EP1546560B1 - Closed system rotary machine - Google Patents

Closed system rotary machine Download PDF

Info

Publication number
EP1546560B1
EP1546560B1 EP03769566A EP03769566A EP1546560B1 EP 1546560 B1 EP1546560 B1 EP 1546560B1 EP 03769566 A EP03769566 A EP 03769566A EP 03769566 A EP03769566 A EP 03769566A EP 1546560 B1 EP1546560 B1 EP 1546560B1
Authority
EP
European Patent Office
Prior art keywords
sin
cos
profile
machine according
lobed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03769566A
Other languages
German (de)
French (fr)
Other versions
EP1546560A1 (en
Inventor
André KATZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
katz Andre
Original Assignee
Centre National de la Recherche Scientifique CNRS
Ecole Polytechnique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Ecole Polytechnique filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1546560A1 publication Critical patent/EP1546560A1/en
Application granted granted Critical
Publication of EP1546560B1 publication Critical patent/EP1546560B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/082Details specially related to intermeshing engagement type machines or engines
    • F01C1/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member

Definitions

  • the present invention relates to a rotary machine with capsulism.
  • Capsulism machine means a machine in which two profiled members have annular profiles which mesh with each other by defining between them chambers - or capsules - with variable volume.
  • the invention is more particularly concerned with machines in which one of the profiles is internal to the other, one being m-lobed and the other (m-1) -lobed, where the integer m is greater or equal to 2.
  • a "m-lobed" profile is called an annular profile defined by a pattern forming a lobe dome and a lobe hollow, this pattern repeating itself around the center of a pitch circle associated with this profile.
  • a (m-1) -lobed profile is an annular profile defined by a pattern forming a lobe dome and a lobe hollow, this pattern repeating itself (m-1) times around the center of a pitch circle associated with this profile. .
  • the profiles cooperate with each other by a kind of meshing in which their respective primary circles roll over each other at a running point which is fixed relative to a connecting member with respect to which the two profiled members, each along an axis passing through the center of its original circle.
  • Capsulism machines may for example be hydraulic motors, hydraulic pumps, compressors or expansion machines.
  • EP-A-0870926 discloses a capsulism machine of the type called "gerotor", that is to say in which the inner profile member is (m-1) -lobed.
  • the geometry of this machine is classic in itself.
  • the document relates more particularly to the realization of a determined game between the profiles.
  • EP-539273-B1 discloses various machines with capsulism, in particular machines with two lobes on the inner profile and three on the outer profile, and conversely machines with three lobes on the inner profile and two lobes only on the outer profile.
  • US-A-1 892 217 discloses the Sparrow pump. Instead of having cylindrical profiles, this gerotor type machine has helical profiled members with a total helix angle of several turns. The capsules are formed at one axial end of the profiled members and are transported without volume variation to the other end, where they disappear. Two remarkable results are obtained: The distribution is simplified to the extreme since it suffices that the capsules open freely on the intake at one end and the discharge at the other end. And on the other hand, the flow is strictly constant.
  • WO 93/08402 discloses improvements to the Moineau pump.
  • the object of the present invention is to seek an optimization with regard to the quality of the contacts between the profiles, the switching between the suction and the delivery by the distribution, and the progressivity of the birth and the disappearance of each capsule.
  • osculator contact means a point of contact where the curvatures of the two profiles are continuous, equal and in the same direction.
  • the osculating contact splits into two contacts between which the capsule is formed.
  • two distinct contacts come closer and closer to becoming a single osculator contact, then simple.
  • the proximal conjugate arc and the distal conjugate arc are obtained directly by their Cartesian coordinates originating from the center O of the pitch circle associated with the given arc.
  • the conjugate profile of the given arc is obtained by concatenation of the proximal conjugate arc and the distal conjugate arch.
  • the formulas automatically realize that the two arcs, proximal and distal, have not only the same tangent but also the curvature at their point of connection and this curvature is also the same as that at a corresponding end of the given arc.
  • the normal to the conjugate profile at the point of connection is tangent to the respective primitive circles of the selected arc and the conjugate profile at the point of rotation of these circles one over the other. Since the radius of the pitch circle of the given arc has been chosen arbitrarily equal to 1, the radius of the pitch circle of the conjugate profile is equal to (m-1) / m. The primitive circle of the conjugate profile is thus determined.
  • the complete conjugate profile is then obtained concatenating (m-1) times the pattern consisting of the proximal conjugate arc and the distal conjugate arc according to (m-2) rotations of angle 2 ⁇ / (m-1) around the center O 'of the pitch circle of the profile conjugate.
  • a first class of machines according to the invention is thus produced in which the inner profile has one lobe more than the outer profile.
  • the two conjugate arcs, proximal and respectively distal, defined by the formulas according to the invention are placed radially outside the given arc, and the complementary arc of the given arc completes the m-lobed profile within the conjugate (m-1) -lobed profile.
  • the m-lobed profile is exterior to the profile (m-1) -lobed; and the m-lobed pattern is completed by a distal complementary arc defined by the next set of Cartesian coordinates around the center O:
  • x VS p D ⁇ 2 ⁇ sin ⁇ + m ⁇ ⁇ ⁇ sin 2 ⁇ ⁇ m + ⁇ ⁇ + MCOS ⁇ ⁇ cos 2 ⁇ ⁇ m + ⁇ ⁇ / m there
  • VS p D ⁇ - 2 ⁇ sin ⁇ + m ⁇ ⁇ ⁇ cos 2 ⁇ ⁇ m + ⁇ ⁇ + MCOS ⁇ ⁇ sin 2 ⁇ ⁇ m + ⁇ ⁇ / m
  • the machine comprises an inner profiled member 1 and an outer profiled member 2 which surrounds the inner profiled member 1.
  • the inner profiled member 1 has on its outer periphery a lobed profile 3 and the outer profiled member 2 has on its inner periphery a lobed profile 4 which surrounds the lobed profile 3 of the inner profiled member 1.
  • One of the profiles has one lobe more than the other.
  • the inner profile 3 which has one lobe more than the outer profile 4. it is said that the inner profile 3 is m-lobed and that the outer profile 4 is (m-1) -lobed.
  • Each profile 3, 4 has rotational symmetry around the origin of the primitive circle associated with it and the order of this symmetry is the number of its lobes.
  • the profile 3 of the inner member 1 has a symmetry of order 6 around a center O
  • the profile 4 of the outer profiled member 2 has a symmetry of order 5 around a center O ' .
  • Each lobe is defined by a respective pattern, the profile 3 or 4 being defined by plotting m times or respectively (m-1) times its respective pattern by rotation of 2 ⁇ / m or respectively 2 ⁇ / (m-1) around the center of symmetry O or respectively O '.
  • Each of the profiles 3, 4, has a pitch circle 6, 7, of center O and respectively O '.
  • the rays of the primitive circles are proportional to the number of lobes of the profile with which they are respectively associated, so that they are tangent to each other at a point R located on the Ox axis.
  • Each pattern consists of a “lobe dome” and a “lobe hollow”.
  • a “lobe dome” is a protruding part, so a part radially away from the center when it comes to the inner profile and a part radially close to the center when it comes to the outer profile.
  • a “lobe hollow” is a generally concave part, so close to the center when it comes to the inner profile and away from the center when it comes to external profile.
  • the “peak of lobe” is the culmination of a lobe dome and "lobe bottom” the deepest point of a lobe hollow.
  • the profiles have mirror symmetry with respect to rays passing through the lobes and lobes, but this symmetry is not essential to the meaning of the invention, as will be seen later. .
  • the m-lobed profiled member 1 is articulated to a connecting member, not shown in Figure 1, along an axis of rotation coinciding with the center O.
  • the member section (m-1) -lobé 2 is articulated to the connecting member along an axis of rotation coinciding with the center O 'of its original circle.
  • the two profiled members perform relative to the connecting member a rotation about their respective axis of rotation O, O ', so that the two primitive circles 6, 7 roll one on the other at point R which remains motionless with respect to the connecting member. Therefore, the Ox mark, Oy is stationary relative to the connecting member, as are the centers O and O '. Furthermore, the description made up to now also implies that the m-lobed profiled member 1 executes (m-1) / m revolution when the profiled member (m-1) -lobed 2 performs a complete revolution.
  • each lobe dome of each profile 3 or 4 is in contact with the other profile.
  • each lobe dome of one of the profiles forms a single contact with a lobe dome of the other profile.
  • Such a single contact C 1 is shown in particular.
  • each lobe dome of one of the profiles is in contact with a lobe recess of the other profile.
  • contacts C 3 , C 5 , C 7 and C 9 are seen between a dome of the m-lobed profile and a hollow of the (m-1) -lobed profile, which alternate with contacts C 4 , C 6 and C 8. between a dome of the profile (m-1) -lobed and a hollow of the m-lobed profile.
  • Action curves are called the trajectories of the contact points with respect to the connecting member represented by the reference Oxy.
  • a single AC 1 action curve whose ends are points B N and B M located on the tangent T.
  • two AC 2 and AC 3 action curves that correspond to the trajectory of the contact points formed by the domes of the m-lobed profile 3, and respectively by the contact points. formed by the domes of the (m-1) -lobed profile 4.
  • the ends of the two AC 2 and CA 3 action curves are also constituted by the points B N and B M , which will be called bifurcation points of the curves. Action.
  • one of the points of contact coincides with the bifurcation point B N.
  • This point of contact marks the boundary between a hollow and a dome on a slope of the pattern of each of the two profiles.
  • a point of contact coincides with the bifurcation point B M and marks the limit between a hollow and a dome on the other side of the pattern of each of the two profiles.
  • the profiles determined in a manner to be described later, define an osculator contact between the two profiles when the contact point is made in B N or B M. This means that the profiles have at their point of contact located in B N or B M not only a common tangent, but also have continuous curvatures, equal and in the same direction.
  • the center of curvature common to the two profiles in their oscillation coincides with the rolling point R, so that their radius of curvature is equal to the distance between R and B N , or respectively B M.
  • This oscillation ensures between the two profiles a contact which is of excellent quality.
  • the contact such as C 1, the following CA action curve 1 until it comes to coincide with the branch point B N to form the aforementioned oscillation. From there, the contact splits into two distinct contacts each following one of the two AC 2 and AC 3 action curves. Then these two distinct contacts come again to merge into an osculating contact at the point of bifurcation B M.
  • Capsules - or chambers - are defined between the two profiles 3 and 4 and between the contact points successive.
  • a capsule is being born at the point of contact C 2 .
  • the capsule being born at the bifurcation point B N will successively form the capsules V 1 , V 2 , ... , V 9 .
  • the capsules V 1 to V 4 are in the volume growth phase whereas the capsules V 5 to V 9 are in a phase of volume decrease.
  • the growth phase extends over almost a complete turn, the decay phase also, so that the complete cycle extends over a little less than two turns.
  • the hydraulic fluid is at high pressure in the capsules V 1 to V 4 in the growth phase, and at low pressure in the capsules V 5 to V 9 in the decay phase.
  • the capsules in the growth phase and subjected to pressure alternate with the capsules in the decay phase and which are not subjected to pressure.
  • the hydraulic machine operates as a pump, the same alternation is observed except that it is the capsules in the decay phase that are subjected to pressure and the capsules in the growth phase that are in the process of admission of the fluid to be pumped.
  • Figures 2A to 2F show six successive angular positions of the two profiled members 1 and 2 of the machine of Figure 1, from the situation shown in Figure 1, which is also that of Figure 2A.
  • the situation shown in FIG. 2F corresponds to the passage of capsule V4 by its maximum volume.
  • the m-lobed profile 13 is now external to the profile (m-1) -lobed 14, and belongs to a profiled member 11 which is external and surrounds the profiled member 12 bearing the profile (m-1) -lobed 14.
  • FIGS. 4A to 4F represent six successive states of the machine of FIG. 3, from the situation shown in Figure 3, which is also that of Figure 4A.
  • the capsule V 4 has reached a position where it is symmetrical with respect to the axis Ox so that the direction of variation of its volume is changing. This is why it is to this figure that has also been shown the inlet ports 8 and discharge 9 made through a flange which, moreover, laterally closes the capsules.
  • the capsule V 4 communicates neither with the light 8 nor with the light 9.
  • the capsules in the growth phase communicate with the light 8 which extends to the point of rear contact C 4 of the capsule V 4 .
  • the capsules in decay phase communicate with the discharge light 9 which starts from the point of contact before C 5 of the capsule V 4 .
  • the flange (s) in which (or) are defined the lights 8, 9, are integral with the connecting member symbolized by the Oxy mark.
  • the circle of center O and radius 1 intended to constitute the primitive circle of the m-lobed profile.
  • the arc M 0 M ⁇ is chosen arbitrarily, which in the example of FIG. 5 is represented identical to the dome of a lobe of the profile 3, including as regards its distance and its orientation with respect to the center O, and a ray from this center.
  • one chooses arbitrarily one does not mean that any bow can agree, and one will give further necessary conditions that must verify this choice.
  • the quantities ( ⁇ , ⁇ , ⁇ ) are defined univocally by the point M.
  • the point M is univocally defined by these quantities: we build the half-line of origin O and of polar angle ⁇ , then the points P and D by taking the angles ⁇ ⁇ from this half-line.
  • the given arc as a differentiable arc on which the angle ⁇ is a coordinate between 0 and ⁇ . This means that when the point M traverses this arc, the angle ⁇ associated with it takes once and only one each value between 0 and ⁇ .
  • These arcs form two classes according to the relative direction of the course and the scan, and these two classes are associated with the two aforementioned classes of conjugated profiles and consequently of machines.
  • the profiles are generated, for one, by the concatenation (ie put end to end maintaining the relative orientation) of the given arc and one of the complementary arcs: it is the completed profile; for the other, by the concatenation of the two conjugated arcs: it is the conjugate profile.
  • the given arc is first class when: ⁇ '(0)> 0 and ⁇ ' ( ⁇ ) ⁇ 0
  • the completed profile is constituted by the concatenation of the given arc and the proximal complementary arc, repeated by rotations of 2 ⁇ / m around the origin.
  • the profile is of order m, that is to say, it is preserved by the rotation of 2 ⁇ / m (around the origin) and that it presents m lobes or teeth. This is the profile shown partially in Figure 5.
  • the conjugate profile is constituted by the concatenation of the proximal conjugate arc and the distal conjugate arc, repeated by rotations of 2 ⁇ / (m-1) around the center O 'of coordinates (1 / m, 0).
  • the profile is of order (m-1), in the same sense as before.
  • the ratio of rotation speeds is (m-1) / m.
  • the completed profile is internal to the conjugate profile.
  • the given arc is of second class when: ⁇ '(0) ⁇ 0 and ⁇ ' ( ⁇ )> 0.
  • the completed profile is constituted by the concatenation of the given arc and the distal complementary arc, repeated by rotations of 2 ⁇ / m around the origin.
  • the profile is of order m.
  • the conjugate profile is constituted, as for the first class, by the concatenation of the proximal conjugate arc and the distal conjugate arc, repeated by rotations of 2 ⁇ / (m-1) around the center O 'of coordinates (1 / m, 0).
  • the profile is of order (m-1).
  • the ratio of rotation speeds is (m-1) / m.
  • the completed profile is external to the conjugate profile.
  • arcs depend on three parameters: n is the order of the epicycloid, which can be chosen real (positive and not too small), ⁇ is an angular parameter between 0 and ⁇ / 2, which describes the shortening (or eccentricity); finally, ⁇ 0 is the parameter of parallelism, ie a parameter characterizing the distance to the basic epicycloid.
  • the given arc must have the following property: when it is traversed from its origin to its end, its normal "regularly scans" the primitive circle, and in particular, the normals at the origin and at the end of the arc are tangent to the primitive.
  • the possible arcs are divided into two disjoined classes: those whose normal sweeps the primitive circle "in the opposite direction” of the current point M and those whose normal sweeps it "in the same direction" as the current point M.
  • the first class consists of pairs of profiles such that the inner profile has one more lobe than the outer profile; the second, conversely, is such that the inner profile has a lobe less than the outer profile.
  • the formulas obtained for arcs are invertible, in that one can construct the family of four arcs that define the two profiles, from any one of them. This does not mean that they play completely symmetrical roles: in fact, of the two arcs that make up each profile, one of them comes into contact with the two arcs of the other profile, and the other with only one of them. them. This is the maximal conjugation, from which it follows that the action curves are formed of three arcs concurring at two points of bifurcation B M and B N. The passage of the contact by these "triple points" occurs at the connection between the two arcs which constitute each of the two profiles.
  • FIGS. 7A, 7B, 8A, 8B, 9A, 9B show different embodiments of machines of the first class. It appears that when the number of lobes is small, for example equal to 2 or 3, the lobar troughs are simply less prominent regions, whose profile can even be convex with respect to the inner profiled member.
  • FIGS. 10A to 10I represent nine variants of geometries for a quadrilobelled inner profile in a tri-lobed outer profiled member.
  • FIGS. 11A to 11C show three examples of a first-class machine with penta-lobed inner rotor.
  • FIG. 11B The embodiment of FIG. 11B is characterized by the fact that the two osculating contacts take place simultaneously, on either side of a capsule V 1 whose volume is then maximal.
  • FIG. 11A is analogous to that of FIG. 1, in the sense that a capsule V 2 whose rear edge has passed the bifurcation point B M and has therefore disappeared behind it. V capsule 1, has not yet reached its front edge the other bifurcation point B N which will be born before her future new capsule V 3 is therefore indicated by a dash.
  • the same capsule V 2 covers both of the two bifurcation points B N , B M so that it is still followed by a capsule V 1 dying and already preceded by a nascent capsule V 3 .
  • FIG. 12 the case of the machine of FIG. 11B is considered. It is considered that against each radial face of the profiled members 1 and 2 a flange laterally closing the capsules with the exception of the lights that will be described. These flanges are integral in rotation of the outer profile 2.
  • the lights From their point coinciding with the connection of the constituent arcs of the profile 4, the lights extend generally towards the axes O and O '. These lights 16, depending on whether they are covered or not by the profiled member m-lobed, selectively communicate the capsules with the admission.
  • lights 17 are made which are symmetrical with the lights 16 with respect to rays passing through the lobes of the profile (m -1) -lobed 4, and whose angular tip coincides with the connection of the two constituent arches of the profile (m-1) lobed 4 on the front slope of each lobe.
  • the lights 17 communicate with the hydraulic discharge of the machine.
  • the capsule V 1 is not isolated only for a short time while its volume is maximum and is therefore not changing.
  • the dying capsule still communicated with the light of delivery 17 neighbor while the capsule V 1 communicated with the intake port 16.
  • the new capsule will communicate with the corresponding intake port 16, while the capsule V1 will communicate with the discharge light 17.
  • FIG. 12A shows that, in place of or in addition to the lights 16 and 17, it is also possible to provide, in the profiled (m-1) -lobed member, intake and discharge channels 19 which open through the respective slopes; lobes of the outer profile 4, substantially to the connections between the two constituent arcs of the profile 4 so as to be closed when the profiles are in contact osculator, then to be gradually released by the capsule formed between the two contacts resulting from the disintegration of the osculator contact, in the case of the birth of a capsule for admission, or to be gradually closed with regard to the discharge, in the case of the death of a capsule.
  • the machine has a geometry corresponding to that of Figure 1, apart from the number of lobes.
  • the situation is also that shown in FIG. 11A, but when the profiled members 1 and 2 are in a different angle around their respective axes.
  • FIG. 13 corresponds substantially to that of Figure 2A.
  • the capsule V 4 whose rear edge has already passed the bifurcation point B M and therefore already communicates with the delivery light of a distribution according to FIG. 12 has not yet reached the point B N and always communicate with the intake light of such a distribution, which is also necessary since the volume of the capsule V 4 is still growing. It is therefore the communication with the light of repression that must be suppressed.
  • a mask 21 secured to the housing (the connecting member) and which extends over a certain angular distance forward relative to the direction of rotation defined by the arrow F, from the bifurcation point B M , to obscure the discharge light in this area.
  • a mask 22 is provided to obscure the intake ports over a certain angular zone from the B N bifurcation point back relative to the direction of rotation.
  • the capsule V 2 undergoes volume variations between the moment when its front edge comes to cover the bifurcation point B N and until its rear edge no longer covers the other point of Bifurcation B M.
  • FIG. 14 represents a particularly preferred embodiment for a machine having a profile according to FIG. 1.
  • the distribution principle is the same as in FIG. 12, and in each plane perpendicular to the axes the profiles 3 and 4 are those of FIG. 1. However, from one plane to another, each profile 3 or 4 is offset angularly by a determined pitch about its respective axis so as to give all the profiled members a helical shape.
  • the angular offset between the profiles of the two ends is such that in the situation shown, where the capsule V 5 on the intake side reaches the bifurcation point B N , this capsule itself having a spiral shape has just left its rear edge. other oscillation at the other bifurcation point B M.
  • FIG. 15 shows schematically an embodiment of a first class machine according to the invention.
  • the inner profiled member 1 is secured to a drive shaft 23 which is a motor in the case of a pump and receiver in the case of a hydraulic motor.
  • the shaft 23 is supported in rotation, on either side of the profiled member 1, by two bearings 24 in a fixed housing 25 which constitutes the connecting member according to the invention.
  • the outer profiled member 2 is supported in rotation by peripheral bearings 26 installed between the outer peripheral wall of the profiled member 2 and a peripheral ring 27 forming part of the housing 25.
  • the geometric axis of the shaft 23 corresponds to the center O whereas the geometric axis, not shown, of the bearings 26 corresponds to the center O '.
  • the profiled members 1 and 2 are installed between two flanges 28, 29 through which the inlet and discharge ports 16 and respectively 17 are formed.
  • the profiled members 1 and 2 have planar and coplanar end faces on which the corresponding flat end faces of the flanges 28 and 29 are sealingly and slidingly abutted so as to close the capsules except for the communications selectively set by lights 16 and 17.
  • each flange 28 or 29 and a corresponding end wall 31 or 32 of the casing There is between each flange 28 or 29 and a corresponding end wall 31 or 32 of the casing, a respective axial abutment 33, 34.
  • the flanges 28, 29 are connected in rotation with the outer profiled member 2 while being free in translation with respect to it thanks to grooves 36.
  • the internal space between the end wall 31 of the casing on the one hand and the flange 28 and the corresponding face of the profiled member 1 on the other hand is arranged in a chamber subjected to the inlet pressure .
  • a chamber subjected to the discharge pressure is formed between the other end wall 32 of the housing on the other hand and the other flange 29 and the other end face of the inner profiled member 1 on the other hand.
  • These two chambers are closed by dynamic sealing devices 38, 39, 41, 42 which prevent the hydraulic fluid from accessing the bearings 24 and 26, and prevent the two chambers from communicating with each other between the two. outer profiled member 2
  • the axial thrust thus created must be sufficient to balance the tendency of the profiled members to "unscrew” with respect to one another under the action of the forces of work exerted between the profiles 3 and 4.
  • the axial thrust retained is too strong, it can be radially outwardly beyond the axial abutments 33 and 34, so between each flange and the end wall. 31 corresponding to the housing, the sealing devices 41 and 42 shown acting in contact with the shaft 23.
  • the shaft 23 must be mounted with a certain freedom of axial sliding for allow the axial floating of the profiled member 1 between the flanges 31 and 32.
  • the outer profiled member 2 is free to rotate so that its drive results from its cooperation with the profiled member 1 and the working fluid.
  • the machine is variable displacement.
  • the profiled members 1 and 2 are axially sliding relative to each other.
  • the profiled member 2 is axially fixed while bearing against the casing 25 by means of an axial abutment 53 and a flange 51.
  • the profiled member 1 is axially sliding relative to the casing by means of an actuator 49 which is only schematically shown, acting on the member 1 by means of an axial stop 54 and a flange 52.
  • the flange 51 rests in a sealed manner against a flat end face of the outer profiled member 2 and has as a radially inner edge a profiled face 47 which is exactly complementary to the profile 3 of the profiled member 1.
  • the flange 51 is in sealing contact with the profile 3 all around the profiled member 1, to slide axially relative to the profiled member 1 while being rotated by the profiled member 1.
  • the flange 52 is sealingly supported against a flat end face of the profiled member 1 and has on its outer periphery a shaped face 48 which is exactly complementary to the profile 4 of the profiled member 2 so that to support it sealingly, axially sliding, and ensuring the rotational drive of the flange 52 with the profiled member 2.
  • the distribution is provided by channels 18, 19 according to the embodiment of Figure 12A.
  • FIGS. 17A to 22B show various embodiments, each in two operating states, for machines of the second class, with lobe numbers ranging from 1 for the inner profiled member and 2 for the outer profiled member (FIGS. 17A and 17B), to 7 for the inner profiled member and 8 for the outer profiled member ( Figures 22A and 22B).
  • FIGS. 23A to 25B represent three other possible geometries which illustrate the great variety of feasible geometries for second class machines.
  • capsular scission is likely to occur for capsules in the vicinity of their birth or death, that is to say when two lobes are strongly engaged one in the other side of the running point.
  • the volumes of the capsules concerned are small.
  • the course is as follows: at a point inside a capsule being closed, both profiles come into an exceptional osculator contact, and the capsule is cut into two sub-capsules.
  • the new osculator contact disintegrates into two simple contacts between which a new capsule is born. Each of these two contacts joins the corresponding edge of one of the two subcapsules being closed and these disappear (usually at different times), one in a normal way to the passage by the confluence of the curves of action, and the other exceptionally through an oscillation that disappears on the spot.
  • the new capsule coalesces with another new capsule that was born normally at the bifurcation of the action curves.
  • the case of the compressor is also one in which the properties of the fluid change between intake and delivery; moreover, the parameters to be optimized are not the same at intake (limitation of pressure drop) and at discharge (limitation of leaks). For these reasons, it may be preferable to use asymmetric profiles.
  • An example is given in Figures 27A and 27B.
  • an intermediate profiled member 62 comprises a first profile 64 of order m-1 on its radially inner face, and a second profile 74 of order (m-1) on its radially face. exterior. Both profiles have the same primitive circle centered in O '.
  • Each of the profiles (m-1) -lobed 64, 74 cooperates with an m-lobed profile 63, 73 of a profiled member 61 which is shown fixed in this example.
  • the two profiles 63, 73 also have a common pitch circle, which is centered at O.
  • the profiles 63 and 64 form a machine of the first class according to the invention and the profiles 73 and 74, a machine of the second class according to the invention. 'invention.
  • the difference is that the intermediate profiled member 82 carries two m-lobed profiles cooperating with two (m-1) -lobed profiles belonging to the profiled member 81.
  • Such a geometry could make it possible to manufacture an internal combustion engine in which, for example, the inner machine would be used for intake and compression, while the outer machine would serve for expansion and exhaust.
  • the inner profiled member is rotated and the outer profiled member rotates thanks to the moment of rotation transmitted to the points of contact between the inner profiled member and the inner profile member.
  • external shaped member which is free to rotate in the housing.
  • the pressure of the hydraulic fluid tends to make the cavities subjected to this pressure evolve in the direction of the enlargement of their volume, which contributes to urging the external profiled member in the direction of rotation. desired.
  • the invention is compatible with the Sparrow principle according to which, as described in US Pat. No. 1,892,217, the helical shape of the two profiled members extends over a sufficient number of helical steps so that no cavity simultaneously leads to two axial ends of the machine. Thanks to the precision and quality of the geometry according to the invention, it is possible to limit the total angular offset between the profiles at the two ends of the machine to a value barely greater than the lifetime of the capsule in each plane. perpendicular to the axes ..
  • the pitch of the helix is not necessarily the same all along the machine, and the profile can still be varied along the axes of the machine. This allows for example to achieve a compressor or a relaxation machine in which the volume of the capsules being transferred varies gradually.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Prostheses (AREA)
  • Apparatus For Making Beverages (AREA)
  • Centrifugal Separators (AREA)
  • Medicinal Preparation (AREA)
  • Slot Machines And Peripheral Devices (AREA)
  • Rotary Pumps (AREA)
  • Formation And Processing Of Food Products (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Retarders (AREA)
  • Friction Gearing (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

