EP1543344A2 - Optoelektronische erfassungseinrichtung - Google Patents

Optoelektronische erfassungseinrichtung

Info

Publication number
EP1543344A2
EP1543344A2 EP03795779A EP03795779A EP1543344A2 EP 1543344 A2 EP1543344 A2 EP 1543344A2 EP 03795779 A EP03795779 A EP 03795779A EP 03795779 A EP03795779 A EP 03795779A EP 1543344 A2 EP1543344 A2 EP 1543344A2
Authority
EP
European Patent Office
Prior art keywords
radiation
detection device
modules
transmitter modules
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03795779A
Other languages
English (en)
French (fr)
Inventor
Christian Boehlau
Johann Hipp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibeo Automobile Sensor GmbH
Original Assignee
Ibeo Automobile Sensor GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibeo Automobile Sensor GmbH filed Critical Ibeo Automobile Sensor GmbH
Publication of EP1543344A2 publication Critical patent/EP1543344A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems

Definitions

  • the invention relates to an optoelectronic detection device, in particular a laser scanner, with a transmitter device for emitting preferably pulsed electromagnetic radiation, at least one receiver device assigned to the transmitter device and at least one deflection device, with the radiation emitted by the transmitter device into a monitoring area and radiation reflected from the monitoring area onto the Receiving device is steerable.
  • Such detection devices are generally known - e.g. from the as yet unpublished German patent application 101 43 060.4 filed on September 3, 2001 - and are attached, for example, to vehicles in order to record the surroundings of the vehicle while driving.
  • the object of the invention is to provide an optoelectronic detection device of the type mentioned at the outset, which is as versatile as possible with a construction which is as simple as possible and a safe and reliable mode of operation, and in particular can also be used under changing external conditions.
  • the transmission device comprises a plurality, preferably exactly two, of spatially separated transmission modules, each of which emits radiation along its own propagation path.
  • the use according to the invention of more than just a single transmitter module advantageously results in the possibility of more flexible operation of the detection device, which is also referred to simply as a scanner in the following, which can thereby be specifically adapted to different requirements and to changing external conditions.
  • the transmitter modules of the transmitter device according to the invention can be compared to only one only scanner having a transmitter module can be operated with a significantly lower radiation power. As a result, a considerable power reserve is available for the transmitter modules during normal operation of the transmitter.
  • This power reserve can be used, in particular, to increase the radiation power of the transmitter modules in the event of increasing contamination of a radiation exit surface of the scanner, as a result of which it is possible to continue to carry out useful measurements even with comparatively heavy contamination.
  • the possibility according to the invention of operating the transmitter modules with a comparatively low normal transmission power can also extend the service life of the transmitter modules.
  • the propagation paths of the radiation emitted by the transmitter modules run at least partially without overlap, preferably at least within a close range of the detection device that is relevant for eye safety.
  • This freedom from overlaps ensures that the propagation paths of the transmission radiation, also referred to below as transmission channels, are completely separate from one another, at least in the distance ranges provided for this purpose. In these areas, therefore, an object that does not exceed a certain maximum size can be hit by only one of the transmitter modules, but not by several transmitter modules at the same time.
  • This advantageous circumstance is particularly important with regard to the prescribed eye safety when using laser radiation, i.e. if an object located in a surveillance area is a human eye. Because an eye cannot be hit by more than one of the transmitter modules in the distance area in which the transmission channels run separately from one another, it is possible without impairing eye safety to increase the transmission powers of the transmission modules beyond the normal transmission power, for example, when this is indicated - as already mentioned above - due to increasing contamination of a radiation exit area. Consequently, the maximum that can be observed in this regard can also and especially with regard to the required eye safety Radiation powers of the transmitter modules are "fully exploited" independently of one another.
  • the aspect of eye safety is of secondary importance at most, since in practice the radiation intensity is reduced in practice due to the beam expansion and / or due to an intensity weakening due to the material in the propagation path, so that even with maximum output power of the transmitter modules, eye safety to be complied with even in areas overlapping transmission channels is always guaranteed.
  • the transmitter modules are designed and aligned in such a way that the fronts of the emitted radiation together form a total radiation front in the monitoring area, which is preferably larger than each of the individual radiation fronts, at least at distances relevant to the respective application.
  • the transmitter modules are preferably each designed to emit an elongated radiation front.
  • the radiation front can be a continuous radiation line or be formed by discrete radiation spots arranged along a line.
  • the radiation emitted by the transmitter modules is also simply referred to below as a light line.
  • the monitoring area is scanned for each of the transmitter modules by means of a two-dimensional radiation front.
  • a movement of the deflection device relative to the transmitter modules which is preferably provided during the scanning operation, this results overall in a three-dimensional or quasi-three-dimensional scanning of the monitoring area if the radiation fronts each assume different orientations in space depending on the position of the moving deflection device during the scanning operation .
  • a common receiving device is assigned to the transmitter modules.
  • the receiving device preferably has a flat radiation receiver, the radiation receiver preferably being adapted to the shape of an overall radiation front generated jointly by the transmitter modules.
  • the receiving device in particular a planar radiation receiver of the receiving device, is subdivided into a plurality of receiving areas which can be evaluated independently of one another, with at least one receiving area being assigned to each transmitting module, then individual sections of the total radiation radiation formed jointly by the transmitting modules can front can be evaluated separately, ie a profile of the object scanned can be recorded for each direction in which the light line is emitted.
  • the transmitter modules are arranged on the side of a common receiving device.
  • the arrangement is preferably such that, at least in the projection onto a common transmission / reception level, the transmission modules and the reception device lie on one line.
  • the transmitter modules are arranged symmetrically on opposite sides of the receiver.
  • a deflection device which is rotatable relative to the transmitter modules and the receiving device is used, then provision is preferably made for the axis of rotation of the deflection device to be centered through the receiver. Catching device runs through and the transmitter modules are arranged equidistant from the axis of rotation.
  • the distance between the transmitter modules is maximized in such a way that the radiation emitted by the transmitter modules is deflected by edge regions of the deflection device.
  • the propagation path of the radiation emitted by at least one transmitter module, on the one hand, and the reception path of the radiation reflected from the monitoring area and directed onto the receiving device, on the other hand, run without overlap in a near area comprising a radiation exit surface of the detection device.
  • the invention also relates to a method for operating an optoelectronic detection device, as described above, in which the transmitter modules are controlled in such a way that the transmitter modules emit the radiation at different times and, in particular, alternately in the form of radiation pulses.
  • the radiation pulses emitted by the transmitter modules hit one after the other in time and - if a deflection device moving relative to the transmitter module is used in accordance with the preferred embodiment - spatially offset in relation to the direction of movement of the deflection device on an object scanned in the monitoring area.
  • the control of the two transmitter modules is preferably carried out in such a way that the radiation pulses of the one transmitter module are emitted midway between two successive radiation pulses of the other transmitter module.
  • This alternating mode of operation of the two transmitter modules results in a constant angular offset between the two radiation fronts hitting the scanned object in the monitoring area and thus on a scanned object. Overall, this doubles the angular resolution of the detection device according to the invention, without the pulse frequencies of the individual transmitter modules having to be increased.
  • the pulse operation of the transmitter modules which takes place at different times, also advantageously leads to a significant improvement in the measurement accuracy. If you wanted to "fire" the transmitter modules at the same time, the problem in practice would be that - in relation to the Speed of radiation propagation as well as the reception signal processing - an exact simultaneity of the radiation emission cannot be realized. Even a very slight unintentional time offset leads, at least in the case of objects having a relatively high reflectivity, to crosstalk, also referred to as a "blooming" effect, between adjacent reception areas of the receiver assigned to different transmitter modules.
  • the radiation pulse of one transmitter module hits the object, but the radiation pulse of another transmitter module does not, then the radiation from the transmitter module in question can also be reflected by the object onto the reception area of the other transmitter module that does not hit, so that the evaluation of the transmitter module does not "Transposing" the presence of an object, even though the corresponding transmitter module has not hit a target at all.
  • the invention further relates to the use of at least one optoelectronic detection device, as described above, in connection with a vehicle.
  • the optoelectronic detection device is used for object detection and tracking.
  • an optoelectronic detection device is preferably used, which is designed or attached to or in the vehicle in such a way that, during normal driving, elongated radiation fronts emitted by the transmitter modules at least essentially in a vertical direction when propagating in the direction of travel forward. device, preferably with the radiation fronts lying one above the other in the vertical direction.
  • This use has the advantage that from the area in front of the vehicle in the direction of travel, height information e.g. can be obtained from vehicles in front.
  • Fig. 1 shows a schematic side view of the structure of a laser scanner according to an embodiment of the invention
  • FIG. 2 schematically shows a perspective view of some components of a laser scanner according to the invention.
  • the detection device also referred to simply as a scanner below, comprises a deflection module 23 with, among other things, a rotating mirror 47, which is driven during the scanning operation by a flat motor 21 for a continuous rotary movement about an axis of rotation 49, and with a housing 37, which comprises a self-supporting housing section 45 and a cover cap 41 removably attached to the housing section 45.
  • the components of the deflection module 23 are supported on a sensor module 29 of the scanner via the housing section 45.
  • the sensor module 29 comprises a support structure 31, which is preferably produced as an aluminum die-cast part and which has a plate-shaped cover section 32 and a one running perpendicular to the cover section 32 Has light shaft 55 as a further functional section of the support structure 31.
  • the housing section 45 is connected to the cover section 32 of the support structure 31, in particular by screwing.
  • the deflection module 23 is connected as a whole via the housing section 45 to the support structure 31 and thus to the sensor module 29.
  • a cover cap 43 forming the housing 39 of the sensor module 29 is connected to the support structure 31, in particular by screwing.
  • the cover cap 43 can be removed from the support structure 31 without further components of the sensor module 29 having to be removed.
  • these further components include in particular two laser modules 11 and a receiver 15, which are attached to the light shaft 55 of the support structure 31, as well as an evaluation unit 25 connected to the receiver 15 and a supply unit 27 for supplying both the sensor module 29 and the deflection module 23 with electrical Energy.
  • the detection device according to the invention is connected to an evaluation computer 67 and a power source (not shown) via a connection area 63 formed on the sensor module 29 as well as communication and supply lines 65.
  • the transmitter modules 11 of the sensor module 29 emit laser radiation, in particular in the IR range, in the direction of the deflection mirror 47 and deflects it into a monitoring area through the housing section 45 of the deflection module 23, which is at least partially permeable to the radiation used, whereupon from the The radiation is reflected in the monitoring area Via the deflection mirror 47 into the light shaft 55 of the sensor module 29 and directed onto the receiver 15 and evaluated with the aid of the evaluation unit 25 and the computer 67.
  • the support structure 31 is provided at the corresponding points with two transmission lenses 33 each assigned to one of the laser modules 11 and a reception lens 35 assigned to the receiver 15 provided, which are firmly integrated in the support plate 32. This will be discussed in more detail in connection with FIG. 2.
  • FIG. 1 The structure of the detection device shown in FIG. 1, which is designed as a laser scanner, and the adjustment of the scanner components per se are also the subject of a further German patent application filed on the same day as the present patent application, so that details of this are not discussed in detail ,
  • FIG. 2 shows a preferred example for the integration of a transmission and reception optics, as described above, into a support structure of a laser scanner, the support structure 31 being shown in simplified form in FIG. 2 in the form of a circular disk.
  • the support structure 31 according to the invention can have any simple or complex spatial structure and can be adapted to the shape of a housing of a sensor module and / or deflection module of the respective detection device to be closed, as is also shown, for example, in FIG. 1.
  • the comparatively large-area receiving lens 35 has a circular shape reduced by two diametrically opposite circular sections. The areas 73 of the omitted circular sections are taken up by the support structure 31.
  • each of these areas 73 there is a circular transmission lens 33, the extent of which is small compared to the extent of the receiving lens 35.
  • the two transmitting lenses 33 are arranged symmetrically in such a way that the centers of the circular transmitting lenses 33 and the center of the receiving lens 35 lie on one line and the two transmitting lenses 33 are located equidistant from the center point of the receiving lens 35 through which the axis of rotation 49 of the rotating mirror 47 (not shown in FIG. 2) runs (cf. FIG. 1).
  • the transmitting lenses 33 lie within the circle defined by the receiving lens 35, whereby an overall space-saving arrangement is achieved.
  • the arrangement of the lenses 33, 35 corresponds to the arrangement of the laser modules 11 and the receiver 15.
  • the laser modules 11 are consequently arranged symmetrically on opposite sides of the receiver 15, with the axis of rotation 49 of the rotating mirror 47 not shown in FIG. 2 (cf. 1) extends through the center of the receiving device 15. Consequently, the laser modules 11 are arranged equidistant from the axis of rotation 49 in a direction perpendicular to the axis of rotation 49.
  • the distance between the laser modules 11 is maximum with respect to the size of the rotating mirror 47, ie the radiation 13 emitted by the laser modules 11 strikes edge regions of the rotating mirror 47.
  • the scanner according to the invention consequently does not only have a single radiation source, but several - in the preferred exemplary embodiment described here exactly two - laser modules 11, which are also arranged maximally eccentrically with respect to the axis of rotation 49 of the rotating mirror 47 coinciding with the optical axis of the reception path ,
  • the laser modules 11 are each provided with a radiation source in the form of a semiconductor laser diode 69, which are only shown schematically in FIG. 2.
  • the laser diodes 69 each form a line-shaped radiation source, so that consequently each laser module 11 emits the radiation with an elongated radiation front, which is also referred to below simply as a light line.
  • the orientation of the emitted light lines in space is dependent on the angular position of the rotating mirror 47 relative to the stationary laser modules 11 at the moment the radiation fronts strike the rotating mirror 47.
  • the orientation of the elongated radiation fronts in the room consequently changes continuously , ie the monitoring area is scanned by rotating light lines.
  • the concept of a line-shaped or line-shaped radiation source in connection with a deflection device on a laser scanner rotating relative to this radiation source is the subject of the aforementioned, not yet published. published German patent application 101 43 060.4 on September 3, 2001, so that details on this will not be discussed in more detail.
  • the laser scanner mounted on the vehicle is preferably aligned according to the invention in such a way that the lines of light run vertically in the direction of travel forward and backward, i.e. the vehicle environment is scanned forwards and backwards with a large vertical angle.
  • the vertical divergence of the radiation emitted by the two laser modules 11 is in each case 1.6 ° in a preferred embodiment, so that a vertical beam divergence of 3.2 ° results overall.
  • the receiving device 15 comprises a receiving array 59 consisting of photodiodes arranged one behind the other, which is designed in line or line form in accordance with the light lines emitted by the laser modules 11.
  • a total of eight photodiodes are preferably provided, of which two adjacent photodiodes are connected together to form a jointly evaluated diode pair.
  • Two pairs of diodes are assigned to each laser module 11, i.e. the light line reflected from the monitoring area of each laser module 11 is imaged on two adjacent diode pairs.
  • a receiver amplifier is assigned to each pair of diodes.
  • This subdivision of the reception array 59 into a total of four successive reception areas effectively scans the monitoring area in four scanning planes, each of the two laser modules 11 realizing two scanning planes with its emitted light line.
  • the two laser modules 11 are not “fired” at the same time during the scanning operation, but instead the radiation pulses 13 are emitted alternately. For this reason, not two, but only two evaluation modules for distance measurement are used, which are operated using the multiplex method.
  • the angular resolution of the scanner according to the invention depends on the rotational frequency of the mirror 47 and the pulse frequency of the laser modules 11.
  • the latter is preferably a constant 14.4 kHz, while for the mirror 47 preferably rotational frequencies of 10 Hz, 20 Hz and 40 Hz can be set.
  • the alternating operation of the two laser modules 11 preferred according to the invention leads to an improvement in the angular resolution by a factor of 2, ie at a rotation frequency of 10 Hz there is an angular resolution of 0, 125 °.
  • Transmitter module laser module emitted radiation receiving device reflected, received radiation drive unit deflection module evaluation unit supply unit sensor module supporting structure cover section transmission lens receiving lens housing of the deflection module housing of the sensor module cover cap of the deflection module cover cap of the sensor module radiation exit area, housing section reflection area, mirror axis of rotation receiver channel radiation area area

