EP1537438A1 - Radarmessvorrichtung, insbesondere für ein kraftfahrzeug, und verfahren zum betreiben einer radarmessvorrichtung - Google Patents
Radarmessvorrichtung, insbesondere für ein kraftfahrzeug, und verfahren zum betreiben einer radarmessvorrichtungInfo
- Publication number
- EP1537438A1 EP1537438A1 EP03794763A EP03794763A EP1537438A1 EP 1537438 A1 EP1537438 A1 EP 1537438A1 EP 03794763 A EP03794763 A EP 03794763A EP 03794763 A EP03794763 A EP 03794763A EP 1537438 A1 EP1537438 A1 EP 1537438A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radar
- signal
- signals
- pulse
- carrier frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/10—Systems for measuring distance only using transmission of interrupted, pulse modulated waves
- G01S13/24—Systems for measuring distance only using transmission of interrupted, pulse modulated waves using frequency agility of carrier wave
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/32—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
- G01S13/36—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/10—Systems for measuring distance only using transmission of interrupted, pulse modulated waves
- G01S13/18—Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein range gates are used
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/32—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
- G01S13/34—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
- G01S13/348—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using square or rectangular modulation, e.g. diplex radar for ranging over short distances
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/32—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
- G01S13/36—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
- G01S13/40—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal wherein the frequency of transmitted signal is adjusted to give a predetermined phase relationship
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/285—Receivers
- G01S7/288—Coherent receivers
Definitions
- Radar measuring device in particular for a motor vehicle, and method for operating a radar measuring device
- the invention relates to a radar measuring device, which can be used in particular in a motor vehicle, and a method for operating a radar measuring device.
- Radar measuring devices are used in motor vehicles in particular for measuring the distance and the relative speed to other objects.
- the detection of a short range up to about 10 m (Short Range Radar, SRR) is currently carried out e.g. B. in frequency ranges from 10 to 70 GHz.
- SRR Short Range Radar
- a microwave signal is transmitted to a transmission antenna as a carrier with a first frequency in the form of a burst.
- the carrier frequency signal of the HF oscillator is modulated by a first pulse signal, in that a switch which transmits the carrier frequency signal is controlled by the first pulse signal.
- the signal reflected back from a possible obstacle with a second frequency which differs from the carrier frequency generally due to the relative speed between the sensor and the obstacle, is received by a receiving antenna.
- the carrier frequency signal is further modulated with a second pulse signal which is delayed in time with respect to the first pulse signal, the time delay being set by an internal control device - generally a microcontroller or digital signal processor.
- the delayed radar pulse signal generated by the modulation is with the received radar pulse signal mixed.
- an in-phase signal (I signal) is formed from the two signals at the output of the mixer, which has a signal component with the sum of the transmission and reception frequency and a signal component with the difference between the transmission and reception frequency.
- the signal component formed from the sum of the transmission and reception frequency is suppressed due to the low-pass filter which is present due to the circuit board capacities, track resistances and external components. Thus, only the signal component formed from the difference between the transmission and reception frequency remains at the output of the mixer.
- the amplitude of the in-phase signal (I-signal) generated by mixing can, depending on the phase position with a constant or static distance, have a value between maximum positive amplitude and maximum negative amplitude, e.g. B. also have zero. Amplitude values of zero or close to zero are in dynamic conditions, i. H. with moving vehicle and / or obstacle, not so relevant, since they disappear again when the distance value changes somewhat. In static conditions, e.g. B. when using the radar measuring device as a parking aid, however, there is initially no further initial value.
- a second modulator is used when processing the received radar pulse signals and delayed radar pulse signals. outputs.
- An amplitude signal is calculated from the I and Q signals as a geometric sum in the control device according to the formula:
- the radar measuring device and the method according to the invention have the particular advantage that when the received radar signals are processed, the distance can be reliably determined using only one measuring channel.
- the second mixer for determining the quadrature signal can be omitted without preventing an obstacle from being detected at a zero point of the mixed signal formed by interference.
- the invention is based on the idea that the phase-shifted measurement achieved in conventional IQ mixers is also possible by using two different carrier frequencies.
- the second carrier frequency can advantageously be provided by the same oscillator by z. B. is connected to a variable bias.
- the second carrier frequency can in particular be selected such that - in accordance with the IQ mixer of the prior art - signals are phase-shifted by 90 ° or ⁇ / 2.
- a maximum amplitude value of the second mixed signal is achieved at the zero point of the first mixed signal.
- a different change in the phase difference is also possible.
- the wavelength is also changed by the two carrier frequencies via the relationship of the wavelength ⁇ to the frequency f.
- ⁇ -i and ⁇ 2 are the wavelengths of the first and second carrier frequency signals, respectively, and c is the speed of light.
- a relationship between the wavelengths ⁇ -i and ⁇ 2 and the frequencies ⁇ and f 2 can thus be formed from the two equations for the distance D, so that the second carrier frequency f 2 can be determined for a distance range checked by the radar measuring device is set by the control device of the radar measuring device.
- the two carrier frequencies are advantageously set alternately.
- a distance range of z. B. 0 to 30 m can be scanned by changing the time delay of the second pulse signal, each time delay being assigned a distance corresponding to the propagation time of the light.
- the two different carrier frequencies are successively output for the respective distance values.
- the invention is explained in more detail below with reference to the accompanying drawing in one embodiment.
- the figure shows a block diagram of a radar measuring device.
- a radar measuring device 1 with an LF part 2 and an HF part 3 is connected to an external control device 4 of a motor vehicle via a data interface, e.g. B. a data bus 5 connected. Furthermore, a supply voltage of z. B. 8 volts to one Output DC converter 6 of the radar measuring device 1, which generates the DC voltages required for the radar measuring device.
