EP1534315A2 - Verstarkung der resorption von substanzen über die haut und schleimhaut - Google Patents

Verstarkung der resorption von substanzen über die haut und schleimhaut

Info

Publication number
EP1534315A2
EP1534315A2 EP03757780A EP03757780A EP1534315A2 EP 1534315 A2 EP1534315 A2 EP 1534315A2 EP 03757780 A EP03757780 A EP 03757780A EP 03757780 A EP03757780 A EP 03757780A EP 1534315 A2 EP1534315 A2 EP 1534315A2
Authority
EP
European Patent Office
Prior art keywords
mucosa
substance
absorption
skin
ifn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03757780A
Other languages
English (en)
French (fr)
Inventor
Trutz Podschun
Peter Hans Hofschneider
Eberhard Hildt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIAFERON GMBH
Original Assignee
PROCOM BIOTECHNOLOGISCHE PRODUKTION GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PROCOM BIOTECHNOLOGISCHE PRODUKTION GmbH filed Critical PROCOM BIOTECHNOLOGISCHE PRODUKTION GmbH
Publication of EP1534315A2 publication Critical patent/EP1534315A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants

Definitions

  • the invention relates to the enhancement of the absorption of substances via the skin and mucous membrane.
  • the invention further relates to substances with an increased ability to be absorbed by the skin and mucous membrane, and to pharmaceutical compositions comprising such substances.
  • Ner administration of biologically and therapeutically active substances by parenteral administration is often considered the most suitable type of ner administration if a quick and strong systemic effect is to be achieved and the active substance is not or only slightly from Body is resorbed or inactivated in the gastrointestinal tract or by liver metabolism.
  • injection by Ner has a number of disadvantages.
  • the use of sterile syringes and needles or other mechanical devices is required and pain, irritation and infection can occur, especially in the case of repeated injections.
  • injections should only be given by trained people.
  • Certain medicinal products can be administered to a patient transdermally (percutaneously, via the - uninjured - skin) or transmucosal (via the mucous membrane).
  • This administration essentially involves applying the drug to the surface of the skin and / or the mucosa and penetrating the skin or mucosa through the drug into the patient's bloodstream.
  • Cutaneous or mucosal administration is interesting in that it can produce a local as well as a systemic effect of a drug. Furthermore, this type of administration can be an alternative to parenteral administration be interesting if a quick onset of an effect of the administered drug is required.
  • Non-invasive application also saves physician and patient the inconvenience and risk associated with injections and infusions, and can also be done by untrained people, i.e. also independently by the patient.
  • This type of drug application is therefore associated with higher patient compliance than invasive techniques. This is especially true for topical (local) or enteral administration, i.e. H. administration by the oral or rectal route.
  • topical administration of systemically active substances also has a significant advantage over the cases in which the substance is poorly absorbed orally, gastric intolerance occurs or the substance is metabolized immediately after absorption in the liver.
  • another advantage is that topical administration can achieve a systemic effect at a lower dose than that required for oral administration.
  • the skin and mucous membrane is a physical and physiological barrier that has to be exceeded when administering drugs that are intended to reach internal tissues.
  • Oral drugs must also be resistant to the low pH and digestive enzymes in the gastrointestinal tract.
  • a transdermal or transmucosal administration is therefore suitable only for those drugs that are good "absorbed by the skin or mucosa.
  • the rate of absorption and the rate of absorption ie the ratio of the amount absorbed to the amount applied, and ultimately the achievable blood plasma level, ie the bioavailability of an active ingredient, depend, among other factors, on sufficient solubility in water, other chemical properties of the substance and the physiological conditions on the application. or absorption site.
  • Many active pharmaceutical ingredients are extremely large and practically impermeable to the skin and mucous membrane.
  • There are also many active pharmaceutical ingredients due to their poor water solubility to water insolubility, difficult to reabsorb through mucous membranes, which speaks against their application via these mucous membranes, for example by enteral (oral and rectal), nasal, buccal, vaginal or urethral routes.
  • Absorption enhancers have been added to drugs to enhance their absorption through the skin or mucous membrane. These compounds increase the rate of permeation of the drug through the skin or mucous membrane.
