EP0627042B1 - Verdrängermaschine insbesondere viertaktmotor - Google Patents

Verdrängermaschine insbesondere viertaktmotor Download PDF

Info

Publication number
EP0627042B1
EP0627042B1 EP93905403A EP93905403A EP0627042B1 EP 0627042 B1 EP0627042 B1 EP 0627042B1 EP 93905403 A EP93905403 A EP 93905403A EP 93905403 A EP93905403 A EP 93905403A EP 0627042 B1 EP0627042 B1 EP 0627042B1
Authority
EP
European Patent Office
Prior art keywords
elements
machine according
chamber
axes
crank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93905403A
Other languages
English (en)
French (fr)
Other versions
EP0627042A1 (de
Inventor
Roman Antonov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANTONOV ENGINE
Original Assignee
ANTONOV ENGINE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANTONOV ENGINE filed Critical ANTONOV ENGINE
Publication of EP0627042A1 publication Critical patent/EP0627042A1/de
Application granted granted Critical
Publication of EP0627042B1 publication Critical patent/EP0627042B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C9/00Oscillating-piston machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/02Methods of operating

Definitions

  • the present invention relates to a volumetric machine in which swaying pistons define between them a variable volume chamber.
  • FR-A-2 651 019 discloses a volumetric machine comprising four elements connected in deformable parallelogram. Each element comprises a convex cylindrical surface and a concave cylindrical surface, each centered on one of the articulation axes of the element, and cooperating in sealed manner with the concave cylindrical surface of one of the neighboring elements and respectively with the convex cylindrical surface of the other neighboring element.
  • One of the axes of articulation of the parallelogram is fixed, and the opposite axis is animated in a circular movement. This simultaneously causes a variation of the angles at the top of the parallelogram and an oscillation of the parallelogram around its fixed axis.
  • the variation of the angles of the parallelogram varies the volume of a chamber defined between the four convex cylindrical surfaces.
  • the oscillation around the fixed axis allows this chamber to communicate selectively with an intake port and an exhaust port. This produces a heat engine performing the four times (intake, compression, rebound, exhaust) in a single turn of the crank.
  • This machine has the disadvantage of being relatively bulky for a given volume capacity, and of not allowing very high compression rates.
  • the object of the invention is to provide a volumetric machine which overcomes these drawbacks.
  • the invention thus relates to a volumetric machine comprising, between two opposite faces, flat and parallel, two first opposite elements articulated to two second opposing elements along four axes of articulation perpendicular to said faces and arranged at the four vertices of a parallelogram each side of which constitutes the longitudinal axis of a respective one of the first and second elements, the elements carrying four convex cylindrical walls which define between them a chamber with variable volume, l the longitudinal axis of each first element being cut by the axes of two respective convex cylindrical walls, two lines oriented like the axes of the second elements being each cut by the axes of two respective convex cylindrical walls, the machine further comprising coordination means connected to two of the elements along two axes of coordination, the coordination means comprising a crank type system connected to a control shaft and to one of these two elements for jointly oscillating the parallelogram between the planar faces while varying its angles at the top and correspondingly the volume of the chamber , distribution orifices being provided on at least one of
  • the machine is characterized in that each first element rigidly carries the two convex cylindrical walls whose axes intersect the longitudinal axis of this first element, in that each convex cylindrical wall forms with the convex cylindrical wall intersecting the same line a pair of cylindrical walls belonging to different first elements, in that each first element comprises closing means ensuring between its two convex cylindrical walls, the closing continuity of the variable volume chamber, and in that the machine includes dynamic sealing means between the convex cylindrical walls of the same pair.
  • the main function of the second elements is to maintain a constant distance between the centers of the convex cylindrical walls of the same pair.
  • the volumetric machine according to the invention is designed to operate as a four-stroke heat engine, and it comprises in particular combustion initiator means positioned to correspond with the chamber at least when the latter is in a first volume position minimal.
  • the machine according to the invention performs, like that of the prior art, the four times in a single crank turn. But its size is reduced, and there are only two dynamic seals around the chamber, between the convex cylindrical walls of the same pair. In addition, these seals can be reduced to a simple tangent contact between convex cylindrical walls, which is a particularly simple solution, and very reliable even at very high speeds. In particular, this kind of close relationship is unlikely to seize up. In addition, the relative velocity between the convex cylindrical walls of same pair is particularly reduced, for a given speed of rotation of the crank.
  • a sealing element such as a floating bar of generally biconcave shape, or even a sealing body fixed to a second element articulated to the first elements along two axes. of articulation corresponding with the axes of the cylindrical walls of the pair considered.
  • FIGS. 1 and 2 we will now describe, with reference to FIGS. 1 and 2, as well as to the upper part of FIG. 3, a first example of an elementary machine according to the invention.
  • a real machine can comprise a single elementary machine, or several elementary machines, for example two elementary machines 1 as shown in FIG. 3, where the elementary machine at the bottom corresponds to an alternative embodiment which will be described in detail below.
  • the machine comprises a casing 2 which defines for each elementary machine two plane and parallel faces 3a and 3b situated opposite.
  • the flat faces 3a are at least partly defined by two opposite cylinder heads 4 of the casing 2, while the two faces 3b are constituted by two opposite faces of an intermediate partition 6 placed at equal distance between the two faces 3a.
  • the distance between each cylinder head 4 and the intermediate partition 6 is defined by a respective peripheral wall 7.
  • a part 3c of the flat face 3a of the elementary machine from the top of FIG. 3 is defined by a turret 8, in the form of a plate, which is rotatably mounted in an appropriate recess of the corresponding cylinder head 4, for reasons which will appear more far.
  • the cylinder heads 4, the intermediate partition 6 and the peripheral walls 7 together form a frame for the machine.
  • the turret 8 is movable relative to this frame, but, as an element defining the volumes inside the machine, is considered to belong to the casing 2.
  • each elementary machine 1 comprises, between the planar faces 3a and 3b, two first opposite elements 9a and 9b, and two second opposite elements 11a and 11b.
  • Each first element 9a or 9b is articulated to the two second elements 11a and 11b according to two distinct axes of articulation. There are therefore four distinct articulation axes, A1, A2, A3, A4, which are all mutually parallel and perpendicular to the plane faces 3a and 3b.
  • each element 9a, 9b, 11a, 11b is called the side of the parallelogram, Da, Db, Ea, Eb, respectively, which joins the two axes of articulation of the element in question, for example the axes of articulation.
  • A1 and A2 for the first element 9a having the longitudinal axis Da are arranged at the four vertices of a parallelogram.
  • FIG. 2 shows the structure of the articulation of axis A4 between the elements 9b and 11b.