- a control device 7 connected to the data bus 5 can e.g. B. be designed as a micro-controller or digital signal processor (DSP).
- a clock signal from z. B. 5 MHz of a clock 8 is given to a voltage source 9, 10, the z. B. has a negative DC voltage output AC / DC converter 9 and a controllable voltage divider 10 receiving the negative DC voltage.
- a controllable DC voltage amplifier can be provided.
- a control signal from the control device 7 sets a bias voltage U1, 2 output by the controllable voltage divider 10 and outputs it to an RF oscillator 11.
- the fundamental frequency of the RF oscillator 11 depends on the bias voltage U1 or U2;
- the control device 7 sets two different carrier frequency signals F1, F2 at approximately 24 GHz.
- the clock signal is also sent to a first pulse shaping device 12, which outputs a pulse signal P1 for controlling a first diode switch 14 with an SRD (Step Recovery Diode).
- the first diode switch 14 switches through the first carrier frequency signal F1 output by the RF oscillator 11 as a function of the first pulse signal P1.
- the radar pulse signal T1 formed in this way is output as a burst via a transmission antenna 16.
- a radar pulse signal reflected by an obstacle is received as a radar signal R1 by a receiving antenna 18, possibly due to a Doppler shift with a changed frequency.
- the receiving antenna 18 and the transmitting antenna 16 can also be embodied in combination and have a plurality of individual antenna regions or antenna patches.
- the recorded radar signal R1 is fed to a mixer 21 via an input amplifier 19.
- the clock signal is also fed to a second pulse shaping device 23 via a time delay device 22, the time delay ⁇ t of which is set via an analog output of the control device 7. Analogously to the first pulse shaping device 12, the second pulse shaping device 23 generates a second pulse signal P2 for actuating a second diode switch 24.
- the second diode switch 24 is thus driven with the second pulse signal P2 by the time delay ⁇ t compared to the first diode switch 14.
- the first carrier frequency signal F1 output by the RF oscillator 11 is modulated in a diode switch 24 serving as a second switching device.
- the radar pulse signal S1 thus formed which is delayed with respect to the radar pulse signal T1, is likewise input via the diode switch 24 to the mixer 21, which folds the signal S1 and the amplified signal R1, ie multiplies and integrates it.
- the mixed signal M1 formed by the convolution is in turn input to the control device 7 via an impedance converter 25 and a variable amplification device 26, the amplification of which is set via an analog output of the control device 7.
- a corresponding measurement is then carried out with a second carrier frequency that differs from the first carrier frequency:
- the control device 7 sends a corresponding control signal to the voltage divider 10, so that a second bias voltage U2 is output to the RF oscillator 11.
- the RF oscillator 11 outputs a second carrier frequency signal F2.
- the first diode switch 14 is closed with the first pulse signal P1, as a result of which a first radar pulse signal P1 is generated and transmitted via the transmitting antenna 16.
- the receiving antenna 19 accordingly receives the second radar reception signal R2, which is mixed in the mixer 21 with a second delayed radar pulse signal S2, as a result of which a second mixed signal M2 is formed and output to the control device 7.
- the control device successively scans a predetermined distance range of e.g. B. from 0 to 30 m by changing the time delay ⁇ t on the time delay device 22, the set time delays corresponding to the speed of light corresponding to different transit times of the radar pulse signal T emitted. For each distance value, the first carrier frequency F1 and second carrier frequency F2 of the RF oscillator 11 are subsequently set by the analog signal output by the control device 7 to the voltage divider 10.
- the control device 7 determines an amplitude value from the measurement signals M1 and M2. With a set phase shift of ⁇ / 2, a geometric sum is determined as the root of the sum of the squares of the measurement signal. A simplified determination is e.g. B. from a measurement of the maximum amplitude values of the mixed signals M1 and M2 or by determining the sum of the amounts of M1 and M2.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Die Erfindung betrifft eine Radarmessvorrichtung, die bei einfachem Aufbau eine sichere Abstandsermittlung auch bei Nullstellen eines Mischsignals gewährleistet, und ein Verfahren zum Betreiben einer Radarmessvorrichtung. Die Radarmessvorrichtung weist auf: einen Hochfrequenz-Oszillator (11), der zwei unterschiedliche Trägerfrequenzsignale (F1, F2) ausgibt, eine erste Schalteinrichtung (14) zum Schalten der Trägerfrequenzsignale (F1, F2) in Abhängigkeit von ersten Pulssignalen (P1) und zur Ausgabe von Radarpulssignalen (T1, 2), eine Sendeantenne (16) und eine Empfangsantenne (18), eine zweite Schalteinrichtung (24) zum Schalten der Trägerfrequenzsignale in Abhängigkeit von einem verzögerten zweiten Pulssignal (P2) und Ausgeben verzögerter Radarpulssignale (S1, 2), eine Mischeinrichtung (21) zum Mischen empfangener Radarsignale (R1, 2) mit den verzögerten Radarpulssignalen (S1, 2) und Ausgabe von Mischsignalen (M1, 2). Die Phasendifferenzen zwischen den empfangenen Radarsignalen (R1, 2) und verzögerten Radarpulssignalen (S1, 2) unterscheiden sich bei Ausgabe der beiden Trägerfrequenzsignale (F1, 2) um einen vorgegebenen Wert. Aus dem ersten und zweiten Mischsignal (M1, 2) wird nachfolgend ein Amplitudensignal ermittelt.
Description
Radarmessvorrichtung, insbesondere für ein Kraftfahrzeug, und Verfahren zum Betreiben einer Radarmessvorrichtung
Die Erfindung betrifft eine Radarmessvorrichtung, die insbesondere in einem Kraftfahrzeug verwendbar ist, und ein Verfahren zum Betreiben einer Radarmessvorrichtung.