  • absorption enhancers examples include alcohols and glycols (US Pat. No. 5,296,222), urea derivatives, hyaluronic acids, N, N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), terpenes (DE-A-10053383), bile acid salts (JP-A-59- 130820), chelators (Cassidy and Tidball, J. Cell. Biol. 32, 685, 1967), surfactants (JP-A-4-247034, George et al, J. I fect. Dis. 136, 822, 1977), Salts of fatty acids (U.S.
  • Patents 4,476,116 and 6,333,046) synthetic hydrophilic and hydrophobic compounds, biodegradable polymeric compounds and glycyrrhizic acid salts (JP-A-2-042027; US-A-6,333,046).
  • absorption enhancers Various mechanisms for the action of absorption enhancers have been proposed. These mechanisms of action include at least for protein and peptide drugs (1) a reduction in the viscosity and / or elasticity of the mucous membranes, (2) an easier transcellular transport by increasing the fluidity of the bilayer of membranes and (3) an increase in the thermodynamic activity of drugs ( Lee et al., Critical Reviews in Therapeutic Drag Carrier Systems 8, 91, 1991).
  • a reduction in the viscosity and / or elasticity of the mucous membranes (2) an easier transcellular transport by increasing the fluidity of the bilayer of membranes and (3) an increase in the thermodynamic activity of drugs ( Lee et al., Critical Reviews in Therapeutic Drag Carrier Systems 8, 91, 1991).
  • absorption-enhancing product there is currently hardly any absorption-enhancing product on the market. The reasons for this include the low effectiveness and certainty regarding irritation and damage to the mucous membranes, the unpleasant taste and smell, etc.
  • the absorption-enhancing effect largely depends on its concentration and it is believed that it is almost ineffective at a concentration of less than 50%. It also has adverse effects on the eyes and also has side effects on the skin.
  • the absorption-enhancing effect of urea derivatives, hyaluronic acids, N, N-dimethylfoamamide and surfactants is low compared to dimethyl sulfoxide.
  • absorption enhancers increase the absorption of all drugs.
  • the absorption enhancer must therefore be tailored to the respective drug.
  • absorption enhancers frequently irritate the mucosa or are unsuitable because of an unpleasant smell or taste, often lead to pain and liquorimation after a single administration or lead to irritation and inflammation of the mucosa after several applications.
  • transferosomes are known from the prior art (DE 41 07 152, DE 41 07 153 and DE 44 47 287). They are used for the non-invasive administration of suitable active ingredients through the skin. Transferosomes are characterized by an improved penetration ability compared to other liposomes described for topical use. Transferosomes are usually much larger than conventional micelle-like carrier formulations and are therefore subject to different diffusion laws. The increased penetration ability is achieved through their special composition, which makes them sufficiently elastic (hyperflexible) to be able to overcome the constrictions in the barrier, for example in the skin.
  • the object of the invention is to improve the absorption capacity per se of substances which are difficult to absorb via the skin and mucous membrane in order to provide a better absorption rate for these substances.
  • This is intended to enable non-invasive use of substances which are normally not or only poorly absorbed by the skin or mucous membranes, without having to put up with a great deal of technical outlay and a high consumption of active ingredients.
  • the object of the invention is achieved in that an agent which increases the absorption of a substance through the skin or mucosa is coupled with the substance and thus a higher bioavailability for the substance is provided.
  • the combination of a substance and an absorption-enhancing agent according to the invention surprisingly enables an improvement in the absorption rate and / or permeation of substances through the skin and mucous membranes which were previously considered poor or non-absorbable.
  • the strengthening effect (enhancer effect) of agents on the absorption of substances over or through the skin or mucous membranes makes application forms of therapeutic, diagnostic or cosmetic substances via the skin and mucosa such as the nasal mucosa, eye mucosa, tracheal / bronchial / lung mucosa, the mucous membrane of the rectum, the mucous membrane of the genital tract, the oral mucosa, the gastrointestinal mucosa, the vaginal mucous membrane, or the urinary mucosa to date, or also the urinary mucosa poorly or non-absorbable substances accessible.