  • the end of the first element 9b is made with two parallel ears 12, forming a yoke, between which is engaged a single ear 13 of the second element 11b.
  • a tubular axis 14 is fitted through the two ears 12 and the ear 13 to make the articulated connection.
  • Each first element 9a or 9b carries on its side facing the other first element, two convex cylindrical walls S1, S2, and respectively, S3, S4 defined by attached linings 16.
  • each cylindrical wall S1, S2, S3 or S4 intersects the longitudinal axis Da or Db of the first element 9a or 9b of which the cylindrical wall is integral.
  • each cylindrical wall S1, ... S4 forms with a cylindrical wall of the other first element, a pair of cylindrical walls whose axes intersect the same line L14 or L23 parallel to the longitudinal axes Ea and Eb of the second elements 11a and 11b.
  • the cylindrical walls S1 and S4 together form a pair whose axes C1 and C4 intersect the same line L14 parallel to the axes Ea and Eb
  • the walls S2 and S3 form a pair whose axes C2 and C3 intersect a same line L23 parallel to the longitudinal axes Ea and Eb.
  • the axes C1, C2, C3, C4 are at the four vertices of a second parallelogram whose sides C1 C2 and C3 C4 are always coincident with the longitudinal axes Da and Db of the first elements 9a and 9b and whose sides C1 C4 and C2 C3 (lines L14 and L23) are always parallel to the axes Ea and Eb.
  • the axes C1 and C2 are located between the axes A1 and A2 of the first corresponding element 9a, and the axes C3 and C4 are located between the axes A3 and A4 of the corresponding first element 9b.
  • each second element 11a, 11b has a curved shape which is concave towards the inside of the parallelogram in order, in particular in the extreme position shown in FIG. 1, to follow the contour of the cylindrical wall S1 or S3 respectively which is then the closest. This minimizes congestion. This is also true for the walls S2 and S4 in another extreme position shown in FIG. 5.
  • the four elements 9a, 9b, 11a, 11b are movable relative to each other, from the extreme position shown in Figure 1 and can thus take different attitudes, some of which are shown in Figures 4, 5, 6 (schematic ) and 7.
  • a chamber 17 has formed between the first two elements 9a and 90.
  • the chamber 17 is delimited by the part of each cylindrical wall S1 ... S4 which is located inside the parallelogram C1 , C2, C3, C4, as well as by means of closure constituted by two concave cylindrical surfaces 18 each carried rigidly by one of the first elements 9a and 9b and connecting the two convex cylindrical walls S1 and S2 or respectively S3 and S4 of the first element considered.
  • Each concave cylindrical surface 18 is complementary to each of the convex cylindrical walls of the other first element.
  • the chamber 17 is further closed by dynamic sealing means.
  • these dynamic sealing means reside in a choice of dimension: the radii R1, R2, R3, R4 of the convex cylindrical walls S1 ... 4 are chosen so that the sum of the radii of the cylindrical walls of the same pair is equal to the distance between the axes of the cylindrical surfaces of the same pair,
  • the radii R1 ... R4 are equal to each other and equal to half the distance between the axes C1 and C4 or between the axes C2 and C3.
  • the cylindrical walls of the same pair, S1 and S4 or S2 and S3, are permanently in a close proximity relationship, which ensures a substantially sealed closure of the chamber 17.
  • the chamber 17 is closed by the flat and parallel faces 3a and 3b (FIG. 3), except in certain attitudes (FIGS. 4 and 6) where the chamber 17 communicates with an intake orifice 19 (FIG. 4) or with an exhaust port 21 ( Figure 6).
  • the orifices 19 and exhaust 21 are arranged through the rotary turret 8. They selectively communicate the chamber 17 with an intake 22, for example a carburetor, and respectively an exhaust 23.
  • the turret 8 comprises a central hole 24 in which the electrodes of a spark plug 25 protruding screwed into the cylinder head 4.
  • the central hole 24 further communicates the chamber 17 with a backpressure space 26 which is formed between a rear face of the turret 8 and the cylinder head 4.
  • a seal 27 peripherally delimits the backpressure space 26 and separates it from the intake 19 and exhaust 21 orifices located radially outside.
  • the periphery of the rotary turret 8 completely surrounds the chamber 17 in all the attitudes of the four elements 9a and 9b. Thus, the gap surrounding the turret 8 can never constitute a line of flight for the chamber 17.
  • the situation represented in FIG. 1 is a situation of minimum volume corresponding to the end of the exhaust and the start of the intake.
  • the chamber 17 expands again (FIG. 6) to achieve an engine time or gas expansion time, then comes to communicate with the exhaust orifice 21 until its volume becomes zero again as shown in FIG. figure 1.
  • the movements of the elements 9a, 9b, 11a, 11b relative to each other as well as the movements of the assembly that they form inside the peripheral wall 7 are defined by coordination means which vary the position of a first coordination axis K1, integral with the first element 9a, relative to a second axis of coordination K2 integral with the second element 11b.
  • the second coordination axis K2 is the axis of a pivoting link 28 which connects the element 11b to the frame of the machine.
  • the coordination axis K2 is located equidistant from the axes of articulation A1 and A4 of the second element 11b, and outside the parallelogram A1, A2, A3, A4.
  • the coordination axis K1 is the axis of articulation between the element 9a and an eccentric pin 29 of a crank 31 pivotally mounted along an axis J relative to the frame of the machine.
  • the coordination axis K1 is close to the articulation axis A2 by which the first element 9a is articulated with the second element 11a other than that to which the coordination axis K2 is linked.
  • the coordination axes K1 and K2 are perpendicular to the faces 3a and 3b and therefore parallel to the other axes A1 ... A4, C1 ... C4.
  • the radius of gyration of the coordination axis K1 i.e. the distance between the axes J and K1 is smaller than the distance between the coordination axis K2 and the articulation axis A1 between the two elements 9a and 11b connected to the coordination axes K1 and K2.
  • the rotations of the crank 31 produce angular back and forth movements of the second element 11b around the pivoting link 28.
  • the crank is designed so that the position of the coordination axis K1, in the first position of minimum volume (FIG. 5), corresponding to the start of combustion, is such that the volume of the chamber 17 in this position is not zero and on the contrary corresponds to the compression ratio that we want to give to the machine, and so that the position of the coordination axis K1 in the second position of minimum volume or end of exhaust position, shown in Figure 1 is such that the volume of the chamber 17 is zero in this position.
  • the two aforementioned conditions give the two positions of the axis K1 on the line M to achieve the two positions of minimum volume of the chamber 17, and consequently give the position of the axis J located on the line M midway between the two positions of K1.
  • the axis A1 is not far from the line M.
  • the angle B which separates the axes K1 and K2 seen from the axis A1 is therefore close to 180 °.
  • the directions F and G of rotation of the crank 31 and respectively of the element 11b from this position of minimum volume are the same. Given these conditions, a relatively small angular displacement of the crank 31 produces on the second element 11b a relatively large angular displacement, more than proportional to the ratio of the radii of gyration of the axes K1 and A1.
  • the angle B is much larger than the corresponding angle Q1, close to 120 ° in the example.