Radarmessvorrichtungen werden in Kraftfahrzeugen insbesondere zur Messung des Abstandes und der Relativgeschwindigkeit zu anderen Objek- ten eingesetzt. Die Detektion eines Nahbereichs bis etwa 10 m (Short Range Radar, SRR) erfolgt derzeit z. B. in Frequenzbereichen von 10 bis 70 GHz. Bei Puls-Echo-Radarsystemen bzw. Puls-Echo-Mikrowellensensoren wird für eine Zeitdauer ein Mikrowellensignal als Träger mit einer ersten Frequenz in Form eines Bursts auf eine Sendeantenne gegeben. Hierzu wird das Träger- frequenzsignal des HF-Oszillators durch ein erstes Pulssignal moduliert, indem ein das Träger requenzsignal durchlassender Schalter von dem ersten Pulssignal angesteuert wird. Das von einem möglichen Hindernis mit einer - im Allgemeinen aufgrund der Relativgeschwindigkeit zwischen Sensor und Hindernis von der Trägerfrequenz verschiedenen - zweiten Frequenz zum Sensor zurückreflektierte Signal wird von einer Empfangsantenne aufgenommen.
Das Trägerfrequenzsignal wird weiterhin mit einem gegenüber dem ersten Pulssignal zeitlich verzögerten zweiten Pulssignal moduliert, wobei die zeitliche Verzögerung von einer internen Steuereinrichtung - im Allgemeinen einem Mikrocontroller oder digitalen Signalprozessor - eingestellt wird. Das durch die Modulation erzeugte verzögerte Radarpulssignal wird mit dem
empfangenen Radarpulssignal gemischt. Hierbei wird am Ausgang des Mischers aus beiden Signalen ein Inphasensignal (I-Signal) gebildet, das einen Signalanteil mit der Summe der Sende- und Empfangsfrequenz und einen Signalanteil mit der Differenz der Sende- und Empfangsfrequenz aufweist.
Der aus der Summe der Sende- und Empfangsfrequenz gebildete Signalanteil wird aufgrund des durch die Leiterplattenkapazitäten, Bahnwiderstände und externer Bauelemente vorhandenen Tiefpasses unterdrückt. Somit bleibt am Ausgang des Mischers nur der aus der Differenz der Sende- und Empfangsfrequenz gebildete Signalanteil übrig. Die Amplitude des durch Mischung erzeugten Inphasensignals (I-Signals) kann hierbei je nach Phasenlage bei gleichbleibender bzw. statischer Entfernung einen zwischen maximal positiver Amplitude und maximal negativer Amplitude liegenden Wert, z. B. auch Null, aufweisen. Amplitudenwerte von Null oder nahe bei Null sind bei dynamischen Verhältnissen, d. h. bei bewegtem Fahrzeug und/oder Hindernis, nicht so relevant, da sie bei etwas verändertem Abstandswert wieder verschwinden. Bei statischen Verhältnissen, z. B. bei Verwendung der Radarmessvorrichtung als Einparkhilfe, liegt jedoch zunächst kein weiterer Ausgangswert vor.
Um eine Ermittlung eines Abstandswertes auch bei Vorliegen einer Nullstelle des I-Signals zu ermöglichen, wird bei der Verarbeitung der empfangenen Radarpulssignale und verzögerten Radarpulssignale im Allgemeinen ein zweiter, um 90° phasenverschoben angesteuerter Modulator ver- wendet, der ein Quadratursignal (Q-Signal) ausgibt. Aus dem I- und Q-Signal wird als geometrische Summe in der Steuereinrichtung ein Amplitudensignal errechnet gemäß der Formel:
U Amplitude = (l2 + Q2)°'5
Durch eine derartige Berechnung wird eine Ermittlung des Abstandswertes auch bei Nullstellen des ohne Phasenverschiebung ermittelten Inphasensignals ermöglicht. Hierzu ist jedoch ein Hardwareaufwand mit zwei Mi-
schem zu Ermittlung des Inphasensignals und des Quadratursignals erforderlich.
Die erfindungsgemäße Radarmessvorrichtung nach Anspruch 1 und das erfindungsgemäße Verfahren nach Anspruch 8 weisen demgegenüber insbesondere den Vorteil auf, dass bei der Verarbeitung der empfangenen Radarsignale eine sichere Ermittlung des Abstandes mit nur einem Messkanal möglich ist. Hierbei kann insbesondere der zweite Mischer zur Ermittlung des Quadratursignals entfallen, ohne dass eine Detektion eines Hindernisses bei einer durch Interferenz gebildeten Nullstelle des Mischsignals verhindert wird.
Der Erfindung liegt der Gedanke zugrunde, dass die bei herkömmlichen IQ-Mischern erreichte phasenverschobene Messung auch durch eine Verwendung von zwei verschiedenen Trägerfrequenzen möglich ist. Die zweite Trägerfrequenz kann hierbei vorteilhafterweise von dem gleichen Oszillator zur Verfügung gestellt werden, indem dieser z. B. an eine variable Vorspannung angeschlossen ist. Alternativ hierzu ist grundsätzlich auch die Verwendung von mehreren, z. B. phasengekoppelten, Oszillatoren möglich, die jeweils ein Trägerfrequenzsignal ausgeben.
Erfindungsgemäß kann insbesondere die zweite Trägerfrequenz derartig gewählt werden, dass - entsprechend dem IQ-Mischer des Standes der Technik - um 90° bzw. π/2 phasenverschobene Signale gemischt werden. Hierdurch wird bei der Nullstelle des ersten Mischsignals ein maximaler Amplitudenwert des zweiten Mischsignals erreicht. Grundsätzlich ist jedoch auch eine hiervon verschiedene Änderung der Phasendifferenz möglich.