  • therapeutic, diagnostic or cosmetic substances via the skin and mucosa such as the nasal mucosa, eye mucosa, tracheal / bronchial / lung mucosa, the mucous membrane of the rectum, the mucous membrane of the genital tract, the oral mucosa, the gastrointestinal mucosa, the vaginal mucous membrane, or
  • the absorption-enhancing agent increases the bioavailability of the substance. Despite the poor original absorption and the associated low bioavailability, a satisfactory absorption with all therapeutic consequences can thus be achieved and the dosage of the substance can also be reduced compared to the conventional dosage, or an improved effect can be achieved if the dosage remains the same.
  • the invention thus relates in one aspect to a method for producing a percutaneous or transmucosal preparation, comprising the coupling of a substance with at least one agent which enhances the absorption of the substance through the skin or mucosa.
  • the invention relates to a method for enhancing the bioavailability of a substance when applied to the skin or mucosa, comprising coupling the substance with at least one agent which increases the absorption of the substance by skin or mucosa.
  • the invention also relates to a method for enhancing the ability of a substance to be absorbed by the skin or mucosa when it is applied, comprising coupling the substance to at least one agent which enhances the absorption of the substance by the skin or mucosa.
  • the invention further relates to a method for enhancing the permeability (penetration ability) of a substance for skin or mucosa, comprising coupling the substance with at least one agent which enhances the absorption of the substance through skin or mucosa.
  • the invention relates to the substances obtainable by the methods according to the invention with increased bioavailability, increased ability to be absorbed by skin or mucosa, and / or increased permeability (penetration ability) and pharmaceutical compositions comprising one or more of these substances.
  • the invention relates to the use of the substances obtainable by the processes according to the invention with increased bioavailability, increased ability to be absorbed by skin or mucosa, and / or increased permeability (penetration ability) and their pharmaceutical compositions for application to the skin or mucosa and for Treatment (including prophylaxis and cosmetic treatment) and / or diagnosis of diseases which are usually treated, prevented or diagnosed with these substances without the change according to the invention.
  • Fe he relates to methods of treatment (including prophylaxis and cosmetic treatment) and / or diagnosis of a disease in a patient, comprising the administration of a pharmaceutical composition comprising the substances obtainable by the method according to the invention with enhanced bioavailability, enhanced ability, of skin or Mucosa to be absorbed and / or increased permeability (penetration ability) to the patient, so that the concentration (local or systemic, preferably systemic) of the substance with increased bioavailability, increased ability to be absorbed by skin or mucosa, and / or increased permeability is sufficient to treat, prevent and / or diagnose the disease.
  • a pharmaceutical composition comprising the substances obtainable by the method according to the invention with enhanced bioavailability, enhanced ability, of skin or Mucosa to be absorbed and / or increased permeability (penetration ability) to the patient, so that the concentration (local or systemic, preferably systemic) of the substance with increased bioavailability, increased ability to be absorbed by skin or mucosa, and
  • the invention relates to a method for elucidating a mucosal, dermatological and / or systemic effect of a substance, in particular a pharmaceutical active substance, which is administered via the skin or mucous membrane of a pharmaceutical composition which enhances the substances obtainable by the method according to the invention Bioavailability, increased ability to be absorbed by skin or mucosa, and / or increased Contains permeability (penetration ability) in a mucosal, dermal and / or systemically effective amount to a patient.
  • permeability penetration ability
  • the absorption-enhancing agent can be covalently or non-covalently linked (coupled) to a substance.
  • a bond is preferably a covalent bond.
  • the linker is e.g. enzymatically or chemically, in particular by in vivo processes, so that the substance can be separated from the absorption-enhancing agent.
  • the linker contains a cleavable ester or carbamate functionality or a peptide which can be recognized by a proteinase such as a proteinase which occurs in serum.
  • the substance is separated from the absorption-enhancing agent after absorption through the skin or mucosa.
  • the absorption enhancing agent is coupled to the substance multiple times, i.e. at least 2, preferably 2 to 10, more preferably 2 to 5, even more preferably 2 to 3, in particular 2 absorption-enhancing agents, which may be the same or different, are coupled to the substance (covalently and / or non-covalently).
  • These multiply coupled absorption-enhancing agents can be connected to the substance as tandem constructs separately or in series, if appropriate separated by a linker. This preferably results in greater bioavailability, ability to be absorbed by the skin or mucosa, and / or increased permeability (penetration ability) than with a simple coupling of the absorption-enhancing agent.