A closed system rotary machine has an inner shaped element (1) and an outer shaped element (2) which define therebetween cavities or capsules having a variable volume (V1, V9). The contact points which define the capsules (C1, C9) are disposed along lines of action (CA1, CA2, CA3) which are concurrent at junction points BN and BM, where the cavities begin and end respectively. The contacts (C2) at points located on the tangent (T) common to both pitch circles (6, 7) are osculating elements with a shared centre of curvature which is situated at the rolling point (R) of the pitch circles (6, 7). The invention can be used to ensure that the capsules form and disappear very gradually and to facilitate the distribution of the capsules when they are forming and disappearing in order to increase the leak paths.

Description

La présente invention concerne une machine tournante à capsulisme.The present invention relates to a rotary machine with capsulism.

Par « machine à capsulisme », on entend une machine dans laquelle deux organes profilés présentent des profils annulaires qui engrènent l'un avec l'autre en définissant entre eux des chambres - ou capsules - à volume variable."Capsulism machine" means a machine in which two profiled members have annular profiles which mesh with each other by defining between them chambers - or capsules - with variable volume.

L'invention s'intéresse plus particulièrement aux machines dont l'un des profils est intérieur à l'autre, l'un étant m-lobé et l'autre (m-1)-lobé, où le nombre entier m est supérieur ou égal à 2.The invention is more particularly concerned with machines in which one of the profiles is internal to the other, one being m-lobed and the other (m-1) -lobed, where the integer m is greater or equal to 2.

On appelle un profil « m-lobé » un profil annulaire défini par un motif formant un dôme de lobe et un creux de lobe, ce motif se répétant m fois autour du centre d'un cercle primitif associé à ce profil.A "m-lobed" profile is called an annular profile defined by a pattern forming a lobe dome and a lobe hollow, this pattern repeating itself around the center of a pitch circle associated with this profile.

Un profil (m-1)-lobé est un profil annulaire défini par un motif formant un dôme de lobe et un creux de lobe, ce motif se répétant (m-1) fois autour du centre d'un cercle primitif associé à ce profil.A (m-1) -lobed profile is an annular profile defined by a pattern forming a lobe dome and a lobe hollow, this pattern repeating itself (m-1) times around the center of a pitch circle associated with this profile. .

Les profils coopèrent l'un avec l'autre par une sorte d'engrènement au cours duquel leurs cercles primitifs respectifs roulent l'un sur l'autre en un point de roulement qui est fixe par rapport à un organe de liaison par rapport auquel tourillonnent les deux organes profilés, chacun suivant un axe passant par le centre de son cercle primitif.The profiles cooperate with each other by a kind of meshing in which their respective primary circles roll over each other at a running point which is fixed relative to a connecting member with respect to which the two profiled members, each along an axis passing through the center of its original circle.

Les machines à capsulisme peuvent par exemple être des moteurs hydrauliques, des pompes hydrauliques, des compresseurs ou des machines de détente.Capsulism machines may for example be hydraulic motors, hydraulic pumps, compressors or expansion machines.

Le EP-A-0870926 décrit une machine à capsulisme du type dit « gérotor », c'est-à-dire dans lequel l'organe profilé intérieur est (m-1)-lobé. La géométrie de cette machine est classique en elle-même. Le document concerne plus particulièrement la réalisation d'un jeu déterminé entre les profils.EP-A-0870926 discloses a capsulism machine of the type called "gerotor", that is to say in which the inner profile member is (m-1) -lobed. The geometry of this machine is classic in itself. The document relates more particularly to the realization of a determined game between the profiles.

Le EP-539273-B1 décrit diverses machines à capsulisme, en particulier des machines avec deux lobes sur le profil intérieur et trois sur le profil extérieur, et inversement des machines avec trois lobes sur le profil intérieur et deux lobes seulement sur le profil extérieur.EP-539273-B1 discloses various machines with capsulism, in particular machines with two lobes on the inner profile and three on the outer profile, and conversely machines with three lobes on the inner profile and two lobes only on the outer profile.

Le US-A-1 892 217 décrit la pompe Moineau. Au lieu de présenter des profils cylindriques, cette machine de type gérotor présente des organes profilés hélicoïdaux avec un angle total d'hélice de plusieurs tours. Les capsules sont formées à une extrémité axiale des organes profilés puis sont transportées sans variation de volume jusqu'à l'autre extrémité, où elles viennent disparaître. Deux résultats remarquables sont obtenus : La distribution est simplifiée à l'extrême puisqu'il suffit que les capsules s'ouvrent librement sur l'admission à une extrémité et sur le refoulement à l'autre extrémité. Et d'autre part, le débit est strictement constant.US-A-1 892 217 discloses the Sparrow pump. Instead of having cylindrical profiles, this gerotor type machine has helical profiled members with a total helix angle of several turns. The capsules are formed at one axial end of the profiled members and are transported without volume variation to the other end, where they disappear. Two remarkable results are obtained: The distribution is simplified to the extreme since it suffices that the capsules open freely on the intake at one end and the discharge at the other end. And on the other hand, the flow is strictly constant.

De nombreux documents tels que US-A-6 106 250, DE 42 04 186 A1, EP 0 094 379 B1, DE 44 25 429 A1, EP 0 799 966 A2, décrivent des machines avec une géométrie de type Wankel, c'est-à-dire avec un rotor de forme générale triangulaire à faces bombées effectuant un mouvement planétaire dans un stator bi-lobé.Numerous documents such as US-A-6 106 250, DE 42 04 186 A1, EP 0 094 379 B1, DE 44 25 429 A1, EP 0 799 966 A2, describe machines with a Wankel geometry, it is that is to say with a generally triangular rotor with curved faces effecting a planetary movement in a bi-lobed stator.

Le WO 93/08402 décrit des perfectionnements à la pompe Moineau.WO 93/08402 discloses improvements to the Moineau pump.

Dans l'art antérieur les profils ne sont souvent conjugués que de manière approximative. Des organes d'étanchéité élastiques sont prévus pour compenser les approximations de la conjugaison. Par exemple, dans la pompe Moineau (US-A-1 892 217), le revêtement intérieur de l'organe profilé extérieur est élastique. Dans la plupart des machines de type Wankel, des segments rétractables sont prévus aux extrémités du rotor triangulaire et parfois aussi aux sommets des lobes de l'organe profilé extérieur. Même dans les meilleures machines connues, les trajets de fuite entre capsules successives sont relativement courts et il y a des problèmes pour commuter une capsule de l'admission au refoulement.In the prior art the profiles are often conjugated only in an approximate manner. Elastic sealing members are provided to compensate for the approximations of the conjugation. For example, in the Moineau pump (US-A-1 892 217), the inner lining of the outer profiled member is resilient. In most Wankel type machines, retractable segments are provided at the ends of the triangular rotor and sometimes also at the vertices of the lobes of the outer profiled member. Even in the best known machines, the leakage paths between successive capsules are relatively short and there are problems to switch a capsule from the intake to the discharge.

Le but de la présente invention est de rechercher une optimisation en ce qui concerne la qualité des contacts entre les profils, la commutation entre l'aspiration et le refoulement par la distribution, et la progressivité de la naissance et de la disparition de chaque capsule.The object of the present invention is to seek an optimization with regard to the quality of the contacts between the profiles, the switching between the suction and the delivery by the distribution, and the progressivity of the birth and the disappearance of each capsule.

Il a plus particulièrement été trouvé suivant l'invention une famille de géométries, et des méthodes de détermination associées, grâce auxquelles les profils sont en contact osculateur aux stades de la naissance et de la disparition d'une capsule. Par contact osculateur, on entend un point de contact où les courbures des deux profils sont continues, égales et de même sens. A la naissance d'une capsule, le contact osculateur se scinde en deux contacts entre lesquels se forme la capsule. A la disparition d'une capsule, deux contacts distincts se rapprochent de plus en plus jusqu'à devenir un seul contact osculateur, puis simple.It has more particularly been found according to the invention a family of geometries, and associated determination methods, by which the profiles are in contact with the osculator at the stages of birth and the disappearance of a capsule. By osculator contact means a point of contact where the curvatures of the two profiles are continuous, equal and in the same direction. At the birth of a capsule, the osculating contact splits into two contacts between which the capsule is formed. At the disappearance of a capsule, two distinct contacts come closer and closer to becoming a single osculator contact, then simple.

Suivant l'invention, la machine à capsulisme comprenant :

  • deux organes profilés, intérieur et respectivement extérieur, qui portent un profil annulaire intérieur et respectivement un profil annulaire extérieur,
  • un organe de liaison lié de façon rotative avec chacun des deux organes profilés selon un axe de rotation respectif,
et dans laquelle :
  • les profils sont l'un m-lobé, l'autre (m-1)-lobé, et sont définis autour de l'axe de rotation de leur organe profilé respectif par m et respectivement (m-1) motif(s) comprenant un arc de dôme de lobe et un arc de creux de lobe,
  • chaque profil est l'enveloppe de l'autre lors de rotations relatives des organes profilés autour de leur axe de rotation respectif avec engrènement de leurs profils qui définissent entre eux les contours de capsules, et roulement sans glissement entre deux cercles primitifs centrés sur les axes de rotation respectifs,
est caractérisé en ce que dans les positions relatives des organes profilés pour lesquelles un point de contact entre les profils se trouve sur la tangente aux deux cercles primitifs en leur point de roulement mutuel, les organes profilés présentent audit point de contact des courbures continues égales et de même sens ayant pour centre commun ledit point de roulement.According to the invention, the capsulism machine comprising:
  • two profiled members, inside and outside, which carry an inner annular profile and respectively an outer annular profile,
  • a connecting member rotatably connected to each of the two profiled members according to a respective axis of rotation,
and wherein:
  • the profiles are one m-lobed, the other (m-1) -lobed, and are defined around the axis of rotation of their respective profiled member by m and respectively (m-1) pattern (s) comprising a lobe dome arch and a lobe hollow arch,
  • each profile is the envelope of the other during relative rotations of the profiled members around their respective axis of rotation with meshing of their profiles which define between them the contours of capsules, and rolling without sliding between two primitive circles centered on the respective axes of rotation,
is characterized in that in the relative positions of the profiled members for which a point of contact between the profiles is on the tangent to the two primitive circles in their mutual point of rotation, the profiled members have at said point of contact equal continuous curvatures and of the same meaning having as common center said running point.

De préférence, la machine à capsulisme est caractérisée en ce que

  • des points M d'un premier des deux arcs du profil m-lobé étant définis par deux fonctions ρ(δ) et σ(δ) reliant les paramètres ρ et σ au paramètre δ considéré comme une coordonnée sur l'arc et qui sont :
    • ρ : mesurée le long de la normale à l'arc au point M, la distance entre le point M et le milieu N entre les deux points d'intersection P et D, proximal et respectivement distal, de ladite normale avec le cercle primitif de centre O du profil m-lobé, et de rayon supposé égal à 1, le point d'intersection proximal P étant situé entre le point M de l'arc donné et le point d'intersection distal D,
    • δ : demi-distance angulaire entre D et P par rapport au centre O, mesurée dans le sens direct
    • σ : angle polaire du point d'intersection proximal P par rapport à O, diminué de δ,
    • les fonctions ρ(δ) et σ(δ) ayant un domaine de définition allant de δ=0 à δ=π,
  • deux arcs du motif du profil (m-1)-lobé sont un arc conjugué proximal et un arc conjugué distal définis ci-après dans un repère cartésien ayant pour origine le centre O du cercle primitif associé au profil m-lobé :
    • a) arc conjugué proximal : x C j P δ = 1 + sin δ - δ sin δ - δ m - 1 + m - 1 cos δ cos δ - δ m - 1 / m
      Figure imgb0001
      y C j P δ = sin δ - δ cos δ - δ m - 1 - m - 1 cos δ sin δ - δ m - 1 / m
      Figure imgb0002
    • b) arc conjugué distal : x C j D δ = 1 + sin δ + δ sin δ + δ m - 1 + m - 1 cos δ cos δ + δ m - 1 / m
      Figure imgb0003
      y C j D δ = - sin δ + δ cos δ + δ m - 1 + m - 1 cos δ sin δ + δ m - 1 / m
      Figure imgb0004
Preferably, the capsulism machine is characterized in that
  • points M of a first of two arcs of the m-lobed profile being defined by two functions ρ (δ) and σ (δ) connecting the parameters ρ and σ to the parameter δ considered as a coordinate on the arc and which are:
    • ρ: measured along the arc normal at the point M, the distance between the point M and the middle N between the two points of intersection P and D, proximal and respectively distal, of said normal with the pitch circle of center O of the m-lobed profile, and of radius assumed equal to 1, the proximal intersection point P being situated between the point M of the given arc and the distal intersection point D,
    • δ: half-angular distance between D and P with respect to the center O, measured in the forward direction
    • σ: polar angle of the proximal intersection point P with respect to O, minus δ,
    • the functions ρ (δ) and σ (δ) having a domain of definition ranging from δ = 0 to δ = π,
  • two arcs of the profile pattern (m-1) -lobed are a proximal conjugate arc and a distal conjugate arc defined below in a Cartesian coordinate system originating from the center O of the pitch circle associated with the m-lobed profile:
    • a) proximal conjugate arc: x VS j P δ = 1 + sin δ - δ sin δ - δ m - 1 + m - 1 cos δ cos δ - δ m - 1 / m
      Figure imgb0001
      there VS j P δ = sin δ - δ cos δ - δ m - 1 - m - 1 cos δ sin δ - δ m - 1 / m
      Figure imgb0002
    • b) Distal Conjugate Bow: x VS j D δ = 1 + sin δ + δ sin δ + δ m - 1 + m - 1 cos δ cos δ + δ m - 1 / m
      Figure imgb0003
      there VS j D δ = - sin δ + δ cos δ + δ m - 1 + m - 1 cos δ sin δ + δ m - 1 / m
      Figure imgb0004

Si l'on se réfère à la complexité mathématique associée à la conception des machines à capsulisme, la solution proposée suivant l'invention est remarquablement simple.If one refers to the mathematical complexity associated with the design of the machines with capsulism, the solution proposed according to the invention is remarkably simple.

