ = 1 + 1 / n arccos cos δ cos φ - δ / n
    Figure imgb0115

    die den gegebenen Bogen als eine zu einem verkürzten Epizykloid parallele Kurve definieren und worin:
    n eine reelle Zahl ist, die die Ordnung des Epizykloids ist,
    φ ein Winkelparameter zwischen 0 und π/2 ist,
    der die Verkürzung beschreibt,
    ρ0 ein Parameter ist, der den Abstand von dem Basisepizykloid kennzeichnet.
  15. Maschine nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass jeder Lappen bezüglich einer durch den Scheitel des Lappens verlaufenden axialen Ebene symmetrisch ist.
  16. Maschine nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass jeder Lappen bezüglich einer durch den Scheitel des Lappens verlaufenden axialen Ebene unsymmetrisch ist.
  17. Maschine nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das Verbindungsorgan mit einem Gehäuse (25) fest verbunden ist und dass eines der profilierten Organe mindestens indirekt mit einer Antriebswelle (23) in Drehung verbunden ist.
  18. Maschine nach Anspruch 17, dadurch gekennzeichnet, dass das andere profilierte Organ um seine Drehachse in Drehung frei ist.
  19. Maschine nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Profile jeweils längs der Drehachse ihres jeweiligen profilierten Organs sich ändern, wobei die Tangierungspunkte der Wälzkreise auf einer zu den beiden Drehachsen parallelen Gerade in einer Reihe liegen.
  20. Maschine nach Anspruch 19, dadurch gekennzeichnet, dass die Profile sich durch Winkelversetzung eines konstanten Profils um die Drehachse ändern.
  21. Maschine nach Anspruch 20, dadurch gekennzeichnet, dass die Profile sich in einer Schraube mit konstanter Steigung ändern.
  22. Maschine nach einem der Ansprüche 1 bis 18 oder 21, dadurch gekennzeichnet, dass die Profile längs ihrer jeweiligen Drehachse konstant sind, einen konstanten endlichen oder unendlichen Winkelversetzungsschritt längs ihrer jeweiligen Drehachse aufweisen, dass die profilierten Organe zueinander axial beweglich sind und dass die Maschine an jedem Ende eine Wange (51, 52) umfasst, die zu jeweils einem der Profile ergänzend ist und an einer Stirnseite des das andere Profil tragenden profilierten Organs dicht anliegt.
  23. Maschine nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, dass die Winkelversetzung der Profile von einer Stirnseite der profilierten Organe zur anderen kaum größer als der Lebensdauerwinkel jeder Kapsel bezüglich des jeweiligen profilierten Organs ist.
  24. Maschine nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die profilierten Organe zwischen zwei Wangen (28, 29) montiert sind, die die Kapseln an ihren axialen Enden schließen, und dass die Maschine Pressmittel umfasst, um die Wangen axial gegen die profilierten Organe zu pressen.
  25. Maschine nach Anspruch 24, dadurch gekennzeichnet, dass jede Wange (28, 29) mit einem der profilierten Organe in Drehung fest verbunden ist.
  26. Maschine nach Anspruch 24 oder 25, dadurch gekennzeichnet, dass die Pressmittel Mittel sind, um mindestens einen Teil einer Außenseite einer ersten der Wangen dem Hochdruck des Arbeitsfluids auszusetzen, um die erste Wange gegen die profilierten Organe zu drücken und auf diese Weise die profilierten Organe gegen die zweite Wange zu drücken.
  27. Maschine nach Anspruch 26, dadurch gekennzeichnet, dass die Maschine Verteilungsmittel umfasst, die mindestens eine in der ersten Wange (28, 29) gebildete Öffnung (16, 17) für das Hochdruck-Arbeitsfluid umfassen.
  28. Maschine nach Anspruch 27, dadurch gekennzeichnet, dass die Verteilungsmittel mindestens eine in der zweiten Wange gebildete Öffnung für das Niederdruckfluid umfassen.
  29. Maschine nach Anspruch 27 oder 28, dadurch gekennzeichnet, dass die Öffnungen (28, 29) mit dem äußeren profilierten Organ (2) in Drehung verbunden sind.
  30. Maschine nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, dass sie Verteilungsmittel umfasst, die Öffnungen umfassen, die mit einem der profilierten Organe, vorzugsweise mit dem (m-1)-lappigen profilierten Organ (2), in Drehung verbunden sind und die durch das andere profilierte Organ (1) wahlweise freigelegt und abgedeckt werden.
  31. Maschine nach Anspruch 5 oder 30, dadurch gekennzeichnet, dass die Öffnungen Spitzen aufweisen, die mit dem Verbindungspunkt der Bögen zusammenfallen, aus denen das Profil zusammengesetzt ist, mit dem die Öffnungen (16, 17) fest verbunden sind, und zwar auf der Seite des Entstehens der Kapseln bei den Saugöffnungen und auf der Seite der Beendigung der Kapseln bei den Drucköffnungen.
  32. Maschine nach einem der Ansprüche 1 bis 30, dadurch gekennzeichnet, dass eines der profilierten Organe (61, 81) zwei m-lappige Profile trägt, und zwar das eine auf einer radial inneren ringförmigen Fläche und das andere auf einer radial äußeren ringförmigen Fläche, die einen gemeinsamen Wälzkreis haben und jeweils mit einem (m-1)-lappigen Profil zusammenarbeiten, und dass die (m-1)-lappigen Profile denselben Wälzkreis haben und von dem anderen profilierten Organ getragen werden.
  33. Maschine nach Anspruch 32, dadurch gekennzeichnet, dass die beiden m-lappigen Profile (83, 93) voneinander weggewandt sind und sich radial zwischen den beiden (m-1)-lappigen Profilen (84, 94) befinden.
  34. Maschine nach Anspruch 32, dadurch gekennzeichnet, dass die beiden m-lappigen Profile (63, 73) einander zugewandt sind und sich radial zu beiden Seiten der beiden (m-1)-lappigen Profile (64, 74) befinden.
EP03769566A 2002-09-05 2003-09-04 Rotationsmaschine mit kapselsystem Expired - Lifetime EP1546560B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0210959 2002-09-05
FR0210959A FR2844312B1 (fr) 2002-09-05 2002-09-05 Machine tournante a capsulisme
PCT/FR2003/002642 WO2004022976A1 (fr) 2002-09-05 2003-09-04 Machine tournant a capsulisme