  • the angular travel to be performed by the element 11b so that the parallelogram passes from the first position of minimum volume (FIG. 5) to the next position of maximum volume (FIG. 6) in which the parallelogram is a rectangle is about 30 °, therefore relatively small. It is therefore sufficient, for two cumulative reasons, a relatively short angular stroke of the crank 31 for the element 11b to rotate around the axis K2 of about 30 ° which is necessary for the parallelogram A1, A2 , A3, A4 becomes a rectangle and therefore the chamber 17 reaches its maximum volume.
  • crank 31 it suffices for the crank 31 to perform a rotation TD (FIG. 6) of approximately 75 ° so that the elements 9a, 9b, 11a, 11b pass from the first position of minimum volume (FIG. 5) at the next maximum volume position in which the parallelogram A1, A2, A3, A4 is a rectangle.
  • TD rotation TD
  • the amplitude of the oscillating movement of the second element 11b is only about 90 ° between the two positions of minimum volume of the chamber 17 shown in Figures 1 and 5. This is obtained by giving the radius of gyration of the axis of articulation A1 around the second coordination axis K2 a sufficiently large length relative to the radius of gyration of the coordination axis K1 around the axis J of the crank 31.
  • FIG. 6 represents the situation of maximum volume of the chamber at the end of expansion, with display of the angle TD which has been traversed by the coordination axis K1 from the first position of minimum volume (start of combustion), and of the TE angle, about 105 ° which remains to be covered up to the second minimum volume position, as well as the two angles UD and UE covered by the articulation axis A1 around the coordination axis K2. Thanks to the geometry chosen, the two angles TD and TE, very different from each other, produce for the axis A1 two respective displacement angles UD and UE substantially equal.
  • the crank 31 is connected to an output shaft 30 to which can be connected, in a conventional manner, a flywheel and a multiple ratio transmission device to form a motor vehicle propulsion unit . Also conventional, this flywheel, and / or the inertial load constituted by the vehicle, provide the crank 31 with the energy necessary to maintain the operation during the energy consuming phases (intake, compression, exhaust).
  • the crank 31 comprises two eccentric pins 32, one for each elementary machine 1, offset by 180 ° relative to each other around the axis J to cancel the main components of the inertial forces of each elementary machine 1
  • a more perfect cancellation is carried out if the two elementary machines 1 are entirely offset with respect to each other by 180 ° around the axis J so that all the movements in each elementary machine 1 are symmetrical with those in the other elementary machine 1 with respect to the J axis (neglecting the axial offset of one machine with respect to the other along the J axis).
  • the machine of FIGS. 1 to 6 comprises adjustment means making it possible to optimize its operation.
  • the pivoting link 28 comprises a pin 32 (FIG. 1) around which the second element 11b pivots and which is carried by an eccentric 33 rotatably mounted in the frame.
  • the eccentric 33 is oriented so that the pin 32 is as close as possible to the axis J of the crank 31, the angle B and therefore the angle Q1 are also small as possible in the first position of minimum volume of chamber 17 ( Figure 5). Consequently, the volume of the chamber 17 in the first position of minimum volume is as large as possible, which corresponds to the minimum compression ratio for the machine, since the maximum volume of the chamber 17, defined by the rectangular configuration of the parallelogram A1, A2, A3, A4 ( Figure 6), is independent of the position of the pin 32.
  • this position of the pin 32 again corresponds to the smallest possible value for the angle Q1, and therefore at the smallest possible volume for the chamber 17, that is to say the zero volume in the example.
  • the rotary adjustment of the eccentric 33 for adjusting the compression ratio of the machine can be carried out manually, even when running, or can be carried out automatically.
  • the eccentric 33 can be connected to a device for measuring the depression in the inlet 22 to increase the compression rate when this depression is high (low absolute pressure) and to reduce the compression rate when the absolute pressure in admission 22 becomes stronger.
  • Such an automatic adjustment would be particularly advantageous in the case of a supercharged engine.
  • the control of the angular position of the turret 8 can be manual or on the contrary automatic depending on the speed of rotation of the crank 31 and on the inlet pressure 22.
  • the precise adjustments to be made as a function of these two parameters may be determined by the skilled person according to his usual knowledge. It should however be noted that taking into account the large cross-sections of gas passage, permitted by the invention, the advances at the opening of the orifices, and delays at their closing are less great than in conventional piston and cylinder engines.
  • the engine cooling means comprising for example various cavities 37 (FIG. 3) in the intermediate partition 6 and in the cylinder heads 4, nor the means of lubrication of the joints will not be described in detail either.
  • FIG. 10 There is shown in FIG. 10 and at the bottom of FIG. 3 a simplified version capable of operating without a lubrication circuit thanks to a supply of oil + petrol + air mixture 38 entering through a fitting.
  • inlet 39 in a part 40 of the peripheral space located between the elements 9a, 11a, 9b, 11b and the inner face of the peripheral wall 7 of the casing 2.
  • the inlet orifice 19 is constituted by a non-recess crossing formed in the face 3a and through which the chamber 17 communicates selectively, during the admission time, with another part 41 of the aforementioned peripheral space.
  • the inner face of the peripheral wall 7 is profiled so as to be in quasi contact with the elements 9a ... 11b on the one hand in the vicinity of the articulation axis A1, the trajectory of which is circular around the axis. of coordination K2, and on the other hand in the vicinity of the diametrically opposite axis A3 on part of the trajectory of the latter.
  • the volume of the chamber 17 increases during the admission time, these two quasi-contacts, forming a sealing barrier, separate the regions 40 and 41 of the peripheral space from one another, and the volume of the region 41 decreases, which compresses the intake gas and drives it towards the chamber 17 through the orifice 19. This achieves a kind of forced admission, or even overfeeding of the chamber 17.
  • FIGS. 1 start of admission
  • 10 abmission in progress
  • the air-fuel-oil mixture bathes the entire mechanism located in the housing 2, which provides lubrication without separate lubrication circuit.
  • the first element 9b opposite to that connected to the coordination means (crank 31) carries rigidly two pallets 56, 57 adjacent each of one of the axes of articulation A3, A4 of this first element.
  • the peripheral face of the inner peripheral wall 7 has two notches 58 and 59 whose profile corresponds to the envelope of the positions of the end of the pallets 56 and 57 during the admission time (FIG. 11: start of admission, Figure 12: end of admission).
  • the volume of the region 41 of the peripheral space of the casing, located between the two pallets 56 and 57 decreases very sharply. Its volume reduction can be equal for example to 650 cm3 for an engine whose chamber 17 has a maximum volume of 400 cm3.
  • the element 9b forms with the peripheral wall 7 of the casing a mechanical compressor for boosting the engine.
  • the pallets 56 and 57 are offset from the walls of the notches 58 and 59, which allows the region 41 to suck up gas 38 entered by the connector 39 (as shown in Figure 10) .
  • the pallets should be placed on the element 9a, in order to produce a region whose volume decreases during the admission time. But this would be less advantageous since it would be necessary to seal the bearings of the crank 31.
  • the face 3a is entirely formed on the corresponding cylinder head 4 and the inlet 19 and exhaust 21 orifices are therefore no longer adjustable around the axis of the central hole 24.