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Die Erfindung betrifft eine optoelektronische Erfassungseinrichtung, insbesondere einen Laserscanner, mit einer Sendeeinrichtung zur Aussendung bevorzugt gepulster elektromagnetischer Strahlung, zumindest einer der Sendeeinrichtung zugeordneten Empfangseinrichtung und wenigstens einer Ablenkeinrichtung, mit der von der Sendeeinrichtung ausgesandte Strahlung in einen Überwachungsbereich und aus dem Überwachungsbereich reflektierte Strahlung auf die Empfangseinrichtung lenkbar ist, wobei die Sendeeinrichtung mehrere, bevorzugt genau zwei, räumlich getrennt voneinander angeordnete Sendemodule umfasst, die jeweils Strahlung entlang eines eigenen Ausbreitungsweges aussenden.

Description

Optoelektronische Erfassungseinrichtung
Die Erfindung betrifft eine optoelektronische Erfassungseinrichtung, insbesondere einen Laserscanner, mit einer Sendeeinrichtung zur Aussendung bevorzugt gepulster elektromagnetischer Strahlung, zumindest einer der Sendeeinrichtung zugeordneten Empfangseinrichtung und wenigstens einer Ablenkeinrichtung, mit der von der Sendeeinrichtung ausgesandte Strahlung in einen Überwachungsbereich und aus dem Überwachungsbereich reflektierte Strahlung auf die Empfangseinrichtung lenkbar ist.
Derartige Erfassungseinrichtungen sind grundsätzlich bekannt - z.B. aus der noch nicht veröffentlichten, am 3. September 2001 hinterlegten deutschen Patentanmeldung 101 43 060.4 - und werden beispielsweise an Fahrzeugen angebracht, um während der Fahrt die Umgebung des Fahrzeugs zu erfassen.
Aufgabe der Erfindung ist es, eine optoelektronische Erfassungseinrichtung der eingangs genannten Art zu schaffen, die bei möglichst einfachem Aufbau sowie sicherer und zuverlässiger Funktionsweise möglichst vielseitig und insbesondere auch bei sich verändernden äußeren Bedingungen einsetzbar ist.
Die Lösung dieser Aufgabe erfolgt durch die Merkmale des Anspruchs 1 und insbesondere dadurch, dass die Sendeeinrichtung mehrere, bevorzugt genau zwei, räumlich getrennt voneinander angeordnete Sendemodule umfasst, die jeweils Strahlung entlang eines eigenen Ausbreitungsweges aussenden. Durch die erfindungsgemäße Verwendung von mehr als lediglich einem einzigen Sendemodul ergibt sich in vorteilhafter Weise die Möglichkeit zu einem flexibleren Betrieb der im Folgenden auch einfach als Scanner bezeichneten Erfassungseinrichtung, die dadurch gezielt an unterschiedliche Anforderungen sowie an sich verändernde äußere Bedingungen ange- passt werden kann.
Da erfindungsgemäß die für eine gewünschte Art und Weise der Abtas- tung des Überwachungsbereiches benötigte Strahlungsintensität nicht von einem einzigen Sendemodul alleine bereitgestellt werden muss, sondern die benötigte Strahlungsintensität von mehreren Sendemodulen gemeinsam erzeugt wird, können die Sendemodule der erfindungsgemäßen Sendeeinrichtung im Vergleich zu einem lediglich ein einziges Sendemodul aufweisenden Scanner mit einer wesentlich geringeren Strahlungsleistung betrieben werden. Hierdurch ist im Normalbetrieb der Sendeeinrichtung für die Sendemodule eine erhebliche Leistungsreserve vorhanden.
Diese Leistungsreserve kann insbesondere dazu benutzt werden, im Fall einer zunehmenden Verschmutzung einer Strahlungsaustrittsfläche des Scanners die Strahlungsleistung der Sendemodule zu erhöhen, wodurch erreicht wird, dass selbst bei vergleichsweise starker Verschmutzung weiterhin brauchbare Messungen durchgeführt werden können. In Abhängigkeit von den konkret für die Sendemodule verwendeten Komponenten kann durch die erfindungsgemäße Möglichkeit, die Sendemodule mit einer vergleichsweise niedrigen Normal-Sendeleistung zu betreiben, außerdem die Lebensdauer der Sendemodule verlängert werden.
Bevorzugte Ausführungsformen der Erfindung sind auch in den Unteran- Sprüchen, der Beschreibung sowie der Zeichnung angegeben. So ist gemäß einer bevorzugten Ausführungsform der Erfindung vorgesehen, dass die Ausbreitungswege der von den Sendemodulen ausgesandten Strahlung zumindest streckenweise überlappungsfrei verlaufen, vorzugs- weise zumindest innerhalb eines für die Augensicherheit relevanten Nahbereiches der Erfassungseinrichtung. Durch diese Überlappungsfreiheit ist sichergestellt, dass die im Folgenden auch als Sendekanäle bezeichneten Ausbreitungswege der Sendestrahlung zumindest in den hierfür vorgesehenen Entfernungsbereichen vollständig getrennt voneinander verlau- fen. In diesen Bereichen kann folglich ein eine bestimmte Maximalgröße nicht übersteigendes Objekt allenfalls nur von einem der Sendemodule, nicht jedoch von mehreren Sendemodulen gleichzeitig getroffen werden.
Von Bedeutung ist dieser vorteilhafte Umstand insbesondere im Hinblick auf die vorgeschriebene Augensicherheit bei der Verwendung von Laserstrahlung, d.h. wenn es sich bei einem Überwachungsbereich befindlichen Objekt" um ein menschliches Auge handelt. Dadurch, dass in demjenigen Entfernungsbereich, in welchem die Sendekanäle getrennt voneinander verlaufen, ein Auge nicht von mehr als einem der Sendemodule getroffen werden kann, ist es ohne Beeinträchtigung der Augensicherheit möglich, die Sendeleistungen der Sendemodule über die Normal-Sendeleistung hinaus beispielsweise dann zu erhöhen, wenn dies - wie vorstehend bereits erwähnt - aufgrund einer zunehmenden Verschmutzung einer Strah- lungsaustrittsfläche angezeigt ist. Folglich können auch und gerade im Hinblick auf die geforderte Augensicherheit die diesbezüglich einzuhaltenden maximalen Strahlungsleistungen der Sendemodule unabhängig voneinander "voll ausgereizt" werden.
In den weiter von der Erfassungseinrichtung entfernt liegenden Bereichen, in denen sich die Sendekanäle der Sendemodule zumindest teilweise über- läppen können, ist der Aspekt der Augensicherheit allenfalls von untergeordneter Bedeutung, da in der Praxis die Strahlungsintensität wegen der Strahlaufweitung und/ oder aufgrund einer Intensitätsschwächung durch im Ausbreitungsweg befindliche Materie derart reduziert ist, dass selbst bei maximaler Ausgangsleistung der Sendemodule die einzuhaltende Augensicherheit selbst in Bereichen einander überlappender Sendekanäle stets gewährleistet ist.
In einem weiteren Ausführungsbeispiel der Erfindung sind die Sendemo- dule derart ausgebildet und ausgerichtet, dass die Fronten der ausgesandten Strahlung im Überwachungsbereich zusammen eine Gesamtstrahlungsfront bilden, die vorzugsweise zumindest in für den jeweiligen Anwendungszweck relevanten Entfernungen größer ist als jede der Einzel- strahlungsfronten .
Vorzugsweise sind die Sendemodule jeweils zur Aussendung einer langgestreckten Strahlungsfront ausgebildet. Dabei kann die Strahlungsfront ein durchgehender Strahlungsstrich sein oder von diskreten, entlang einer Linie angeordneten Strahlungsflecken gebildet werden. Die ausgesandte Strahlung der Sendemodule wird im Folgenden auch einfach als Lichtstrich bezeichnet.
Hierdurch erfolgt für jedes der Sendemodule die Abtastung des Überwachungsbereiches mittels einer zweidimensionalen Strahlungsfront. Zu- sammen mit einer während des Scanbetriebs vorzugsweise vorgesehenen Bewegung der Ablenkeinrichtung relativ zu den Sendemodulen ergibt dies insgesamt eine dreidimensionale oder quasidreidimensionale Abtastung des Überwachungsbereiches, wenn die Strahlungsfronten während des Abtastbetriebs jeweils verschiedene, von der Stellung der bewegten Ab- lenkeinrichtung abhängige Orientierungen im Raum einnehmen. Des Weiteren ist erfindungsgemäß vorzugsweise vorgesehen, dass den Sendemodulen eine gemeinsame Empfangseinrichtung zugeordnet ist. Die Empfangseinrichtung weist bevorzugt einen flächigen Strahlungsempfän- ger auf, wobei vorzugsweise der Strahlungsempfänger an die Form einer von den Sendemodulen gemeinsam erzeugten Gesamtstrahlungsfront an- gepasst ist.
Wenn gemäß einer weiteren bevorzugten Ausführungsform die Empfangs- einrichtung, insbesondere ein flächiger Strahlungsempfänger der Empfangseinrichtung, in eine Mehrzahl von unabhängig voneinander auswertbaren Empfangsbereichen unterteilt ist, wobei jedem Sendemodul wenigstens ein Empfangsbereich zugeordnet ist, dann können einzelne Abschnitte der von den Sendemodulen gemeinsam gebildeten Gesamtstrahlungs- front getrennt ausgewertet werden, d.h. es kann für jede Richtung, in welche der Lichtstrich ausgesandt wird, ein Profil des jeweils abgetasteten Gegenstands aufgenommen werden.