Publications (2)

Publication Number Publication Date
EP1546560A1 EP1546560A1 (de) 2005-06-29
EP1546560B1 true EP1546560B1 (de) 2007-01-03

Family

ID=31725839

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03769566A Expired - Lifetime EP1546560B1 (de) 2002-09-05 2003-09-04 Rotationsmaschine mit kapselsystem

Country Status (9)

Country Link
US (1) US7520738B2 (de)
EP (1) EP1546560B1 (de)
JP (1) JP5540364B2 (de)
AT (1) ATE350581T1 (de)
AU (1) AU2003278257A1 (de)
CA (1) CA2497491C (de)
DE (1) DE60310965T2 (de)
FR (1) FR2844312B1 (de)
WO (1) WO2004022976A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071230A2 (en) 2004-01-12 2005-08-04 Liquidpiston, Inc. Haybrid cycle combustion engine and methods
CA2657959A1 (en) 2006-08-02 2008-02-07 Liquidpiston, Inc. Hybrid cycle rotary engine
US7621143B2 (en) * 2006-09-28 2009-11-24 Lenovo (Singapore) Pte. Ltd. Cooling systems
US20080310984A1 (en) * 2007-06-12 2008-12-18 General Electric Company Positive displacement capture device
KR20110040978A (ko) * 2008-08-04 2011-04-20 리퀴드피스톤 인크. 정적 열량 부가 엔진 및 방법
GB2497225B (en) * 2010-08-16 2017-10-11 Nat Oilwell Varco Lp Reinforced stators and fabrication methods
EP2691607B1 (de) 2011-03-29 2016-07-20 LiquidPiston, Inc. Zykloider rotormotor
DE102012020326A1 (de) * 2012-10-17 2014-04-17 Herbert Jung Rotationskolben-Verdrängermaschine
AU2012394943B2 (en) 2012-11-20 2015-05-28 Halliburton Energy Services, Inc. Acoustic signal enhancement apparatus, systems, and methods
BR112015011460A2 (pt) 2012-11-20 2017-07-11 Halliburton Energy Services Inc aparelho, sistema, e, método implementado por processador
SK6803Y1 (sk) * 2013-01-06 2014-06-03 Kujovic Jozef Pracovný priestor s rotačne sa pohybujúcim piestom
SG10201708784YA (en) * 2013-01-25 2017-12-28 Liquidpiston Inc Air-cooled rotary engine