Durch die beiden Trägerfrequenzen wird über den Zusammenhang der Wellenlänge λ zur Frequenz f auch die Wellenlänge verändert. Es gilt: λι*f| = λ2*f2 = c
wobei λ-i und λ2 die Wellenlängen des ersten bzw. zweiten Trägerfrequenzsignals sind und c die Lichtgeschwindigkeit ist. Die Wellenlängen λ-i und λ2 werden derartig gewählt, dass für die vom Radarpulssignal zurückgelegte Distanz - d. h. den doppelten Wert des Abstandes zum Hindernis - bei einer Nullstelle für λ-i gemäß: D= n * λ-i, mit D = Distanz, n = Anzahl der Wellenlängen für das zweite Trägerfrequenzsignal mit der Wellenlänge λ2 eine um 90° phasenverschobene Messung erreicht wird, d.h.: D= n * λ2 + 0,25 λ2
Aus den beiden Gleichungen für die Distanz D kann somit ein Zusammenhang der Wellenlängen λ-i und λ2 und entsprechend der Frequenzen ι und f2 gebildet werden, so dass für einen von der Radarmessvorrichtung überprüften Abstandsbereich die zweite Trägerfrequenz f2 ermittelt werden kann, die von der Steuereinrichtung der Radarmessvorrichtung eingestellt wird. Vorteilhafterweise werden die beiden Trägerfrequenzen alternierend eingestellt. Hierbei kann in an sich bekannter Weise ein Abstandbereich von z. B. 0 bis 30 m durch Veränderung der Zeitverzögerung des zweiten Puls- Signals abgescannt werden, wobei jeder Zeitverzögerung eine der Laufzeit des Lichtes entsprechende Distanz zugeordnet ist. Zu den jeweiligen Abstandswerten werden jeweils sukzessiv die beiden unterschiedlichen Trägerfrequenzen ausgegeben.
Die Erfindung wird im Folgenden anhand der beiliegenden Zeichnung an einer Ausführungsform näher erläutert. Die Figur zeigt ein Blockschaltbild einer Radarmessvorrichtung.
Eine Radarmessvorrichtung 1 mit einem NF-Teil 2 und einem HF- Teil 3 ist mit einem externen Steuergerät 4 eines Kraftfahrzeuges über eine Datenschnittstelle, z. B. einen Datenbus 5 verbunden. Weiterhin wird von dem externen Steuergerät 4 eine Versorgungsspannung von z. B. 8 Volt an einen
Gleichspannungswandler 6 der Radarmessvorrichtung 1 ausgegeben, der für die Radarmessvorrichtung erforderliche Gleichspannungen erzeugt. Eine an den Datenbus 5 angeschlossene Steuereinrichtung 7 kann z. B. als Mikro- controller oder digitaler Signalprozessor (DSP) ausgebildet sein. Ein Taktsig- nal von z. B. 5 MHz eines Taktgebers 8 wird an eine Spannungsquelle 9, 10 gegeben, die z. B. einen eine negative Gleichspannung ausgebenden AC/DC -Wandler 9 und einen die negative Gleichspannung aufnehmenden steuerbaren Spannungsteiler 10 aufweist. Alternativ zu dem steuerbaren Spannungsteiler 10 kann auch z. B. ein steuerbarer Gleichspannungsverstärker vorge- sehen sein. Durch ein Steuersignal der Steuereinrichtung 7 wird eine von dem steuerbaren Spannungsteiler 10 ausgegebene Vorspannung U1 ,2 eingestellt und an einen HF-Oszillator 11 ausgegeben. Die Grundfrequenz des HF-Oszillators 11 hängt von der Vorspannung U1 bzw. U2 ab; durch die Steuereinrichtung 7 werden zwei verschiedene Trägerfrequenzsignale F1 , F2 bei etwa 24 GHz eingestellt.
Das Taktsignal wird weiterhin an eine erste Pulsformeinrichtung 12 gegeben, die ein Pulssignal P1 zur Ansteuerung eines ersten Diodenschalters 14 mit einer SRD (Step Recovery Diode) ausgibt. Der erste Diodenschal- ter 14 schaltet das von dem HF-Oszillator 11 ausgegebene erste Trägerfrequenzsignal F1 in Abhängigkeit von dem ersten Pulssignal P1 durch. Das hierdurch gebildete Radarpulssignal T1 wird über eine Sendeantenne 16 als Burst ausgegeben.
Ein von einem Hindernis reflektiertes Radarpulssignal wird - ggf. aufgrund Dopplerverschiebung mit veränderter Frequenz - als Radarsignal R1 von einer Empfangsantenne 18 empfangen. Die Empfangsantenne 18 und die Sendeantenne 16 können auch kombiniert ausgebildet sein und mehrere einzelne Antennenbereiche bzw. Antennen-Patches aufweisen. Das aufge- nommene Radarsignal R1 wird über einen Eingangsverstärker 19 einem Mischer 21 zugeführt.