In einer besonders bevorzugten praktischen Ausgestaltung der Erfindung sind die Sendemodule seitlich einer gemeinsamen Empfangseinrichtung angeordnet. Bevorzugt erfolgt die Anordnung derart, dass zumindest in der Projektion auf eine gemeinsame Sende- /Empfangsebene die Sendemodule und die Empfangseinrichtung auf einer Linie liegen.
Dabei ist es bevorzugt, wenn die Sendemodule symmetrisch auf gegenüberliegenden Seiten der Empfangseinrichtung angeordnet sind.
Wenn eine relativ zu den Sendemodulen und der Empfangseinrichtung drehbare Ablenkeinrichtung verwendet wird, dann ist vorzugsweise vorge- sehen, dass die Drehachse der Ablenkeinrichtung mittig durch die Emp- fangseinrichtung hindurch verläuft und die Sendemodule gleich weit von der Drehachse entfernt angeordnet sind.
Gemäß einer weiteren besonders bevorzugten Ausführungsform der Erfin- düng ist der Abstand zwischen den Sendemodulen derart maximiert, dass die von den Sendemodulen ausgesandte Strahlung von Randbereichen der Ablenkeinrichtung abgelenkt wird. Hierdurch ergeben sich besonders vorteilhafte Möglichkeiten, den Verlauf der Ausbreitungswege der von den Sendemodulen ausgesandten Strahlung gezielt in Abhängigkeit von dem jeweiligen Anwendungszweck zu wählen. Insbesondere besteht durch diese Sendegeometrie ein größerer Spielraum bei der Einstellung bestimmter Überlappungseigenschaften der Sendekanäle.
In einem weiteren Ausführungsbeispiel der Erfindung ist vorgesehen, dass der Ausbreitungsweg der von zumindest einem Sendemodul ausgesandten Strahlung einerseits und der Empfangsweg der aus dem Überwachungsbereich reflektierten, auf die Empfangseinrichtung gelenkten Strahlung andererseits in einem eine Strahlungsaustrittsfläche der Erfassungseinrichtung umfassenden Nahbereich überlappungsfrei verlaufen.
Diese Überlappungsfreiheit zwischen Sendekanal und Empfangskanal hat zur Folge, dass aus dem überlappungsfreien Nahbereich reflektierte Strahlung nicht auf die Empfangseinrichtung trifft, was bedeutet, dass sich Sender und Empfänger in diesem Bereich "nicht sehen". Verschmut- zungen auf der Strahlungsaustrittsfläche der Erfassungseinrichtung können folglich nicht zu störenden Reflexionen führen, d.h. durch einen derartigen Verlauf von Sendekanal und Empfangskanal wird eine vorteilhafte Verschmutzungsunempfindlichkeit des erfindungsgemäßen Scanners erreicht. Die Erfindung betrifft außerdem ein Verfahren zum Betreiben einer optoelektronischen Erfassungseinrichtung, wie sie vorstehend beschrieben wurde, bei dem die Sendemodule derart angesteuert werden, dass die Sendemodule die Strahlung zeitlich versetzt und insbesondere abwech- selnd jeweils in Form von Strahlungspulsen aussenden.
Hierdurch treffen die von den Sendemodulen ausgesandten Strahlungspulse zeitlich nacheinander und - wenn gemäß der bevorzugten Ausführung eine sich relativ zu dem Sendemodulen bewegende Ablenkeinrich- tung verwendet wird - bezogen auf die Bewegungsrichtung der Ablenkeinrichtung räumlich versetzt auf einen im Überwachungsbereich abgetasteten Gegenstand auf.
Bei der bevorzugten Verwendung von genau zwei Sendemodulen und einer kontinuierlich mit einer konstanten Drehzahl rotierenden Ablenkeinrichtung erfolgt die Ansteuerung der beiden Sendemodule vorzugsweise derart, dass die Strahlungspulse des einen Sendemoduls zeitlich in der Mitte zwischen zwei aufeinander folgenden Strahlungspulsen des anderen Sendemoduls ausgesandt werden. Diese alternierende Betriebsweise der bei- den Sendemodule führt im Überwachungsbereich und damit auf einem abgetasteten Gegenstand zu einem konstanten Winkelversatz zwischen den beiden auf dem abgetasteten Gegenstand auftreffenden Strahlungsfronten. Insgesamt wird hierdurch die Winkelauflösung der erfindungsgemäßen Erfassungseinrichtung verdoppelt, ohne dass hierzu die Pulsfre- quenzen der einzelnen Sendemodule erhöht werden müsste.
Der zeitlich versetzt erfolgende Pulsbetrieb der Sendemodule führt außerdem in vorteilhafter Weise zu einer wesentlichen Verbesserung der Messgenauigkeit. Würde man nämlich die Sendemodule gleichzeitig "feuern" wollen, so bestünde in der Praxis das Problem, dass - bezogen auf die Geschwindigkeit der Strahlungsausbreitung sowie der Empfangssignalverarbeitung - eine exakte Gleichzeitigkeit der Strahlungsaussendung nicht realisierbar ist. Selbst ein sehr geringer unbeabsichtigter Zeitversatz führt zumindest bei eine relativ hohe Reflektivität aufweisenden Gegen- ständen zu einem auch als "blooming"-Effekt bezeichneten Übersprechen zwischen benachbarten, verschiedenen Sendemodulen zugeordneten Empfangsbereichen des Empfängers. Wenn der Strahlungspuls des einen Sendemoduls das Objekt trifft, der Strahlungspuls eines anderen Sendemoduls jedoch nicht, dann kann die Strahlung des treffenden Sendemo- duls von dem Objekt auch auf den Empfangsbereich des anderen, nicht treffenden Sendemoduls reflektiert werden, so dass die Auswertung des dem nicht treffenden Sendemoduls das Vorhandensein eines Objektes "vorgaukelt", obwohl das entsprechende Sendemodul überhaupt kein Ziel getroffen hat.
Derartige Scheinmessungen oder virtuelle Ziele werden durch den vorstehend beschriebenen, gezielt zeitversetzt erfolgenden Betrieb der Sendemodule sicher vermieden.
Die Erfindung betrifft des Weiteren die Verwendung wenigstens einer optoelektronischen Erfassungseinrichtung, wie sie vorstehend beschrieben wurde, in Verbindung mit einem Fahrzeug. Insbesondere wird dabei die optoelektronische Erfassungseinrichtung zur Objekterkennung und -Verfolgung eingesetzt.
Vorzugsweise wird dabei eine optoelektronische Erfassungseinrichtung verwendet, die derart ausgebildet ist oder am oder im Fahrzeug angebracht wird, dass bei normalem Fahrbetrieb von den Sendemodulen ausgesandte langgestreckte Strahlungsfronten sich bei Ausbreitung in Fahrt- richtung nach vorne jeweils zumindest im Wesentlichen in vertikaler Rieh- tung erstrecken, wobei vorzugsweise die Strahlungsfronten in vertikaler Richtung übereinander liegen.
Diese Verwendung hat den Vorteil, dass aus dem in Fahrtrichtung vor dem Fahrzeug liegenden Bereich Höheninformationen z.B. über vorausfahrende Fahrzeuge beschafft werden können.
Die Erfindung wird im Folgenden beispielhaft unter Bezugnahme auf die Zeichnung beschrieben. Es zeigen:
Fig. 1 in einer Seitenansicht schematisch den Aufbau eines Laserscanners gemäß einer Ausführungsform der Erfindung, und
Fig. 2 schematisch eine perspektivische Ansicht einiger Kompo- nenten eines erfindungsgemäßen Laserscanners.
Die im Folgenden auch einfach als Scanner bezeichnete Erfassungseinrichtung umfasst ein Ablenkmodul 23 mit u.a. einem Drehspiegel 47, der während des Scanbetriebs von einem Flachmotor 21 zu einer kontinuierli- chen Drehbewegung um eine Drehachse 49 angetrieben wird, und mit einem Gehäuse 37, das einen selbsttragenden Gehäuseabschnitt 45 sowie eine abnehmbar am Gehäuseabschnitt 45 angebrachte Abdeckkappe 41 umfasst.
Die Komponenten des Ablenkmoduls 23 sind über den Gehäuseabschnitt 45 an einem Sensormodul 29 des Scanners abgestützt.
Das Sensormodul 29 umfasst eine bevorzugt als Aluminium-Druckgussteil hergestellte Tragstruktur 31 , die einen plattenförmigen Deckelab- schnitt 32 sowie einen senkrecht zum Deckelabschnitt 32 verlaufenden Lichtschacht 55 als weiteren Funktionsabschnitt der Tragstruktur 31 aufweist.
Mit dem Deckelabschnitt 32 der Tragstruktur 31 ist der Gehäuseabschnitt 45 verbunden, insbesondere durch Verschrauben. Hierdurch ist das Ablenkmodul 23 über den Gehäuseabschnitt 45 als Ganzes mit der Tragstruktur 31 und damit mit dem Sensormodul 29 verbunden.
Außerdem mit der Tragstruktur 31 insbesondere durch Verschrauben verbunden ist eine das Gehäuse 39 des Sensormoduls 29 bildende Abdeckkappe 43. Die Abdeckkappe 43 kann von der Tragstruktur 31 abgenommen werden, ohne dass weitere Komponenten des Sensormoduls 29 demontiert werden müssen.
Zu diesen weiteren Komponenten gehören insbesondere zwei Lasermodule 11 und ein Empfänger 15, die am Lichtschacht 55 der Tragstruktur 31 angebracht sind, sowie eine an den Empfänger 15 angeschlossene Auswerteeinheit 25 und eine Versorgungseinheit 27 zur Versorgung sowohl des Sensormoduls 29 als auch des Ablenkmoduls 23 mit elektrischer Energie. Über einen am Sensormodul 29 ausgebildeten Anschlussbereich 63 sowie Kommunikations- und Versorgungsleitungen 65 ist die erfindungsgemäße Erfassungseinrichtung während des Betriebs mit einem Auswerterechner 67 und einer nicht dargestellten Stromquelle verbunden.