  • a circular groove 42 for example centered around the axis of the hole 24.
  • This groove is partially occupied by a flat ring 43, having a radial slot 44.
  • the ring 43 has an outer diameter substantially equal to outer diameter of the groove 42. Its axial thickness and its radial width are respectively less than the axial depth and the radial width of the groove 42.
  • the position of the groove 42, the diameter of its radially outer edge 42b and the radial width of the ring 43 are chosen so that the proximity lines 46 between the first elements 9a and 9b scient located radially between the radially outer edge 42b of the groove 42 and the radially inner edge 43a of the ring 43, at least for the positions of the crank 31 for which the chamber 17 must be isolated from the peripheral space surrounding the elements inside the peripheral wall 7.
  • the elements 9a and 9b are designed for, at least in such positions of the crank 31, completely cover the radially inner edge 43a of the ring 43 with the exception of the parts of this edge which are opposite the chamber 17.
  • the edge 43a must not be visible by an observer placed in space housing peripheral.
  • the slow 44 should not appear in this space either.
  • the high pressures of the chamber 17 penetrate into the groove 42 and cause, on the radially inner face 43a of the ring 43 a thrust directed radially outwards which presses the ring 43 in a substantially sealed manner against the radially outer edge 42b of the groove 42, as well as, on a rear face 43b of the ring 43, a thrust directed axially towards the elements 9a and 9b which provides a seal between the ring 43 and these elements.
  • the slot 44 of the ring 43 allows the ring 43 to increase in diameter and to bear against the radially outer edge 42b under the pressure of the gases exerted on its radially inner face 43a.
  • the ring 43 prevents the gases from the chamber 17 from passing behind the proximity lines 46, therefore in the peripheral space, in s' escaping along the face 3a.
  • the axial thrust on the ring 43 is transmitted by the ring 43 to the elements 9a and 9b and applies these against the face 3b which achieves a seal by contact between the face 3b and the elements 9a and 9b. This prevents the gases from leaking from the chamber 17 towards the peripheral space along the face 3b.
  • An elastic element such as a corrugated washer or the like, can be placed between the rear face 43b of the ring 43 and the bottom of the groove 42 to provide the initial support between the ring 43 and the elements 9a and 9b, and consequently prevent the gas from pressing the ring 43 against the bottom of the groove 42 instead of pressing it against the elements 9a and 9b.
  • the total area of the rear face 43b of the ring 43 is chosen to be sufficient for the axial force generated by the gases on the ring 43 to be sufficient.
  • FIG. 16 will only be described with regard to its differences from that of FIGS. 1 to 9.
  • the first elements 9a and 9b are lengthened and they have towards each other three convex cylindrical surfaces S1, S2, S5 and respectively S3, S4 and S6.
  • the axes C5 and C6 of the surfaces S5 and S6 intersect the same line L56 located at equal distance between the lines L14 and L23, parallel to the latter.
  • the surfaces S5 and S6 therefore form a pair of convex cylindrical walls which is located between the pair S1, S4 and the pair S2, S3 already described.
  • the radius R5 and R6 of the surfaces S5 and S6 is slightly smaller than the radii R1 ... R4, all equal, of the surfaces S1 ... S4. There is thus a slight clearance 47 between the surfaces S5 and S6.
  • This play is without drawback because the two chambers 17 defined between the elements 9a and 9b on either side of the play 47 are always at the same pressure and at the same stage of the operating cycle in all the angular positions of the crank 31.
  • the surfaces S5 and S6 can therefore be produced without any particular finish and in particular do not need to be produced on attached parts 16 such as those carrying the surfaces S1 ... S4.
  • a machine is thus produced in a very simple manner and in a reduced footprint, the volume capacity of which is double that of FIGS. 1 to 9.
  • the intake and exhaust ports may have a slightly different relative shape and layout for the two chambers (this is not shown).
  • the assembly formed by the four elements 9a, 9b, 11a and 11b is the same as in Figures 1 to 9, with two convex cylindrical walls S1, S2 and respectively S3, S4 on each of the first elements 9a and 9b.
  • the dynamic sealing means between the convex cylindrical walls of the same pair S1 and S4, and respectively S2 and S3, instead of being constituted by a simple proximity relationship, comprise, for each pair, a floating bar 48 having a Z-shaped profile, each base of which is terminated by a slightly re-entrant fin 49.
  • Such a floating strip constitutes an easy approximation in place of a biconcave body which would have two opposite concave cylindrical faces matching the two convex cylindrical walls such that S2 and S3 to be sealed against each other.
  • Each bar 48 is forced to center on the corresponding line L14 or L23 because the two regions of the bar located on either side of this line are wider than the distance remaining between the two cylindrical walls along this line.
  • each floating bar 48 which slides at the same time on the two cylindrical walls of the same pair, such as S2 and S3, which it makes watertight relative to each other, is always automatically positioned in a suitable manner for ensure this seal, whatever the attitude of the four elements 9a, 9b, 11a and 11b with respect to each other.
  • the floating bars 48 have, at each longitudinal end, in the extension of the bases of the Z, tongues 53 bent towards the interior of the chamber 17 in order to press tightly against the faces 3a and 3b of the housing.
  • Figures 17 to 19 further differs from that of Figures 1 to 9 by its coordination means which include, in addition to the crank 31 connected to the motor shaft (not shown) a second crank 51 which is connected to the crank 31 by two pinions 52 cascaded so that the second crank 51 rotates at the same speed and in the opposite direction to crank 31.
  • the crank 31 rotates the first coordination axis K1, which in this example coincides with the hinge axis A2.
  • the second crank 51 rotates the second coordination axis K2 which, in this example, coincides with the articulation axis A4 opposite the axis A2.
  • the coordination axes K1 and K2 are therefore symmetrical with respect to the center W of the parallelogram A1, A2, A3, A4 which coincides with the axis of the hole 24 for the spark plug.
  • the whole machine has symmetry with respect to this center, including the axes J1 and J2 of rotation of the cranks 31 and 51.
  • FIG. 17 the machine is shown in a position of maximum volume of the chamber 17.
  • the positions of minimum volume are obtained when the axes K1 and K2 are on the line N intersecting the axes J1 and J2.
  • the distance between the axes K1 and J2 of the two cranks 31 and 51 is defined in each of the two positions of minimum volume of the chamber 17, and it is therefore possible, as in the modes of previous embodiments that these two volumes are different.
  • the center W of the parallelogram A1 A2 A3 A4 is stationary. Consequently, the movements of the four elements 9a, 9b, 11a, 11b are equivalent to reciprocating movements of the elements 9a and 9b relative to each other, with correlative pivoting movement of the elements 11a and 11b, and superimposed movement of oscillation of the assembly around the geometric axis passing through the center W.
  • a very good quality balancing can be achieved for all the inertial forces generated by this combination of movements by providing a machine comprising two elementary machines stacked one on the other (substantially as shown in FIG. 3) with between them a 180 ° offset from the crank angle 31.
  • the variant embodiment of FIG. 20 exploits this observation.