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1833993A (en) * 1928-08-24 1931-12-01 Myron F Hill Method of making internal rotors
US1892217A (en) 1930-05-13 1932-12-27 Moineau Rene Joseph Louis Gear mechanism
US2209201A (en) * 1937-08-28 1940-07-23 Myron F Hill Change speed gear
US2988008A (en) * 1956-02-07 1961-06-13 Wankel And Nsu Motorenwerke Ag Rotary piston machines
US3117561A (en) * 1960-04-26 1964-01-14 Bonavera Victor Rotor type power generating or work performing means
GB1002642A (en) * 1961-09-26 1965-08-25 Mono Pumps Africa Pty Improvements in helical screw pumps
US3695791A (en) * 1970-09-18 1972-10-03 Emerson Electric Co Variable sealed hydraulic pump or motor
US3884600A (en) * 1973-11-08 1975-05-20 Gray & Bensley Research Corp Guidance means for a rotary engine or pump
JPS5460638A (en) * 1977-10-24 1979-05-16 Shigeyoshi Osada Gear with inscribing nonncircular rolling curve
EP0094379B1 (de) 1982-05-12 1987-01-28 Schwab, Walter, Mag.rer.nat. Rotationspumpe zur Förderung gasförmiger und flüssiger Stoffe, insbesonders zur Verwendung als Antriebseinheit für Membranblutpumpen
JPH0756268B2 (ja) * 1987-07-27 1995-06-14 株式会社ユニシアジェックス オイルポンプ
FR2683000B1 (fr) 1991-10-23 1994-02-04 Andre Leroy Machine volumetrique a mouvement planetaire et geometrie hypertrochouidale.
FR2683001B1 (fr) 1991-10-23 1994-02-04 Andre Leroy Machine volumetrique axiale.
DE4204186A1 (de) 1992-02-13 1993-08-19 Heinrich Schmeing Rotationskolbenpumpe
DE4345273C2 (de) * 1993-07-03 1997-02-06 Eckerle Rexroth Gmbh Co Kg Hydraulische Zahnradmaschine (Pumpe oder Motor), insbesondere Innenzahnradmaschine
DE4425429A1 (de) 1994-07-19 1996-01-25 Juergen Walter Hydraulikmaschine
JP2739873B2 (ja) * 1995-10-04 1998-04-15 クムウオン カンパニー リミテッド 圧縮機用スクリューロータの歯形
US6106250A (en) 1996-02-02 2000-08-22 Unisia Jecs Corporation Lobed-rotor-type pump having a communication passage between working-fluid chambers
EP0799966A3 (de) 1996-04-02 1999-02-03 GEISERT ENGINEERING GmbH Bohrkrone für das schlagende Bohren
ITPR960017A1 (it) 1996-04-04 1997-10-06 Vittorio Bertoli Pompa epitrocoidale
US6077059A (en) 1997-04-11 2000-06-20 Mitsubishi Materials Corporation Oil pump rotor
RU2140018C1 (ru) * 1998-05-13 1999-10-20 Бродов Михаил Ефимович Способ преобразования движения в машине объемного расширения (вытеснения) и объемная машина горбаня-бродова
JP2000130372A (ja) * 1998-10-23 2000-05-12 Mayekawa Mfg Co Ltd 内接型ロータ圧縮機及びその製造方法