Während des Scanbetriebs wird von den Sendemodulen 11 des Sensormoduls 29 Laserstrahlung insbesondere im IR-Bereich in Richtung des Ablenkspiegels 47 ausgesandt und von diesem durch den zumindest bereichsweise für die verwendete Strahlung durchlässigen Gehäuseabschnitt 45 des Ablenkmoduls 23 in einen Überwachungsbereich abgelenkt, wor- aufhin aus dem Überwachungsbereich reflektierte Strahlung wiederum über den Ablenkspiegel 47 in den Lichtschacht 55 des Sensormoduls 29 hinein und auf den Empfänger 15 gelenkt und mit Hilfe der Auswerteeinheit 25 und des Rechners 67 ausgewertet wird.
Um die Ausbreitung der Strahlung zwischen dem Sensormodul 29 und dem Ablenkmodul 23 durch die Tragplatte 32 der Tragstruktur 31 hindurch zu ermöglichen, ist die Tragstruktur 31 an den entsprechenden Stellen mit zwei jeweils einem der Lasermodule 11 zugeordneten Sendelinsen 33 sowie einer dem Empfänger 15 zugeordneten Empfangslinse 35 versehen, die fest in die Tragplatte 32 integriert sind. Hierauf wird in Verbindung mit Fig. 2 näher eingegangen.
Der Aufbau der in Fig. 1 dargestellten, als Laserscanner ausgebildeten Erfassungseinrichtung an sich sowie die Justage der Scannerkomponenten an sich sind außerdem jeweils Gegenstand einer weiteren, am gleichen Tag wie die vorliegende Patentanmeldung hinterlegten deutschen Patentanmeldung, so dass auf Details hierzu jeweils nicht näher eingegangen wird.
Fig. 2 zeigt ein bevorzugtes Beispiel für die Integration einer Sende- und Empfangsoptik, wie sie vorstehend beschrieben wurde, in eine Tragstruktur eines Laserscanners, wobei die Tragstruktur 31 in Fig. 2 vereinfacht in Form einer Kreisscheibe dargestellt ist. Grundsätzlich kann die erfindungsgemäße Tragstruktur 31 eine beliebige einfache oder komplexe Raumstruktur aufweisen und an die Form eines zu verschließenden Gehäuses eines Sensormoduls und/ oder Ablenkmoduls der jeweiligen Erfassungseinrichtung angepasst sein, wie es beispielsweise auch in Fig. 1 gezeigt ist. Die vergleichsweise großflächige Empfangslinse 35 weist eine um zwei diametral einander gegenüberliegende Kreisabschnitte reduzierte Kreisform auf. Die Bereiche 73 der weggelassenen Kreisabschnitte werden von der Tragstruktur 31 eingenommen. In diesen Bereichen 73 ist jeweils eine kreisförmige Sendelinse 33 angeordnet, deren Ausdehnung klein ist gegenüber der Ausdehnung der Empfangslinse 35. Die beiden Sendelinsen 33 sind dabei derart symmetrisch angeordnet, dass die Mittelpunkte der kreisförmigen Sendelinsen 33 und der Mittelpunkt der Empfangslinse 35 auf einer Linie liegen und die beiden Sendelinsen 33 gleich weit vom Mit- telpunkt der Empfangslinse 35 entfernt gelegen sind, durch den die in Fig. 2 nicht dargestellte Drehachse 49 des Drehspiegels 47 verläuft (vgl. Fig. 1). Dabei liegen die Sendelinsen 33 innerhalb des durch die Empfangslinse 35 festgelegten Kreises, wodurch insgesamt eine Platz sparende Anordnung erzielt wird.
Die Integration einer Sende- und/ oder Empfangsoptik in eine zentrale Tragstruktur eines Laserscanners an sich ist Gegenstand einer weiteren, am gleichen Tag wie die vorliegende Patentanmeldung hinterlegten deutschen Patentanmeldung, so dass auf Details hierzu jeweils nicht näher eingegangen wird.
Die Anordnung der Linsen 33, 35 entspricht der Anordnung der Lasermodule 11 und des Empfängers 15. Die Lasermodule 11 sind folglich symmetrisch auf gegenüberliegenden Seiten des Empfängers 15 angeordnet, wo- bei die in Fig. 2 nicht dargestellte Drehachse 49 des Drehspiegels 47 (vgl. Fig. 1) mittig durch die Empfangseinrichtung 15 hindurch verläuft. Folglich sind die Lasermodule 11 in einer Richtung senkrecht zur Drehachse 49 gleich weit von der Drehachse 49 entfernt angeordnet. Wie insbesondere Fig. 1 zeigt, ist der Abstand zwischen den Lasermodulen 11 bezogen auf die Größe des Drehspiegels 47 maximal, d.h. die von den Lasermodulen 11 ausgesandte Strahlung 13 trifft in Randbereichen des Drehspiegels 47 auf.
Der erfindungsgemäße Scanner weist folglich nicht lediglich eine einzige Strahlungsquelle, sondern mehrere - in dem hier beschriebenen bevorzugten Ausführungsbeispiel genau zwei - Lasermodule 11 auf, die außerdem maximal exzentrisch bezogen auf die mit der optischen Achse des Emp- fangsweges zusammenfallende Drehachse 49 des Drehspiegels 47 angeordnet sind.
Die Lasermodule 11 sind jeweils mit einer Strahlungsquelle in Form einer Halbleiterlaserdiode 69 versehen, die in Fig. 2 lediglich schematisch dar- gestellt sind. Die Laserdioden 69 bilden in dem hier beschriebenen Aus- führungsbeispiel jeweils eine strichförmige Strahlungsquelle, so dass folglich jedes Lasermodul 11 die Strahlung mit einer langgestreckten Strahlungsfront aussendet, die im Folgenden auch einfach als Lichtstrich bezeichnet wird.
Die Orientierung der ausgesandten Lichtstriche im Raum ist abhängig von der Winkelstellung des Drehspiegels 47 relativ zu den stationären Lasermodulen 11 im Moment des Auftreffens der Strahlungsfronten auf dem Drehspiegel 47. Bei während des Scanbetriebs rotierendem Drehspiegel 47 verändert sich die Orientierung der langgestreckten Strahlungsfronten im Raum folglich kontinuierlich, d.h. die Abtastung des Überwachungsbereiches erfolgt durch sich drehende Lichtstriche. Das Konzept einer strich- oder linienförmigen Strahlungsquelle in Verbindung mit einer relativ zu dieser Strahlungsquelle rotierenden Ablenkeinrichtung an einem Laser- Scanner ist Gegenstand der eingangs bereits erwähnten, noch nicht veröf- fentlichten, am 3. September 2001 hinterlegten deutschen Patentanmeldung 101 43 060.4, so dass auf Details hierzu nicht näher eingegangen wird.
Bei einer bevorzugten Fahrzeuganwendung wird der an dem Fahrzeug montierte Laserscanner vorzugsweise erfindungsgemäß derart ausgerichtet, dass in Fahrtrichtung nach vorne sowie in Rückwärtsrichtung die Lichtstriche vertikal verlaufen, d.h. die Fahrzeugumgebung nach vorne und nach hinten mit einem großen Vertikalwinkel abgetastet wird. Die vertikale Divergenz der von den beiden Lasermodulen 11 ausgesandten Strahlung beträgt dabei in einer bevorzugten Ausführung jeweils 1,6°, so dass sich insgesamt eine vertikale Strahldivergenz von 3,2° ergibt.
Die Empfangseinrichtung 15 umfasst ein Empfangsarray 59 aus hinter- einander angeordneten Fotodioden, das entsprechend der von den Lasermodulen 11 ausgesandten Lichtstriche strich- bzw. linienförmig ausgebildet ist. Vorzugsweise sind insgesamt acht Fotodioden vorgesehen, von denen jeweils zwei benachbarte Fotodioden zu einem gemeinsam ausgewerteten Diodenpaar zusammengeschaltet sind. Jedem Lasermodul 11 sind zwei Diodenpaare zugeordnet, d.h. der aus dem Überwachungsbereich reflektierte Lichtstrich jedes Lasermoduls 11 wird auf zwei benachbarten Diodenpaaren abgebildet. Jedem Diodenpaar ist ein Empfängerverstärker zugeordnet.
Durch diese Unterteilung des Empfangsarrays 59 in insgesamt vier hintereinander liegende Empfangsbereiche erfolgt effektiv eine Abtastung des Überwachungsbereiches in vier Abtastebenen, wobei jedes der beiden Lasermodule 11 mit seinem ausgesandten Lichtstrich zwei Abtastebenen realisiert. Wie im Einleitungsteil beschrieben, werden die beiden Lasermodule 11 während des Scanbetriebs nicht gleichzeitig "gefeuert", sondern die Aussendung der Strahlungspulse 13 erfolgt abwechselnd. Aus diesem Grund wird nicht mit vier, sondern mit lediglich zwei Auswertemodulen zur Entfernungsmessung gearbeitet, die im Multiplexverfahren betrieben werden.
Die Winkelauflösung des erfindungsgemäßen Scanners ist von der Drehfrequenz des Spiegels 47 sowie der Pulsfrequenz der Lasermodule 11 abhängig. Letztere beträgt vorzugsweise konstant 14,4 kHz, während für den Spiegel 47 bevorzugt Drehfrequenzen von 10 Hz, 20 Hz und 40 Hz eingestellt werden können. Daraus ergeben sich Winkelauflösungen von 0,25°, 0,5° bzw. 1,0° bezogen auf ein Lasermodul 11 bzw. auf mehrere synchron betriebene Lasermodule 11. Der erfindungsgemäß bevorzugte alternierende Betrieb der beiden Lasermodule 11 dagegen führt zu einer Verbesserung der Winkelauflösung um den Faktor 2, d.h. bei einer Drehfrequenz von 10 Hz ergibt sich eine Winkelauflösung von 0, 125°.
Der Inhalt aller vorstehend erwähnten weiteren Patentanmeldungen wird hiermit durch Bezugnahme mit in die vorliegende Patentanmeldung aufgenommen.
Bezugszeichenliste
Sendemodul, Lasermodul ausgesandte Strahlung Empfangseinrichtung reflektierte, empfangene Strahlung Antriebseinheit Ablenkmodul Auswerteeinheit Versorgungseinheit Sensormodul Tragstruktur Deckelabschnitt Sendelinse Empfangslinse Gehäuse des Ablenkmoduls Gehäuse des Sensormoduls Abdeckkappe des Ablenkmoduls Abdeckkappe des Sensormoduls Strahlungsaustrittsfläche, Gehäuseabschnitt Reflexionsfläche, Spiegel Drehachse Schacht Strahlungsempfänger, Empfangsarray Anschlussbereich Leitungen Rechner Laserdiode Bereich eines weggelassenen Kreisabschnitts