  • the absorption-enhancing agent is a polypeptide or protein.
  • the polypeptide or protein preferably comprises a sequence derived from a virus and in particular a sequence derived from a surface protein of a virus or a derivative or a part thereof.
  • the term "virus” encompasses DNA and RNA viruses, in particular adenoviruses, adeno-associated viruses, Vaccinia viruses, baculoviruses, hepatitis C viruses, hepatitis A viruses, influenza viruses, herpes viruses and Hepadna viruses.
  • the peptide or protein comprises a sequence or a derivative derived from a hepatitis virus, Hepadna-Viras or HIN, in particular a hepatitis B nixus.
  • the peptide or protein comprises an antenna-derived, an HIV-derived, or a VP22-derived herpesvirus sequence.
  • virus includes those viruses which are present in humans, non-human primates or other animals, in particular mammals (such as cow, horse, pig, sheep, goat, dog and cat), birds (such as, for example, chicken) or Rodents (like mouse and rat) occur.
  • mammals such as cow, horse, pig, sheep, goat, dog and cat
  • birds such as, for example, chicken
  • Rodents like mouse and rat
  • polypeptide or protein which acts as an absorption-enhancing agent comprises a sequence which falls under the general formula below:
  • XI, X6, X7, X9, XI 0 and XI 2 are variable
  • X2 and X5 are hydrophobic amino acid residues
  • X3, X4, X8 and XI 1 are hydrophilic amino acid residues.
  • X7 is preferably a hydrophilic amino acid residue.
  • the polypeptide or protein that acts as an absorption-enhancing agent comprises this sequence, wherein 1 or 2 amino acid residues, in particular 1 amino acid residue from XI to X12, deviate from this hydropathy distribution.
  • Amino acid side chains with charged groups, hydrogen-bonding groups or dipoles can be classified as hydrophilic. In contrast, you can neutral organic amino acid side chains with a hydrocarbon character, which have no significant dipoles and do not have the ability to form hydrogen bonds, are classified as hydrophobic.
  • the hydrophobic amino acids include alanine, valine, leucine, isoleucine, tryptophan, phenylalanine and methionine.
  • the hydrophilic amino acids include glycine, serine, tyrosine, threonine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, arginine, histidine and proline.
  • a variable amino acid residue can be any of the amino acids listed above.
  • XI is preferably proline, histidine, leucine or threonine, more preferably proline or threonine, especially proline.
  • X2 is preferably alanine, valine, leucine, or isoleucine, more preferably leucine or isoleucine, especially leucine.
  • X3 is preferably serine, asparagine, aspartic acid or glutamine, especially serine.
  • X4 is preferably serine, glutamine, histidine or proline, more preferably serine, histidine or proline, in particular Serine.
  • X5 is preferably alanine, valine, leucine or isoleucine, more preferably isoleucine or valine, especially isoleucine.
  • X6 is preferably phenylalanine, serine, alanine, leucine, methionine or valine, more preferably phenylalanine or valine, especially phenylalanine.
  • X7 is preferably serine, alanine, glycine, aspartic acid or proline, more preferably serine, aspartic acid or proline, especially serine.
  • X8 is preferably arginine, histidine or threonine, more preferably arginine or histide, especially arginine.
  • X9 is preferably isoleucine, threonine, methionine or valine, more preferably isoleucine or valine, especially isoleucine.
  • XI 0 is preferably glycine, isoleucine, glutamine, aspartic acid or serine, more preferably glycine or serine, especially glycine.
  • XI 1 is preferably aspartic acid, proline, threonine or serine, more preferably aspartic acid or threonine, especially aspartic acid.
  • XI 2 is preferably proline, lysine, methionine, valine, isoleucine or threonine, in particular proline.