On peut choisir un premier arc de l'un des profils et un cercle primitif pour ce profil, puis on définit mathématiquement cet arc dans le paramétrage très particulier qui a été imaginé selon l'invention, en établissant les deux fonctions ρ(δ) et σ(δ). On appelle «arc donné » cet arc choisi initialement.We can choose a first arc of one of the profiles and a primitive circle for this profile, then we mathematically define this arc in the very particular parameterization that has been imagined according to the invention, by establishing the two functions ρ (δ) and σ (δ). This arc, initially chosen, is called a "given arc".

Et on obtient ensuite directement, par application des formules selon l'invention, l'arc conjugué proximal et l'arc conjugué distal par leurs coordonnées cartésiennes ayant pour origine le centre O du cercle primitif associé à l'arc donné. Le profil conjugué de l'arc donné est obtenu par concaténation de l'arc conjugué proximal et de l'arc conjugué distal. La concaténation signifie que les deux arcs, pris chacun dans la totalité de son étendue correspondant à une variation de δ sur l'intervalle [0,π], sont raccordés bout à bout par les points où δ = 0. Les formules réalisent automatiquement que les deux arcs, proximal et distal, ont non seulement même tangente mais également même courbure en leur point de raccordement et cette courbure est également la même que celle à une extrémité correspondante de l'arc donné. La normale au profil conjugué en le point de raccordement est tangente aux cercles primitifs respectifs de l'arc choisi et du profil conjugué en le point de roulement de ces cercles l'un sur l'autre. Le rayon du cercle primitif de l'arc donné ayant été choisi arbitrairement égal à 1, le rayon du cercle primitif du profil conjugué est égal à (m-1)/m. Le cercle primitif du profil conjugué est donc déterminé. On obtient ensuite le profil conjugué complet en concaténant (m-1) fois le motif constitué de l'arc conjugué proximal et de l'arc conjugué distal selon (m-2) rotations d'angle 2π/(m-1) autour du centre O' du cercle primitif du profil conjugué.Then, by applying the formulas according to the invention, the proximal conjugate arc and the distal conjugate arc are obtained directly by their Cartesian coordinates originating from the center O of the pitch circle associated with the given arc. The conjugate profile of the given arc is obtained by concatenation of the proximal conjugate arc and the distal conjugate arch. The concatenation means that the two arcs, taken each in its whole extent corresponding to a variation of δ over the interval [0, π], are connected end to end by the points where δ = 0. The formulas automatically realize that the two arcs, proximal and distal, have not only the same tangent but also the curvature at their point of connection and this curvature is also the same as that at a corresponding end of the given arc. The normal to the conjugate profile at the point of connection is tangent to the respective primitive circles of the selected arc and the conjugate profile at the point of rotation of these circles one over the other. Since the radius of the pitch circle of the given arc has been chosen arbitrarily equal to 1, the radius of the pitch circle of the conjugate profile is equal to (m-1) / m. The primitive circle of the conjugate profile is thus determined. The complete conjugate profile is then obtained concatenating (m-1) times the pattern consisting of the proximal conjugate arc and the distal conjugate arc according to (m-2) rotations of angle 2π / (m-1) around the center O 'of the pitch circle of the profile conjugate.

Pour le deuxième arc du profil m-lobé, ou arc complémentaire de l'arc donné, deux cas sont possibles suivant la géométrie choisie pour l'arc donné. On distingue, suivant l'invention, ces deux cas d'après la valeur de la dérivée ρ' de la fonction ρ par rapport à sa variable δ aux points 0 et π.For the second arc of the m-lobed profile, or arc complementary to the given arc, two cases are possible according to the geometry chosen for the given arc. According to the invention, these two cases can be distinguished from the value of the derivative ρ 'of the function ρ with respect to its variable δ at the points 0 and π.

Dans un premier cas, la dérivée ρ' par rapport à δ pour δ = 0 et δ = π satisfait les inégalités strictes suivantes : 1 / m > ρʹ 0 > 0

Figure imgb0005
- 1 / m < ρʹ π < 0
Figure imgb0006

le profil m-lobé est alors intérieur au profil (m-1)-lobé, et
le motif m-lobé est complété par un arc complémentaire proximal défini par ses coordonnées dans ledit repère cartésien : x C p P δ = 2 sin δ - δ sin 2 δ m - σ δ + mcos δ cos 2 δ m - σ δ / m
Figure imgb0007
y C p P δ = 2 sin δ - δ cos 2 δ m - σ δ - mcos δ sin 2 δ m - σ δ / m
Figure imgb0008
In a first case, the derivative ρ 'with respect to δ for δ = 0 and δ = π satisfies the following strict inequalities: 1 / m > ρ' 0 > 0
Figure imgb0005
- 1 / m < ρ' π < 0
Figure imgb0006

the m-lobed profile is then inside the profile (m-1) -lobed, and
the m-lobed pattern is completed by a proximal complementary arc defined by its coordinates in said Cartesian coordinate system: x VS p P δ = 2 sin δ - δ sin 2 δ m - σ δ + MCOS δ cos 2 δ m - σ δ / m
Figure imgb0007
there VS p P δ = 2 sin δ - δ cos 2 δ m - σ δ - MCOS δ sin 2 δ m - σ δ / m
Figure imgb0008

On réalise ainsi une première classe de machines selon l'invention, dans lesquelles le profil intérieur présente un lobe de plus que le profil extérieur.A first class of machines according to the invention is thus produced in which the inner profile has one lobe more than the outer profile.

Pour cette première classe de machines, les deux arcs conjugués, proximal et respectivement distal, définis par les formules selon l'invention, viennent se placer radialement à l'extérieur de l'arc donné, et l'arc complémentaire de l'arc donné vient compléter le profil m-lobé à l'intérieur du profil conjugué, (m-1)-lobé.For this first class of machines, the two conjugate arcs, proximal and respectively distal, defined by the formulas according to the invention, are placed radially outside the given arc, and the complementary arc of the given arc completes the m-lobed profile within the conjugate (m-1) -lobed profile.

Dans un second cas, la dérivée ρ' par rapport à δ pour δ = 0 et δ = π satisfait les inégalités strictes suivantes : - 1 / m < ρʹ 0 < 0

Figure imgb0009
1 / m > ρʹ π > 0
Figure imgb0010
In a second case, the derivative ρ 'with respect to δ for δ = 0 and δ = π satisfies the following strict inequalities: - 1 / m < ρ' 0 < 0
Figure imgb0009
1 / m > ρ' π > 0
Figure imgb0010

Le profil m-lobé est extérieur au profil (m-1)-lobé ; et
le motif m-lobé est complété par un arc complémentaire distal défini par le jeu de coordonnées cartésiennes suivant autour du centre O : x C p D δ = 2 sin δ + δ sin 2 δ m + σ δ + mcos δ cos 2 δ m + σ δ / m

Figure imgb0011
y C p D δ = - 2 sin δ + δ cos 2 δ m + σ δ + mcos δ sin 2 δ m + σ δ / m
Figure imgb0012
The m-lobed profile is exterior to the profile (m-1) -lobed; and
the m-lobed pattern is completed by a distal complementary arc defined by the next set of Cartesian coordinates around the center O: x VS p D δ = 2 sin δ + δ sin 2 δ m + σ δ + MCOS δ cos 2 δ m + σ δ / m
Figure imgb0011
there VS p D δ = - 2 sin δ + δ cos 2 δ m + σ δ + MCOS δ sin 2 δ m + σ δ / m
Figure imgb0012

On a alors une seconde classe de machines dans laquelle le profil conjugué, (m-1)-lobé, est automatiquement défini comme se trouvant radialement à l'intérieur du profil m-lobé auquel appartient l'arc donné.We then have a second class of machines in which the conjugated (m-1) -lobed profile is automatically defined as lying radially inside the m-lobed profile to which the given arc belongs.

Les formules précédentes, qu'elles soient relatives à la première où à la seconde classe de machines, ne requièrent pas que l'arc donné présente un axe de symétrie.The preceding formulas, whether relating to the first or the second class of machines, do not require that the given arc has an axis of symmetry.

Si l'arc donné ne présente pas d'axe de symétrie, on réalise des machines dans lesquelles les processus de croissance et décroissance des capsules ne sont pas symétriques l'un de l'autre.If the given arc does not have an axis of symmetry, machines are made in which the processes of growth and decay of the capsules are not symmetrical to each other.

D'autres particularités et avantages de l'invention ressortiront encore de la description ci-après, relative à des exemples non limitatifs.Other features and advantages of the invention will emerge from the description below, relating to non-limiting examples.

Aux dessins annexés :

  • la figure 1 est une vue de face des organes profilés, montrant certaines particularités géométriques d'une machine de la première classe selon l'invention ;
  • les figures 2A à 2F sont des vues analogues à la figure 1, mais à plus petite échelle, et montrant six états successifs de la machine de la figure 1 ;
  • la figure 3 est une vue analogue à la figure 1 mais relative à une machine de seconde classe ;
  • les figures 4A à 4F sont des vues analogues à la figure 3, mais à plus petite échelle, et montrant six états successifs de la machine ;
  • la figure 5 est une construction géométrique illustrant la détermination des paramètres des profils selon l'invention ;
  • les figures 6A, 6B et 6C montrent le détail, à grande échelle, du passage des profils par l'osculation, dans l'exemple de la figure 1, la figure 6B étant celle relative à l'osculation, les figures 6A et 6C étant décalées d'une rotation de trois degrés du profil intérieur dans un sens et dans l'autre ;
  • les figures 7A et 7B montrent, en deux états différents, une machine de la première classe selon l'invention avec profil intérieur bi-lobé ;
  • les figures 8A et 8B montrent, en deux états différents, une machine de la première classe selon l'invention avec profil intérieur tri-lobé ;
  • les figures 9A et 9B montrent, en deux états différents, une machine de la première classe selon l'invention avec profil intérieur octo-lobé ;
  • les figures 10A à 10I représentent neuf géométries différentes pour une machine de la première classe selon l'invention, à profil intérieur quadri-lobé ;
  • les figures 11A, 11B et 11C représentent trois géométries différentes pour une machine de la première classe selon l'invention à profil intérieur penta-lobé ;
  • la figure 12 est une vue de la machine de la figure 11B à échelle agrandie, avec schématisation de certains moyens de distribution ;
  • la figure 12A est une vue de détail montrant une variante pour la distribution dans la réalisation de la figure 12 ;
  • la figure 13 est une vue analogue à la figure 12 mais relative à la machine de la figure 1 ;
  • la figure 14 est une vue schématique en perspective d'une machine dont les organes profilés sont hélicoides avec des profils successifs selon la figure 1;
  • la figure 15 est une demie-vue en coupe axiale, schématique, d'une machine selon l'invention ;
  • la figure 16 est une vue en coupe axiale partielle d'une machine selon l'invention, à cylindrée variable ;
  • les figures 17A et 17B représentent dans deux états différents une machine de la deuxième classe selon l'invention, à profil intérieur mono-lobé ;
  • les figures 18A et 18B représentent dans deux états différents une machine de la deuxième classe selon l'invention, à profil intérieur di-lobé ;
  • les figures 19A et 19B représentent dans deux états différents une machine de la deuxième classe selon l'invention, à profil intérieur tri-lobé ;
  • les figures 20A et 20B représentent dans deux états différents une machine de la deuxième classe selon l'invention, à profil intérieur quadri-lobé ;
  • les figures 21A et 21B représentent dans deux états différents une machine de la deuxième classe selon l'invention, à profil intérieur penta-lobé ;
  • les figures 22A et 22B représentent dans deux états différents une machine de la deuxième classe selon l'invention, à profil intérieur hepta-lobé ;
  • les figures 23A et 23B représentent dans deux états différents une machine de la deuxième classe selon l'invention, à profil intérieur tri-lobé dans une géométrie différente de celle des figures 19A et 19B ;
  • les figures 24A et 24B sont analogues aux figures 23A et 23B respectivement, mais dans une géométrie encore différente ;
  • les figures 25A et 25B sont analogues aux figures 23A et 23B respectivement, mais dans une géométrie encore différente ;
  • les figures 26A et 26B représentent dans deux états différents une machine de la deuxième classe selon l'invention, à profil intérieur di-lobé mais dans une géométrie différente de celle des figures 18A et 18B, plus particulièrement appropriée pour la réalisation d'un compresseur ;
  • les figures 27A et 27B sont analogues aux figures 26A et 26B, mais avec des profils asymétriques ;
  • les figures 28A à 28F représentent très schématiquement dans six états différents un premier mode de réalisation d'une machine gigogne selon l'invention, avec un organe profilé intermédiaire di-lobé monté entre deux profils tri-lobés ; et
  • les figures 29A à 29F représentent très schématiquement dans six états différents un deuxième mode de réalisation d'une machine gigogne selon l'invention, avec un organe profilé intermédiaire tri-lobé monté entre deux profils di-lobés ;
In the accompanying drawings:
  • Figure 1 is a front view of the profiled members, showing certain geometric features of a machine of the first class according to the invention;
  • Figures 2A to 2F are views similar to Figure 1, but on a smaller scale, and showing six successive states of the machine of Figure 1;
  • Figure 3 is a view similar to Figure 1 but relating to a machine second class;
  • Figures 4A to 4F are views similar to Figure 3, but on a smaller scale, and showing six successive states of the machine;
  • FIG. 5 is a geometric construction illustrating the determination of the parameters of the profiles according to the invention;
  • FIGS. 6A, 6B and 6C show the large-scale detail of the passage of the profiles by the oscillation, in the example of FIG. 1, FIG. 6B being that relating to the oscillation, FIGS. 6A and 6C being offset by a three-degree rotation of the inner profile in one direction and the other;
  • FIGS. 7A and 7B show, in two different states, a machine of the first class according to the invention with a bi-lobed inner profile;
  • FIGS. 8A and 8B show, in two different states, a machine of the first class according to the invention with tri-lobed inner profile;
  • Figures 9A and 9B show, in two different states, a machine of the first class according to the invention with octo-lobed inner profile;
  • FIGS. 10A to 10I represent nine different geometries for a machine of the first class according to the invention, with an inner four-lobed profile;
  • FIGS. 11A, 11B and 11C show three different geometries for a machine of the first class according to the invention with penta-lobed inner profile;
  • Figure 12 is a view of the machine of Figure 11B on an enlarged scale, with schematization of certain distribution means;
  • Fig. 12A is a detail view showing an alternative for dispensing in the embodiment of Fig. 12;
  • Figure 13 is a view similar to Figure 12 but relating to the machine of Figure 1;
  • FIG. 14 is a schematic perspective view of a machine whose members profiles are helicoid with successive profiles according to Figure 1;
  • Figure 15 is a half-view in axial section, schematic, of a machine according to the invention;
  • Figure 16 is a partial axial sectional view of a machine according to the invention, variable displacement;
  • FIGS. 17A and 17B show, in two different states, a machine of the second class according to the invention, with an inner lobed profile;
  • FIGS. 18A and 18B show, in two different states, a machine of the second class according to the invention, with a di-lobed inner profile;
  • Figures 19A and 19B show in two different states a machine of the second class according to the invention, tri-lobed inner profile;
  • FIGS. 20A and 20B show, in two different states, a machine of the second class according to the invention, with an inner four-lobed profile;
  • FIGS. 21A and 21B show, in two different states, a machine of the second class according to the invention, with a penta-lobed inner profile;
  • FIGS. 22A and 22B show, in two different states, a machine of the second class according to the invention, with a hepta-lobed inner profile;
  • FIGS. 23A and 23B show, in two different states, a machine of the second class according to the invention, having a tri-lobed inner profile in a geometry different from that of FIGS. 19A and 19B;
  • Figures 24A and 24B are similar to Figures 23A and 23B respectively, but in a still different geometry;
  • Figures 25A and 25B are similar to Figures 23A and 23B respectively, but in a still different geometry;
  • FIGS. 26A and 26B show, in two different states, a machine of the second class according to the invention, with a di-lobed inner profile but in a geometry different from that of FIGS. 18A and 18B, more particularly suitable for producing a compressor ;
  • Figs. 27A and 27B are similar to Figs. 26A and 26B, but with asymmetric profiles;
  • FIGS. 28A to 28F show very diagrammatically in six different states a first embodiment of a nesting machine according to the invention, with a di-lobed intermediate profile member mounted between two tri-lobed profiles; and
  • 29A to 29F very schematically show in six different states a second embodiment of a nesting machine according to the invention, with a tri-lobed intermediate profile member mounted between two di-lobed profiles;

Dans l'exemple représenté à la figure 1, la machine comprend un organe profilé intérieur 1 et un organe profilé extérieur 2 qui entoure l'organe profilé intérieur 1.In the example shown in FIG. 1, the machine comprises an inner profiled member 1 and an outer profiled member 2 which surrounds the inner profiled member 1.

L'organe profilé intérieur 1 présente sur sa périphérie extérieure un profil lobé 3 et l'organe profilé extérieur 2 présente sur sa périphérie intérieure un profil lobé 4 qui entoure le profil lobé 3 de l'organe profilé intérieur 1.The inner profiled member 1 has on its outer periphery a lobed profile 3 and the outer profiled member 2 has on its inner periphery a lobed profile 4 which surrounds the lobed profile 3 of the inner profiled member 1.

L'un des profils a un lobe de plus que l'autre. Dans l'exemple de la figure 1, qui correspond à ce qu'on appelle dans le cadre de l'invention une machine de la première classe, c'est le profil intérieur 3 qui a un lobe de plus que le profil extérieur 4. on dit que le profil intérieur 3 est m-lobé et que le profil extérieur 4 est (m-1)-lobé.One of the profiles has one lobe more than the other. In the example of Figure 1, which corresponds to what is called in the context of the invention a machine of the first class, it is the inner profile 3 which has one lobe more than the outer profile 4. it is said that the inner profile 3 is m-lobed and that the outer profile 4 is (m-1) -lobed.

Dans l'exemple de la figure 1, m = 6, de sorte que le profil intérieur 3 est hexa-lobé et le profil 4 de l'organe profilé extérieur 2 est penta-lobé.In the example of Figure 1, m = 6, so that the inner profile 3 is hexa-lobed and the profile 4 of the outer profiled member 2 is penta-lobed.

Chaque profil 3, 4 présente une symétrie par rotation autour de l'origine du cercle primitif qui lui est associé et l'ordre de cette symétrie est le nombre de ses lobes.Each profile 3, 4 has rotational symmetry around the origin of the primitive circle associated with it and the order of this symmetry is the number of its lobes.

Ainsi, le profil 3 de l'organe intérieur 1 présente une symétrie d'ordre 6 autour d'un centre O, et le profil 4 de l'organe profilé extérieur 2 présente une symétrie d'ordre 5 autour d'un centre O'.Thus, the profile 3 of the inner member 1 has a symmetry of order 6 around a center O, and the profile 4 of the outer profiled member 2 has a symmetry of order 5 around a center O ' .

Il y a entre les centres O et O' une distance 1/m suivant un axe Ox.There is between the centers O and O 'a distance 1 / m along an Ox axis.

Chaque lobe est défini par un motif respectif, le profil 3 ou 4 étant défini en reportant m fois ou respectivement (m-1) fois son motif respectif par rotation de 2π/m ou respectivement 2π/(m-1) autour du centre de symétrie O ou respectivement O'.Each lobe is defined by a respective pattern, the profile 3 or 4 being defined by plotting m times or respectively (m-1) times its respective pattern by rotation of 2π / m or respectively 2π / (m-1) around the center of symmetry O or respectively O '.

Chacun des profils 3, 4, a un cercle primitif 6, 7, de centre O et respectivement O'. Les rayons des cercles primitifs sont proportionnels au nombre de lobes du profil auquel ils sont respectivement associés, de sorte qu'ils sont tangents l'un à l'autre en un point R situé sur l'axe Ox.Each of the profiles 3, 4, has a pitch circle 6, 7, of center O and respectively O '. The rays of the primitive circles are proportional to the number of lobes of the profile with which they are respectively associated, so that they are tangent to each other at a point R located on the Ox axis.

Chaque motif se compose d'un « dôme de lobe » et d'un « creux de lobe ». Un « dôme de lobe » est une partie saillante, donc une partie radialement éloignée du centre lorsqu'il s'agit du profil intérieur et une partie radialement proche du centre lorsqu'il s'agit du profil extérieur. Inversement, un « creux de lobe » est une partie généralement concave, donc proche du centre lorsqu'il s'agit du profil intérieur et éloignée du centre lorsqu'il s'agit de profil extérieur. On appelle « sommet de lobe» le point culminant d'un dôme de lobe et « fond de lobe » le point le plus profond d'un creux de lobe.Each pattern consists of a "lobe dome" and a "lobe hollow". A "lobe dome" is a protruding part, so a part radially away from the center when it comes to the inner profile and a part radially close to the center when it comes to the outer profile. Conversely, a "lobe hollow" is a generally concave part, so close to the center when it comes to the inner profile and away from the center when it comes to external profile. The "peak of lobe" is the culmination of a lobe dome and "lobe bottom" the deepest point of a lobe hollow.

Dans l'exemple représenté, les profils présentent une symétrie miroir par rapport à des rayons passant par les sommets de lobes et les fonds de lobes, mais cette symétrie n'est pas indispensable au sens de l'invention, comme on le verra plus loin.In the example shown, the profiles have mirror symmetry with respect to rays passing through the lobes and lobes, but this symmetry is not essential to the meaning of the invention, as will be seen later. .