Claims

Ansprüche
1. Optoelektronische Erfassungseinrichtung, insbesondere Laserscan - ner, mit einer Sendeeinrichtung (11) zur Aussendung bevorzugt gepulster elektromagnetischer Strahlung (13), zumindest einer der Sendeeinrichtung (11) zugeordneten Empfangseinrichtung (15) und wenigstens einer Ablenkeinrichtung (47), mit der von der Sendeeinrichtung (11) ausgesandte Strahlung (13) in einen Überwachungsbe- reich und aus dem Überwachungsbereich reflektierte Strahlung (19) auf die Empfangseinrichtung (15) lenkbar ist, dadurch g e k e n n z e i c h n e t , dass die Sendeeinrichtung (11) mehrere, bevorzugt genau zwei, räumlich getrennt voneinander angeordnete Sendemodule (11) um- fasst, die jeweils Strahlung (13) entlang eines eigenen Ausbreitungsweges aussenden.
2. Erfassungseinrichtung nach Anspruch 1, dadurch g e k e n n z e i c h n e t , dass die Ausbreitungswege der von den Sendemodulen (11) ausgesandten Strahlung (13) zumindest streckenweise überlappungsfrei verlaufen, vorzugsweise zumindest innerhalb eines für die Augensicherheit relevanten Nahbereiches der Erfassungseinrichtung.
3. Erfassungseinrichtung nach Anspruch 1 oder 2, dadurch g e k e n n z e i c h n e t , dass die Sendemodule (11) derart ausgebildet und ausgerichtet sind, dass die Fronten der ausgesandten Strahlung (13) im Überwachungsbereich zusammen eine Gesamtstrahlungsfront bilden, die vorzugsweise zumindest in für den jeweiligen Anwendungszweck re- levanten Entfernungen größer ist als jede der Einzelstrahlungsfronten.
4. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass die Sendemodule (11) jeweils zur Aussendung einer langgestreckten Strahlungsfront ausgebildet sind, wobei vorzugsweise die Strahlungsfront ein durchgehender Strahlungsstrich ist oder von diskreten, entlang einer Linie angeordneten Strahlungsflecken ge- bildet ist.
5. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass die Sendemodule (11) als Strahlungsquelle jeweils wenigstens eine Laserdiode (69) umfassen, die zur Aussendung einer strich- oder linienförmigen Strahlungsfront ausgebildet ist.
6. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass jedem Sendemodul (11) eine vorzugsweise in Form einer Linse
(33) vorgesehene Sendeoptik vorgelagert ist.
7. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass die Sendemodule (11) und/oder den Sendemodulen (11) vorgelagerte Sendeoptiken (33) baugleich ausgeführt sind.
8. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass den Sendemodulen (11) eine gemeinsame Empfangseinrichtung (15) zugeordnet ist.
9. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass die Empfangseinrichtung (15) einen flächigen Strahlungsempfänger (59) aufweist, der bevorzugt an die Form einer von den Sendemodulen (11) gemeinsam erzeugten Gesamtstrahlungsfront ange- passt ist.
10. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass die Empfangseinrichtung (15), insbesondere ein flächiger Strahlungsempfänger (59), in eine Mehrzahl von unabhängig vonein- ander auswertbaren Empfangsbereichen, die vorzugsweise jeweils eine oder mehrere Fotodioden umfassen, unterteilt ist, wobei jedem Sendemodul (11) wenigstens ein Empfangsbereich zugeordnet ist.
11. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass der Empfangseinrichtung (15) eine Empfangsoptik (35) zugeordnet ist, die vorzugsweise zusammen mit den Sendemodulen (11) vorgelagerten Sendeoptiken (33) in einer gemeinsamen Sende- / Empfangsebene gelegen ist.
12. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass den Sendemodulen (11) eine gemeinsame Ablenkeinrichtung (47) zugeordnet ist.
13. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass die Ablenkeinrichtung (47) drehbar und insbesondere zur Ausführung einer kontinuierlichen Rotationsbewegung mit einer kon- stanten Drehzahl ausgebildet ist.
14. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass die Ablenkeinrichtung wenigstens eine ebene Reflexionsfläche (47) für von den Sendemodulen (11) ausgesandte und aus dem
Überwachungsbereich reflektierte Strahlung (13, 19) aufweist, wobei vorzugsweise die von den Sendemodulen (11) ausgesandte Strahlung (13) und die aus dem Überwachungsbereich reflektierte Strahlung (19) an räumlich voneinander getrennten Bereichen auf der Re- flexionsfläche (47) auftreffen.
15. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass eine Reflexionsfläche (47) der Ablenkeinrichtung geneigt zu ei- ner gemeinsamen Sende- /Empfangsebene der Sendemodule (11) und der Empfangseinrichtung (15) verläuft und die Ablenkeinrichtung um eine sich etwa senkrecht zur Sende- /Empfangsebene erstreckende Achse (49) drehbar ist.
16. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass die Sendemodule (11) seitlich einer gemeinsamen Empfangseinrichtung (15) angeordnet sind, vorzugsweise derart, dass zumindest in der Projektion auf eine gemeinsame Sende- /Empfangsebene die Sendemodule (11) und die Empfangseinrichtung (15) auf einer Linie liegen.
17. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass die Sendemodule (11) vorzugsweise symmetrisch auf gegenüberliegenden Seiten der Empfangseinrichtung (15) angeordnet sind.
18. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass eine Drehachse (49) der Ablenkeinrichtung (47) mittig durch die Empfangseinrichtung (15) hindurch verläuft und die Sendemodule (11) gleich weit von der Drehachse (49) entfernt angeordnet sind.
19. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass der Abstand zwischen den Sendemodulen (11) derart maxi- miert ist, dass die von den Sendemodulen (11) ausgesandte Strahlung (13) von Randbereichen der Ablenkeinrichtung (47) abgelenkt wird.
20. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass der Ausbreitungsweg der von zumindest einem Sendemodul (11) ausgesandten Strahlung (13) einerseits und der Empfangsweg der aus dem Überwachungsbereich reflektierten, auf die Empfangseinrichtung (15) gelenkten Strahlung (19) andererseits in einem eine Strahlungsaustrittsfläche (45) der Erfassungseinrichtung umfassenden Nahbereich überlappungsfrei verlaufen.
21. Erfassungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass die Sendemodule (11) zur abwechselnden Aussendung von Strahlungspulsen ansteuerbar sind.
22. Verfahren zum Betreiben einer optoelektronischen Erfassungsein- richtung nach einem der vorhergehenden Ansprüche, bei dem die
Sendemodule (11) derart angesteuert werden, dass die Sendemodule (11) die Strahlung (13) zeitlich versetzt und insbesondere abwechselnd jeweils in Form von Strahlungspulsen aussenden.
23. Verwendung wenigstens einer optoelektronischen Erfassungseinrichtung nach einem der Ansprüche 1 bis 21 in Verbindung mit einem Fahrzeug, insbesondere zur Objekterkennung und -Verfolgung.
24. Verwendung nach Anspruch 23, dadurch g e k e n n z e i c h n e t , dass eine optoelektronische Erfassungseinrichtung verwendet wird, die derart ausgebildet ist und am oder im Fahrzeug angebracht wird, dass bei normalem Fahrbetrieb von den Sendemodulen (11) ausgesandte langgestreckte Strahlungsfronten sich bei Ausbreitung in Fahrtrichtung nach vorne jeweils zumindest im Wesentlichen in vertikaler Richtung erstrecken, wobei vorzugsweise die Strahlungsfronten in vertikaler Richtung übereinander liegen.
EP03795779A 2002-09-25 2003-09-15 Optoelektronische erfassungseinrichtung Withdrawn EP1543344A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10244641 2002-09-25
DE10244641A DE10244641A1 (de) 2002-09-25 2002-09-25 Optoelektronische Erfassungseinrichtung
PCT/EP2003/010238 WO2004036245A2 (de) 2002-09-25 2003-09-15 Optoelektronische erfassungseinrichtung

Publications (1)

Publication Number Publication Date
EP1543344A2 true EP1543344A2 (de) 2005-06-22

Family

ID=31984056

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03795779A Withdrawn EP1543344A2 (de) 2002-09-25 2003-09-15 Optoelektronische erfassungseinrichtung

Country Status (6)

Country Link
US (1) US7345271B2 (de)
EP (1) EP1543344A2 (de)
JP (1) JP2006500598A (de)
AU (1) AU2003298081A1 (de)
DE (1) DE10244641A1 (de)
WO (1) WO2004036245A2 (de)