  • polypeptide or protein that acts as a resorption enhancer comprises an amino acid sequence that falls under the general formula below:
  • XI is a variable amino acid, preferably proline, histidine, leucine or threonine, more preferably proline or histidine, in particular proline,
  • X2 is a hydrophobic amino acid, preferably alanine, valine, leucine or isoleucine, more preferably leucine or isoleucine, in particular leucine
  • X6 is a variable amino acid, preferably phenylalanine, serine alanine, leucine, methionine or valine, more preferably phenylalanine or serine, in particular phenylalanine
  • X7 is a variable amino acid, preferably serine, alanine, glycine, aspartic acid or proline, more preferably serine or alanine, in particular serine
  • X9 is a variable amino acid, preferably isoleucine, threonine, methionine or valine, more preferably isoleucine or threonine, in particular isoleucine
  • the polypeptide or protein which acts as an absorption-enhancing agent comprises an amino acid sequence which falls under the general formula below:
  • X3 is a hydrophilic amino acid, preferably serine, asparagine, aspartic acid or
  • X9 is a variable amino acid, preferably isoleucine, threonine, methionine or nalin, in particular nalin or isoleucine,
  • XI 0 is a variable amino acid, preferably glycine, isoleucine, glutamine, aspartic acid or serine, in particular aspartic acid or glutamine,
  • XI 1 is a hydrophilic amino acid, preferably aspartic acid, proline, or threonine
  • X12 is a variable amino acid, preferably proline, lysine, methionine, nalin, isoleucine or threonine, in particular valine or methionine.
  • polypeptide or protein which acts as an absorption-enhancing agent comprises an amino acid sequence which falls under the general formula below:
  • XI 2 is a variable amino acid, preferably proline, lysine, methionine, valine, isoleucine or threonine, in particular isoleucine or threonine.
  • the polypeptide or protein which acts as a absorption-enhancing agent comprises one of the amino acid sequences listed below or an amino acid sequence derived therefrom:
  • polypeptide or protein that acts as an absorption enhancer comprises the amino acid sequence:
  • polypeptides or proteins described according to the invention which act as absorption-enhancing agents, can also be derivatives thereof, in particular amino acid insertion variants, amino acid deletion variants and / or amino acid substitution variants.
  • Amino acids are preferably replaced by others with similar properties such as hydrophobicity, hydrophilicity, electronegativity, volume of the side chain and the like (conservative substitution).
  • Conservative substitutions involve, for example, the replacement of one amino acid by another, with both amino acids listed in the same group below:
  • 1 to 6, preferably 1 to 4, more preferably 1 to 3, in particular 1 to 2, amino acids can be replaced in the polypeptides or proteins described according to the invention, which function as absorption-enhancing agents.
  • polypeptides or proteins described according to the invention can also include non-naturally occurring amino acids such as D-amino acids, non-classical amino acids or chemical amino acid analogs.
  • Non-classical amino acids and chemical amino acid analogs include, but are not limited to, ⁇ -aminobutyric acid, aminobutyric acids, aminohexanoic acids, aminopropionic acids, ⁇ -alanine, ⁇ -carboxyglutamic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, cysteic acid, t-butylglycine t-butylguanine, phenylglycine, cyclohexylalanine, P-alanine, fluoroamino acids, phenylalanine, the ring of which is methylated, and the like.
  • Each amino acid residue can be replaced by a non-classical amino acid or a chemical amino acid analog.
  • the polypeptide or protein which acts as a absorption-enhancing agent comprises an amino acid sequence or a sequence derived therefrom which has a hydropathy profile which corresponds to one or more of the amino acid sequences listed below:
  • hydroopathy profile which corresponds to an amino acid sequence means that amino acid residues occur at corresponding positions of two or more amino acid sequences, each of which can be assigned hydrophilic, hydrophobic or variable amino acid residues.
  • the polypeptide or protein which acts as an absorption-enhancing agent comprises an ajuino acid sequence which, with regard to at least 10, more preferably at least 11, in particular 12 amino acid residues, corresponds to the hydropathy profile of these amino acid sequences (1) to (9) either individually or in a summary of corresponds to two or more amino acid sequences.
  • the absorption-enhancing polypeptide or protein can be attached to the N-, C-tenriinus, on a side chain and / or in internal as an insertion (internal) of the substance to be coupled.
  • Peptides or proteins which contain the absorption-enhancing agent at the N- and / or C-terminus can be produced recombinantly in that a nucleic acid coding for the absorption-enhancing polypeptide or protein with the
  • Nucleic acid which codes for the peptide or protein to be coupled is fused and the fused sequence is expressed, for example, in a cell. Furthermore, if the substance, which is a peptide or protein, is to contain the absorption-enhancing agent internally, the nucleic acid coding for the absorption-enhancing agent can be inserted into the nucleic acid coding for the substance.