L'organe profilé m-lobé 1 est articulé à un organe de liaison, non représenté à la figure 1, suivant un axe de rotation coïncidant avec le centre O. De même, l'organe profilé (m-1)-lobé 2 est articulé à l'organe de liaison suivant un axe de rotation coïncidant avec le centre O' de son cercle primitif.The m-lobed profiled member 1 is articulated to a connecting member, not shown in Figure 1, along an axis of rotation coinciding with the center O. Similarly, the member section (m-1) -lobé 2 is articulated to the connecting member along an axis of rotation coinciding with the center O 'of its original circle.

En fonctionnement, les deux organes profilés effectuent par rapport à l'organe de liaison une rotation autour de leur axe de rotation respectif O, O', de telle manière que les deux cercles primitifs 6, 7 roulent l'un sur l'autre au point R qui demeure immobile par rapport à l'organe de liaison. Par conséquent, le repère Ox, Oy est immobile par rapport à l'organe de liaison, de même que les centres O et O'. Par ailleurs, la description faite jusqu'à présent implique également que l'organe profilé m-lobé 1 exécute (m-1)/m tour lorsque l'organe profilé (m-1)-lobé 2 effectue un tour complet.In operation, the two profiled members perform relative to the connecting member a rotation about their respective axis of rotation O, O ', so that the two primitive circles 6, 7 roll one on the other at point R which remains motionless with respect to the connecting member. Therefore, the Ox mark, Oy is stationary relative to the connecting member, as are the centers O and O '. Furthermore, the description made up to now also implies that the m-lobed profiled member 1 executes (m-1) / m revolution when the profiled member (m-1) -lobed 2 performs a complete revolution.

Au cours de ce mouvement combiné des deux organes profilés 1 et 2, chaque dôme de lobe de chaque profil 3 ou 4 est en contact avec l'autre profil. Dans une région située à droite de la figure 1 et plus précisément radialement au-delà d'une tangente commune T aux deux cercles primitifs 6 et 7 en leur point de roulement mutuel R, chaque dôme de lobe de l'un des profils forme un contact unique avec un dôme de lobe de l'autre profil. Un tel contact unique C1 est notamment représenté. De l'autre côté de la tangente commune T, chaque dôme de lobe de l'un des profils est en contact avec un creux de lobe de l'autre profil. On voit ainsi des contacts C3, C5, C7, C9 entre un dôme du profil m-lobé et un creux du profil (m-1)-lobé, qui alternent avec des contacts C4, C6, C8 entre un dôme du profil (m-1)-lobé et un creux du profil m-lobé.During this combined movement of the two profiled members 1 and 2, each lobe dome of each profile 3 or 4 is in contact with the other profile. In a region to the right of FIG. 1 and more precisely radially beyond a common tangent T to the two primitive circles 6 and 7 at their mutual running point R, each lobe dome of one of the profiles forms a single contact with a lobe dome of the other profile. Such a single contact C 1 is shown in particular. On the other side of the common tangent T, each lobe dome of one of the profiles is in contact with a lobe recess of the other profile. Thus, contacts C 3 , C 5 , C 7 and C 9 are seen between a dome of the m-lobed profile and a hollow of the (m-1) -lobed profile, which alternate with contacts C 4 , C 6 and C 8. between a dome of the profile (m-1) -lobed and a hollow of the m-lobed profile.

On appelle courbes d'action, les trajectoires des points de contact par rapport à l'organe de liaison symbolisé par le repère Oxy. Dans la région située à droite de la tangente commune T, il y a une seule courbe d'action CA1 dont les extrémités sont des points BN et BM situés sur la tangente T. De l'autre côté de la tangente T, il y a deux courbes d'action CA2 et CA3 qui correspondent à la trajectoire des points de contact formés par les dômes du profil m-lobé 3, et respectivement par les points de contact formés par les dômes du profil (m-1)-lobé 4. Les extrémités des deux courbes d'action CA2 et CA3, sont également constituées par les points BN et BM, qu'on appellera points de bifurcation des courbes d'action.Action curves are called the trajectories of the contact points with respect to the connecting member represented by the reference Oxy. In the region to the right of the common tangent T, there is a single AC 1 action curve whose ends are points B N and B M located on the tangent T. On the other side of the tangent T, there are two AC 2 and AC 3 action curves that correspond to the trajectory of the contact points formed by the domes of the m-lobed profile 3, and respectively by the contact points. formed by the domes of the (m-1) -lobed profile 4. The ends of the two AC 2 and CA 3 action curves are also constituted by the points B N and B M , which will be called bifurcation points of the curves. Action.

Dans la situation particulière représentée à la figure 1, l'un des points de contact, désigné par C2, coïncide avec le point de bifurcation BN. Ce point de contact marque la limite entre un creux et un dôme sur un versant du motif de chacun des deux profils. Dans une autre situation, représentée à la figure 2C, un point de contact coïncide avec le point de bifurcation BM et marque la limite entre un creux et un dôme sur l'autre versant du motif de chacun des deux profils.In the particular situation shown in FIG. 1, one of the points of contact, denoted by C 2 , coincides with the bifurcation point B N. This point of contact marks the boundary between a hollow and a dome on a slope of the pattern of each of the two profiles. In another situation, shown in FIG. 2C, a point of contact coincides with the bifurcation point B M and marks the limit between a hollow and a dome on the other side of the pattern of each of the two profiles.

Suivant une particularité importante de la présente invention, les profils, déterminés d'une manière qui sera décrite plus loin, définissent un contact osculateur entre les deux profils lorsque le point de contact est réalisé en BN ou BM. Ceci signifie que les profils présentent en leur point de contact situé en BN ou BM non seulement une tangente commune, mais ont en outre des courbures continues, égales et de même sens.According to an important feature of the present invention, the profiles, determined in a manner to be described later, define an osculator contact between the two profiles when the contact point is made in B N or B M. This means that the profiles have at their point of contact located in B N or B M not only a common tangent, but also have continuous curvatures, equal and in the same direction.

En outre, le centre de courbure commun aux deux profils en leur osculation coïncide avec le point de roulement R, en sorte que leur rayon de courbure est égal à la distance entre R et BN, ou respectivement BM. Cette osculation assure entre les deux profils un contact qui est d'excellente qualité.In addition, the center of curvature common to the two profiles in their oscillation coincides with the rolling point R, so that their radius of curvature is equal to the distance between R and B N , or respectively B M. This oscillation ensures between the two profiles a contact which is of excellent quality.

Lorsque l'organe profilé 1 tourne autour de son centre O dans le sens indiqué par la flèche F, le contact tel que C1, suit la courbe d'action CA1 jusqu'à venir coïncider avec le point de bifurcation BN pour former l'osculation précitée. A partir de là, le contact se scinde en deux contacts distincts suivant chacun l'une des deux courbes d'action CA2 et CA3. Puis ces deux contacts distincts viennent à nouveau se fusionner en un contact osculateur au point de bifurcation BM.When the profiled member 1 rotates about its center O in the direction indicated by the arrow F, the contact such as C 1, the following CA action curve 1 until it comes to coincide with the branch point B N to form the aforementioned oscillation. From there, the contact splits into two distinct contacts each following one of the two AC 2 and AC 3 action curves. Then these two distinct contacts come again to merge into an osculating contact at the point of bifurcation B M.

Des capsules - ou chambres - sont définies entre les deux profils 3 et 4 et entre les points de contact successifs. Dans la situation représentée à la figure 1, une capsule est en train de naître au point de contact C2. Au cours de la rotation de l'organe profilé intérieur 1 et de la rotation corrélative de l'organe profilé extérieur 2, la capsule en train de naître au point de bifurcation BN formera successivement les capsules V1, V2, ..., V9. Les capsules V1 à V4 sont en phase de croissance de volume alors que les capsules V5 à V9 sont en phase de décroissance de volume. La phase de croissance s'étend sur presque un tour complet, la phase de décroissance également, de sorte que le cycle complet s'étend sur un peu moins de deux tours. Si la machine est un moteur hydraulique, le fluide hydraulique est à pression élevée dans les capsules V1 à V4 en phase de croissance, et à basse pression dans les capsules V5 à V9 en phase de décroissance. Les capsules en phase de croissance et soumises à la pression alternent avec les capsules en phase de décroissance et qui ne sont pas soumises à la pression. Si la machine hydraulique fonctionne en pompe, on constate la même alternance sauf que ce sont les capsules en phase de décroissance qui sont soumises à la pression et les capsules en phase de croissance qui sont en cours d'admission du fluide à pomper.Capsules - or chambers - are defined between the two profiles 3 and 4 and between the contact points successive. In the situation shown in Figure 1, a capsule is being born at the point of contact C 2 . During the rotation of the inner profiled member 1 and the corresponding rotation of the outer profiled member 2, the capsule being born at the bifurcation point B N will successively form the capsules V 1 , V 2 , ... , V 9 . The capsules V 1 to V 4 are in the volume growth phase whereas the capsules V 5 to V 9 are in a phase of volume decrease. The growth phase extends over almost a complete turn, the decay phase also, so that the complete cycle extends over a little less than two turns. If the machine is a hydraulic motor, the hydraulic fluid is at high pressure in the capsules V 1 to V 4 in the growth phase, and at low pressure in the capsules V 5 to V 9 in the decay phase. The capsules in the growth phase and subjected to pressure alternate with the capsules in the decay phase and which are not subjected to pressure. If the hydraulic machine operates as a pump, the same alternation is observed except that it is the capsules in the decay phase that are subjected to pressure and the capsules in the growth phase that are in the process of admission of the fluid to be pumped.

Il en résulte deux conséquences. D'une part la charge radiale sur les paliers de la machine est faible. D'autre part, il y a en chaque point de contact une autolubrification due aux fuites entre la haute pression et la basse pression. Cette autolubrification devrait en particulier favoriser le démarrage de la machine, sans effet de collage.This results in two consequences. On the one hand the radial load on the bearings of the machine is low. On the other hand, there is in each contact point self-lubrication due to leaks between high pressure and low pressure. This self-lubrication should in particular promote the start of the machine, without gluing effect.

Et par ailleurs, le contact osculateur à la naissance et à la mort des capsules aux bifurcations BN et BM respectivement, a d'une part comme conséquence que chaque capsule naît et meurt sur une surface de contact relativement grande et d'autre part avec une croissance très lente de son volume. Ces deux circonstances favorisent la réalisation d'orifices de taille appropriée pour commencer l'alimentation et terminer le refoulement de chaque capsule, à sa naissance et respectivement à sa mort, comme on le verra plus loin.Moreover, the osculative contact at the birth and the death of the capsules at bifurcations B N and B M, respectively, has the consequence that each capsule is born and dies on a relatively large contact surface and secondly with a very slow growth of its volume. These two circumstances favor the creation of appropriately sized orifices to start feeding and to terminate the delivery of each capsule, at birth and respectively at death, as will be seen later.

Les figures 2A à 2F montrent six positions angulaires successives des deux organes profilés 1 et 2 de la machine de la figure 1, à partir de la situation représentée à la figure 1, qui est également celle de la figure 2A. La situation représentée à la figure 2F correspond au passage de la capsule V4 par son volume maximum. Ces vues permettent en particulier de suivre l'évolution de la capsule qui se forme au point BN à la figure 2A. On voit également comment la capsule V9 de la figure 2A vient mourir au point de bifurcation BM à la figure 2C.Figures 2A to 2F show six successive angular positions of the two profiled members 1 and 2 of the machine of Figure 1, from the situation shown in Figure 1, which is also that of Figure 2A. The situation shown in FIG. 2F corresponds to the passage of capsule V4 by its maximum volume. These views make it possible in particular to follow the evolution of the capsule which is formed at the point B N in FIG. 2A. We also see how the capsule V 9 of Figure 2A dies at the point of branching B M in Figure 2C.

L'exemple de la figure 3 ne sera décrit que pour ses différences par rapport à celui de la figure 1.The example of Figure 3 will be described only for its differences from that of Figure 1.

Le profil m-lobé 13 est maintenant extérieur au profil (m-1)-lobé 14, et appartient à un organe profilé 11 qui est extérieur et entoure l'organe profilé 12 portant le profil (m-1)-lobé 14.The m-lobed profile 13 is now external to the profile (m-1) -lobed 14, and belongs to a profiled member 11 which is external and surrounds the profiled member 12 bearing the profile (m-1) -lobed 14.

Il y a cette fois deux courbes d'action CB2 et CB3 radialement au-delà du point de roulement R et une seule courbe d'action CB1 de l'autre côté de la tangente T. Les courbes d'action sont concourantes en des points de bifurcation BN et BM situés sur la tangente commune T comme précédemment, excepté que la bifurcation BN correspondant à la naissance des capsules est maintenant située en amont relativement au sens F de rotation pris comme exemple, par rapport à la bifurcation BM correspondant à la mort des capsules. Au-delà du point BM, les capsules V2, V3 et V4 sont toutes en croissance puis les capsules V5, V6 et V7 sont en décroissance tandis qu'il est en train de naître par osculation au point BN dans la situation représentée une nouvelle capsule en croissance. Il n'y a donc alternance de capsules en croissance et en décroissance que radialement au-delà de la tangente T. Les points de contact sont moins nombreux que dans la machine de première classe des figures 1 et 2A à 2F.This time, there are two CB 2 and CB 3 action curves radially beyond the R rolling point and a single CB 1 action curve on the other side of the tangent T. The action curves are concurrent at bifurcation points B N and B M situated on the common tangent T as before, except that the bifurcation B N corresponding to the birth of the capsules is now located upstream relative to the direction of rotation F taken as an example, with respect to the bifurcation B M corresponding to the death of the capsules. Beyond the point B M , the capsules V 2 , V 3 and V 4 are all growing then the capsules V 5 , V 6 and V 7 are decreasing while it is being born by osculation at point B N in the situation represented a new capsule growing. There is therefore alternation of capsules growing and decreasing only radially beyond the tangent T. The contact points are less numerous than in the first class machine of Figures 1 and 2A to 2F.

Les figures 4A à 4F représentent six états successifs de la machine de la figure 3, à partir de la situation représentée à la figure 3, qui est également celle de la figure 4A.FIGS. 4A to 4F represent six successive states of the machine of FIG. 3, from the situation shown in Figure 3, which is also that of Figure 4A.

Dans la situation représentée à la figure 4F, la capsule V4 a atteint une position où elle est symétrique par rapport à l'axe Ox de sorte que le sens de variation de son volume est en train de changer. C'est pourquoi c'est à cette figure qu'on a également représenté les lumières d'admission 8 et de refoulement 9 pratiquées à travers un flasque qui, par ailleurs, ferme latéralement les capsules. La capsule V4 ne communique ni avec la lumière 8 ni avec la lumière 9. Les capsules en phase de croissance communiquent avec la lumière 8 qui s'étend jusqu'au point de contact arrière C4 de la capsule V4. Les capsules en phase de décroissance communiquent avec la lumière de refoulement 9 qui part du point de contact avant C5 de la capsule V4. Le ou les flasque(s) dans le(s)quel(s) sont définies les lumières 8, 9, sont solidaires de l'organe de liaison symbolisé par le repère Oxy.In the situation shown in FIG. 4F, the capsule V 4 has reached a position where it is symmetrical with respect to the axis Ox so that the direction of variation of its volume is changing. This is why it is to this figure that has also been shown the inlet ports 8 and discharge 9 made through a flange which, moreover, laterally closes the capsules. The capsule V 4 communicates neither with the light 8 nor with the light 9. The capsules in the growth phase communicate with the light 8 which extends to the point of rear contact C 4 of the capsule V 4 . The capsules in decay phase communicate with the discharge light 9 which starts from the point of contact before C 5 of the capsule V 4 . The flange (s) in which (or) are defined the lights 8, 9, are integral with the connecting member symbolized by the Oxy mark.

On va maintenant décrire en référence à la figure 5, la paramétrisation particulière permettant la mise en oeuvre des définitions géométriques de profil selon l'invention.We will now describe with reference to Figure 5, the particular parameterization for implementing the geometric profile definitions of the invention.

On considère dans le plan euclidien le cercle de centre O et de rayon 1, destiné à constituer le cercle primitif du profil m-lobé. On choisit arbitrairement l'arc M0Mπ, qui dans l'exemple de la figure 5 est représenté identique au dôme d'un lobe du profil 3, y compris en ce qui concerne sa distance et son orientation par rapport au centre O, et un rayon issu de ce centre. Par l'expression « on choisit arbitrairement », on ne veut pas dire que tout arc peut convenir, et on donnera plus loin des conditions nécessaires que doit vérifier ce choix. En-dehors des types d'arc à exclure, on peut également choisir la forme et la dimension de l'arc, ainsi que sa position par rapport au centre O en fonction de desiderata sur la géométrie recherchée, compte-tenu par exemple des différents exemples de géométrie représentés et décrits plus loin. On appelle « arc donné » l'arc M0Mπ, et on appelle M un point quelconque de l'arc donné. L'une des caractéristiques que l'arc donné doit présenter est que ses normales N0 et Nπ aux extrémités M0 et Mπ soient tangentes à deux points différents du cercle primitif 6.We consider in the Euclidean plane the circle of center O and radius 1, intended to constitute the primitive circle of the m-lobed profile. The arc M 0 M π is chosen arbitrarily, which in the example of FIG. 5 is represented identical to the dome of a lobe of the profile 3, including as regards its distance and its orientation with respect to the center O, and a ray from this center. By the expression "one chooses arbitrarily", one does not mean that any bow can agree, and one will give further necessary conditions that must verify this choice. Outside of the types of arc to be excluded, one can also choose the shape and the dimension of the arc, as well as its position with respect to the center O according to desiderata on the sought geometry, taking into account for example different examples of geometry shown and described later. We call "arc given" the arc M 0 M π , and we call M any point of the given arc. One of the characteristics that the given bow must present is that its normals N 0 and N π at the ends M 0 and M π are tangents at two different points of the pitch circle 6.

On appelle P et D les deux intersections de la normale à l'arc en M avec le cercle primitif 6, le point P étant situé entre M et D. On appelle en outre N le milieu du segment PD. On appelle 2δ l'angle DOP, mesuré entre 0 et 2π dans le sens direct, de sorte que δ est compris entre 0 et π. On appelle σ l'angle polaire de P diminué de δ, qui est aussi l'angle polaire de D augmenté de δ. On observe que pour δ < π/2, σ est l'angle polaire de N et que pour δ > π/2, σ est l'angle polaire du point symétrique de N par rapport à l'origine 0.We call P and D the two intersections of the normal to the arc in M with the pitch circle 6, the point P being situated between M and D. We also call N the middle of the segment PD. We call 2δ the angle DOP, measured between 0 and 2π in the forward direction, so that δ is between 0 and π. We call σ the polar angle of P decreased by δ, which is also the polar angle of D increased by δ. We observe that for δ <π / 2, σ is the polar angle of N and that for δ> π / 2, σ is the polar angle of the symmetrical point of N with respect to the origin 0.

On appelle enfin ρ la distance MN comptée positivement.Finally, ρ is the distance MN counted positively.

Les grandeurs (δ, σ, ρ) sont définies univoquement par le point M. Réciproquement, le point M est défini univoquement par ces grandeurs: on construit la demi-droite d'origine O et d'angle polaire σ, puis les points P et D en portant les angles ±δ à partir de cette demi-droite. Le point N est le milieu du segment PD et on construit M en portant la longueur MN = ρ sur la droite PD du côté de P.The quantities (δ, σ, ρ) are defined univocally by the point M. Conversely, the point M is univocally defined by these quantities: we build the half-line of origin O and of polar angle σ, then the points P and D by taking the angles ± δ from this half-line. The point N is the middle of the PD segment and we build M by carrying the length MN = ρ on the line PD on the P side.

On choisit l'arc donné comme étant un arc différentiable sur lequel l'angle δ est une coordonnée entre 0 et π. Cela signifie que quand le point M parcourt cet arc, l'angle δ qui lui est associé prend une fois et une seule chaque valeur entre 0 et π. On s'intéresse donc à des arcs dont la normale balaye régulièrement (d'une tangente N0 à une tangente Nπ) le cercle primitif, quand on les parcourt de l'origine à l'extrémité. Ces arcs forment deux classes suivant le sens relatif du parcours et du balayage, et ces deux classes sont associées aux deux classes précitées de profils conjugués et par conséquent de machines.We choose the given arc as a differentiable arc on which the angle δ is a coordinate between 0 and π. This means that when the point M traverses this arc, the angle δ associated with it takes once and only one each value between 0 and π. We are therefore interested in arcs whose normal sweeps regularly (from a tangent N 0 to a tangent N π ) the primitive circle, when we go from the origin to the end. These arcs form two classes according to the relative direction of the course and the scan, and these two classes are associated with the two aforementioned classes of conjugated profiles and consequently of machines.