Families Citing this family (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10341548A1 (de) * 2003-09-09 2005-03-31 Ibeo Automobile Sensor Gmbh Optoelektronische Erfassungseinrichtung
FR2883655B1 (fr) * 2004-09-29 2010-01-08 Sea On Line Systeme d'alerte anticollision pour vehicule marin et procede d'analyse anticollision
FR2875913A1 (fr) * 2004-09-29 2006-03-31 Sea On Line Sa Systeme d'alerte anti-collision installe a bord d'un vehicule marin et procede d'analyse anti-collision
DE102005005185B4 (de) * 2005-02-03 2007-04-12 Daimlerchrysler Ag Schaltanordnung für ein Schaltelement zum Öffnen und Schließen eines Fahrzeugflügels
USRE46672E1 (en) 2006-07-13 2018-01-16 Velodyne Lidar, Inc. High definition LiDAR system
US8646823B2 (en) * 2009-03-23 2014-02-11 Robert Bosch Gmbh Cover features for vehicle-mounted devices
US11609336B1 (en) 2018-08-21 2023-03-21 Innovusion, Inc. Refraction compensation for use in LiDAR systems
EP2381268B1 (de) 2010-04-22 2012-06-27 Sick AG Sicherheitslaserscanner
US10739460B2 (en) 2010-08-11 2020-08-11 Apple Inc. Time-of-flight detector with single-axis scan
EP2482094B1 (de) 2011-01-31 2013-06-12 Sick AG Entfernungsmessender optoelektronischer Sensor und Verfahren zur Objekterfassung
DE102011000978A1 (de) * 2011-02-28 2012-08-30 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten
DE102011107585A1 (de) * 2011-07-16 2013-01-17 Valeo Schalter Und Sensoren Gmbh Optische Messvorrichtung für ein Fahrzeug, Fahrerassistenzeinrichtung mit einer derartigen Messvorrichtung sowie Fahrzeug mit einer entsprechenden Messvorrichtung
JP5807810B2 (ja) * 2011-11-01 2015-11-10 日本電気株式会社 クライアント装置、サーバ装置、通信システム、及び通信方法
US9720412B1 (en) 2012-09-27 2017-08-01 Waymo Llc Modifying the behavior of an autonomous vehicle using context based parameter switching
US9823351B2 (en) 2012-12-18 2017-11-21 Uber Technologies, Inc. Multi-clad fiber based optical apparatus and methods for light detection and ranging sensors
US9470520B2 (en) 2013-03-14 2016-10-18 Apparate International C.V. LiDAR scanner
WO2014141115A2 (en) 2013-03-15 2014-09-18 Primesense Ltd. Depth scanning with multiple emitters
DE102013012787A1 (de) * 2013-07-31 2015-02-05 Valeo Schalter Und Sensoren Gmbh Optoelektronische Messvorrichtung für ein Kraftfahrzeug und Scansensor hierfür
WO2015077614A1 (en) 2013-11-22 2015-05-28 Schwarz Brent S Lidar scanner calibration
US9733344B2 (en) * 2013-11-25 2017-08-15 Electronics And Telecommunications Research Institute Laser radar apparatus and method for operating thereof
EP3091369B1 (de) 2015-05-05 2018-07-11 Sick Ag Laserscanner
US9992477B2 (en) 2015-09-24 2018-06-05 Ouster, Inc. Optical system for collecting distance information within a field
US10063849B2 (en) 2015-09-24 2018-08-28 Ouster, Inc. Optical system for collecting distance information within a field
US10557939B2 (en) 2015-10-19 2020-02-11 Luminar Technologies, Inc. Lidar system with improved signal-to-noise ratio in the presence of solar background noise
KR101884781B1 (ko) 2015-12-02 2018-08-03 한국생산기술연구원 3차원 스캐닝 시스템
WO2017079483A1 (en) 2015-11-05 2017-05-11 Luminar Technologies, Inc. Lidar system with improved scanning speed for high-resolution depth mapping
CN108603758A (zh) 2015-11-30 2018-09-28 卢米诺技术公司 具有分布式激光器和多个传感器头的激光雷达系统和激光雷达系统的脉冲激光器
US10324171B2 (en) 2015-12-20 2019-06-18 Apple Inc. Light detection and ranging sensor
US10627490B2 (en) 2016-01-31 2020-04-21 Velodyne Lidar, Inc. Multiple pulse, LIDAR based 3-D imaging
EP3430428A4 (de) 2016-03-19 2019-11-20 Velodyne Lidar, Inc. Integrierter beleuchtung und detektion für auf lidar basierende 3d-bildgebung
US10429496B2 (en) 2016-05-27 2019-10-01 Analog Devices, Inc. Hybrid flash LIDAR system
WO2017210418A1 (en) 2016-06-01 2017-12-07 Velodyne Lidar, Inc. Multiple pixel scanning lidar
US10298913B2 (en) 2016-08-18 2019-05-21 Apple Inc. Standalone depth camera
SG11201901600WA (en) 2016-08-24 2019-03-28 Ouster Inc Optical system for collecting distance information within a field
CN106324582A (zh) * 2016-10-28 2017-01-11 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达系统
US10942272B2 (en) * 2016-12-13 2021-03-09 Waymo Llc Power modulation for a rotary light detection and ranging (LIDAR) device
CN110506220B (zh) 2016-12-30 2023-09-15 图达通智能美国有限公司 多波长lidar设计
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US11009605B2 (en) 2017-01-05 2021-05-18 Innovusion Ireland Limited MEMS beam steering and fisheye receiving lens for LiDAR system
US10969475B2 (en) 2017-01-05 2021-04-06 Innovusion Ireland Limited Method and system for encoding and decoding LiDAR
US9810775B1 (en) 2017-03-16 2017-11-07 Luminar Technologies, Inc. Q-switched laser for LIDAR system
WO2018166610A1 (en) * 2017-03-16 2018-09-20 Fastree3D Sa Method and device for optimizing the use of multiple emitters and a detector in an active remote sensing application
US9905992B1 (en) 2017-03-16 2018-02-27 Luminar Technologies, Inc. Self-Raman laser for lidar system
US9810786B1 (en) 2017-03-16 2017-11-07 Luminar Technologies, Inc. Optical parametric oscillator for lidar system
US9869754B1 (en) 2017-03-22 2018-01-16 Luminar Technologies, Inc. Scan patterns for lidar systems
US10121813B2 (en) 2017-03-28 2018-11-06 Luminar Technologies, Inc. Optical detector having a bandpass filter in a lidar system
US10061019B1 (en) 2017-03-28 2018-08-28 Luminar Technologies, Inc. Diffractive optical element in a lidar system to correct for backscan
US10732281B2 (en) 2017-03-28 2020-08-04 Luminar Technologies, Inc. Lidar detector system having range walk compensation
US10267899B2 (en) 2017-03-28 2019-04-23 Luminar Technologies, Inc. Pulse timing based on angle of view
US10545240B2 (en) 2017-03-28 2020-01-28 Luminar Technologies, Inc. LIDAR transmitter and detector system using pulse encoding to reduce range ambiguity
US11119198B2 (en) 2017-03-28 2021-09-14 Luminar, Llc Increasing operational safety of a lidar system
US10007001B1 (en) 2017-03-28 2018-06-26 Luminar Technologies, Inc. Active short-wave infrared four-dimensional camera
US10254388B2 (en) 2017-03-28 2019-04-09 Luminar Technologies, Inc. Dynamically varying laser output in a vehicle in view of weather conditions
US10114111B2 (en) 2017-03-28 2018-10-30 Luminar Technologies, Inc. Method for dynamically controlling laser power
US10139478B2 (en) 2017-03-28 2018-11-27 Luminar Technologies, Inc. Time varying gain in an optical detector operating in a lidar system
US10209359B2 (en) 2017-03-28 2019-02-19 Luminar Technologies, Inc. Adaptive pulse rate in a lidar system
US10191155B2 (en) 2017-03-29 2019-01-29 Luminar Technologies, Inc. Optical resolution in front of a vehicle
US10663595B2 (en) 2017-03-29 2020-05-26 Luminar Technologies, Inc. Synchronized multiple sensor head system for a vehicle
US10976417B2 (en) 2017-03-29 2021-04-13 Luminar Holdco, Llc Using detectors with different gains in a lidar system
US11002853B2 (en) 2017-03-29 2021-05-11 Luminar, Llc Ultrasonic vibrations on a window in a lidar system
US10969488B2 (en) 2017-03-29 2021-04-06 Luminar Holdco, Llc Dynamically scanning a field of regard using a limited number of output beams
US10983213B2 (en) 2017-03-29 2021-04-20 Luminar Holdco, Llc Non-uniform separation of detector array elements in a lidar system
WO2018183715A1 (en) 2017-03-29 2018-10-04 Luminar Technologies, Inc. Method for controlling peak and average power through laser receiver
US10254762B2 (en) 2017-03-29 2019-04-09 Luminar Technologies, Inc. Compensating for the vibration of the vehicle
US10641874B2 (en) 2017-03-29 2020-05-05 Luminar Technologies, Inc. Sizing the field of view of a detector to improve operation of a lidar system
US10088559B1 (en) 2017-03-29 2018-10-02 Luminar Technologies, Inc. Controlling pulse timing to compensate for motor dynamics
US9989629B1 (en) 2017-03-30 2018-06-05 Luminar Technologies, Inc. Cross-talk mitigation using wavelength switching
US10295668B2 (en) 2017-03-30 2019-05-21 Luminar Technologies, Inc. Reducing the number of false detections in a lidar system
US10401481B2 (en) 2017-03-30 2019-09-03 Luminar Technologies, Inc. Non-uniform beam power distribution for a laser operating in a vehicle
US10684360B2 (en) 2017-03-30 2020-06-16 Luminar Technologies, Inc. Protecting detector in a lidar system using off-axis illumination
US10241198B2 (en) 2017-03-30 2019-03-26 Luminar Technologies, Inc. Lidar receiver calibration
US10386465B2 (en) 2017-03-31 2019-08-20 Velodyne Lidar, Inc. Integrated LIDAR illumination power control
US20180284246A1 (en) 2017-03-31 2018-10-04 Luminar Technologies, Inc. Using Acoustic Signals to Modify Operation of a Lidar System
US11022688B2 (en) 2017-03-31 2021-06-01 Luminar, Llc Multi-eye lidar system
US10677897B2 (en) 2017-04-14 2020-06-09 Luminar Technologies, Inc. Combining lidar and camera data
CN110809704B (zh) 2017-05-08 2022-11-01 威力登激光雷达美国有限公司 Lidar数据获取与控制
US11086013B2 (en) 2017-05-15 2021-08-10 Ouster, Inc. Micro-optics for imaging module with multiple converging lenses per channel