  • the second elements are articulated to the first elements along the axes of the corresponding convex cylindrical walls S1 ... S4.
  • the axes A1 and C1, ... A4 and C4 are two by two combined.
  • the longitudinal axis Ea or Eb of each second element 11a or 11b is merged with the line L23 or L14 respectively.
  • Each dynamic sealing body 54 is therefore immobile with respect to one of the second elements 11a and 11b. This made it possible to produce a rigid connection between each sealing body 54 and a respective one of the second elements 11a and 11b.
  • Each sealing body has a biconcave shape matching the two convex cylindrical walls between which it performs dynamic sealing.
  • the coordination axes K1 and K2 are each linked to one of the second elements 11a and 11b respectively, in positions symmetrical relative to the center W of the parallelogram A1, A2, A3 , A4.
  • the axes K1 and K2 are rotated by two cranks such as 31 and 51 of Figures 17 and 18 symmetrical with respect to the center W and connected to each other to rotate in opposite directions.
  • the production of the machines according to the invention is particularly simple, the large functional surfaces all being able to be produced in a plane or cylindrical manner.
  • the sealing relationships are carried out under zero or low load and wear and tear on the machine is consequently reduced.
  • the speed of movement relative to the locations of the lines or sealing surfaces is remarkably low compared to the speed of rotation of the crank.
  • a given crank rotation speed makes it possible to perform twice as many cycles per unit of time as a traditional piston and cylinder engine.
  • the combustion and expansion times are very short and the thermal leaks particularly limited.
  • the double speed and the doubling of the number of cycles per turn of the crank allows in theory to have a volume capacity (“cubic capacity") four times lower, which limits the surfaces of thermal leaks and consequently limits still heat losses.
  • the movement of the first and second elements 9a, 9b, 11a, 11b against the faces 3a and 3b is a swirling movement without stopping point, which is particularly favorable for achieving perfect lapping on these surfaces, making the surfaces in question particularly resistant to wear and particularly waterproof by simple proximity.
  • the large surface contact between the elements 9a and 9b and the faces 3a and 3b promotes the cooling of the elements 9a and 9b.
  • the cylindrical walls S1 to S4 are defined by shells 61 which, in each pair, are directly pressed against each other along a sealing line 60 forming one of the ends of the chamber 17.
  • Each shell has a free inner edge 62 always situated in the chamber 17 and an outer edge 63 always situated outside of the chamber 17.
  • the outer edge 63 is adjacent to a fixing region 64 of the shell 61
  • the region 64 always located outside the chamber 17, is fixed in leaktight manner to the first element 9a or 9b with which it is associated.
  • Each first element therefore carries two shells 61 directed towards each other from their respective attachment region 64.
  • the shell 61 made for example of steel, floats by elastic bending. Its support against the other shell 61 of the same pair results from an elastic prestress during assembly.
  • each shell 61 There is behind each shell 61 an intermediate space 66 which communicates with the chamber 17 through a slot 67 adjacent to the inner edge 62 of the shell.
  • this gas passes into the intermediate space 66 to reinforce the mutual support of the two shells 61 of each pair.
  • the rear faces of the shells 61 are permanently exposed over their entire length to the pressure of the chamber 17.
  • their front faces that is to say the cylindrical walls S1 to S4, are not exposed to the pressure of the chamber 17 only over a reduced and variable length.
  • each shell 61 comprises along each face 3a or 3b a lateral edge formed by an edge 68 defined by the corresponding cylindrical wall, such as S3, and a bevelled wall 69 forming an angle of approximately 45 ° with the cylindrical wall S3.
  • the inner edge 62 and the edges 68, as well as the cylindrical wall which they frame, move relative to the body of the first corresponding element.
  • the edge 68 is in mobile proximity relationship and substantially sealed with the adjacent face 3a or 3b.
  • the gas located in the intermediate space 66 cannot easily leak as shown by the arrow 70 in FIG. 22.
  • each connecting wall 18 is integral with the body of the element (9a) which carries it. It is also terminated by two lateral edges 71 but these edges 71 have a certain spacing relative to the faces 3a and 3b to avoid any friction.
  • each segment 72 has a bevel face 74 which is parallel to the bevel face 69 of the shell 61 while having a certain distance from it.
  • This beveled face 74, as well as a lateral face 76 and a rear face 77 of each segment, are subjected to the pressure prevailing in the intermediate space 66, which thus contributes to applying the segment 72 against the opposite face 3a or 3b and against a bearing face 78 of the body of the corresponding element, 9b in FIG. 24.
  • This double sealed support prevents the pressurized gas from escaping through a zone 79 situated between the body of the first element 9a or 9b and each facing side 3a or 3b.
  • each segment 72 and the associated spring 73 extend continuously between the two fixing regions 64 of the two shells 61 associated with the corresponding element 9a or 9b.
  • the spring 73 can be constituted by a wavy elastic strip.
  • the element 9a or 9b has, opposite each face 3a or 3b, a profiled groove 80 receiving the corresponding part of the length of the segment 72 and of the spring 73.
  • This groove 80 communicates with the chamber 17 by the slots 67 between which it extends and also by the spacing existing between the edges 71 (FIG. 24) and the faces 3a and 3b.
  • the pressure applies the segments 72 against the faces 3a and 3b and against the bearing face 78 of the elements 9a and 9b. There is thus, between room 17 and regions 79, continuity sealing over the entire length of the first elements 9a and 9b which is liable to be exposed to pressure.
  • the embodiment which has just been described has the advantage of achieving controlled sealing conditions between the cylindrical walls S1 to S4 and this in a manner largely independent of the state of wear of the engine and of the precision. of its component parts.
  • the shells 61 dampen the vibrations of the first elements relative to each other, and prevent these vibrations from producing shocks between the cylindrical surfaces S1 to S4. This greatly improves the longevity of these surfaces and contributes to the maintenance, over time, of the good quality of sealing along the lines 60.
  • segments 81 have been added along the side edges of the shells 61, to further reduce the possibility of leakage along a path as illustrated by arrow 70 in Figure 22
  • the segment 72 subsists all along each first element 9a or 9b, as described with reference to FIGS. 21 to 24.
  • the intermediate space 66 is defined between the two segments 72 and 81.
  • the pressure of the gases assisted by a preloading spring 82, tends to separate the two segments from one another and applying them sealingly against the face 78 of the body of the first element 9b and respectively against a sealing face 83 provided at the rear of the shell 61.
  • the means of coordination could be different.
  • the invention could be used to produce a compressor or a pump or else an expansion machine operating at two cycles per revolution, or even a two-stroke engine operating at two cycles per revolution. In these different cases, it will generally be arranged so that the two minimum volume positions correspond to identical volumes, so that the two cycles of each crank turn are identical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • Transmission Devices (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Supercharger (AREA)
  • Hydraulic Motors (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Reciprocating Pumps (AREA)