  • the invention also relates to such peptide / protein constructs and nucleic acids and derivatives coding therefor.
  • peptide / protein constructs and nucleic acids or derivatives thereof are preferably recombinant constructs and not peptides / proteins or nucleic acids which contain the polypeptides or proteins described according to the invention which function as an absorption-enhancing agent or nucleic acids coding therefor, the term "naturally" being a peptide , Protein or a nucleic acid that occurs in nature, eg in an animal or a plant without human interference.
  • a coupling of a peptide / protein substance with a polypeptide or protein, which acts as an absorption-enhancing agent, via the side chain (s) of the peptide / protein substance can, for example, via acidic amino acids and their amides such as aspartic acid, asparagine, glutamic acid and glutamine or basic Amino acids such as lysine and arginine are made directly or via a linker.
  • any substance, inorganic or organic in nature can be coupled with an agent which enhances the absorption of the substance through the skin or mucosa.
  • the substance can be absorbed, poorly absorbed or not absorbed.
  • the substance is preferably an active pharmaceutical ingredient whose transdermal or transmucosal absorption can be improved.
  • the pharmaceutical active ingredient can be of animal or vegetable origin, and is preferably a pure substance of animal or vegetable origin, or can be of synthetic origin.
  • At least 2, preferably 2 to 4, more preferably 2 to 3, in particular 2 substances, which may be the same or different, are coupled to one another and this conjugate is preferably at least 1, preferably 1 to 5, more preferably 1 to 3, more preferably 1 or 2, in particular 1 identical or different absorption-enhancing means coupled.
  • the substances and / or the absorption-enhancing agent (s) coupled via linker are coupled to one another and this conjugate.
  • the substance coupled to the absorption enhancing agent may have its native (i.e. naturally occurring and active) structure or a modified structure.
  • the term “modified structure” is understood to mean any non-native structure of the substance.
  • a modified structure comprises, for example, a modified polypeptide or protein in which one or more modifications, in particular post-translational modifications, are missing and / or are additionally present compared to the native polypeptide or protein.
  • Modifications, particularly post-translational modifications include, but are not limited to, glycosylation rings, oxidation of cysteine side chains, isomerizations of disulfide bridges and peptidyl-prolyl bonds, hydroxylations, carboxylations, acylations and the like.
  • the substance, which is coupled to the absorption-enhancing agent can have an activity before or after transdermal or transmucosal absorption which corresponds to or is lower or higher than that of the native substance.
  • the activity of the substance before or after transdermal or transmucosal absorption is less than 100%, less than 80%, less than 60% or less than 50% of the activity of the native substance.
  • the substance has no activity, i.e. it is inactive compared to the native substance.
  • the substance can be used in particular for immunization.
  • a pharmaceutical active substance can comprise any biologically active substance which is selected from the group: analgesics, amino acids, anorectics, antibiotics, antiallergics, antiarrhythmics, anticholinergics, antidepressants, antidiabetics, antidots, antiemetics, antiepileptics, anti-infectious agents, antigens, antihistamines and Histamines, antihypertensives, anticoagulants, anticonvulsants, antibodies, antifungals, antineoplastics, antiphlogistics, antipsorics, antipyretics, Antiseptics, antitumor agents, antitussives (asthma drugs) and other respiratory medicines, antivirals and anti-cancer drugs, anti-wormers, anxiolytics, ophthalmic drugs (including anti-glaucoma drugs), beta-blockers, imaging agents, blood factors, bronchodilators, chaperones, chemokines, cholesterol drugs,
  • Analgesics include, but are not limited to, fentanyl, Mo ⁇ hin, tramadol, hydrocodeine, methadone, lidocaine, diclofenac, paverin and the like.
  • Antiarrhythmic drugs include substances that affect the process of excitation of the heart, preferably to treat irregular heartbeats.
  • An example of a class of antiarrhythmics are beta blockers such as propanolol, alprenolol, timolol, nadoxolol and the like.