Also Published As

Publication number Publication date
FR2844312A1 (fr) 2004-03-12
AU2003278257A8 (en) 2004-03-29
DE60310965D1 (de) 2007-02-15
CA2497491C (fr) 2011-12-20
WO2004022976A1 (fr) 2004-03-18
ATE350581T1 (de) 2007-01-15
AU2003278257A1 (en) 2004-03-29
FR2844312B1 (fr) 2006-04-28
US20050271535A1 (en) 2005-12-08
US7520738B2 (en) 2009-04-21
JP2005538289A (ja) 2005-12-15
CA2497491A1 (fr) 2004-03-18
EP1546560A1 (de) 2005-06-29
JP5540364B2 (ja) 2014-07-02
DE60310965T2 (de) 2007-12-27

Similar Documents

Publication Publication Date Title
EP1546560B1 (de) Rotationsmaschine mit kapselsystem
FR2499638A1 (fr) Profils de rotors a vis pour machines de compression et de detentes de fluides
FR2475127A1 (fr) Generateur de gaz a variation de volume
EP0168268B1 (de) Rollenverdrängungsmaschine
EP3317537B1 (de) Hydraulische radialkolbenmaschine mit harmonischer verteilung
EP0627042B1 (de) Verdrängermaschine insbesondere viertaktmotor
FR2568951A1 (fr) Machine fluidique de type rotatif
FR2564907A1 (fr) Machine a fluide du type rotatif
FR2549908A1 (fr) Machine du type en spirale
EP0534836B1 (de) Hydraulikzahnradmaschine mit einem schwebendem Körper
EP2989294B1 (de) Volumetrische drehkolbenmaschine mit drei kolben
EP0263218B1 (de) Flüssigkeitsmechanismus mit Fluidverteilscheibe und Gegenscheibe
EP3938657A1 (de) Trockenpumpe für gas und satz aus mehreren trockenpumpen für gas
EP2356318B1 (de) Einen verbesserten getriebemechanismus umfassende rotationsmaschine jener art mit verformbarem rhombus
FR2587761A1 (fr) Mecanisme hydraulique comportant des glace et contre-glace de distribution du fluide
EP3228866B1 (de) Heizölpumpe mit zahnradgetriebe
FR2591286A1 (fr) Machine volumetrique a palette(s).
FR2521649A1 (fr) Machine pour l&#39;aspiration et le refoulement d&#39;un fluide
BE474690A (de)
FR2881188A1 (fr) Procede de conception des profils des dents des pignons d&#39;une pompe a engrenages et pompe realisee selon ce procede
WO2001023761A1 (fr) Compresseur ou en pompe a vide a spirales
BE428428A (de)
BE660385A (de)
FR2522371A1 (fr) Dispositif a piston spherique pour machines motrices et operatrices
BE659088A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60310965

Country of ref document: DE

Date of ref document: 20070215

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070414

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ECOLE POLYTECHNIQUE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE-CNRS

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KATZ, ANDRE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE-CNRS

Owner name: ECOLE POLYTECHNIQUE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: KATZ, ANDRE

Free format text: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE-CNRS#3, RUE MICHEL-ANGE#75794 PARIS CEDEX 16 (FR) $ ECOLE POLYTECHNIQUE#ROUTE DE SACLAY#91128 PALAISEAU CEDEX (FR) -TRANSFER TO- KATZ, ANDRE#33, RUE BOUSSINGAULT#75013 PARIS (FR)

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. JOACHIM LAUER PATENTANWALT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070604

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070517

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

26N No opposition filed

Effective date: 20071005

BECA Be: change of holder's address

Owner name: *KATZ ANDRE33, RUE BOUSSINGAULT, F-75013 PARIS

Effective date: 20070103

BECH Be: change of holder

Owner name: *KATZ ANDRE

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: DR. JOACHIM LAUER C/O RENTSCH PARTNER AG;FRAUMUENSTERSTRASSE 9 POSTFACH 2441;8022 ZUERICH (CH)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60310965

Country of ref document: DE

Representative=s name: GRAMM, LINS & PARTNER PATENT- UND RECHTSANWAEL, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160920

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180913

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180919

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190927

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60310965

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190904

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930