Claims (43)

  1. Kolbenmaschine, mit zwei einander gegenüberliegenden ersten Elementen (9a, 9b), die gelenkig mit zwei einander gegenüberliegenden zweiten Elementen (11a, 11b) verbunden sind, wobei die Elemente zwischen zwei einander gegenüberliegenden, ebenen und parallelen Stirnflächen (3a, 3b) angeordnet sind und miteinander über vier Gelenkachsen (A1, ... A4) verbunden sind, die senkrecht auf den genannten Stirnflächen (3a, 3b) stehen und in den vier Ecken eines Parallelogramms angeordnet sind, dessen Seiten (Da, Db, Ea, Eb) jeweils eine Längsachse eines ersten oder zweiten Elementes bilden, wobei die Elemente vier konvexe zylindrische Wandungen tragen (S1, ... S4), die zwischen sich eine Kammer (17) mit veränderlichem Volumen definieren, und die Längsachse (Da, Db) eines jeden ersten Elements (9a, 9b) von den Achsen (C1, C2; C3, C4) zweier entsprechender zylindrischer konvexer Wandungen geschnitten wird und zwei wie die Achsen (Ea, Eb) der zweiten Elemente (11a, 11b) ausgerichtete Geraden (L14, L23) jeweils von den Achsen (C1, C4; C2, C3) zweier entsprechender konvexer zylindrischer Wandungen (S1, S4; S2, S3) geschnitten werden, weiter mit Synchronisationsmitteln (28, 31), die mit zwei der Elemente (9a, 11b) längs zweier Synchronisationsachsen (K1, K2) verbunden sind, wobei die Synchronisationsmittel einen Kurbelmechanismus (31) aufweisen, der mit einer Steuerwelle und mit einem (9a) der beiden Elemente verbunden ist, um das gesamte Parallelogramm zwischen den Stirnflächen (3a, 3b) oszillieren zu lassen, wobei seine Spitzenwinkel und dementsprochend das Volumen der Kammer (17) variiert werden, und mit Anschlußöffnungen (19, 21), die in zumindest einer der einander gegenüberliegenden Stirnflächen (3a) ausgespart sind, um die Kammer (17) selektiv mit einem Einlaß (22) und einem Auslaß (23) in Abhängigkeit von der Winkelstellung der Kurbel (31) zu verbinden, dadurch gekennzeichnet, daß jedes erste Element (9a, 9b) die beiden konvexen zylindrischen Wandungen, deren Achsen (C1, ... C4) die Längsachse (Da, Db) dieses ersten Elementes schneiden, starr trägt, daß jede konvexe zylindrische Wendung mit der konvexen zylindrischen Wandung, deren Achse die gleiche Gerade (L14, L23) schneidet, ein Paar (S1, S4; S2, S3) von zylindrischen Wandungen bildet, die verschiedenen ersten Elementen (9a, 9b) angehören, daß jedes erste Element Verschlußmittel (18) aufweist, die zwischen seinen beiden zylindrischen konvexen Wandungen einen kontinuierlichen Abschluß der Kammer mit variablem Volumen (17) gewährleisten, und daß die Maschine dynamische Dichtmittel zwischen den konvexen zylindrischen Wandungen eines Paares (S1, S4; S2, S3) aufweist.
  2. Maschine nach Anspruch 1, dadurch gekennzeichnet, daß die dynamischen Dichtmittel auch einen geringen Abstand zwischen den zylindrischen Wandungen eines Paares umfassen.
  3. Maschine nach Anspruch 1, dadurch gekennzeichnet, daß die Dichtmittel einen zwischen den zylindrischen Wandungen (S1, S4; S2, S3) eines Paares schwimmend gelagerten Körper (48) umfassen.
  4. Maschine nach Anspruch 3, dadurch gekennzeichnet, daß der schwimmende Körper (48) ein Steg mit einem Z-förmigen Querschnitt ist.
  5. Maschine nach Anspruch 1, dadurch gekennzeichnet, daß die dynamischen Dichtmittel für jedes zweite Element einen Zwischenkörper (54) umfassen, der zwei Stirnflächen aufweist, die jeweils in dichtendem Kontakt mit einer der zylindrischen Wandungen (S1, S4; S2, S3) des gleichen Paares sind.
  6. Maschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Verschlußmittel eine Stirnfläche (18) gegen die Kammer richten, die ein konkaves Profil hat, das im wesentlichen komplementär zu dem der zylindrischen Wandungen (S1, S2, S3, S4) ist.
  7. Maschine nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Achsen (C1... C4) dar zylindrischen konvexen Wandungen (S1...S4) mit den Gelenkachsen (A1...A4) zwischen den Elementen zusammenfallen.
  8. Maschine nach Anspruch 7, dadurch gekennzeichnet, daß die dynamischen Dichtmittel (54) von den zweiten Elementen (11a, 11b) getragen werden.
  9. Maschine nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Achsen (C1...C4) der konvexen zylindrischen Wandungen (S1...S4) auf jeder Längsachse des ersten Elements (9a, 9b) zwischen den beiden Gelenkachsen (A1, A2; A3, A4) angeordnet sind, die diese Längsachse (Da, Db) schneiden.
  10. Maschine nach einem dar Ansprüche 1 bis 9, dadurch gekennzeichnet, daß zumindest ein Teil der Anschlußöffnungen (19, 21) eine vorstellbare Lage in bezug auf einen Rahmen der Maschine hat.
  11. Maschine nach Anspruch 10, dadurch gekennzeichnet, daß die Öffnungen (19, 21) in einer Drehscheibe (8) ausgespart sind, die durch Drehung eingestellt werden kann und deren Umfang die Kammer (17) bei allen Winkelstellungen der Kurbel (31) umgibt.
  12. Maschine nach einem der Ansprüche 1 bis 11, gekennzeichnet durch Mittel, um die Kammer mit einer Rückseite einer Platte (8) zu verbinden, deren Stirnseite einen Teil von zumindest einer dar beiden einander gegenüberliegenden Stirnflächen bildet, wobei dies Platte in bezug auf den Rahmen einen Freiheitsgrad aufweist, der es ihr erlaubt, gegen die ersten Elemente (9a, 9b) zu drücken.
  13. Maschine nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die eine der beiden einander gegenüberliegenden Stirnflächen gestützt von einer Wandung des Gehäuses der Maschine eine Ringnut (42) aufweist, die teilweise von einem geschlitzten Ring (43) ausgefüllt wird, der Gaskraften ausgesetzt ist, die ihn gegen die ersten Elemente (9a, 9b) und in radialer Richtung gegen einen äußeren Umfangsrand (42b) der Ringnut (42) drücken, und der dazu geeignet ist, sich in dichtender Weise gegen die Elemente und gegen den genannten Außenrand unter dem Eindruck dieser Kräfte zu pressen.
  14. Maschine nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß zumindest eine der zylindrischen Wandungen (S1-S4) durch eine Schale (61) gebildet wird, die elastisch gegen die andere zylindrische Wandung des gleichen Paares gedrückt wird, und daß hinter der Schale (61) ein Freiraum (66) ausgespart ist, der mit der Kammer (17) kommuniziert, damit die Schale außerdem durch den Druck der in der Kammer enthaltenen Gase gegen die andere zylindrische Wandung gedrückt wird.
  15. Maschine nach Anspruch 14, dadurch gekennzeichnet, daß die Schale (61) in im wesentlichen dichtender Weise an einem der ersten Elemente (9a, 9b) in einem Außenbereich (64) befestigt ist, der immer außerhalb der Kammer (17) angeordnet ist und daß ein innerer Rand (62) der Schale (61), der immer in der Kammer (17) angeordnet ist, sowie zwei seitliche Ränder (68) der Schale bei Biegung der Schale einen Freiheitsgrad haben.
  16. Maschine nach Anspruch 14, dadurch gekennzeichnet, daß jedes erste Element (9a, 9b) in bezug auf jede gegenüberliegende Stirnfläche (3a, 3b) Dichtmittel (72, 81) aufweist, die durch das im Freiraum (66) hinter der Schale (61) befindliche Gas mit Druck beaufschlagt werden.
  17. Maschine nach Anspruch 16, dadurch gekennzeichnet, daß die Dichtmittel in bezug auf jede gegenüberliegende Stirnfläche ein Dichtelement (72) aufweisen, das sich über die gesamte Länge dor Kammer zwischen zwei einander gegenüberliegenden Befestigungsbereichen (64) erstreckt, die zu zwei Schalen (61) gehören, die zwei zylindrische Wandungen (S1, S2; S3, S4) des gleichen ersten Elementes (9a, 9b) bilden.
  18. Maschine nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß die Dichtmittel ein Dichtelement (81) umfassen, das sich längs jedes seitlichen Randes einer jeden Schale (61) erstreckt.
  19. Maschine nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, daß die seitlichen Ränder (68) der Schale (61) wenigstens in annähernde Dichtwirkung mit den gegenüberliegenden Stirnflächen (3a, 3b) treten.