En choisissant δ comme paramètre le long de l'arc, l'arc est caractérisé par les deux fonctions ρ(δ) et σ(δ). Ces deux fonctions ne sont pas indépendantes ; elles sont liées par la relation suivante entre leurs dérivées ρ'(δ) et σ'(δ) par rapport à δ : σʹ δ cos δ = ρʹ δ

Figure imgb0013
By choosing δ as a parameter along the arc, the arc is characterized by the two functions ρ (δ) and σ (δ). These two functions are not independent; they are linked by the following relation between their derivatives ρ '(δ) and σ' (δ) with respect to δ: σ' δ cos δ = ρ' δ
Figure imgb0013

L'addition d'une constante à la fonction σ(δ) correspond à une rotation globale de l'arc autour de l'origine O. Du fait que dans les problèmes de conjugaison, on s'intéresse à des arcs définis à une telle rotation près, il est naturel de caractériser les arcs par la fonction ρ(δ), la fonction σ(δ) s'en déduisant par la quadrature : σʹ δ = δ 0 δ ρʹ ( τ ) τ cos τ

Figure imgb0014

cette intégration étant faite de τ = δ0 à τ = δ, et où τ est une variable d'intégration muette et où l'arbitraire sur la constante d'intégration δ0 correspond à une rotation arbitraire de l'arc autour de l'origine O.The addition of a constant to the function σ (δ) corresponds to an overall rotation of the arc around the origin O. Because in the problems of conjugation, we are interested in arcs defined to such an rotation, it is natural to characterize the arcs by the function ρ (δ), the function σ (δ) being deduced by the quadrature: σ' δ = δ 0 δ ρ' ( τ ) τ cos τ
Figure imgb0014

this integration being made from τ = δ 0 to τ = δ, and where τ is a dummy integration variable and where the arbitrary on the integration constant δ 0 corresponds to an arbitrary rotation of the arc around the origin O.

Avec ces définitions, les coordonnées cartésiennes (x(δ), y(δ)) d'un arc défini par la fonction ρ(δ) et un choix de la constante dans σ(δ) s'écrivent : x δ = cos δ cos σ ( δ ) + ρ δ sin σ ( δ )

Figure imgb0015
y δ = cos δ sin σ ( δ ) + ρ δ cos σ ( δ )
Figure imgb0016
With these definitions, the Cartesian coordinates (x (δ), y (δ)) of an arc defined by the function ρ (δ) and a choice of the constant in σ (δ) are written: x δ = cos δ cos σ ( δ ) + ρ δ sin σ ( δ )
Figure imgb0015
there δ = cos δ sin σ ( δ ) + ρ δ cos σ ( δ )
Figure imgb0016

Etant donnés un arc défini comme ci-dessus par la fonction ρ(δ) et un nombre entier m≥2, on définit ses quatre arcs associés par les expressions suivantes :

  • arc conjugué proximal : x C j P δ = 1 + sin δ - δ sin δ - δ m - 1 + m - 1 cos δ cos δ - δ m - 1 / m
    Figure imgb0017
    y C j P δ = sin δ - δ cos δ - δ m - 1 - m - 1 cos δ sin δ - δ m - 1 / m
    Figure imgb0018
  • arc conjugué distal : x C j D δ = 1 + sin δ + δ sin δ + δ m - 1 + m - 1 cos δ cos δ + δ m - 1 / m
    Figure imgb0019
    y C j D δ = - sin δ + δ cos δ + δ m - 1 + m - 1 cos δ sin δ + δ m - 1 / m
    Figure imgb0020
  • arc complémentaire proximal : x C p P δ = 2 sin δ - δ sin 2 δ m - σ δ + mcos δ cos 2 δ m - σ δ / m
    Figure imgb0021
    y C p P δ = 2 sin δ - δ cos 2 δ m - σ δ - mcos δ sin 2 δ m - σ δ / m
    Figure imgb0022
  • arc complémentaire distal x C p D δ = 2 sin δ + δ sin 2 δ m + σ δ + mcos δ cos 2 δ m + σ δ / m
    Figure imgb0023
    y C p D δ = - 2 sin δ + δ cos 2 δ m + σ δ + mcos δ sin 2 δ m + σ δ / m
    Figure imgb0024
Given an arc defined as above by the function ρ (δ) and an integer m≥2, we define its four associated arcs by the following expressions:
  • proximal conjugated arc: x VS j P δ = 1 + sin δ - δ sin δ - δ m - 1 + m - 1 cos δ cos δ - δ m - 1 / m
    Figure imgb0017
    there VS j P δ = sin δ - δ cos δ - δ m - 1 - m - 1 cos δ sin δ - δ m - 1 / m
    Figure imgb0018
  • distal conjugate arch: x VS j D δ = 1 + sin δ + δ sin δ + δ m - 1 + m - 1 cos δ cos δ + δ m - 1 / m
    Figure imgb0019
    there VS j D δ = - sin δ + δ cos δ + δ m - 1 + m - 1 cos δ sin δ + δ m - 1 / m
    Figure imgb0020
  • proximal complementary arch: x VS p P δ = 2 sin δ - δ sin 2 δ m - σ δ + MCOS δ cos 2 δ m - σ δ / m
    Figure imgb0021
    there VS p P δ = 2 sin δ - δ cos 2 δ m - σ δ - MCOS δ sin 2 δ m - σ δ / m
    Figure imgb0022
  • distal complementary arch x VS p D δ = 2 sin δ + δ sin 2 δ m + σ δ + MCOS δ cos 2 δ m + σ δ / m
    Figure imgb0023
    there VS p D δ = - 2 sin δ + δ cos 2 δ m + σ δ + MCOS δ sin 2 δ m + σ δ / m
    Figure imgb0024

A partir d'un arc donné défini par la fonction ρ(δ) et des arcs associés, on définit une paire de profils conjugués.From a given arc defined by the function ρ (δ) and associated arcs, we define a pair of conjugated profiles.

Comme il a été indiqué plus haut, il y a deux classes de tels profils, qui correspondent aux deux sens relatifs de balayage du cercle par la normale à l'arc donné, quand on parcourt cet arc.As has been indicated above, there are two classes of such profiles, which correspond to the two relative directions of scanning of the circle by the normal to the given arc, when one traverses this arc.

Ces deux classes sont très simplement caractérisées par le signe des dérivés ρ'(0) et ρ'(π).These two classes are very simply characterized by the sign of derivatives ρ '(0) and ρ' (π).

Les profils sont engendrés, pour l'un, par la concaténation (c'est à dire mise bout à bout en conservant l'orientation relative) de l'arc donné et d'un des arcs complémentaires : c'est le profil complété ; pour l'autre, par la concaténation des deux arcs conjugués : c'est le profil conjugué.The profiles are generated, for one, by the concatenation (ie put end to end maintaining the relative orientation) of the given arc and one of the complementary arcs: it is the completed profile; for the other, by the concatenation of the two conjugated arcs: it is the conjugate profile.

L'arc donné est de première classe lorsque : ρ'(0) > 0 et ρ'(π) <0The given arc is first class when: ρ '(0)> 0 and ρ' (π) <0

L'étude de la régularité des raccordements montre que l'on doit avoir plus précisément : 1 / m > ρ 0 > 0  et  - 1 / m < ρ π < 0

Figure imgb0025
The study of the regularity of the connections shows that one must have more precisely: 1 / m > ρ ' 0 > 0 and - 1 / m < ρ ' π < 0
Figure imgb0025

Dans ce cas, le profil complété est constitué par la concaténation de l'arc donné et de l'arc complémentaire proximal, répétée par rotations de 2π/m autour de l'origine. Le profil est d'ordre m, c'est à dire, qu'il est conservé par la rotation de 2π/m (autour de l'origine) et qu'il présente m lobes ou dents. C'est le profil représenté partiellement à la figure 5.In this case, the completed profile is constituted by the concatenation of the given arc and the proximal complementary arc, repeated by rotations of 2π / m around the origin. The profile is of order m, that is to say, it is preserved by the rotation of 2π / m (around the origin) and that it presents m lobes or teeth. This is the profile shown partially in Figure 5.

Le profil conjugué est constitué par la concaténation de l'arc conjugué proximal et de l'arc conjugué distal, répétée par rotations de 2π/(m-1) autour du centre O' de coordonnées (1/m, 0). Le profil est d'ordre (m-1), au même sens que précédemment. Le rapport des vitesses de rotation est (m-1)/m.The conjugate profile is constituted by the concatenation of the proximal conjugate arc and the distal conjugate arc, repeated by rotations of 2π / (m-1) around the center O 'of coordinates (1 / m, 0). The profile is of order (m-1), in the same sense as before. The ratio of rotation speeds is (m-1) / m.

Le profil complété est intérieur au profil conjugué.The completed profile is internal to the conjugate profile.

L'arc donné est de seconde classe lorsque : ρ'(0)<0 et ρ'(π) >0.The given arc is of second class when: ρ '(0) <0 and ρ' (π)> 0.

L'étude de la régularité des raccordements montre que l'on doit avoir plus précisément : - 1 / m < ρ 0 < O et  1 / m > ρ π > 0

Figure imgb0026
The study of the regularity of the connections shows that one must have more precisely: - 1 / m < ρ ' 0 < O and 1 / m > ρ ' π > 0
Figure imgb0026

Dans ce cas, le profil complété est constitué par la concaténation de l'arc donné et de l'arc complémentaire distal, répétée par rotations de 2π/m autour de l'origine. Le profil est d'ordre m.In this case, the completed profile is constituted by the concatenation of the given arc and the distal complementary arc, repeated by rotations of 2π / m around the origin. The profile is of order m.

Le profil conjugué est constitué, comme pour la première classe, par 1a concaténation de l'arc conjugué proximal et de l'arc conjugué distal, répétée par rotations de 2π/(m-1) autour du centre O' de coordonnées (1/m, 0). Le profil est d'ordre (m-1). Le rapport des vitesses de rotation est (m-1)/m.The conjugate profile is constituted, as for the first class, by the concatenation of the proximal conjugate arc and the distal conjugate arc, repeated by rotations of 2π / (m-1) around the center O 'of coordinates (1 / m, 0). The profile is of order (m-1). The ratio of rotation speeds is (m-1) / m.

Le profil complété est extérieur au profil conjugué.The completed profile is external to the conjugate profile.

Les inégalités portant sur ρ'(0) et ρ'(π) sont strictes. Ce point contrôle la continuité de la courbure des profils aux raccords entre les arcs.The inequalities relating to ρ '(0) and ρ' (π) are strict. This point controls the continuity of the curvature of the profiles at the joints between the arches.

Ces inégalités sont nécessaires et suffisantes pour la régularité des raccords, mais n'assurent pas la régularité des arcs eux-mêmes, qui doit être étudiée par ailleurs. Autrement dit, toute fonction ρ(δ) ne mène pas nécessairement à une paire de profils conjugués réguliers.These inequalities are necessary and sufficient for the regularity of the connections, but do not ensure the regularity of the arcs themselves, which must be studied elsewhere. In other words, any function ρ (δ) does not necessarily lead to a pair of regular conjugated profiles.

Voici quelques indications sur la régularité aux points intérieurs des arcs associés.Here are some indications on the regularity at the interior points of the associated arcs.

On peut montrer que les seules singularités susceptibles d'apparaître sur les arcs associés à un arc donné régulier sont du type de la queue d'aronde : deux rebroussements encadrant une auto-intersection. La condition pour que cela n'arrive pas est simplement que le vecteur vitesse (vecteur dérivé du point courant sur l'arc par rapport au paramètre) ne s'annule pas sur l'intervalle ]0,π[. Ces quatre vitesses (correspondant aux quatre arcs dont sont formés les deux profils) sont des expressions dépendant de δ, de ρ(δ) et de la dérivée ρ'(δ). La non-annulation de ces expressions est donc une contrainte sur la fonction ρ(δ). Il faut aborder cette contrainte sous l'angle de la vérification, faute de savoir résoudre les systèmes d'inéquations différentielles non linéaires. Pour l'arc donné, la condition sur l'amplitude de la vitesse s'écrit : V δ = ρ ( δ ) ρ δ / cos δ - sin δ 0

Figure imgb0027

et cette condition exprime simplement que le quotient par cos(δ) de la dérivée du carré du rayon vecteur garde un signe constant.It can be shown that the only singularities that can appear on the arcs associated with a given regular arc are of the dovetail type: two cusps framing a self-intersection. The condition for this not to happen is simply that the velocity vector (vector derived from the current point on the arc with respect to the parameter) does not cancel on the interval] 0, π [. These four velocities (corresponding to the four arcs of which the two profiles are formed) are expressions depending on δ, on ρ (δ) and on the derivative ρ '(δ). The non-cancellation of these expressions is therefore a constraint on the function ρ (δ). This constraint must be approached from the angle of verification, since it does not know how to solve the systems of nonlinear differential inequalities. For the given arc, the condition on the amplitude of the speed is written: V δ = ρ ( δ ) ρ ' δ / cos δ - sin δ 0
Figure imgb0027

and this condition simply expresses that the quotient per cos (δ) of the derivative of the square of the vector ray keeps a constant sign.

Les expressions correspondantes pour les arcs associés sont moins simples. Les voici :

  • pour l'arc complémentaire proximal : V CpP δ = δ - 2 sin δ ρʹ δ / mcos ( δ ) - 2 ( δ ) + m 2 - 4 sin ( δ ) / m 2 0
    Figure imgb0028
  • pour l'arc complémentaire distal : V CpD δ = δ + 2 sin δ ρʹ δ / mcos ( δ ) + 2 ( δ ) - m 2 - 4 sin ( δ ) / m 2 0
    Figure imgb0029
  • pour les arcs conjugués : V CjP δ = δ - sin δ ρʹ δ / m - 1 cos ( δ ) - ρ ( δ ) + m - 2 sin ( δ ) / m - 1 0
    Figure imgb0030
    V CjD δ = δ + sin δ ρʹ δ / m - 1 cos ( δ ) + ρ ( δ ) - m - 2 sin ( δ ) / m - 1 0
    Figure imgb0031
The corresponding expressions for the associated arcs are less simple. Here they are :
  • for the proximal complementary arch: V CPP δ = δ - 2 sin δ ρ' δ / MCOS ( δ ) - 2 ( δ ) + m 2 - 4 sin ( δ ) / m 2 0
    Figure imgb0028
  • for the distal complementary arch: V CpD δ = δ + 2 sin δ ρ' δ / MCOS ( δ ) + 2 ( δ ) - m 2 - 4 sin ( δ ) / m 2 0
    Figure imgb0029
  • for the conjugated arches: V CJP δ = δ - sin δ ρ' δ / m - 1 cos ( δ ) - ρ ( δ ) + m - 2 sin ( δ ) / m - 1 0
    Figure imgb0030
    V CJD δ = δ + sin δ ρ' δ / m - 1 cos ( δ ) + ρ ( δ ) - m - 2 sin ( δ ) / m - 1 0
    Figure imgb0031

Une famille intéressante de paires de profils de la première classe est obtenue à partir d'arcs d'épicycloïdes raccourcies. Il s'agit en fait de solutions typiques, plus que d'un exemple.An interesting family of pairs of profiles of the first class is obtained from arcs of shortened epicycloids. These are typical solutions, rather than an example.

Ces arcs dépendent de trois paramètres : n est l'ordre de l'épicycloïde, qu'on peut choisir réel (positif et pas trop petit), ϕ est un paramètre angulaire compris entre 0 et π/2, qui décrit le raccourcissement (ou l'excentricité) ; enfin, ρ0 est le paramètre de parallélisme, c'est à dire un paramètre caractérisant la distance à l'épicycloïde de base. Le calcul de ρ(δ) et de σ(δ) donne : ρ δ = 1 - 1 / n 1 / cos φ 2 - cos δ 2 1 / 2 + 1 / n sin δ + ρ 0

Figure imgb0032
σ δ = 1 - 1 / n arccos cos δ cos φ + δ / n
Figure imgb0033
These arcs depend on three parameters: n is the order of the epicycloid, which can be chosen real (positive and not too small), φ is an angular parameter between 0 and π / 2, which describes the shortening (or eccentricity); finally, ρ 0 is the parameter of parallelism, ie a parameter characterizing the distance to the basic epicycloid. The calculation of ρ (δ) and σ (δ) gives: ρ δ = 1 - 1 / not 1 / cos φ 2 - cos δ 2 1 / 2 + 1 / not sin δ + ρ 0
Figure imgb0032
σ δ = 1 - 1 / not arccos cos δ cos φ + δ / not
Figure imgb0033

La meilleure osculation des profils est trouvée pour n voisin de 2m-2 ; ρ0 ne doit pas trop s'éloigner de 0 ; des ϕ petits correspondent à des dents fines et quand ϕ tend vers n/2, les profils s'arrondissent et s'agrandissent sans limite ; les valeurs raisonnables de ϕ sont vers π/3 ou π/4.The best oscillation of the profiles is found for n close to 2m-2; ρ 0 should not go too far from 0; small φ correspond to fine teeth and when φ tends to n / 2, the profiles round off and expand without limit; the reasonable values of φ are to π / 3 or π / 4.

Une famille d'exemples de profils de la seconde classe est de manière similaire fournie par : ρ δ = 1 + 1 / n 1 / cos ϕ 2 - cos δ 2 1 / 2 - 1 / n sin δ - ρ 0

Figure imgb0034
σ δ = 1 + 1 / n arccos cos δ cos ϕ - δ / n
Figure imgb0035
A family of example profiles of the second class is similarly provided by: ρ δ = 1 + 1 / not 1 / cos φ 2 - cos δ 2 1 / 2 - 1 / not sin δ - ρ 0
Figure imgb0034
σ δ = 1 + 1 / not arccos cos δ cos φ - δ / not
Figure imgb0035

La variabilité des paramètres (avant qu'on bute sur une singularité) est plus grande que dans le cas précédent, notamment en ce qui concerne ρ0.The variability of the parameters (before stumbling on a singularity) is greater than in the previous case, in particular with regard to ρ 0 .

En résumé, l'arc donné doit présenter la propriété suivante: quand on le parcourt de son origine à son extrémité, sa normale "balaye régulièrement" le cercle primitif, et en particulier, les normales à l'origine et à l'extrémité de l'arc sont tangentes au primitif. Les arcs possibles se répartissent en deux classes disjointes: ceux dont la normale balaye le cercle primitif "dans le sens opposé" du point courant M et ceux dont la normale le balaye "dans le même sens" que le point courant M.In short, the given arc must have the following property: when it is traversed from its origin to its end, its normal "regularly scans" the primitive circle, and in particular, the normals at the origin and at the end of the arc are tangent to the primitive. The possible arcs are divided into two disjoined classes: those whose normal sweeps the primitive circle "in the opposite direction" of the current point M and those whose normal sweeps it "in the same direction" as the current point M.

A ces deux possibilités correspondent les deux classes de solutions déjà discutées en ce qui concerne le problème de conjugaison intérieure maximale. La première classe est constituée de paires de profils tels que le profil intérieur ait un lobe de plus que le profil extérieur; la seconde, à l'inverse, est telle que le profil intérieur ait un lobe de moins que le profil extérieur. Ces deux classes ont des morphologies et des propriétés très différentes comme on l'a décrit précédemment.To these two possibilities correspond the two classes of solutions already discussed with regard to the problem of maximum internal conjugation. The first class consists of pairs of profiles such that the inner profile has one more lobe than the outer profile; the second, conversely, is such that the inner profile has a lobe less than the outer profile. These two classes have very different morphologies and properties as previously described.

Dans le cas général, les formules obtenues pour les arcs sont inversibles, en ce sens qu'on peut construire la famille des quatre arcs qui définissent les deux profils, à partir de l'un quelconque d'entre eux. Ceci ne signifie pas qu'ils jouent des rôles complètement symétriques: en fait, des deux arcs qui constituent chaque profil, un des deux vient en contact avec les deux arcs de l'autre profil, et l'autre avec un seul d'entre eux. Telle est la conjugaison maximale, dont il résulte que les courbes d'action sont formées de trois arcs concourant en deux points de bifurcation BM et BN. Le passage du contact par ces "points triples" se produit au raccord entre les deux arcs qui constituent chacun des deux profils.In the general case, the formulas obtained for arcs are invertible, in that one can construct the family of four arcs that define the two profiles, from any one of them. This does not mean that they play completely symmetrical roles: in fact, of the two arcs that make up each profile, one of them comes into contact with the two arcs of the other profile, and the other with only one of them. them. This is the maximal conjugation, from which it follows that the action curves are formed of three arcs concurring at two points of bifurcation B M and B N. The passage of the contact by these "triple points" occurs at the connection between the two arcs which constitute each of the two profiles.