DE102017210680A1 (de) 2017-06-26 2018-12-27 Robert Bosch Gmbh LIDAR-Vorrichtung mit erhöhter Sendeleistung unter Berücksichtigung der Augensicherheit und Verfahren zum Abtasten eines Abtastbereiches
US10003168B1 (en) 2017-10-18 2018-06-19 Luminar Technologies, Inc. Fiber laser with free-space components
CN111542765A (zh) 2017-10-19 2020-08-14 图达通爱尔兰有限公司 具有大动态范围的lidar
CN108226936B (zh) * 2017-11-10 2022-02-11 无锡英菲感知技术有限公司 一种基于微镜的时分共享窗口激光雷达系统
US11486968B2 (en) * 2017-11-15 2022-11-01 Magna Electronics Inc. Vehicle Lidar sensing system with sensor module
US10451716B2 (en) 2017-11-22 2019-10-22 Luminar Technologies, Inc. Monitoring rotation of a mirror in a lidar system
US10324185B2 (en) * 2017-11-22 2019-06-18 Luminar Technologies, Inc. Reducing audio noise in a lidar scanner with a polygon mirror
US11340336B2 (en) 2017-12-07 2022-05-24 Ouster, Inc. Rotating light ranging system with optical communication uplink and downlink channels
US11294041B2 (en) 2017-12-08 2022-04-05 Velodyne Lidar Usa, Inc. Systems and methods for improving detection of a return signal in a light ranging and detection system
US11493601B2 (en) 2017-12-22 2022-11-08 Innovusion, Inc. High density LIDAR scanning
US11675050B2 (en) 2018-01-09 2023-06-13 Innovusion, Inc. LiDAR detection systems and methods
WO2019139895A1 (en) 2018-01-09 2019-07-18 Innovusion Ireland Limited Lidar detection systems and methods that use multi-plane mirrors
WO2019165130A1 (en) 2018-02-21 2019-08-29 Innovusion Ireland Limited Lidar detection systems and methods with high repetition rate to observe far objects
WO2019164961A1 (en) 2018-02-21 2019-08-29 Innovusion Ireland Limited Lidar systems with fiber optic coupling
WO2019165095A1 (en) 2018-02-23 2019-08-29 Innovusion Ireland Limited Distributed lidar systems
WO2020013890A2 (en) 2018-02-23 2020-01-16 Innovusion Ireland Limited Multi-wavelength pulse steering in lidar systems
CN112292608A (zh) 2018-02-23 2021-01-29 图达通爱尔兰有限公司 用于lidar系统的二维操纵系统
US11567182B2 (en) 2018-03-09 2023-01-31 Innovusion, Inc. LiDAR safety systems and methods
US10324170B1 (en) 2018-04-05 2019-06-18 Luminar Technologies, Inc. Multi-beam lidar system with polygon mirror
US11029406B2 (en) 2018-04-06 2021-06-08 Luminar, Llc Lidar system with AlInAsSb avalanche photodiode
WO2019199775A1 (en) 2018-04-09 2019-10-17 Innovusion Ireland Limited Lidar systems and methods for exercising precise control of a fiber laser
US11789132B2 (en) 2018-04-09 2023-10-17 Innovusion, Inc. Compensation circuitry for lidar receiver systems and method of use thereof
US10348051B1 (en) 2018-05-18 2019-07-09 Luminar Technologies, Inc. Fiber-optic amplifier
DE102018114391A1 (de) 2018-06-15 2019-12-19 Valeo Schalter Und Sensoren Gmbh Sensoranordnung für ein Fahrzeug mit einem optischen Sensor und mit einer Sicherheitseinrichtung zum Schutz der Augen, Fahrzeug sowie Verfahren
US11675053B2 (en) 2018-06-15 2023-06-13 Innovusion, Inc. LiDAR systems and methods for focusing on ranges of interest
US10591601B2 (en) 2018-07-10 2020-03-17 Luminar Technologies, Inc. Camera-gated lidar system
US10627516B2 (en) * 2018-07-19 2020-04-21 Luminar Technologies, Inc. Adjustable pulse characteristics for ground detection in lidar systems
US10739189B2 (en) 2018-08-09 2020-08-11 Ouster, Inc. Multispectral ranging/imaging sensor arrays and systems
US11473970B2 (en) 2018-08-09 2022-10-18 Ouster, Inc. Subpixel apertures for channels in a scanning sensor array
US10551501B1 (en) 2018-08-09 2020-02-04 Luminar Technologies, Inc. Dual-mode lidar system
US10340651B1 (en) 2018-08-21 2019-07-02 Luminar Technologies, Inc. Lidar system with optical trigger
US11579300B1 (en) 2018-08-21 2023-02-14 Innovusion, Inc. Dual lens receive path for LiDAR system
US11860316B1 (en) 2018-08-21 2024-01-02 Innovusion, Inc. Systems and method for debris and water obfuscation compensation for use in LiDAR systems
US11796645B1 (en) 2018-08-24 2023-10-24 Innovusion, Inc. Systems and methods for tuning filters for use in lidar systems
US11971507B2 (en) 2018-08-24 2024-04-30 Velodyne Lidar Usa, Inc. Systems and methods for mitigating optical crosstalk in a light ranging and detection system
US11614526B1 (en) 2018-08-24 2023-03-28 Innovusion, Inc. Virtual windows for LIDAR safety systems and methods
US11579258B1 (en) 2018-08-30 2023-02-14 Innovusion, Inc. Solid state pulse steering in lidar systems
US10712434B2 (en) 2018-09-18 2020-07-14 Velodyne Lidar, Inc. Multi-channel LIDAR illumination driver
US11082010B2 (en) 2018-11-06 2021-08-03 Velodyne Lidar Usa, Inc. Systems and methods for TIA base current detection and compensation
CN113167866A (zh) 2018-11-14 2021-07-23 图达通爱尔兰有限公司 使用多面镜的lidar系统和方法
US11885958B2 (en) 2019-01-07 2024-01-30 Velodyne Lidar Usa, Inc. Systems and methods for a dual axis resonant scanning mirror
WO2020146493A1 (en) 2019-01-10 2020-07-16 Innovusion Ireland Limited Lidar systems and methods with beam steering and wide angle signal detection
US11774561B2 (en) 2019-02-08 2023-10-03 Luminar Technologies, Inc. Amplifier input protection circuits
US11486970B1 (en) 2019-02-11 2022-11-01 Innovusion, Inc. Multiple beam generation from a single source beam for use with a LiDAR system
US11977185B1 (en) 2019-04-04 2024-05-07 Seyond, Inc. Variable angle polygon for use with a LiDAR system
US10613203B1 (en) 2019-07-01 2020-04-07 Velodyne Lidar, Inc. Interference mitigation for light detection and ranging
DE102019118029A1 (de) * 2019-07-04 2021-01-07 Valeo Schalter Und Sensoren Gmbh Optische Messvorrichtung zur Bestimmung von Objektinformationen von Objekten in wenigstens einem Überwachungsbereich
US11556000B1 (en) 2019-08-22 2023-01-17 Red Creamery Llc Distally-actuated scanning mirror
CN110398724A (zh) * 2019-08-26 2019-11-01 上海禾赛光电科技有限公司 激光雷达
US11740333B2 (en) 2019-12-04 2023-08-29 Waymo Llc Pulse energy plan for light detection and ranging (lidar) devices based on areas of interest and thermal budgets
US11656340B2 (en) 2020-01-31 2023-05-23 Denso Corporation LIDAR device
US11422267B1 (en) 2021-02-18 2022-08-23 Innovusion, Inc. Dual shaft axial flux motor for optical scanners
US11555895B2 (en) 2021-04-20 2023-01-17 Innovusion, Inc. Dynamic compensation to polygon and motor tolerance using galvo control profile
US11614521B2 (en) 2021-04-21 2023-03-28 Innovusion, Inc. LiDAR scanner with pivot prism and mirror
EP4305450A1 (de) 2021-04-22 2024-01-17 Innovusion, Inc. Kompaktes lidar-design mit hoher auflösung und ultrabreitem sichtfeld
EP4314885A1 (de) 2021-05-12 2024-02-07 Innovusion, Inc. Systeme und vorrichtungen zur minderung von lidar-rauschen, -vibration und -schärfe
EP4314884A1 (de) 2021-05-21 2024-02-07 Innovusion, Inc. Bewegungsprofile für intelligente abtastung mit einem galvanometerspiegel in einem lidar-scanner
US11768294B2 (en) 2021-07-09 2023-09-26 Innovusion, Inc. Compact lidar systems for vehicle contour fitting
US11871130B2 (en) 2022-03-25 2024-01-09 Innovusion, Inc. Compact perception device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2547059B1 (fr) * 1983-05-31 1985-07-05 Cilas Alcatel Dispositif pour detecter une camera infrarouge adverse
US5231393A (en) * 1988-10-18 1993-07-27 P.A.T., Co. Mobile speed awareness device
US5621203A (en) 1992-09-25 1997-04-15 Symbol Technologies Method and apparatus for reading two-dimensional bar code symbols with an elongated laser line
DE4026649C1 (en) * 1990-08-23 1992-02-20 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De MObile data transmission system using laser - is in form of IR positioning system for microprocessor-controlled transport vehicle supervision system
DE4115747C2 (de) * 1991-05-14 1998-02-26 Hipp Johann F Vorrichtung und Verfahren zur Situations-, Hindernis- und Objekterkennung
JPH04372891A (ja) * 1991-06-21 1992-12-25 Sanwa Seiki Co Ltd 測距装置
FR2691261B1 (fr) 1992-05-13 1994-08-19 Aerospatiale Dispositif optique d'émission-réception à balayage.
DE4219260C2 (de) * 1992-06-12 1994-07-14 Leuze Electronic Gmbh & Co Lichtelektrische Vorrichtung mit einem Testobjekt
US5793491A (en) * 1992-12-30 1998-08-11 Schwartz Electro-Optics, Inc. Intelligent vehicle highway system multi-lane sensor and method
JP3042278B2 (ja) * 1993-09-17 2000-05-15 三菱電機株式会社 距離測定装置
JPH10104340A (ja) * 1996-09-27 1998-04-24 Nec Corp ミラー走査型レーダ
WO1998016801A1 (en) 1996-10-11 1998-04-23 Schwartz Electro-Optics, Inc. Intelligent vehicle highway multi-lane sensor
JPH10170637A (ja) * 1996-12-16 1998-06-26 Omron Corp 光走査装置
JP2000056020A (ja) 1998-08-07 2000-02-25 Honda Motor Co Ltd 物体検知装置
JP2000162318A (ja) * 1998-11-24 2000-06-16 Hamamatsu Photonics Kk 全方位距離検出装置
DE19928958A1 (de) * 1999-05-22 2000-11-23 Volkswagen Ag Laserscanner
US6380871B1 (en) * 1999-11-30 2002-04-30 Optical Systems, Inc. System for and method of searching for targets in a marine environment
DE10001955A1 (de) * 2000-01-18 2001-07-19 Gerd Reime Opto-elektronischer Schalter
JP2003027835A (ja) * 2001-07-11 2003-01-29 Nabco Ltd 自動ドア用安全装置
DE10143060A1 (de) 2001-09-03 2003-03-20 Sick Ag Optoelektronische Erfassungseinrichtung
JP3819292B2 (ja) * 2001-12-25 2006-09-06 三菱電機株式会社 人物状態判別装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004036245A2 *