  20. Maschine nach einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, daß die beiden zylindrischen Wandungen (S1, S4; S2, S3) wenigstens eines Paares durch Zwei gleichartige Schalen (61) gebildet werden.
  21. Maschine nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß die Verschlußmittel zwischen den beiden zylindrischen konvexen Wandungen desselben ersten Elements (9a, 9b) gegenüber dem anderen ersten Element eine gewellte Wandung bilden, die wenigstens eine Auswölbung (S5, S6) zwischen den beiden zylindrischen Wandungen beschreibt.
  22. Maschine nach Anspruch 21, dadurch gekennzeichnet, daß die Auswölbung eine dritte zylindrische konvexe Wandung (S5, S6) darstellt, die den beiden anderen ähnelt.
  23. Maschine nach einem der Ansprüche 1 bis 22, ausgebildet als Viertakt-Verbrennungskraftmaschine, dadurch gekennzeichnet, daß sie Zündmittel (25) aufweist, die mit der Kammer (17) zumindest jedesmal dann in Verbindung stehen, wenn sich diese in einer ersten Position minimalen Volumens befindet.
  24. Maschine nach Anspruch 23, dadurch gekennzeichnet, daß die Synchronisationsachsen (K1, K2) außerhalb des Parallelogramms (A1, A2, A3, A4) angeordnet sind.
  25. Maschine noch Anspruch 23 oder 24, dadurch gekennzeichnet, daß die Synchronisationsmittel mit den einzelnen Elementen so verbunden sind, daß der Winkelbereich (TD) zwischen zwei Stellungen der Kurbel, die der ersten Position minimalen Volumens bzw. einer ersten Position maximalen Volumens entsprechen, kleiner ist als 90°.
  26. Maschine nach einem der Ansprüche 23 bis 25, dadurch gekennzeichnet, daß die Synchronisationsmittel so ausgelegt und mit den Elementen verbunden sind, daß das Volumen der Kammer (17) in der ersten Position minimalen Volumens größer ist als in einer zweiten Position minimalen Volumens, die am Ende eines Auspufftaktes auftritt, im Verlaufe dessen die Kammer (17) mit einer Auslaßöffnung (21) kommuniziert, die Teil der Anschlußöffnungen (19, 21) ist.
  27. Maschine nach Anspruch 26, dadurch gekennzeichnet, daß in der zweiten Position minimalen Volumens das Volumen der Kammer (17) im wesentlichen Null ist.
  28. Maschine nach einem der Ansprüche 22 bis 27, dadurch gekennzeichnet, daß die Anschlußöffnungen eine Einlaßöffnung (19) aufweisen, die aus einer entsprechend angeordnete Aussparung in zumindest einer der ebenen Stirnflächen (3a, 3b) besteht, um die Kammer (17) selektiv mit einem Versorgungsraum (41) zu verbinden, der sich längs zumindest eines Teils des äußeren Umfangsbereichs der Elemente (9a, 9b, 11a, 11b) in einem die Elemente umgebenden Gehäuse (2) erstreckt, wobei der Versorgungsraum mit Zuführmitteln für Brenngas verbunden ist.
  29. Maschine nach Anspruch 28, dadurch gekennzeichnet, daß der Versorgungsraum (41) von zwei Toren (56, 57) begrenzt wird, die voneinander in Umfangsrichtung des Gehäuses beabstandet sind und die zumindest während eines Ansaugtaktes gleichsam eine Dichtung zwischen dem Innenprofil des Gehäuses und den Elementen bilden, in einem Bereich des Umfangs des Gehäuses, der so gewählt ist, daß der Versorgungsraum (41) jedesmal in seinem Volumen reduziert wird, wenn er mit der Kammer (17) in Verbindung steht.
  30. Maschine nach Anspruch 29, dadurch gekennzeichnet, daß das Gehäuse ein Innenprofil hat, von dem bestimmte Bereiche (58, 59) im wesentlichen der Hüllkurve der Stellungen der beiden Bereiche der Elemente entsprechen, zwischen denen der Versorgungsraum (41) abgegrenzt ist, und daß die beiden Tore durch einen geringen Abstand zwischen den beiden Bereichen der Elemente und dem Innenprofil des Gehäuses realisiert werden.
  31. Maschine nach Anspruch 29, dadurch gekennzeichnet, daß die beiden Bereiche der Elemente einstückig mit demselben Element (9b) ausgebildet sind, und daß die Tore zumindest einen Flügel (56, 57) aufweisen, der einstückig mit diesem Element oder dem Gehäuse ausgebildet ist, und eine in dem Gehäuse oder entsprechend in diesem Element ausgesparte Tasche, die ein Profil aufweist, das der Hüllkurve der äußersten Positionen des Flügels in bezug auf die Tasche entspricht.
  32. Maschine nach einem der Ansprüche 28 bis 30, dadurch gekennzeichnet, daß die Tore den Versorgungsbereich von einem Einlaßbereich (40) trennen, mit dem die Versorgungsmittel (39) kommunizieren.
  33. Maschine nach einem der Ansprüche 30 bis 32, dadurch gekennzeichnet, daß die Versorgungsmittel ein Gemisch von LuftKraftstoff-Öl verarbeiten.
  34. Maschine nach einem der Ansprüche 24 bis 33, dadurch gekennzeichnet, daß die Kurbel (31) so angeordnet ist, daß in der ersten Position minimalen volumens der Hebelarm der Kurbel quer zur Richtung der Expansionskraft (P) des Gases gerichtet ist, die auf dasjenige (9a) der beiden Elemente ausgeübt wird. mit dem die Kurbel (31) verbunden ist, und daß der Hebelarm sich in Richtung (F) dieser Kraft (P) bewegt.
  35. Maschine nach einem der Ansprüche 1 bis 34, dadurch gekennzeichnet, daß die Synchronisationsmittel (28) einstellbar sind, um das Volumen der Kammer in einer der Stellungen minimalen Volumens zu verändern und so das Verdichtungsverhältnis der Maschine einzustellen.
  36. Maschine nach einem der Ansprüche 1 bis 34, dadurch gekennzeichnet, daß die Synchronisationsmittel zusätzlich zu dem Kurbelmechanismus (31), der mit einem (9a) der beiden zuvor genannten Elemente längs einer ersten der Synchronisationsachsen verbunden ist, zwischen dem anderen (11b) der beiden Elemente und einem Rahmen der Maschine eine Drehverbindung (28) längs einer zweiten (K2) der Synchronisationsachsen aufweisen.
  37. Maschine nach Anspruch 36, dadurch gekennzeichnet, daß die beiden Elemente, mit denen die Synchronisationsmittel verbunden sind, ein erstes (9a) und ein zweites Element (11b) sind, und daß der Abstand zwischen der zweiten Synchronisationsachse (K2) und der Gelenkachse (A1) zwischen den beiden Elementen (9a, 11b) größer ist als der Radius des Kurbelkreises.
  38. Maschine nach Anspruch 37, dadurch gekennzeichnet, daß der Abstand zwischen der zweiten Synchronisationsachse (K2) und der Achse (J) der Kurbel (31) ein wenig kleiner ist als die Summe der Abstände zwischen der Gelenkachse zwischen den beiden Elementen (A1) und der zweiten Synchronisationsachse (K2) einerseits und der Kurbelachse (J) andererseits.
  39. Maschine nach Anspruch 38, dadurch gekennzeichnet, daß in der ersten Stellung minimalen Volumens die Achse (A1) zwischen den beiden Elementen (9a, 11b) zwischen den beiden Synchronisationsachsen (K1, K2) angeordnet ist.
  40. Maschine nach einem der Ansprüche 36 bis 39, dadurch gekennzeichnet, daß sie Mittel aufweist, um den Abstand zwischen der zweiten Synchronisationsachse (K2) und der Drehachse der Kurbel (J) in bezug auf den Rahmen einzustellen.
  41. Maschine nach einem der Ansprüche 1 bis 35, dadurch gekennzeichnet, daß die Synchronisationsmittel zwei Kurbelmechanismen (31, 51) aufweisen, die je mit einem der beiden vorgenannten Elemente verbunden sind.
  42. Maschine nach Anspruch 41, dadurch gekennzeichnet, daß die beiden vorgenannten Elemente zwei einander gegenüberliegende Elemente (11a, 11b) sind.
  43. Maschine nach einem der Ansprüche 41 bis 42, dadurch gekennzeichnet, daß die beiden Kurbelmechanismen im wesentlichen identisch sind (31, 51) und miteinander verbunden sind, um mit der gleichen Geschwindigkeit in gegenläufigen Richtungen zu drehen, und daß sie ebenso wie die Synchronisationsachsen (K1, K2) in bezug auf den Schwerpunkt (W) des Parallelogramms symmetrisch angeordnet sind.
EP93905403A 1992-02-21 1993-02-18 Verdrängermaschine insbesondere viertaktmotor Expired - Lifetime EP0627042B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9202023 1992-02-21
FR9202023A FR2687728B1 (fr) 1992-02-21 1992-02-21 Machine volumetrique a pistons louvoyants, en particulier moteur a quatre temps.
PCT/FR1993/000162 WO1993017224A1 (fr) 1992-02-21 1993-02-18 Machine volumetrique a pistons louvoyants, en particulier moteur a quatre temps