La paramétrisation selon l'invention a permis de déterminer pour les machines selon l'invention, des expressions mathématiques simples pour les courbes d'action, à savoir :

  • le contact entre l'arc donné et son conjugué proximal est la courbe d'action proximale, d'équation: x δ = 1 - sin δ sin δ - ρ δ
    Figure imgb0036
    y δ = cos δ sin δ - ρ δ
    Figure imgb0037
  • le contact entre l'arc donné et son conjugué distal est la courbe d'action distale, d'équation: x δ = 1 - sin δ sin δ + ρ δ
    Figure imgb0038
    y δ = - cos δ sin δ + ρ δ
    Figure imgb0039
  • le contact entre le complémentaire proximal de l'arc donné et son conjugué proximal est la courbe d'action complémentaire proximale, d'équation: x δ = 1 - sin δ ( m - 2 / m sin δ + ρ δ )
    Figure imgb0040
    y δ = - cos δ m - 2 / m sin δ + ρ δ
    Figure imgb0041
  • le contact entre le complémentaire distal de l'arc donné et son conjugué distal est la courbe d'action complémentaire distale, d'équation: x δ = 1 - sin δ ( m - 2 / m sin δ - ρ δ )
    Figure imgb0042
    y δ = cos δ m - 2 / m sin δ - ρ δ
    Figure imgb0043
Ces quatre arcs sont concourants aux points δ = 0 et δ = π. Les courbes d'action proximale et complémentaire distale passent radialement au-delà du point de roulement R, et les deux autres de l'autre côté de l'origine O par rapport au point de roulement R. Seulement trois de ces quatre courbes d'action interviennent: la courbe d'action complémentaire distale est absente pour la première classe pour laquelle l'arc complémentaire distal n'intervient pas, et la courbe d'action complémentaire proximale est absente de la seconde classe pour laquelle l'arc complémentaire proximal n'intervient pas.The parameterization according to the invention made it possible to determine, for the machines according to the invention, simple mathematical expressions for the action curves, namely:
  • the contact between the given arc and its proximal conjugate is the proximal action curve of equation: x δ = 1 - sin δ sin δ - ρ δ
    Figure imgb0036
    there δ = cos δ sin δ - ρ δ
    Figure imgb0037
  • the contact between the given arc and its distal conjugate is the distal action curve of equation: x δ = 1 - sin δ sin δ + ρ δ
    Figure imgb0038
    there δ = - cos δ sin δ + ρ δ
    Figure imgb0039
  • the contact between the proximal complement of the given arc and its proximal conjugate is the proximal complementary action curve of equation: x δ = 1 - sin δ ( m - 2 / m sin δ + ρ δ )
    Figure imgb0040
    there δ = - cos δ m - 2 / m sin δ + ρ δ
    Figure imgb0041
  • the contact between the distal complement of the given arc and its distal conjugate is the distal complementary action curve of equation: x δ = 1 - sin δ ( m - 2 / m sin δ - ρ δ )
    Figure imgb0042
    there δ = cos δ m - 2 / m sin δ - ρ δ
    Figure imgb0043
These four arcs are concurrent at the points δ = 0 and δ = π. The proximal and distal complementary action curves pass radially beyond the running point R, and the two others on the other side of the origin O with respect to the running point R. Only three of these four action curves are involved: the distal complementary action curve is absent for the first class for which the complementary arc distal does not intervene, and the proximal complementary action curve is absent from the second class for which the proximal complementary arc is not involved.

Les figures 7A, 7B, 8A , 8B, 9A, 9B, montrent différentes réalisations de machines de la première classe. Il apparaît que lorsque le nombre de lobes est petit, par exemple égal à 2 ou à 3, les creux lobaires sont simplement des régions moins saillantes, dont le profil peut même être convexe en ce qui concerne l'organe profilé intérieur.FIGS. 7A, 7B, 8A, 8B, 9A, 9B show different embodiments of machines of the first class. It appears that when the number of lobes is small, for example equal to 2 or 3, the lobar troughs are simply less prominent regions, whose profile can even be convex with respect to the inner profiled member.

Dans le cas très particulier où le profil (m-1)-lobé ne présente qu'un seul lobe (figures 7A et 7B), le sommet de lobe et le creux de lobe sont diamétralement opposés, si le profil est symétrique.In the very particular case where the (m-1) -lobed profile has only one lobe (FIGS. 7A and 7B), the lobe vertex and the lobe hollow are diametrically opposed, if the profile is symmetrical.

Les figures 10A à 10I représentent neuf variantes de géométries pour un profil intérieur quadri-lobé dans un organe profilé extérieur tri-lobé.FIGS. 10A to 10I represent nine variants of geometries for a quadrilobelled inner profile in a tri-lobed outer profiled member.

Les figures 11A à 11C montrent trois exemples d'une machine de première classe à rotor intérieur penta-lobé.FIGS. 11A to 11C show three examples of a first-class machine with penta-lobed inner rotor.

Le mode de réalisation de la figure 11B se caractérise par le fait que les deux contacts osculateurs ont lieu simultanément, de part et d'autre d'une capsule V1 dont le volume est alors maximal.The embodiment of FIG. 11B is characterized by the fact that the two osculating contacts take place simultaneously, on either side of a capsule V 1 whose volume is then maximal.

Et par comparaison, le mode de réalisation de la figure 11A est analogue à celui de la figure 1, en ce sens qu'une capsule V2 dont le bord arrière a dépassé le point de bifurcation BM et a donc vu disparaître derrière elle une capsule V1, n'a pas encore atteint par son bord avant l'autre point de bifurcation BN où va naître devant elle une future nouvelle capsule V3 qui n'est donc indiquée que par un trait mixte.By comparison, the embodiment of FIG. 11A is analogous to that of FIG. 1, in the sense that a capsule V 2 whose rear edge has passed the bifurcation point B M and has therefore disappeared behind it. V capsule 1, has not yet reached its front edge the other bifurcation point B N which will be born before her future new capsule V 3 is therefore indicated by a dash.

A l'opposé, dans le mode de réalisation de la figure 11C, une même capsule V2 recouvre à la fois les deux points de bifurcation BN, BM, de sorte qu'elle est encore suivie par une capsule V1 mourante et déjà précédée par une capsule V3 naissante.In contrast, in the embodiment of FIG. 11C, the same capsule V 2 covers both of the two bifurcation points B N , B M so that it is still followed by a capsule V 1 dying and already preceded by a nascent capsule V 3 .

On va maintenant décrire en référence à la figure 12 un mode de distribution pour une machine, en particulier hydraulique, de la première classe.A mode of distribution for a machine, in particular hydraulic, of the first class will now be described with reference to FIG.

A la figure 12, on considère le cas de la machine de la figure 11B. On considère qu'il y a contre chaque face radiale des organes profilés 1 et 2 un flasque fermant latéralement les capsules à l'exception des lumières que l'on va décrire. Ces flasques sont solidaires en rotation du profil extérieur 2. Dans le flasque situé du côté de l'observateur à la figure 12, des lumières 16 en forme de gouttes ou de virgules dont la pointe anguleuse coïncide avec le raccord des deux arcs constitutifs du profil extérieur, sur le versant arrière des lobes, ont été formés à travers le flasque (le flasque lui-même n'étant pas représenté).In FIG. 12, the case of the machine of FIG. 11B is considered. It is considered that against each radial face of the profiled members 1 and 2 a flange laterally closing the capsules with the exception of the lights that will be described. These flanges are integral in rotation of the outer profile 2. In the flange located on the side of the observer in Figure 12, lights 16 in the form of drops or commas whose angular tip coincides with the connection of the two constituent arcs of the profile outside, on the rear slope of the lobes, were formed through the flange (the flange itself not being shown).

A partir de leur pointe coïncidant avec le raccord des arcs constitutifs du profil 4, les lumières s'étendent d'une manière générale vers les axes O et O'. Ces lumières 16, selon qu'elles sont recouvertes ou non par l'organe profilé m-lobé, font sélectivement communiquer les capsules avec l'admission. Dans l'autre flasque, situé à l'extrémité axiale qui est cachée pour l'observateur de la figure 12, sont pratiquées des lumières 17 qui sont symétriques des lumières 16 par rapport à des rayons passant par les sommets de lobes du profil (m-1)-lobé 4, et dont la pointe anguleuse coïncide avec le raccord des deux arcs constitutifs du profil (m-1) lobé 4 sur le versant avant de chaque lobe. Les lumières 17 communiquent avec le refoulement hydraulique de la machine.From their point coinciding with the connection of the constituent arcs of the profile 4, the lights extend generally towards the axes O and O '. These lights 16, depending on whether they are covered or not by the profiled member m-lobed, selectively communicate the capsules with the admission. In the other flange, located at the axial end which is hidden for the observer of FIG. 12, lights 17 are made which are symmetrical with the lights 16 with respect to rays passing through the lobes of the profile (m -1) -lobed 4, and whose angular tip coincides with the connection of the two constituent arches of the profile (m-1) lobed 4 on the front slope of each lobe. The lights 17 communicate with the hydraulic discharge of the machine.

Grâce à la particularité de la géométrie représentée, selon laquelle la capsule V1 est adjacente d'une part à une capsule mourante au point BM et d'autre part à une capsule naissante au point BN, la capsule V1 n'est isolée que pendant un court instant alors que son volume est maximal et n'est donc pas en train de varier. A l'instant précédant, la capsule mourante communiquait encore avec la lumière de refoulement 17 voisine tandis que la capsule V1 communiquait avec la lumière d'admission 16. A l'instant suivant la nouvelle capsule communiquera avec la lumière d'admission 16 correspondante, tandis que la capsule V1 communiquera avec la lumière de refoulement 17.Thanks to the peculiarity of the represented geometry, according to which the capsule V 1 is adjacent on the one hand to a dying capsule at the point B M and on the other hand to a nascent capsule at the point B N , the capsule V 1 is not isolated only for a short time while its volume is maximum and is therefore not changing. At the moment before, the dying capsule still communicated with the light of delivery 17 neighbor while the capsule V 1 communicated with the intake port 16. At the instant following the new capsule will communicate with the corresponding intake port 16, while the capsule V1 will communicate with the discharge light 17.

La figure 12A montre qu'en remplacement ou en complément des lumières 16 et 17 on peut également prévoir dans l'organe profilé (m-1)-lobé, des canaux d'admission 18 et de refoulement 19 qui débouchent à travers les versants respectifs des lobes du profil extérieur 4, sensiblement aux raccords entre les deux arcs constitutifs du profil 4 de façon à être obturés lorsque les profils sont en contact osculateur, puis à être progressivement dégagés par la capsule se formant entre les deux contacts résultant de la désintégration du contact osculateur, dans le cas de la naissance d'une capsule pour l'admission, ou à être progressivement obturés en ce qui concerne le refoulement, dans le cas de la mort d'une capsule.FIG. 12A shows that, in place of or in addition to the lights 16 and 17, it is also possible to provide, in the profiled (m-1) -lobed member, intake and discharge channels 19 which open through the respective slopes; lobes of the outer profile 4, substantially to the connections between the two constituent arcs of the profile 4 so as to be closed when the profiles are in contact osculator, then to be gradually released by the capsule formed between the two contacts resulting from the disintegration of the osculator contact, in the case of the birth of a capsule for admission, or to be gradually closed with regard to the discharge, in the case of the death of a capsule.

Dans l'exemple représenté à la figure 13, la machine a une géométrie correspondant à celle de la figure 1, à part le nombre de lobes. La situation est également celle représentée à la figure 11A, mais lorsque les organes profilés 1 et 2 sont dans un angle différent autour de leurs axes respectifs.In the example shown in Figure 13, the machine has a geometry corresponding to that of Figure 1, apart from the number of lobes. The situation is also that shown in FIG. 11A, but when the profiled members 1 and 2 are in a different angle around their respective axes.

La situation représentée à la figure 13 correspond sensiblement à celle de la figure 2A. En observant la figure 2D, on comprend que la capsule V4 dont le bord arrière a déjà dépassé le point de bifurcation BM et communiquerait par conséquent déjà avec la lumière de refoulement d'une distribution selon la figure 12 n'a toujours pas atteint le point BN et communiquerait donc toujours avec la lumière d'admission d'une telle distribution, ce qui est d'ailleurs nécessaire puisque le volume de la capsule V4 est encore en train de croître. C'est donc la communication avec la lumière de refoulement qu'il faut supprimer. C'est pourquoi il est prévu à la figure 13 un masque 21 solidaire du carter (de l'organe de liaison) et qui s'étend sur une certaine distance angulaire vers l'avant relativement au sens de rotation défini par la flèche F, à partir du point de bifurcation BM, pour occulter la lumière de refoulement dans cette zone.The situation shown in Figure 13 corresponds substantially to that of Figure 2A. By observing FIG. 2D, it will be understood that the capsule V 4 whose rear edge has already passed the bifurcation point B M and therefore already communicates with the delivery light of a distribution according to FIG. 12 has not yet reached the point B N and always communicate with the intake light of such a distribution, which is also necessary since the volume of the capsule V 4 is still growing. It is therefore the communication with the light of repression that must be suppressed. This is why it is provided in Figure 13 a mask 21 secured to the housing (the connecting member) and which extends over a certain angular distance forward relative to the direction of rotation defined by the arrow F, from the bifurcation point B M , to obscure the discharge light in this area.

Pour des raisons tout à fait symétriques, un masque 22 est prévu pour occulter les lumières d'admission sur une certaine zone angulaire à partir du point de bifurcation BN vers l'arrière relativement au sens de rotation.For reasons quite symmetrical, a mask 22 is provided to obscure the intake ports over a certain angular zone from the B N bifurcation point back relative to the direction of rotation.

Dans la situation représentée à la figure 11C, la capsule V2 subit des variations de volume entre le moment où son bord avant vient recouvrir le point de bifurcation BN et jusqu'à ce que son bord arrière ne recouvre plus l'autre point de bifurcation BM.In the situation shown in FIG. 11C, the capsule V 2 undergoes volume variations between the moment when its front edge comes to cover the bifurcation point B N and until its rear edge no longer covers the other point of Bifurcation B M.

Dans cette plage angulaire, la capsule V2 ne communiquerait plus avec aucune des lumières d'une distribution telle que celle de la figure 12. Pour pallier cette difficulté, des communications supplémentaires, commandées par exemple par une came lorsqu'une capsule telle que V2 passe dans cette zone, sont en principes nécessaires, où autres solutions analogues.In this angular range, the capsule V 2 would no longer communicate with any of the lights of a distribution such as that of Figure 12. To overcome this difficulty, additional communications, controlled for example by a cam when a capsule such as V 2 passes in this zone, are in necessary principles, where other analogous solutions.

La figure 14 représente une réalisation particulièrement préférée pour une machine ayant un profil selon la figure 1. Le principe de distribution est le même qu'à la figure 12, et dans chaque plan perpendiculaire aux axes les profils 3 et 4 sont ceux de la figure 1. Toutefois, d'un plan à l'autre, chaque profil 3 ou 4 est décalé angulairement d'un pas déterminé autour de son axe respectif de façon à donner à l'ensemble des organes profilés une allure hélicoïde. Le décalage angulaire entre les profils des deux extrémités est tel que dans la situation représentée où la capsule V5 côté admission atteint le point de bifurcation BN, cette capsule ayant elle-même une allure hélicoide vient juste de quitter par son bord arrière l'autre osculation à l'autre point de bifurcation BM. On rétablit ainsi grâce à l'hélicité la situation qui était obtenue par un profil dans un seul plan dans le cas des figures 11B et 12, à savoir qu'une même cavité est adjacente à une cavité naissante par son bord avant et à une cavité mourante par son bord arrière. Cette cavité V5 n'est donc isolée qu'à un court instant où la vitesse de variation instantanée de son volume est égale à zéro. A la figure 14, on a représenté en trait plein les sommets du profil 3 de l'organe profilé intérieur et en trait mixte avec des croix certains des sommets des lobes du profil de l'organe profilé extérieur 4. Les centres O et O' des profils des plans successifs sont alignés selon des axes de rotation parallèles qui sont également parallèles à une droite RR sur laquelle s'alignent les points de roulements R.FIG. 14 represents a particularly preferred embodiment for a machine having a profile according to FIG. 1. The distribution principle is the same as in FIG. 12, and in each plane perpendicular to the axes the profiles 3 and 4 are those of FIG. 1. However, from one plane to another, each profile 3 or 4 is offset angularly by a determined pitch about its respective axis so as to give all the profiled members a helical shape. The angular offset between the profiles of the two ends is such that in the situation shown, where the capsule V 5 on the intake side reaches the bifurcation point B N , this capsule itself having a spiral shape has just left its rear edge. other oscillation at the other bifurcation point B M. The situation which was obtained by a profile in a single plane in the case of FIGS. 11B and 12 is thus restored by means of helicity, namely that one and the same cavity is adjacent to a nascent cavity by its front edge and to a cavity. dying by its back edge. This cavity V 5 is therefore not isolated only at a short moment when the speed of instantaneous variation of its volume is equal to zero. In Figure 14, there is shown in solid lines the vertices of the profile 3 of the inner profiled member and in phantom with crosses some of the vertices of the lobes of the profile of the outer profiled member 4. The centers O and O ' profiles of the successive planes are aligned along parallel axes of rotation which are also parallel to a straight line R R on which the R points of alignment are aligned.

La figure 15 représente schématiquement un exemple de réalisation d'une machine de première classe selon l'invention. L'organe profilé intérieur 1 est solidaire d'un arbre 23 d'entraînement qui est moteur dans le cas d'une pompe et récepteur dans le cas d'un moteur hydraulique. L'arbre 23 est supporté en rotation, de part et d'autre de l'organe profilé 1, par deux paliers 24 dans un carter fixe 25 qui constitue l'organe de liaison selon l'invention. L'organe profilé extérieur 2 est supporté en rotation par des paliers périphériques 26 installés entre la paroi périphérique extérieure de l'organe profilé 2 et une couronne périphérique 27 faisant partie du carter 25. L'axe géométrique de l'arbre 23 correspond au centre O alors que l'axe géométrique, non représenté, des paliers 26 correspond au centre O'. Dans la zone où sont formés les profils 3 et 4, les organes profilés 1 et 2 sont installés entre deux flasques 28,29 à travers lesquels sont formées les lumières d'admission 16 et respectivement de refoulement 17.Figure 15 shows schematically an embodiment of a first class machine according to the invention. The inner profiled member 1 is secured to a drive shaft 23 which is a motor in the case of a pump and receiver in the case of a hydraulic motor. The shaft 23 is supported in rotation, on either side of the profiled member 1, by two bearings 24 in a fixed housing 25 which constitutes the connecting member according to the invention. The outer profiled member 2 is supported in rotation by peripheral bearings 26 installed between the outer peripheral wall of the profiled member 2 and a peripheral ring 27 forming part of the housing 25. The geometric axis of the shaft 23 corresponds to the center O whereas the geometric axis, not shown, of the bearings 26 corresponds to the center O '. In the zone where the profiles 3 and 4 are formed, the profiled members 1 and 2 are installed between two flanges 28, 29 through which the inlet and discharge ports 16 and respectively 17 are formed.

Les organes profilés 1 et 2 ont des faces d'extrémité planes et coplanaires sur lesquelles s'appuient de manière étanche et glissante des faces d'extrémité planes correspondantes des flasques 28 et 29 de façon à fermer les capsules sauf pour ce qui concerne les communications établies sélectivement par les lumières 16 et 17.The profiled members 1 and 2 have planar and coplanar end faces on which the corresponding flat end faces of the flanges 28 and 29 are sealingly and slidingly abutted so as to close the capsules except for the communications selectively set by lights 16 and 17.

Il y a entre chaque flasque 28 ou 29 et une paroi d'extrémité correspondante 31 ou 32 du carter, une butée axiale respective 33, 34. Les flasques 28, 29 sont liés en rotation avec l'organe profilé extérieur 2 tout en étant libres en translation par rapport à celui-ci grâce à des cannelures 36. L'espace intérieur compris entre la paroi d'extrémité 31 du carter d'une part et le flasque 28 et la face correspondante de l'organe profilé 1 d'autre part est aménagé en chambre soumise à la pression d'admission. De même, une chambre soumise à la pression de refoulement est formée entre l'autre paroi d'extrémité 32 du carter d'autre part et l'autre flasque 29 ainsi que l'autre face d'extrémité de l'organe profilé intérieur 1 d'autre part. Ces deux chambres sont fermées par des dispositifs d'étanchéité dynamiques 38, 39, 41, 42 qui empêchent le fluide hydraulique d'accéder aux paliers 24 et 26, et empêchent les deux chambres de communiquer l'une avec l'autre entre l'organe profilé extérieur 2 et la couronne 27 du carter.There is between each flange 28 or 29 and a corresponding end wall 31 or 32 of the casing, a respective axial abutment 33, 34. The flanges 28, 29 are connected in rotation with the outer profiled member 2 while being free in translation with respect to it thanks to grooves 36. The internal space between the end wall 31 of the casing on the one hand and the flange 28 and the corresponding face of the profiled member 1 on the other hand is arranged in a chamber subjected to the inlet pressure . Similarly, a chamber subjected to the discharge pressure is formed between the other end wall 32 of the housing on the other hand and the other flange 29 and the other end face of the inner profiled member 1 on the other hand. These two chambers are closed by dynamic sealing devices 38, 39, 41, 42 which prevent the hydraulic fluid from accessing the bearings 24 and 26, and prevent the two chambers from communicating with each other between the two. outer profiled member 2 and the crown 27 of the housing.

En service, celle des deux chambres qui est soumise à la haute pression (l'admission dans le cas d'un moteur et le refoulement dans le cas d'une pompe) comprime l'empilement axial constitué par les deux flasques et les deux organes profilés 1 et 2 montés en sandwich entre eux, en appui axial contre la butée axiale de la chambre opposée. L'aire exposée à la pression pour fournir cette force pressante axiale est choisie pour que la poussée axiale soit appropriée pour réaliser l'étanchéité entre les flasques et les organes profilés, mais sans être excessive.In operation, that of the two chambers which is subjected to the high pressure (the admission in the case of a motor and the discharge in the case of a pump) compresses the axial stack constituted by the two flanges and the two bodies sections 1 and 2 mounted sandwiched between them, in axial bearing against the axial stop of the opposite chamber. The area exposed to pressure to provide this axial pressing force is chosen so that the axial thrust is appropriate for sealing between the flanges and the profiled members, but without being excessive.