  • Antibiotics, anti-infectious agents, antifungals and antivirals include, but are not limited to, tetracyclines, tetracycline-like antibiotics, erythromycin, 2-thiopyridine-N-oxide, halogen compounds (preferably iodine-containing compounds such as iodine-polyvinylpyrrolidone complex), ⁇ -lactam compounds such as penicilin - Compounds (e.g. penicilin G or V), cephalosporins, sulfonamide compounds, aminoglycoside compounds (such as streptomycin), amphothericin B, 5-iodo-2-deoxyuridine, gramicidin, nystatin and the like.
  • halogen compounds preferably iodine-containing compounds such as iodine-polyvinylpyrrolidone complex
  • ⁇ -lactam compounds such as penicilin - Compounds (e.g. penicilin G or
  • Antidiuretics and diuretics include, but are not limited to, desmopressin, vasopressin, furosemide, and the like.
  • antiemetics include pipamazine, chloromazine, dimenhydrinate, meclozin, metoclopramide, and the like.
  • Antihistamines include compounds that inhibit the effects of histamine.
  • Non-limiting examples include 3- (2-aminoethyl) pyrazole, cimetidine, cyproheptadine hydrochloride and the like.
  • Antihypertensives, angina drugs and vasodilators include, but are not limited to, compounds such as clonidine, ⁇ -methyldopa, nitroglycerin, polynitrates of polyalcohols (e.g. erythritol tetranitrate and mannitol hexanitrate), papaverine, dipyridamole, nifedipine, diltiazem and the like.
  • Anti-inflammatory drugs include, but are not limited to, steroidal and non-steroidal anti-inflammatory drugs. Examples include cortisone, hydrocortisone, betamethasone, dexamethasone, prednisolone, ibuprofen, aspirin, salicylic acid, flumethasone, fluprednisolone, aminopyrine, antipyrine, fluprofen and derivatives thereof.
  • Antitussives include, but are not limited to, compounds such as cromoglycate and its derivatives, beclomethasone, budesonide, salbutamol, mometasone, terbutaline and the like. Contraceptives relate to compounds that prevent ovulation or implantation of the fertilized egg in the placenta in female patients or sperm maturation in male patients.
  • Nonlimiting examples of mer are ethinyl estradiol, medroxyprogesterone acetate and anti-progestins (such as RU 486).
  • Anti-migraine drugs include, but are not limited to, heparin, hirudin, and the like.
  • muscle relaxants include, but are not limited to, cyclobenzapyrin hydrochloride, diazepam, alcuronium, vecuro ium, succinyldicholine, and the like.
  • Narcotics and local anesthetics include, but are not limited to, benzocaine, procaine, propoxycaine, dibucain, lidocaine, naloxone, naltrexone, and derivatives thereof.
  • Peptidomimetics and inverse peptides include peptide-like compounds that act as peptides but do not have the typical peptide structure.
  • a non-limiting example of this is a peptide analog, which, in contrast to its native peptide, is composed only of D-amino acids.
  • Potency enhancers include, but are not limited to, such pharmaceutical agents that increase a patient's libido and / or lead to prolonged sexual performance.
  • Examples of potency-increasing agents are those that increase NO synthesis in the patient (e.g. sildenafine).
  • Steroid hormones are those hormones that are derived from cholesterol.
  • Steroid hormones include, but are not limited to, progestogens (such as progesterone), corticoids that include glucocorticoids (such as cortisone and cortisol) and mineral corticoids (such as aldosterone), sex hormones such as androgens (such as testosterone), and estrogens (such as estrone and oestradiol), and derivatives thereof (such as Dexamethasone, betamethasone, prednisolone, beclomethasone, mometasone and the like).
  • the active ingredient can also be a nucleic acid or "antisense" nucleic acid or a derivative thereof.
  • Antisense molecules or “antisense” nucleic acids can be used for regulation, in particular the reduction of the expression of a nucleic acid.
  • the term “antisense molecule” or “antisense nucleic acid” relates to an oligonucleotide which is an oligoribonucleotide, oligodeoxyribonucleotide, modified oligoribonucleotide or modified oligodeoxyribonucleotide and which under physiological conditions hybridizes to DNA comprising a specific gene or mRNA whereby the transcription of this gene and / or the translation of this mRNA is inhibited.