Das Taktsignal wird weiterhin über eine Zeitverzögerungseinrichtung 22, deren Zeitverzögerung Δt über einen analogen Ausgang der Steuereinrichtung 7 eingestellt wird, einer zweiten Pulsformeinrichtung 23 zugeführt. Die zweite Pulsformeinrichtung 23 generiert analog der ersten Puls- formeinrichtung 12 ein zweites Pulssignal P2 zur Ansteuerung eines zweiten Diodenschalters 24. Der zweite Diodenschalter 24 wird somit mit dem zweiten Pulssignal P2 um die Zeitverzögerung Δt gegenüber dem ersten Diodenschalter 14 angesteuert. Das von dem HF-Oszillator 11 ausgegebene erste Trägerfrequenzsignal F1 wird in einem als zweite Schalteinrichtung dienen- den Diodenschalter 24 moduliert. Das hierdurch gebildete, gegenüber dem Radarpulssignal T1 zeitlich verzögerte Radarpulssignal S1 wird über den Diodenschalter 24 ebenfalls dem Mischer 21 eingegeben, der das Signal S1 und das verstärkte Signal R1 faltet, d. h. multipliziert und integriert. Das durch die Faltung gebildete Mischsignal M1 wird über einen Impedanzwand- ler 25 und eine variable Verstärkungseinrichtung 26, deren Verstärkung über einen analogen Ausgang der Steuereinrichtung 7 eingestellt wird, wiederum der Steuereinrichtung 7 eingegeben.
Nachfolgend wird eine entsprechende Messung mit einer gegenüber der ersten Trägerfrequenz verschiedenen zweiten Trägerfrequenz durchgeführt: Hierzu gibt die Steuereinrichtung 7 ein entsprechendes Steuersignal an den Spannungsteiler 10, so dass eine zweite Vorspannung U2 an den HF- Oszillator 11 ausgegeben wird. Der HF-Oszillator 11 gibt ein zweites Trägerfrequenzsignal F2 aus. Mit dem ersten Pulssignal P1 wird der erste Dioden- Schalter 14 geschlossen, wodurch ein erstes Radarpulssignal P1 erzeugt und über die Sendeantenne 16 ausgesendet wird. Die Empfangsantenne 19 nimmt entsprechend das zweite Radarempfangssignal R2 auf, das in dem Mischer 21 mit einem zweiten verzögerten Radarpulssignal S2 gemischt wird, wodurch ein zweites Mischsignal M2 gebildet und an die Steuereinrich- tung 7 ausgegeben wird.
Die Steuereinrichtung scannt sukzessive einen vorgegebenen Abstandsbereich von z. B. 0 bis 30 m durch Änderung der zeitlichen Verzögerung Δt an der Zeitverzögerungseinrichtung 22 ab, wobei die eingestellten zeitlichen Verzögerungen entsprechend der Lichtgeschwindigkeit unter- schiedlichen Laufzeiten des ausgesendeten Radarpulssignals T entsprechen. Für jeden Abstandswert wird nachfolgend jeweils die erste Trägerfrequenz F1 und zweite Trägerfrequenz F2 des HF-Oszillators 11 durch das von der Steuereinrichtung 7 an den Spannungsteiler 10 ausgegebene analoge Signal eingestellt.
Die Steuereinrichtung 7 ermittelt aus den Messsignalen M1 und M2 einen Amplitudenwert. Bei einer eingestellten Phasenverschiebung von π/2 wird hierzu eine geometrische Summe als Wurzel der Summe der Quadrate des Messsignals ermittelt. Eine vereinfachte Ermittlung ist z. B. aus einer Messung der maximalen Amplitudenwerte der Mischsignale M1 und M2 oder durch Ermittlung der Summe der Beträge von M1 und M2 möglich.
Claims
1. Radarmessvorrichtung, insbesondere für ein Kraftfahrzeug, mit einer Hochfrequenz-Oszillatoreinrichtung (11 ) zur Ausgabe eines ersten Trägerfrequenzsignals (F1 ) und eines zweiten Trägerfrequenzsignals (F2), einer ersten Pulsformeinrichtung (12) zur Ausgabe von ersten Pulssignalen (P1 ), einer ersten Schalteinrichtung (14) zum Schalten des ersten und zweiten Trägerfrequenzsignals (F1 , F2) in Abhängigkeit von dem ersten Pulssignal (P1 ) und zur Ausgabe von ersten und zweiten Radarpulssignalen (T1 , 2), einer Sendeantenne (16) zum Aussenden der Radarpulssignale (T1 , 2), einer zweiten Pulsformeinrichtung (23) zur Ausgabe von gegenüber den ersten Pulssignalen (P1 ) verzögerten zweiten Pulssignalen (P2), einer zweiten Schalteinrichtung (24) zum Schalten der ersten und zweiten Trägerfrequenzsignale (F1 , F2) in Abhängigkeit von dem zweiten Pulssignal (P2) und Ausgeben erster und zweiter verzögerter
Radarpulssignale (S1 , S2), einer Empfangsantenne (18) zum Empfangen von ersten und zweiten Radarsignalen (R1 , R2), einer Mischeinrichtung (21 ) zum Mischen der empfangenen ersten und zweiten Radarsignale (R1 , 2) mit den ersten und zweiten verzögerten Radarpulssignalen (S1 , 2) und Ausgabe von ersten und zweiten Mischsignalen (M1 , 2), einer Steuereinrichtung (7) zur Ermittlung eines Amplitudensignals aus dem ersten Mischsignal (M1 ) und dem zweiten Mischsignal (M2), wobei eine erste Phasendifferenz zwischen den ersten empfangenen
Radarsignalen (R1 ) und den ersten verzögerten Radarpulssignalen (S1 ) sich von einer zweiten Phasendifferenz zwischen den zweiten empfangenen Radarsignalen (R2) und den zweiten verzögerten Radarpulssignalen (S2) unterscheidet.
2. Radarmessvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Hochfrequenz-Oszillatoreinrichtung (11 ) genau einen durch ein Ansteuersignal (U1 , 2) einstellbaren HF-Oszillator (11 ) aufweist, der in Abhängigkeit von dem Ansteuersignal das erste oder zweite Trägerfrequenzsignal (F1 , F2) ausgibt.
3. Radarmessvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der HF-Oszillator (11 ) in Abhängigkeit von der Amplitude des Ansteuersignais (U1 ,1 ) eine Trägerfrequenz einstellt und das Trägerfrequenzsignal (F1 , F2) ausgibt.
4. Radarmessvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass das Ansteuersignal ein Gleichspannungssignal mit mindestens einer ersten und einer zweiten Gleichspannung (U1 , 2) ist.
5. Radarmessvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass sie eine durch die Steuereinrichtung (7) einstellbare Gleichspannungsquelle (9, 10) zur Ausgabe der ersten und zweiten Gleichspannung (U1 , 2) aufweist.
6. Radarmessvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die einstellbare Gleichspannungsquelle (9, 10) einen durch ein
Steuersignal der Steuereinrichtung (7) einstellbaren Spannungsteiler (10) aufweist.
7. Radarmessvorrichtung nach einem der vorherigen Ansprüche, da- durch gekennzeichnet, dass der Mischer (21 ) die empfangenen Radarsignale (R1 , 2) und die verzögerten Radarpulssignale (S1 , 2) faltet.
8. Radarmessvorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass sie eine Zeitverzögerungseinrichtung (22) mit veränderbarer Zeitverzögerung (Δt) aufweist, die ein verzögertes Taktsignal an die zweite Pulsformeinrichtung (23) ausgibt.
9. Radarmessvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Steuereinrichtung (7) einen Distanzbereich zwischen einer minimalen Distanz und einer maximalen Distanz durch Ausgabe eines Steuersignals an die Zeitverzögerungseinrichtung (22) abscannt und während des Abscannens des Distanzbereichs die verschiedenen
Trägerfrequenzsignale (F1 , F2) einstellt.
10. Verfahren zum Betreiben einer Radarmessvorrichtung, mit folgenden Schritten: Erzeugen eines ersten Trägerfrequenzsignals (F1 ),
Formen erster Pulssignale (P1 ),
Erzeugen erster Radarpulssignale (T1) aus dem ersten Pulssignal und dem ersten Trägerfrequenzsignal (F1 ), Aussenden der ersten Radarpulssignale (T1), Empfangen reflektierter erster Radarsignale (R1 ),
Formen von gegenüber den ersten Pulssignalen (P1 ) verzögerten zweiten Pulssignalen (P2),
Erzeugen von ersten verzögerten Radarpulssignalen (S1 ) aus dem ersten Trägerfrequenzsignal (F1) und dem zweiten Pulssignal (P2), Mischen des ersten Radarpulssignals (S1 ) und des empfangenen ersten Radarsignals (R1 ) und Ausgeben eines ersten Mischsignals (M1 ), Erzeugen eines zweiten Trägerfrequenzsignals (F2), Erzeugen von zweiten Radarpulssignalen (T2) aus dem ersten Pulssignal (P1 ) und dem zweiten Trägerfrequenzsignal (F2), Aussenden der zweiten Radarpulssignale (T2),
Empfangen reflektierter zweiter Radarsignale (R2),
Erzeugen von zweiten verzögerten Radarpulssignalen (S2) aus dem zweiten Trägerfrequenzsignal (F2) und dem zweiten Pulssignal (P2), Mischen der empfangenen zweiten Radarsignale (R2) mit den zweiten verzögerten Radarpulssignalen (S2) und Ausgeben eines zweiten Mischsignals (M2), wobei eine zwischen dem ersten empfangenen Radarsignal (R1 ) und dem ersten verzögerten Radarpulssignal (S1 ) vorliegende erste Phasendifferenz gegenüber einer zwischen dem zweiten empfangenen Radarsignal (R1 ) und dem zweiten verzögerten Radarpulssignal (S1 ) vorliegenden zweiten Phasendifferenz verschieden ist, Ermitteln eines Amplitudensignals aus dem ersten Mischsignal (M1 ) und dem zweiten Mischsignal (M2).
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die beiden Trägerfrequenzsignale (F1 , 2) durch Verändern einer einen HF-Oszillator (11 ) ansteuernden Gleichspannung (U1 , 2) erzeugt werden.