En outre, si les organes profilés sont hélicoïdes comme décrit en référence à la figure 14, la poussée axiale ainsi crée doit être suffisante pour équilibrer la tendance des organes profilés à se « dévisser » l'un par rapport à l'autre sous l'action des forces de travail s'exerçant entre les profils 3 et 4.In addition, if the profiled members are helical as described with reference to FIG. 14, the axial thrust thus created must be sufficient to balance the tendency of the profiled members to "unscrew" with respect to one another under the action of the forces of work exerted between the profiles 3 and 4.

Par exemple, si avec le mode de réalisation représenté à la figure 15 la poussée axiale retenue est trop forte, on peut reporter radialement vers l'extérieur au-delà des butées axiales 33 et 34, donc entre chaque flasque et la paroi d'extrémité 31 correspondante du carter, les dispositifs d'étanchéité 41 et 42 représentés comme agissant au contact de l'arbre 23. Par ailleurs, l'arbre 23 doit être monté avec une certaine liberté de coulissement axial pour permettre le flottement axial de l'organe profilé 1 entre les flasques 31 et 32. L'organe profilé extérieur 2 est libre en rotation de sorte que son entraînement résulte de sa coopération avec l'organe profilé 1 et le fluide de travail.For example, if with the embodiment shown in Figure 15 the axial thrust retained is too strong, it can be radially outwardly beyond the axial abutments 33 and 34, so between each flange and the end wall. 31 corresponding to the housing, the sealing devices 41 and 42 shown acting in contact with the shaft 23. Furthermore, the shaft 23 must be mounted with a certain freedom of axial sliding for allow the axial floating of the profiled member 1 between the flanges 31 and 32. The outer profiled member 2 is free to rotate so that its drive results from its cooperation with the profiled member 1 and the working fluid.

Dans l'exemple représenté à la figure 16, la machine est à cylindrée variable. Pour cela, les organes profilés 1 et 2 sont axialement coulissants l'un par rapport à l'autre. Dans l'exemple représenté, l'organe profilé 2 est fixe axialement en s'appuyant contre le carter 25 par l'intermédiaire d'une butée axiale 53 et d'un flasque 51. L'organe profilé 1 est axialement coulissant par rapport au carter au moyen d'un actionneur 49 qui n'est que schématiquement représenté, agissant sur l'organe 1 par l'intermédiaire d'une butée axiale 54 et d'un flasque 52. Le flasque 51 s'appuie de manière étanche contre une face d'extrémité plane de l'organe profilé extérieur 2 et présente en tant que bord radialement intérieur une face profilée 47 qui est exactement complémentaire du profil 3 de l'organe profilé 1. Ainsi, le flasque 51 est en contact étanche avec le profil 3 sur tout le pourtour de l'organe profilé 1, pour coulisser axialement par rapport à l'organe profilé 1 tout en étant entraîné en rotation par l'organe profilé 1.In the example shown in Figure 16, the machine is variable displacement. For this, the profiled members 1 and 2 are axially sliding relative to each other. In the example shown, the profiled member 2 is axially fixed while bearing against the casing 25 by means of an axial abutment 53 and a flange 51. The profiled member 1 is axially sliding relative to the casing by means of an actuator 49 which is only schematically shown, acting on the member 1 by means of an axial stop 54 and a flange 52. The flange 51 rests in a sealed manner against a flat end face of the outer profiled member 2 and has as a radially inner edge a profiled face 47 which is exactly complementary to the profile 3 of the profiled member 1. Thus, the flange 51 is in sealing contact with the profile 3 all around the profiled member 1, to slide axially relative to the profiled member 1 while being rotated by the profiled member 1.

De façon semblable, le flasque 52 est appuyé de façon étanche contre une face d'extrémité plane de l'organe profilé 1 et présente sur son pourtour extérieur une face profilée 48 qui est exactement complémentaire du profil 4 de l'organe profilé 2 de façon à s'y appuyer de manière étanche, axialement coulissante, et assurant l'entraînement en rotation du flasque 52 avec l'organe profilé 2. La distribution est assurée par des canaux 18, 19 selon le mode de réalisation de la figure 12A.Similarly, the flange 52 is sealingly supported against a flat end face of the profiled member 1 and has on its outer periphery a shaped face 48 which is exactly complementary to the profile 4 of the profiled member 2 so that to support it sealingly, axially sliding, and ensuring the rotational drive of the flange 52 with the profiled member 2. The distribution is provided by channels 18, 19 according to the embodiment of Figure 12A.

Les figures 17A à 22B représentent divers modes de réalisation, chacun en deux états de fonctionnement, pour des machines de la seconde classe, avec des nombres de lobes allant de 1 pour l'organe profilé intérieur et 2 pour l'organe profilé extérieur (figures 17A et 17B), à 7 pour l'organe profilé intérieur et 8 pour l'organe profilé extérieur (figures 22A et 22B).FIGS. 17A to 22B show various embodiments, each in two operating states, for machines of the second class, with lobe numbers ranging from 1 for the inner profiled member and 2 for the outer profiled member (FIGS. 17A and 17B), to 7 for the inner profiled member and 8 for the outer profiled member (Figures 22A and 22B).

Par comparaison avec le mode de réalisation des figures 19A et 19B dans le cas où l'organe profilé intérieur est tri-lobé et l'organe profilé extérieur est quadri-lobé, les figures 23A à 25B représentent trois autres géométries possibles qui illustrent la grande variété des géométries réalisables pour les machines de seconde classe.In comparison with the embodiment of FIGS. 19A and 19B in the case where the inner profiled member is tri-lobed and the outer profiled member is quadrilobed, FIGS. 23A to 25B represent three other possible geometries which illustrate the great variety of feasible geometries for second class machines.

Dans le cas des machines de seconde classe, il y a deux courbes d'action du côté du point de roulement et une seule du côté opposé. Les courbes extérieures sont des arcs simples. La courbe intérieure peut présenter une boucle dont le point double est le point de roulement ; ce n'est pas une singularité des profils. Au moment où le contact passe par le point de roulement, le mouvement relatif des deux profils est un roulement sans glissement. Dans les cas limites pour lesquels la courbe d'action présente au point de roulement un point de rebroussement, la vitesse du point de contact s'y annule.In the case of second class machines, there are two action curves on the side of the running point and only one on the opposite side. The outer curves are simple arcs. The inner curve may have a loop whose double point is the running point; it's not a singularity of the profiles. At the moment the contact passes through the rolling point, the relative movement of the two profiles is a rolling without sliding. In the limit cases for which the action curve has a cusp point at the running point, the speed of the contact point is canceled.

La description du cycle capsulaire est un peu compliquée par la possible occurrence du phénomène de "scission capsulaire" brièvement décrit ci-après. Dans tous les cas, une capsule naît au passage des versants avant des lobes du profil extérieur par le contact osculateur, à l'intersection BN des courbes d'action située en amont de l'axe Ox portant le point R. Elle passe par son maximum après une rotation d'un peu plus d'un demi-tour. La capsule est alors du côté opposé au point de roulement par rapport aux pivots. La fermeture de la capsule est symétrique de son ouverture, et la "durée de vie" de la capsule est un peu supérieure à un tour.The description of the capsular cycle is somewhat complicated by the possible occurrence of the phenomenon of "capsular scission" briefly described below. In all cases, a capsule is born at the passage of the slopes before the lobes of the external profile by the osculating contact, at the intersection B N of the action curves located upstream of the axis O x bearing the point R. It passes by its maximum after a rotation of a little more than half a turn. The capsule is then on the opposite side to the running point relative to the pivots. The closure of the capsule is symmetrical with its opening, and the "life time" of the capsule is a little over one turn.

Le phénomène de scission capsulaire est susceptible de se produire pour des capsules au voisinage de leur naissance ou de leur mort, c'est-à-dire quand deux lobes sont fortement engagés l'un dans l'autre du côté du point de roulement. Les volumes des capsules concernées sont petits. Le décours est le suivant: en un point intérieur à une capsule en cours de fermeture, les deux profils viennent en un contact osculateur exceptionnel, et la capsule est coupée en deux sous-capsules. Le nouveau contact osculateur se désintègre en deux contacts simples entre lesquels naît une nouvelle capsule. Chacun de ces deux contacts rejoint le bord correspondant d'une des deux sous-capsules en cours de fermeture et celles-ci disparaissent (en général à des instants différents), l'une de manière normale au passage par la confluence des courbes d'action, et l'autre de manière exceptionnelle à travers une osculation qui disparaît sur place. En ce point la nouvelle capsule coalesce avec une autre nouvelle capsule qui est née normalement à la bifurcation des courbes d'action.The phenomenon of capsular scission is likely to occur for capsules in the vicinity of their birth or death, that is to say when two lobes are strongly engaged one in the other side of the running point. The volumes of the capsules concerned are small. The course is as follows: at a point inside a capsule being closed, both profiles come into an exceptional osculator contact, and the capsule is cut into two sub-capsules. The new osculator contact disintegrates into two simple contacts between which a new capsule is born. Each of these two contacts joins the corresponding edge of one of the two subcapsules being closed and these disappear (usually at different times), one in a normal way to the passage by the confluence of the curves of action, and the other exceptionally through an oscillation that disappears on the spot. At this point the new capsule coalesces with another new capsule that was born normally at the bifurcation of the action curves.

Ce phénomène un peu délicat de scission capsulaire a lieu dans le cas où les profils deviennent tangents à la courbe d'action externe du côté du point de roulement, mais en-dehors de l'axe Ox.This somewhat delicate phenomenon of capsular scission takes place in the case where the profiles become tangent to the external action curve on the side of the running point, but outside the Ox axis.

Les figures 26A et 26B représentent une géométrie particulièrement bien adaptée à la réalisation d'un compresseur. Il s'agit d'une machine de deuxième classe, avec une organe profilé intérieur di-lobé et un organe profilé extérieur tri-lobé. Une machine de ce genre et plus généralement une machine selon l'invention a pour la réalisation d'un compresseur les particularités avantageuses suivantes, qui vont l'une et l'autre dans le sens de la limitation des fuites :

  • les capsules sont entièrement vidées; on peut donc par un simple clapet supprimer le reflux vers la basse pression ;
  • la courbure relative des surfaces en "contact" (en général, ces machines ne sont pas auto-entraînées et on ne va pas jusqu'au contact) est bornée ; les fuites se font donc à travers un passage qui est non seulement aussi étroit que le permet la précision de fabrication, mais qui de plus reste étroit sur une certaine longueur.
Figures 26A and 26B show a geometry particularly well suited to the realization of a compressor. It is a second class machine, with a di-lobed inner profiled member and a tri-lobed outer profiled member. A machine of this type and more generally a machine according to the invention has for the realization of a compressor the following advantageous features, which are both in the direction of the limitation of leakage:
  • the capsules are completely emptied; it is therefore possible by a single valve to remove the reflux to the low pressure;
  • the relative curvature of the "contact" surfaces (in general, these machines are not self-driven and there is no contact) is bounded; the leaks are therefore through a passage which is not only as narrow as the precision of manufacture allows, but which moreover remains narrow for a certain length.

On souhaite élever le maximum d'obstacles entre le versant à basse pression et le versant à haute pression du compresseur. Il est donc naturel de s'intéresser plutôt à la deuxième classe de profils conjugués: en effet, pendant la phase de croissance, les capsules consécutives restent à la pression d'admission, et pendant la phase de décroissance du volume, la compression est progressive. Il n'y a qu'en fin de compression que la capsule en cours de fermeture est adjacente à deux capsules à basse pression: le long de la courbe d'action externe avec une capsule naissante et le long de la courbe d'action interne avec une capsule en croissance. Dans les deux cas les surfaces en contact ont leurs concavités dans le même sens et la courbure relative est petite (elle s'annule en fin de refoulement). On choisira un profil qui comme celui des figures 26A et 26B ne donne pas lieu à scission capsulaire.It is desired to raise the maximum of obstacles between the low pressure side and the high pressure side of the compressor. It is therefore natural to focus on the second class of conjugated profiles: in fact, during the growth phase, the consecutive capsules remain at the intake pressure, and during the volume decay phase, the compression is progressive. It is only at the end of compression that the capsule being closed is adjacent to two capsules at low pressure: along the external action curve with a nascent capsule and along the internal action curve with a growing capsule. In both cases the surfaces in contact have their concavities in the same direction and the relative curvature is small (it vanishes at the end of repression). We will choose a profile that like that of Figures 26A and 26B does not give rise to capsular split.

L'exécution hélicoide est possible et on y retrouve les bonnes qualités de contact du cas droit.Helicoid execution is possible and we find the good contact qualities of the right case.

Dans le cas d'un compresseur, on peut préférer garder fixe le profil extérieur (qui devient alors celui du carter) et donner au rotor un mouvement planétaire, l'organe de liaison est alors en rotation par rapport au carter autour de l'axe 0 de l'organe profilé extérieur.In the case of a compressor, it may be preferable to keep the external profile fixed (which then becomes that of the casing) and to give the rotor a planetary movement, the connecting member is then rotated relative to the casing around the axis. 0 of the outer profiled member.

Le cas du compresseur est aussi celui où les propriétés du fluide changent entre l'admission et le refoulement; de plus, les paramètres à optimiser ne sont pas les mêmes à l'admission (limitation de la perte de charge) et au refoulement (limitation des fuites). Pour ces raisons, on peut préférer utiliser des profils asymétriques. Un exemple en est donné aux figures 27A et 27B.The case of the compressor is also one in which the properties of the fluid change between intake and delivery; moreover, the parameters to be optimized are not the same at intake (limitation of pressure drop) and at discharge (limitation of leaks). For these reasons, it may be preferable to use asymmetric profiles. An example is given in Figures 27A and 27B.

Dans l'exemple représenté aux figures 28A à 28F, un organe profilé intermédiaire 62 comporte un premier profil 64 d'ordre m-1 sur sa face radialement intérieure, et un deuxième profil 74 d'ordre (m-1) sur sa face radialement extérieure. Les deux profils ont même cercle primitif centré en O'. Chacun des profils (m-1)-lobés 64, 74, coopère avec un profil m-lobé 63, 73 d'un organe profilé 61 qui est représenté fixe dans cet exemple. Les deux profils 63, 73 ont également un cercle primitif commun, qui est centré en O. Les profils 63 et 64 forment une machine de la première classe selon l'invention et les profils 73 et 74, une machine de la deuxième classe selon l'invention.In the example shown in FIGS. 28A to 28F, an intermediate profiled member 62 comprises a first profile 64 of order m-1 on its radially inner face, and a second profile 74 of order (m-1) on its radially face. exterior. Both profiles have the same primitive circle centered in O '. Each of the profiles (m-1) -lobed 64, 74, cooperates with an m-lobed profile 63, 73 of a profiled member 61 which is shown fixed in this example. The two profiles 63, 73 also have a common pitch circle, which is centered at O. The profiles 63 and 64 form a machine of the first class according to the invention and the profiles 73 and 74, a machine of the second class according to the invention. 'invention.

Dans l'exemple représenté aux figures 29A à 29F, la différence est que l'organe profilé intermédiaire 82 porte deux profils m-lobés coopérant avec deux profils (m-1)-lobés appartenant à l'organe profilé 81.In the example shown in FIGS. 29A to 29F, the difference is that the intermediate profiled member 82 carries two m-lobed profiles cooperating with two (m-1) -lobed profiles belonging to the profiled member 81.

Une telle géométrie pourrait permettre de fabriquer un moteur thermique à combustion interne dans lequel, par exemple, la machine intérieure servirait à l'admission et à la compression, tandis que la machine extérieure servirait à la détente et à l'échappement.Such a geometry could make it possible to manufacture an internal combustion engine in which, for example, the inner machine would be used for intake and compression, while the outer machine would serve for expansion and exhaust.

Bien entendu, l'invention n'est pas limitée aux exemples décrits et représentés.Of course, the invention is not limited to the examples described and shown.

Dans les exemples décrits, et plus particulièrement dans celui de la figure 15, l'organe profilé intérieur est entraîné en rotation et l'organe profilé extérieur tourne grâce au moment de rotation transmis aux points de contact entre l'organe profilé intérieur et l'organe profilé extérieur qui est libre en rotation dans le carter. En outre, dans le fonctionnement en moteur, la pression du fluide hydraulique tend à faire évoluer les cavités soumises à cette pression dans le sens de l'agrandissement de leur volume, ce qui contribue à solliciter l'organe profilé extérieur dans le sens de rotation voulu. Mais on peut également prévoir un entraînement extérieur, par exemple par engrenage, qui contraint les deux organes profilés à tourner dans un rapport de vitesse correspondant au rapport du nombre de leurs lobes. On peut également entraîner l'organe profilé extérieur et laisser libre l'organe profilé intérieur. On peut encore fixer l'un des deux organes profilés au carter et entraîner l'autre organe profilé dans un mouvement planétaire en faisant tourner le centre du cercle primitif de l'autre organe profilé autour du centre du cercle primitif de l'organe profilé fixe. Dans cette configuration, on peut laisser ledit autre organe profilé se positionner librement autour de son propre axe ou au contraire déterminer, par exemple par un engrenage, sa position angulaire en fonction de la position angulaire de l'organe de liaison autour du centre de l'organe profilé fixe.In the examples described, and more particularly in that of FIG. 15, the inner profiled member is rotated and the outer profiled member rotates thanks to the moment of rotation transmitted to the points of contact between the inner profiled member and the inner profile member. external shaped member which is free to rotate in the housing. In addition, in motor operation, the pressure of the hydraulic fluid tends to make the cavities subjected to this pressure evolve in the direction of the enlargement of their volume, which contributes to urging the external profiled member in the direction of rotation. desired. But it is also possible to provide an external drive, for example by gearing, which forces the two profiled members to rotate in a gear ratio corresponding to the ratio of the number of their lobes. It is also possible to drive the external profiled member and leave the internal profiled member free. It is also possible to fix one of the two profiled members to the casing and to drive the other profiled member in a planetary movement by rotating the center of the pitch circle of the other profiled member around the center of the pitch circle of the fixed profiled member. . In this configuration, said other profiled member can be left to position freely around its own axis or on the contrary determine, for example by a gear, its angular position as a function of the angular position of the connecting member around the center of the fixed profiled member.

L'invention est compatible avec le principe Moineau selon lequel, comme décrit dans le US-A-1 892 217, la forme hélicoïde des deux organes profilés s'étend sur suffisamment de pas d'hélice pour qu'aucune cavité ne débouche simultanément aux deux extrémités axiales de la machine. Grâce à la précision et la qualité de la géométrie selon l'invention, il est possible de limiter le décalage angulaire total entre les profils aux deux extrémités de la machine à une valeur à peine supérieure à la durée de vie de la capsule dans chaque plan perpendiculaire aux axes..The invention is compatible with the Sparrow principle according to which, as described in US Pat. No. 1,892,217, the helical shape of the two profiled members extends over a sufficient number of helical steps so that no cavity simultaneously leads to two axial ends of the machine. Thanks to the precision and quality of the geometry according to the invention, it is possible to limit the total angular offset between the profiles at the two ends of the machine to a value barely greater than the lifetime of the capsule in each plane. perpendicular to the axes ..

Le pas d'hélice n'est pas nécessairement le même tout le long de la machine, et on peut encore faire varier le profil le long des axes de la machine. Ceci permet par exemple de réaliser un compresseur ou une machine de détente dans laquelle le volume des capsules en cours de transfert varie progressivement.The pitch of the helix is not necessarily the same all along the machine, and the profile can still be varied along the axes of the machine. This allows for example to achieve a compressor or a relaxation machine in which the volume of the capsules being transferred varies gradually.