Publications (2)

Publication Number Publication Date
EP0627042A1 EP0627042A1 (de) 1994-12-07
EP0627042B1 true EP0627042B1 (de) 1995-11-15

Family

ID=9426895

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93905403A Expired - Lifetime EP0627042B1 (de) 1992-02-21 1993-02-18 Verdrängermaschine insbesondere viertaktmotor

Country Status (15)

Country Link
US (1) US5419292A (de)
EP (1) EP0627042B1 (de)
JP (1) JP3366635B2 (de)
KR (1) KR100266999B1 (de)
AT (1) ATE130397T1 (de)
AU (1) AU672389B2 (de)
BR (1) BR9305927A (de)
CA (1) CA2130260A1 (de)
CZ (1) CZ285414B6 (de)
DE (1) DE69300818T2 (de)
ES (1) ES2082634T3 (de)
FR (1) FR2687728B1 (de)
RU (1) RU2102612C1 (de)
TW (1) TW252179B (de)
WO (1) WO1993017224A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6474288B1 (en) * 1998-02-27 2002-11-05 Roy Albert Blom Internal combustion engine that completes four cycles in one revolution of the crankshaft
WO2003023191A1 (de) * 2001-09-05 2003-03-20 Manfred Max Rapp Parallelrotierende kolbenmaschine mit seitenwänden
US20040241029A1 (en) * 2001-09-05 2004-12-02 Rapp Manfred Max Parallel rotating piston engine with side walls
KR20080025366A (ko) 2005-04-29 2008-03-20 텐딕스 디벨롭먼트, 엘엘씨 래디얼 임펄스 엔진, 펌프 및 압축기 시스템과 관련 동작방법
US7270106B2 (en) * 2005-06-23 2007-09-18 John Stark Free-planetary gear moderated nutating (athena) engine
TW200717939A (en) 2005-10-24 2007-05-01 Benq Corp Handheld electronic device
FR2936272B1 (fr) * 2008-09-22 2012-07-13 Vincent Genissieux Machine rotative a losange deformable multifonctions
US20100242891A1 (en) * 2008-10-30 2010-09-30 Timber Dick Radial impulse engine, pump, and compressor systems, and associated methods of operation
US8439001B2 (en) * 2009-11-18 2013-05-14 Svetlana Lapan Actuator powered by fluid and method of forming the same
JP6894981B2 (ja) * 2017-04-28 2021-06-30 クエスト エンジンズ,エルエルシー 可変容積室デバイス
CN110284966B (zh) * 2019-06-28 2021-04-20 长城汽车股份有限公司 下连杆及具有其的发动机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB166077A (en) * 1920-11-02 1921-07-14 Alexandre Kliaguine Improvements in heat engines
FR1379609A (fr) * 1961-03-07 1964-11-27 Machines motrices et opératrices avec arbre à vilebrequin ou à manivelle
US3315653A (en) * 1965-09-27 1967-04-25 Chicurel Ricardo Internal combustion engine
US3574494A (en) * 1969-02-07 1971-04-13 Worthington Corp Fluid machine especially adapted for high pressure applications
DE3634899A1 (de) * 1986-10-14 1987-06-25 Joachim Kokula Verbrennungsmotor ohne oszillierende teile
DE3814311A1 (de) * 1988-03-22 1989-10-05 Raoul S Dr Nakhmanson Arbeitsmaschine mit mindestens zwei arbeitskammern mit veraenderlichem volumen
FR2651019B3 (fr) * 1989-08-21 1991-12-13 Benarova Gaby Moteur a combustion interne a cycle a quatre temps

Also Published As

Publication number Publication date
AU3635993A (en) 1993-09-13
DE69300818T2 (de) 1996-05-23
DE69300818D1 (de) 1995-12-21
FR2687728A1 (fr) 1993-08-27
AU672389B2 (en) 1996-10-03
WO1993017224A1 (fr) 1993-09-02
BR9305927A (pt) 1998-06-23
ES2082634T3 (es) 1996-03-16
EP0627042A1 (de) 1994-12-07
FR2687728B1 (fr) 1994-04-29
TW252179B (de) 1995-07-21
RU2102612C1 (ru) 1998-01-20
CA2130260A1 (fr) 1993-09-02
US5419292A (en) 1995-05-30
CZ198394A3 (en) 1995-06-14
KR100266999B1 (ko) 2000-09-15
CZ285414B6 (cs) 1999-08-11
RU94038044A (ru) 1996-07-10
JP3366635B2 (ja) 2003-01-14
JPH07504248A (ja) 1995-05-11
ATE130397T1 (de) 1995-12-15

Similar Documents

Publication Publication Date Title
EP0627042B1 (de) Verdrängermaschine insbesondere viertaktmotor
EP0034085B1 (de) Gaserzeuger mit positiver Verdrängung
EP2279332B1 (de) Verbrennungsmotor
FR2475126A1 (fr) Perfectionnement aux moteurs volumetriques rotatifs
EP0377672B1 (de) Verbrennungskraftmaschine mit drehschieber
FR2510219A1 (fr) Dispositif convertisseur de mouvement
FR2518646A1 (fr) Moteur a combustion a piston rotatif
FR2617537A1 (fr) Dispositif de transmission de puissance a fluide
FR2566460A1 (fr) Perfectionnements aux moteurs a combustion interne
FR2619596A1 (fr) Agencement rotatif pour le deplacement de pistons
FR3005106A1 (fr) Machine volumique rotative a trois pistons
FR2898383A1 (fr) Ensemble mecanique pour la realisation de machines telles que compresseurs, moteurs thermiques ou autres, dotees d'un cylindre et d'un piston
CH645698A5 (fr) Machine a chambres et pistons oscillants.
EP0391866B1 (de) Fluidummaschine mit rotierender Bewegung
FR2690201A1 (fr) Dispositif mécanique rotatif permettant la réalisation de compresseurs, de pompes ou de moteurs et moteurs selon ce dispositif.
FR2738285A1 (fr) Moteur rotatif thermique a rotor unique, portant quatre pistons oscillants actionnes par bielles et vilebrequin
EP3045656A1 (de) Mehrfunktionsrotationsmaschine mit verformbarem rhombus
EP0127694B1 (de) Maschine mit Schwenkkolben und -kammern
FR2521649A1 (fr) Machine pour l'aspiration et le refoulement d'un fluide
FR2613770A1 (fr) Moteur a combustion interne a deux temps
FR2666377A1 (fr) Moteur rotatif a combustion interne.
FR2466609A1 (fr) Machine rotative
FR1457642A (fr) Machine à combustion interne à pistons rotatifs
FR2693503A1 (fr) Dispositif mécanique utilisé pour former un moteur ou une pompe ou un compresseur à piston rotatif.
BE333661A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL SE

17Q First examination report despatched

Effective date: 19950109

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 130397

Country of ref document: AT

Date of ref document: 19951215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69300818

Country of ref document: DE

Date of ref document: 19951221

ITF It: translation for a ep patent filed

Owner name: PORTA CHECCACCI E BOTTI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2082634

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960215

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ANTONOV ENGINE

RIN2 Information on inventor provided after grant (corrected)

Free format text: ANTONOV, ROMAN

26N No opposition filed
NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ANTONOV ENGINE

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030130

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030131

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030207

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030211

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030212

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030215

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030228

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040218

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040225

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040228

BERE Be: lapsed

Owner name: ANTONOV *ROUMEN

Effective date: 20040228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041029

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050219

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040219

EUG Se: european patent has lapsed