Also Published As

Publication number Publication date
US20060145062A1 (en) 2006-07-06
DE10244641A1 (de) 2004-04-08
AU2003298081A1 (en) 2004-05-04
US7345271B2 (en) 2008-03-18
AU2003298081A8 (en) 2004-05-04
WO2004036245A2 (de) 2004-04-29
WO2004036245A3 (de) 2004-09-10
JP2006500598A (ja) 2006-01-05

Similar Documents

Publication Publication Date Title
WO2004036245A2 (de) Optoelektronische erfassungseinrichtung
EP1300715B1 (de) Optoelektronische Erfassungseinrichtung
DE4340756C5 (de) Laserabstandsermittlungsvorrichtung
EP2124069B1 (de) Omnidirektionales Lidar System
DE2826468C2 (de)
EP1355128B1 (de) Automatische Ausrichtung eines Sensors
DE102016114995A1 (de) Vorrichtung und Verfahren zur Aufnahme von Entfernungsbildern
EP2296002B1 (de) Optoelektronischer Scanner zur Abstandsbestimmung in Azimut- und Elevationsrichtung
DE4345448C2 (de) Laserabstandsermittlungsvorrichtung
EP3032275B1 (de) Optoelektronischer sensor und verfahren zum erfassen von objekten
DE102013012789A1 (de) Abtastende optoelektronische Detektionseinrichtung und Kraftfahrzeug mit einer solchen Detektionseinrichtung
EP1239300A2 (de) Vorrichtung zur Bestimmung eines Abstandprofils
EP3347732A1 (de) Laserscanner für kraftfahrzeuge
EP2381268B1 (de) Sicherheitslaserscanner
WO2012126659A1 (de) Messvorrichtung und messgerät zur mehrdimensionalen vermessung eines zielobjektes
EP2492738A1 (de) Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten
WO2017089063A1 (de) Laserscanner und kraftfahrzeug mit einem laserscanner
EP3699638B1 (de) Optoelektronischer sensor und verfahren zur erfassung eines objekts
DE10146692A1 (de) Hybrider Entfernungsbildsensor
EP2645125A1 (de) Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsbereich
EP1515157A1 (de) Optoelektronische Erfassungseinrichtung
EP1118874A2 (de) Optische Abtastvorrichtung
EP3388857A1 (de) Laserscanner und verfahren zur überprüfung der funktionsfähigkeit
DE112022001295T5 (de) Lichtdetektionsvorrichtung sowie fahrmittel, lidar und detektionsverfahren
DE10346813B4 (de) Optoelektronischer Sensor und Verfahren zur Detektion eines Objekts in einem Überwachungbereich

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050316

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: HIPP, JOHANN

Inventor name: BOEHLAU, CHRISTIAN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101019