12. Verfahren nach 11 , dadurch gekennzeichnet, dass die den HF- Oszillator (11 ) ansteuernde Gleichspannung (U1 , 2) mittels eines steuerbaren Spannungsteilers (10) erzeugt wird.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10241463A DE10241463A1 (de) | 2002-09-06 | 2002-09-06 | Radarmessvorrichtung, insbesondere für ein Kraftfahrzeug, und Verfahren zum Betreiben einer Radarmessvorrichtung |
DE10241463 | 2002-09-06 | ||
PCT/DE2003/002006 WO2004025322A1 (de) | 2002-09-06 | 2003-06-17 | Radarmessvorrichtung, insbesondere für ein kraftfahrzeug, und verfahren zum betreiben einer radarmessvorrichtung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1537438A1 true EP1537438A1 (de) | 2005-06-08 |
Family
ID=31724481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03794763A Withdrawn EP1537438A1 (de) | 2002-09-06 | 2003-06-17 | Radarmessvorrichtung, insbesondere für ein kraftfahrzeug, und verfahren zum betreiben einer radarmessvorrichtung |
Country Status (5)
Country | Link |
---|---|
US (1) | US7095362B2 (de) |
EP (1) | EP1537438A1 (de) |
JP (1) | JP2005538365A (de) |
DE (1) | DE10241463A1 (de) |
WO (1) | WO2004025322A1 (de) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10241463A1 (de) * | 2002-09-06 | 2004-03-18 | Robert Bosch Gmbh | Radarmessvorrichtung, insbesondere für ein Kraftfahrzeug, und Verfahren zum Betreiben einer Radarmessvorrichtung |
DE102005009579B4 (de) * | 2005-02-28 | 2010-04-22 | ASTRA Gesellschaft für Asset Management mbH & Co. KG | Verfahren zur Lokalisierung eines Detektierplättchens |
DE102005021882A1 (de) | 2005-05-04 | 2006-11-09 | Valeo Schalter Und Sensoren Gmbh | Verfahren und Vorrichtung zur Bestimmung eines Abstands zu einem Zielobjekt |
JP4738051B2 (ja) * | 2005-05-13 | 2011-08-03 | 富士通テン株式会社 | パルスレーダ装置 |
JP4738059B2 (ja) * | 2005-05-26 | 2011-08-03 | 富士通テン株式会社 | パルスレーダ装置 |
JP2007256095A (ja) | 2006-03-23 | 2007-10-04 | Omron Corp | 測定装置および方法 |
KR100815260B1 (ko) * | 2006-07-18 | 2008-03-19 | 삼성전자주식회사 | 위상차를 이용한 방위각 측정 장치 및 방법 |
CN104020450B (zh) * | 2014-03-26 | 2019-01-08 | 北京跟踪与通信技术研究所 | 一种基于邻波相关和相位分层的雷达回波重构方法 |
US20160195607A1 (en) * | 2015-01-06 | 2016-07-07 | Radar Obstacle Detection Ltd. | Short-ragne obstacle detection radar using stepped frequency pulse train |
US10419655B2 (en) | 2015-04-27 | 2019-09-17 | Snap-Aid Patents Ltd. | Estimating and using relative head pose and camera field-of-view |
US9891313B2 (en) * | 2015-05-08 | 2018-02-13 | Htc Corporation | Radar device and security monitoring system |
US11255663B2 (en) | 2016-03-04 | 2022-02-22 | May Patents Ltd. | Method and apparatus for cooperative usage of multiple distance meters |
US9689967B1 (en) | 2016-04-07 | 2017-06-27 | Uhnder, Inc. | Adaptive transmission and interference cancellation for MIMO radar |
US9846228B2 (en) | 2016-04-07 | 2017-12-19 | Uhnder, Inc. | Software defined automotive radar systems |
US10261179B2 (en) | 2016-04-07 | 2019-04-16 | Uhnder, Inc. | Software defined automotive radar |
WO2017187242A1 (en) | 2016-04-25 | 2017-11-02 | Uhnder, Inc. | On-demand multi-scan micro doppler for vehicle |
WO2017187299A2 (en) | 2016-04-25 | 2017-11-02 | Uhnder, Inc. | Successive signal interference mitigation |
WO2017187304A2 (en) | 2016-04-25 | 2017-11-02 | Uhnder, Inc. | Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation |
US10573959B2 (en) | 2016-04-25 | 2020-02-25 | Uhnder, Inc. | Vehicle radar system using shaped antenna patterns |
WO2017187243A1 (en) | 2016-04-25 | 2017-11-02 | Uhnder, Inc. | Vehicular radar sensing system utilizing high rate true random number generator |
EP3449275A4 (de) | 2016-04-25 | 2020-01-01 | Uhnder, Inc. | Verringerung der pmcw-pcmw-interferenz |
US9791551B1 (en) | 2016-04-25 | 2017-10-17 | Uhnder, Inc. | Vehicular radar system with self-interference cancellation |
WO2017187331A1 (en) | 2016-04-25 | 2017-11-02 | Uhnder, Inc. | Vehicle radar system with a shared radar and communication system |
WO2017187306A1 (en) | 2016-04-25 | 2017-11-02 | Uhnder, Inc. | Adaptive filtering for fmcw interference mitigation in pmcw radar systems |
US9753121B1 (en) | 2016-06-20 | 2017-09-05 | Uhnder, Inc. | Power control for improved near-far performance of radar systems |
US9869762B1 (en) | 2016-09-16 | 2018-01-16 | Uhnder, Inc. | Virtual radar configuration for 2D array |
US11454697B2 (en) | 2017-02-10 | 2022-09-27 | Uhnder, Inc. | Increasing performance of a receive pipeline of a radar with memory optimization |
US9971020B1 (en) | 2017-02-10 | 2018-05-15 | Uhnder, Inc. | Radar data buffering |
US10908272B2 (en) | 2017-02-10 | 2021-02-02 | Uhnder, Inc. | Reduced complexity FFT-based correlation for automotive radar |
DE102017105783B4 (de) * | 2017-03-17 | 2020-06-10 | S.M.S Smart Microwave Sensors Gmbh | Verfahren zum Bestimmen eines Abstandes und einer Geschwindigkeit eines Objektes |
GB2566437B (en) * | 2017-07-26 | 2022-12-07 | Sezanne Marine Ltd | Systems and methods for acoustic and/or electromagnetic imaging |
US11054500B2 (en) | 2017-08-08 | 2021-07-06 | Texas Instruments Incorporated | Noise measurement in a radar system |
DE102017119624A1 (de) * | 2017-08-28 | 2019-04-18 | HELLA GmbH & Co. KGaA | Verfahren zum Betrieb eines Radarsystems eines Fahrzeuges |
US11105890B2 (en) | 2017-12-14 | 2021-08-31 | Uhnder, Inc. | Frequency modulated signal cancellation in variable power mode for radar applications |