Claims (34)

  1. A displacement machine comprising:
    - two profiled members (1, 2; 12, 11), inner and outer respectively, that have an annular inner profile and an annular outer profile respectively (3, 4; 14, 13),
    - a connecting member (25) rotatably connected to each of the profiled members (1, 2; 12, 11) along a respective axis of rotation (0, O'; O', O),
    and in which:
    - one of the profiles (3; 13) is m-lobed and the other (4; 14) is (m-1)-lobed, and they are defined around the axis of rotation of their respective profiled member by m and (m-1) respectively, pattern(s) comprising a lobe dome arc and a lobe hollow arc,
    - each profile is the envelope of the other during relative rotations of the profiled members around their respective axis of rotation with meshing of their profiles, which define the chamber contours between them, and slideless rolling between two pitch circles centred on the respective axes of rotation,
    characterised in that the relative positions of the profiled members (1, 2; 12, 11) for which a contact point (C2) between the profiles is located on the tangent (T) to the two pitch circles (6, 7) at their mutual rolling point (R), the profiled members (1, 2; 12, 11) have at said contact point equal continuous curvatures which are in the same direction and which have said rolling point (R) as their common centre.
  2. A machine according to claim 1, characterised in that:
    - the points M on a given arc that is one of the two arcs of the m-lobed profile being defined by two functions ρ(δ) and σ(δ) connecting parameters ρ, δ and σ, which are:
    ρ: measured along the normal to the arc at point M, the distance between point M and the middle N between the two intersection points P and D, proximal and distal respectively, of the said normal with the pitch circle with centre O of the m-lobed profile, and with a radius assumed equal to 1, the proximal intersection point P being located between point M on the given arc and the distal intersection point D,
    δ: angular half-distance between D and P relative to the centre O, measured clockwise,
    σ: polar angle of the proximal intersection point P relative to O, minus δ,
    the functions ρ(δ) and σ(δ) having a domain of between δ=0 and δ=π,
    - two arcs of the pattern of the (m-1)-lobed profile are a proximal conjugate arc and a distal conjugate arc defined below in a Cartesian reference system with their origin at the centre O of the pitch circle associated with the m-lobed profile:
    a) proximal conjugate arc: x C j P δ = 1 + sin δ - m ρ δ sin δ - m σ δ m - 1 + m - 1 cos δ cos δ - δ m - 1 / m
    Figure imgb0068
    y C j P δ = sin δ - m ρ δ cos δ - m σ δ m - 1 - m - 1 cos δ sin δ - δ m - 1 / m
    Figure imgb0069
    b) distal conjugate arc: x C j D δ = 1 + sin δ + m ρ δ sin δ + m σ δ m - 1 + m - 1 cos δ cos δ + δ m - 1 / m
    Figure imgb0070
    y C jD δ = - sin δ + m ρ δ cos δ + m σ δ m - 1 + m - 1 cos δ sin δ + δ m - 1 / m
    Figure imgb0071
  3. A machine according to claim 2, characterised in that the derivative ρ' relative to δ where δ = 0 and δ = π satisfies the following strict inequalities: 1 / m > ρ 0 > 0
    Figure imgb0072
    - 1 / m < ρ π < 0
    Figure imgb0073

    in that the m-lobed profile is inside the (m-1)-lobed profile, and
    in that the m-lobed profile is complemented by a proximal complementary arc defined by its coordinates in the said Cartesian reference system: x C p P δ = 2 sin δ - δ sin 2 δ m - σ δ + m cos δ cos 2 δ m - σ δ / m
    Figure imgb0074
    y C p P δ = 2 sin δ - δ cos 2 δ m - σ δ - m cos δ sin 2 δ m - σ δ / m
    Figure imgb0075
  4. A machine according to claim 3, characterised by the fulfilment of the following conditions over the entire interval ]0,π[ of variation of the coordinate δ: ρ δ ρʹ δ / cos ( δ ) - sin ( δ ) 0
    Figure imgb0076
    δ - 2 sin ( δ ) ρʹ δ / mcos ( δ ) - 2 δ + m 2 - 4 sin ( δ ) / m 2 0
    Figure imgb0077
    δ - sin δ ρʹ δ / m - 1 cos ( δ ) - ρ ( δ ) + m - 2 sin ( δ ) / m - 1 0
    Figure imgb0078
    δ + sin δ ρʹ δ / m - 1 cos ( δ ) + ρ ( δ ) - m - 2 sin ( δ ) / m - 1 0
    Figure imgb0079
  5. A machine according to claim 3 or 4, characterised in that the functions ρ(δ) and σ(δ) are: ρ δ = 1 - 1 / n 1 / cos φ 2 - cos δ 2 1 / 2 + 1 / n sin δ + ρ 0
    Figure imgb0080
    σ δ = 1 - 1 / n arccos cos δ cos φ + δ / n
    Figure imgb0081

    that define the given arc as a curve parallel to a shortened epicycloid, and where:
    n is a real number that is the order of the epicycloid,
    ϕ is an angular parameter of between 0 and π/2, which describes the shortening,
    ρ0 is a parameter characterising the distance to the base epicycloid.
  6. A machine according to claim 5, characterised in that n is taken as close to 2m-2.
  7. A machine according to any one of claims 3 to 6, characterised in that it comprises:
    - two flanges (28, 29) between which the profiled members (1, 2) are installed, and which are connected for common rotation with one of the profiled members;
    - inlet ports (16) through a first (28) of the flanges near a side of each of the lobe domes of the profile of the profiled member with which the flanges (28, 29) are connected for common rotation therewith;
    - discharge ports (17) through a second of the flanges near another side of each of the said lobe domes.
  8. A machine according to claim 7, characterised in that it comprises means (21, 22) for selectively closing at least some of the ports in at least an angular area close to an intersection between a common tangent (T) of the pitch circles (6, 7) and on the other hand action curves (CA1, CA2, CA3) defined by the trajectories of the contact points between profiles.
  9. A machine according to claim 7, characterised in that there is an angular displacement between a profile of the profiled members (1,2) on the side of one of the flanges and a profile of the profiled members on the side of the other flange, such that each chamber (V5 - FIG. 15) passing through its maximum volume ceases to communicate with a port (16) through one of the flanges approximately at the moment when it starts to communicate with a port (17) through the other flange.
  10. A machine according to any one of claims 3 to 9, characterised in that it comprises in the profiled outer member, distribution channels (18, 19) opening on the one hand into the profile (4) at the connection of the arcs and communicating on one side of the lobe domes with the intake and on the other side of the lobe domes with the discharge.
  11. A machine according to claim 2, characterised in that the derivative ρ' relative to δ where δ = 0 and δ = π satisfies the following strict inequalities: - 1 / m < ρʹ 0 < 0
    Figure imgb0082
    1 / m > ρʹ π > 0
    Figure imgb0083

    in that the m-lobed profile is outside the (m-1)-lobed profile;
    and
    in that the m-lobed pattern is complemented by a distal complementary arc defined by its coordinates in the said Cartesian reference system with centre O: x C p D δ = 2 sin δ + δ sin 2 δ m + σ δ + m cos δ cos 2 δ m + σ δ / m
    Figure imgb0084
    y C p D δ = - 2 sin δ + δ cos 2 δ m + σ δ + m cos δ sin 2 δ m + σ δ / m
    Figure imgb0085
  12. A machine according to claim 11, characterised by the fulfilment of the following conditions over the entire interval ]0,π[ of variation of the coordinate δ: ρ δ ρʹ δ / cos ( δ ) - sin ( δ ) 0
    Figure imgb0086
    δ + 2 sin ( δ ) ρʹ δ / mcos ( δ ) + 2 δ - m 2 - 4 sin ( δ ) / m 2 0
    Figure imgb0087
    δ - sin δ ρʹ δ / m - 1 cos ( δ ) - ρ ( δ ) + m - 2 sin ( δ ) / m - 1 0
    Figure imgb0088
    δ + sin δ ρʹ δ / m - 1 cos ( δ ) + ρ ( δ ) - m - 2 sin ( δ ) / m - 1 0
    Figure imgb0089
  13. A machine according to claim 11 or 12, characterised in that the profiles only pass through a single point of tangency with the outermost trajectory (CB3) followed by the contact points.
  14. A machine according to any one of claims 11 to 13, characterised in that the functions ρ(δ) and σ(δ) are: ρ δ = 1 + 1 / n 1 / cos ϕ 2 - cos δ 2 1 / 2 - 1 / n sin δ - ρ 0
    Figure imgb0090
    σ δ = 1 + 1 / n arccos cos δ cos ϕ - δ / n
    Figure imgb0091

    that define the given arc as a curve parallel to a shortened epicycloid and where:
    n is a real number that is the order of the epicycloid,
    ϕ is an angular parameter of between 0 and π/2, which describes the shortening,
    ρ0 is a parameter characterising the distance to the base epicycloid.
  15. A machine according to any one of claims 1 to 14, characterised in that each lobe is symmetrical relative to an axial plane passing through the lobe vertex.
  16. A machine according to any one of claim 1 to 14, characterised in that each lobe is dissymmetrical relative to an axial plane passing through the lobe vertex.
  17. A machine according to any one of claims 1 to 16, characterised in that the connecting member is firmly attached to a housing (25), and in that one of the profiled members is at least indirectly connected to a drive shaft (23) for common rotation therewith.
  18. A machine according to claim 17, characterised in that the other profiled member rotates freely around its axis of rotation.
  19. A machine according to any one of claims 1 to 18, characterised in that the profiles are each subject to evolution along the axis of rotation of their respective profiled member, the points of tangency of the pitch circles being aligned on a straight line parallel to the two axes of rotation.
  20. A machine according to claim 19, characterised in that the profiles are subject to evolution by angular displacement of a constant profile around the axis of rotation.
  21. A machine according to claim 20, characterised in that the profiles evolution is in a constant pitch helix fashion.
  22. A machine according to any one of claims 1 to 18 or 21, characterised in that the profiles are constant along their respective axis of rotation, have a constant angular displacement pitch, finite or infinite, along their respective axis of rotation, in that the profiled members are axially movable relative to each other, and in that the machine comprises at each end a flange (51, 52) complementary to a respective one of the profiles and leak-tightly resting against an end surface of the profiled member holding the other profile.
  23. A machine according to any one of claims 19 to 21, characterised in that the angular displacement of the profiles from one end surface of the profiled members to the other is hardly greater than the lifetime angle of each chamber relative to the respective profiled member.
  24. A machine according to any one of claims 1 to 23, characterised in that the profiled members are mounted between two flanges (28, 29) closing the chambers at their axial ends, and in that the machine comprises pressing means to press the flanges axially against the profiled members.
  25. A machine according to claim 24, characterised in that each flange (28, 29) is connected for common rotation with one of the profiled members.
  26. A machine according to claim 24 or 25, characterised in that the pressing means are means of subjecting at least part of the outer surface of a first of the flanges to the high pressure of the working fluid to push the first flange against the profiled members and thus push the profiled members against the second flange.
  27. A machine according to claim 26, characterised in that the machine comprises distribution means that comprise at least one port (16, 17) formed in the first flange (28, 29) for the high-pressure working fluid.
  28. A machine according to claim 27, characterised in that the distribution means comprise at least one port formed in the second flange for the low-pressure fluid.
  29. A machine according to claim 27 or 28, characterised in that the ports (28, 29) are connected for common rotation with the outer profiled member (2).
  30. A machine according to any one of claims 1 to 26, characterised in that it comprises distribution means that comprise ports connected for common rotation with one of the profiled members, preferably the (m-1)-lobed profiled member (2), and that are selectively revealed and hidden by the other profiled member (1).
  31. A machine according to claim 5 or 30, characterised in that the ports have tips coinciding with the connection point of the arcs forming the profile with which the ports (16, 17) are integral, on the profile side where the chambers appear for the inlet ports and on the profile side where the chambers disappear for the discharge ports.
  32. A machine according to any one of claims 1 to 30, characterised in that one of the profiled members (61, 81) has two m-lobed profiles, one on a radially inner annular surface and the other on a radially outer annular surface, which have the same pitch circle and each cooperate with an (m-1)-lobed profile, and in that the (m-1)-lobed profiles have the same pitch circle and are held by the other profiled member.
  33. A machine according to claim 32, characterised in that the two m-lobed profiles (83, 93) are facing away from each other and are radially between the two (m-1)-lobed profiles (84, 94).
  34. A machine according to claim 32, characterised in that the two m-lobed profiles (63, 73) are facing towards each other and are radially on either side of the two (m-1)-lobed profiles (64, 74).
EP03769566A 2002-09-05 2003-09-04 Closed system rotary machine Expired - Lifetime EP1546560B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0210959 2002-09-05
FR0210959A FR2844312B1 (en) 2002-09-05 2002-09-05 ROTATING MACHINE WITH CAPSULISM
PCT/FR2003/002642 WO2004022976A1 (en) 2002-09-05 2003-09-04 Closed system rotary machine

Publications (2)

Publication Number Publication Date
EP1546560A1 EP1546560A1 (en) 2005-06-29
EP1546560B1 true EP1546560B1 (en) 2007-01-03

Family

ID=31725839

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03769566A Expired - Lifetime EP1546560B1 (en) 2002-09-05 2003-09-04 Closed system rotary machine

Country Status (9)

Country Link
US (1) US7520738B2 (en)
EP (1) EP1546560B1 (en)
JP (1) JP5540364B2 (en)
AT (1) ATE350581T1 (en)
AU (1) AU2003278257A1 (en)
CA (1) CA2497491C (en)
DE (1) DE60310965T2 (en)
FR (1) FR2844312B1 (en)
WO (1) WO2004022976A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071230A2 (en) 2004-01-12 2005-08-04 Liquidpiston, Inc. Haybrid cycle combustion engine and methods
JP2009545699A (en) 2006-08-02 2009-12-24 リキッドピストン, インコーポレイテッド Hybrid cycle rotary engine
US7621143B2 (en) * 2006-09-28 2009-11-24 Lenovo (Singapore) Pte. Ltd. Cooling systems
US20080310984A1 (en) * 2007-06-12 2008-12-18 General Electric Company Positive displacement capture device
WO2010017199A2 (en) 2008-08-04 2010-02-11 Liquidpiston, Inc. Isochoric heat addition engines and methods
WO2012024215A2 (en) * 2010-08-16 2012-02-23 National Oilwell Varco, L.P. Reinforced stators and fabrication methods
ES2590777T3 (en) 2011-03-29 2016-11-23 Liquidpiston, Inc. Cycloid rotor motor
DE102012020326A1 (en) * 2012-10-17 2014-04-17 Herbert Jung Rotary piston displacement
US9624724B2 (en) 2012-11-20 2017-04-18 Halliburton Energy Services, Inc. Acoustic signal enhancement apparatus, systems, and methods
BR112015011460A2 (en) 2012-11-20 2017-07-11 Halliburton Energy Services Inc apparatus, system, and processor-implemented method
SK6803Y1 (en) * 2013-01-06 2014-06-03 Kujovic Jozef Workspace with rotary moving piston
SG11201700480XA (en) * 2013-01-25 2017-02-27 Liquidpiston Inc Air-cooled rotary engine

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1833993A (en) * 1928-08-24 1931-12-01 Myron F Hill Method of making internal rotors
US1892217A (en) 1930-05-13 1932-12-27 Moineau Rene Joseph Louis Gear mechanism
US2209201A (en) * 1937-08-28 1940-07-23 Myron F Hill Change speed gear
US2988008A (en) * 1956-02-07 1961-06-13 Wankel And Nsu Motorenwerke Ag Rotary piston machines
US3117561A (en) * 1960-04-26 1964-01-14 Bonavera Victor Rotor type power generating or work performing means
GB1002642A (en) * 1961-09-26 1965-08-25 Mono Pumps Africa Pty Improvements in helical screw pumps
US3695791A (en) * 1970-09-18 1972-10-03 Emerson Electric Co Variable sealed hydraulic pump or motor
US3884600A (en) * 1973-11-08 1975-05-20 Gray & Bensley Research Corp Guidance means for a rotary engine or pump
JPS5460638A (en) * 1977-10-24 1979-05-16 Shigeyoshi Osada Gear with inscribing nonncircular rolling curve
DE3317223A1 (en) 1982-05-12 1983-12-22 Walter Mag.rer.nat. 5411 Oberalm Salzburg Schwab ROTATIONAL PUMP FOR USE AS A BLOOD AND HEART PUMP
JPH0756268B2 (en) * 1987-07-27 1995-06-14 株式会社ユニシアジェックス Oil pump
FR2683000B1 (en) 1991-10-23 1994-02-04 Andre Leroy VOLUMETRIC MACHINE WITH PLANETARY MOTION AND HYPERTROCHOUIDAL GEOMETRY.
FR2683001B1 (en) 1991-10-23 1994-02-04 Andre Leroy AXIAL VOLUMETRIC MACHINE.
DE4204186A1 (en) 1992-02-13 1993-08-19 Heinrich Schmeing Rotary piston pump for gaseous/liquid materials - has triangular isosceles piston, moving on eccentric drive shaft in trochoidal housing
DE4322240C2 (en) * 1993-07-03 1997-01-09 Eckerle Rexroth Gmbh Co Kg Hydraulic internal gear machine (pump or motor)
DE4425429A1 (en) 1994-07-19 1996-01-25 Juergen Walter Hydraulic machine used as motor or pump
JP2739873B2 (en) * 1995-10-04 1998-04-15 クムウオン カンパニー リミテッド Tooth profile of screw rotor for compressor
US6106250A (en) 1996-02-02 2000-08-22 Unisia Jecs Corporation Lobed-rotor-type pump having a communication passage between working-fluid chambers
EP0799966A3 (en) 1996-04-02 1999-02-03 GEISERT ENGINEERING GmbH Drill bit for percussive drilling
ITPR960017A1 (en) 1996-04-04 1997-10-06 Vittorio Bertoli EPITROCOIDAL PUMP
US6077059A (en) 1997-04-11 2000-06-20 Mitsubishi Materials Corporation Oil pump rotor
RU2140018C1 (en) * 1998-05-13 1999-10-20 Бродов Михаил Ефимович Method of conversion of motion in positive-displacement machine and positive-displacement machine for realization of this method
JP2000130372A (en) * 1998-10-23 2000-05-12 Mayekawa Mfg Co Ltd Inscribed rotor compressor and manufacture of the same

Also Published As

Publication number Publication date
WO2004022976A1 (en) 2004-03-18
AU2003278257A8 (en) 2004-03-29
AU2003278257A1 (en) 2004-03-29
JP2005538289A (en) 2005-12-15
FR2844312B1 (en) 2006-04-28
US7520738B2 (en) 2009-04-21
FR2844312A1 (en) 2004-03-12
EP1546560A1 (en) 2005-06-29
JP5540364B2 (en) 2014-07-02
DE60310965T2 (en) 2007-12-27
DE60310965D1 (en) 2007-02-15
US20050271535A1 (en) 2005-12-08
CA2497491C (en) 2011-12-20
ATE350581T1 (en) 2007-01-15
CA2497491A1 (en) 2004-03-18

Similar Documents

Publication Publication Date Title
EP1546560B1 (en) Closed system rotary machine
FR2499638A1 (en) SCREW ROTOR PROFILES FOR COMPRESSOR AND FLUID DISPENSER MACHINES
FR2908844A1 (en) VARIABLE DISPLACEMENT PALLET PUMP
FR2475127A1 (en) VOLUME VARIATION GAS GENERATOR
EP0168268B1 (en) Volumetric machine with rollers
EP3317537B1 (en) Harmonic distribution radial piston hydraulic machine
EP0627042B1 (en) Positive displacement machine with reciprocating and rotating pistons, particularly four-stroke engine
FR2568951A1 (en) ROTARY TYPE FLUIDIC MACHINE
FR2564907A1 (en) ROTARY TYPE FLUID MACHINE
EP3938657A1 (en) Dry pump for gas and set of a plurality of dry pumps for gas
FR2549908A1 (en) SPIRAL TYPE MACHINE
EP0534836B1 (en) Hydraulic gear type machine with floating body
EP2989294B1 (en) Rotary volumetric machine with three pistons
EP0263218B1 (en) Hydraulic mechanism with fluid distribution disk and counter disk
EP2356318B1 (en) Rotary machine of the deformable rhombus type comprising an improved transmission mechanism
FR2587761A1 (en) Hydraulic mechanism comprising distribution faces and backing for a fluid
EP3228866B1 (en) Geared fuel pump
FR2591286A1 (en) Volumetric machine with vane(s)
EP1216358B1 (en) Scroll-type compressor or vacuum pump
FR2521649A1 (en) MACHINE FOR SUCTION AND DISCHARGE OF A FLUID
BE474690A (en)
FR2881188A1 (en) Pinions` teeth profiles designing method for hydraulic gear pump, involves choosing pinions teeth having curved contact path, and reducing fluid volume confined between consecutive teeth of pinions meshed with each other
FR2716493A1 (en) Rotary piston machine for use esp as i.c. engine
BE428428A (en)
BE660385A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60310965

Country of ref document: DE

Date of ref document: 20070215

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070414

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ECOLE POLYTECHNIQUE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE-CNRS

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KATZ, ANDRE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE-CNRS

Owner name: ECOLE POLYTECHNIQUE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: KATZ, ANDRE

Free format text: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE-CNRS#3, RUE MICHEL-ANGE#75794 PARIS CEDEX 16 (FR) $ ECOLE POLYTECHNIQUE#ROUTE DE SACLAY#91128 PALAISEAU CEDEX (FR) -TRANSFER TO- KATZ, ANDRE#33, RUE BOUSSINGAULT#75013 PARIS (FR)

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. JOACHIM LAUER PATENTANWALT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070604

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070517

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

26N No opposition filed

Effective date: 20071005

BECA Be: change of holder's address

Owner name: *KATZ ANDRE33, RUE BOUSSINGAULT, F-75013 PARIS

Effective date: 20070103

BECH Be: change of holder

Owner name: *KATZ ANDRE

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: DR. JOACHIM LAUER C/O RENTSCH PARTNER AG;FRAUMUENSTERSTRASSE 9 POSTFACH 2441;8022 ZUERICH (CH)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60310965

Country of ref document: DE

Representative=s name: GRAMM, LINS & PARTNER PATENT- UND RECHTSANWAEL, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160920

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180913

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180919

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190927

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60310965

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190904

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930