US11474225B2 (en) | 2018-11-09 | 2022-10-18 | Uhnder, Inc. | Pulse digital mimo radar system |
US11486993B2 (en) * | 2019-01-31 | 2022-11-01 | Honda Motor Co., Ltd. | Resonance based distance estimation and identification |
WO2020183392A1 (en) | 2019-03-12 | 2020-09-17 | Uhnder, Inc. | Method and apparatus for mitigation of low frequency noise in radar systems |
US11555908B2 (en) * | 2019-09-06 | 2023-01-17 | International Business Machines Corporation | Multi range radar system |
US11953615B2 (en) | 2020-01-13 | 2024-04-09 | Uhnder Inc. | Method and system for antenna array calibration for cross-coupling and gain/phase variations in radar systems |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3715753A (en) * | 1964-05-13 | 1973-02-06 | Gen Electric | Coherent range and length resolution |
JPS534932A (en) * | 1976-05-29 | 1978-01-18 | Nissan Motor Co Ltd | Device for collision avoidance of moving body |
DE3107444C2 (de) * | 1981-02-27 | 1984-01-12 | Dornier System Gmbh, 7990 Friedrichshafen | Hochauflösendes kohärentes Pulsradar |
US5731781A (en) * | 1996-05-20 | 1998-03-24 | Delco Electronics Corp. | Continuous wave wideband precision ranging radar |
AU3814997A (en) * | 1996-07-26 | 1998-02-20 | Whitaker Corporation, The | Low cost - high resolution radar for commercial and industrial applications |
WO1998019177A1 (en) * | 1996-10-30 | 1998-05-07 | Eaton-Vorad Technologies Llc | Method and apparatus for detection of objects proximate to an automotive vehicle |
US6069581A (en) * | 1998-02-20 | 2000-05-30 | Amerigon | High performance vehicle radar system |
DE10056002A1 (de) * | 2000-11-11 | 2002-05-23 | Bosch Gmbh Robert | Radareinrichtung und Verfahren zum Betreiben einer Radareinrichtung |
DE10140346B4 (de) * | 2001-08-17 | 2012-04-26 | Robert Bosch Gmbh | Verfahren zur Entfernungsmessung |
US6587072B1 (en) * | 2002-03-22 | 2003-07-01 | M/A-Com, Inc. | Pulse radar detection system |
DE10241463A1 (de) * | 2002-09-06 | 2004-03-18 | Robert Bosch Gmbh | Radarmessvorrichtung, insbesondere für ein Kraftfahrzeug, und Verfahren zum Betreiben einer Radarmessvorrichtung |
-
2002
- 2002-09-06 DE DE10241463A patent/DE10241463A1/de not_active Withdrawn
-
2003
- 2003-06-17 US US10/517,790 patent/US7095362B2/en not_active Expired - Fee Related
- 2003-06-17 EP EP03794763A patent/EP1537438A1/de not_active Withdrawn
- 2003-06-17 WO PCT/DE2003/002006 patent/WO2004025322A1/de active Application Filing
- 2003-06-17 JP JP2004534953A patent/JP2005538365A/ja active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO2004025322A1 * |
Also Published As
Publication number | Publication date |
---|---|
US7095362B2 (en) | 2006-08-22 |
DE10241463A1 (de) | 2004-03-18 |
US20050225476A1 (en) | 2005-10-13 |
JP2005538365A (ja) | 2005-12-15 |
WO2004025322A1 (de) | 2004-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004025322A1 (de) | Radarmessvorrichtung, insbesondere für ein kraftfahrzeug, und verfahren zum betreiben einer radarmessvorrichtung | |
DE102017211558B4 (de) | Radarsysteme und zugehörige verfahren | |
EP2483706B1 (de) | Radarsensor mit zwei oszillatoren, zwei i/q-sendemischern und zwei i/q-empfangsmischern | |
DE102019115107B3 (de) | Radar-system mit mehreren radar chips | |
DE102018117688A1 (de) | Radar-Frontend mit HF-Oszillator-Überwachung | |
DE102014109910A1 (de) | System und Verfahren für ein Hochfrequenzsystem | |
EP0848829B1 (de) | Vorrichtung zur abstandsmessung | |
DE10345565B4 (de) | Impulsradarvorrichtung | |
DE102006017007B4 (de) | Impulsradarvorrichtung für Fahrzeuge | |
WO2003107528A2 (de) | Schaltungsanordnung zur erzeugung eines iq-signals | |
EP3788394A1 (de) | Überwachen eines fmcw-radarsensors | |
EP1352263A2 (de) | Radareinrichtung und verfahren zum unterdrücken von störungen einer radareinrichtung | |
WO1998038525A1 (de) | Sensorsystem | |
DE60310941T2 (de) | Radarsystem mit hoher abstandsauflösung | |
WO2002054104A1 (de) | Radareinrichtung und verfahren zum unterdrücken von störungen einer radareinrichtung | |
EP1608999B1 (de) | Radar mit einem durch einen auswertungsoszillator quasiphasenkohärent anregbaren sendeoszillator | |
DE102009027495A1 (de) | Heterodyn-Sende-/Empfangssysteme und Verfahren | |
EP1481230B1 (de) | Verfahren und vorrichtung zur saw-sensor-vermessung und -kalibrierung | |
DE102010044134A1 (de) | Radarsendesignalerzeuger und Verfahren zur Radarsendesignalerzeugung | |
WO2011000605A1 (de) | Mischerüberwachung | |
DE102008050327A1 (de) | Empfangsmischer zur Verringerung von Überkopplungseffekten | |
EP1537436A1 (de) | Vorrichtung und verfahren zur einseitenband-modulation eines radarsignals | |
DE10226575A1 (de) | Verfahren und Vorrichtung zum Erzeugen von HF-Signalen zum Bestimmen eines Abstandes und/oder einer Geschwindigkeit eines Objektes | |
DE19654740C2 (de) | Meßverfahren zur Vierpolanalyse mit hoher Bandbreite | |
WO2006037682A1 (de) | Einrichtung und verfahren zur bestimmung von laufzeiten zwischen einem sendesignal und einem empfangssignal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050406 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE ES FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20060724 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20101231 |