  • an “antisense molecule” also comprises a construct which contains a nucleic acid or a part thereof in a reverse orientation with respect to its natural promoter.
  • An antisense transcript of a nucleic acid or a portion thereof can enter a duplex molecule with the naturally occurring mRNA that specifies the enzyme, thus preventing accumulation or translation of the mRNA into the active enzyme.
  • an oligonucleotide is a "modified" oligonucleotide.
  • the oligonucleotide can be modified in many different ways, for example to increase its stability or therapeutic effectiveness, without impairing its ability to bind to its target.
  • the term “modified oligonucleotide” means an oligonucleotide in which (i) at least two of its nucleotides are linked to one another by a synthetic intemucleoside bond (ie an intemucleoside bond which is not a phosphodiester bond) and or (ii) a chemical group is covalently linked to the oligonucleotide that does not normally occur with nucleic acids.
  • Preferred synthetic intemucleoside bonds are phosphorothioates, alkylphosphonates, phosphorodithioates, phosphate esters, alkylphosphonothioates, phosphoramidates, carbamates, carbonates, phosphate triesters, acetamidates, carboxymethyl esters and peptides.
  • modified oligonucleotide also includes oligonucleotides with a covalently modified base and / or sugar and oligonucleotides that are not in nature contain occurring nucleotides and / or nucleotide analogs.
  • Modified oligonucleotides include, for example, oligonucleotides with sugar residues that are covalently bound to low molecular weight organic groups that are not a hydroxyl group at the 3 'position and not a phosphate group at the 5' position.
  • Modified oligonucleotides can include, for example, a 2'-O-allylated ribose residue or another sugar instead of ribose such as arabinose.
  • Modified oligonucleotides can also contain modified bases and / or base analogs such as 7-deazaadenosine, 7-deazaguanosine, isoguanosine, 2-thiopyrimidine, isocytidine, universal base and the like.
  • the active ingredient can also be a gene, a gene correcting oligonucleotide, an aptameric oligonucleotide, triple helix nucleotide or a ribozyme.
  • the active ingredient can also be a polypeptide or protein or a derivative thereof. Furthermore, it can be a conjugate of several peptides or proteins that have been chemically or genetically coupled to one another.
  • the peptides or proteins used according to the invention can be derived from a natural source or can be recombinantly or chemically synthesized substances.
  • the polypeptides and proteins used according to the invention are preferably isolated.
  • isolated protein or isolated polypeptide” mean that the protein or polypeptide is separated from its natural environment.
  • An isolated protein or polypeptide can be in a substantially purified state.
  • substantially purified means that the protein or polypeptide is essentially free of other substances with which it is present in nature or in vivo.
  • polypeptides or proteins which can be used according to the invention include, without limitation, antibiotics, hematopoietics, anti-infectious agents, anti-dementia agents, anti-viral agents, anti-tumor agents, anti-pyretic agents, analgesics, anti-inflammatory agents, anti-allergic agents, anti-depressant agents, anti-psoriatic agents, psychotropic agents, cardiotonic agents, vasodilator drugs, anti-antioxidants , Antihypertensives, antidiabetics, anticoagulants, cholesterol-lowering agents, therapeutic agents for osteoporosis, Hormones, vaccines and the like, as well as those polypeptides and proteins that have been described above as pharmaceutical active ingredients.
  • Particularly preferred peptides or proteins include cytokines, peptide hormones, growth factors, factors of the cardiovascular system, factors of the central and peripheral nervous system, factors of the gastrointestinal system, factors of the immune system, enzymes and vaccines.
  • Lymphokines monokines, hematopoietic factors and the like are particularly preferred.
  • Lymphokines include interferons (e.g. ⁇ -, ⁇ - and ⁇ -interferon and their subtypes including IFN- ⁇ -2a, IFN- ⁇ -2b and IFN- ⁇ -n3), interleukins (e.g. interleukin 1-17) and the like.
  • interferons e.g. ⁇ -, ⁇ - and ⁇ -interferon and their subtypes including IFN- ⁇ -2a, IFN- ⁇ -2b and IFN- ⁇ -n3
  • interleukins e.g. interleukin 1-17
  • Interferon is a term that generally encompasses a group of glycoproteins and proteins from vertebrates that are known to have various biological activities such as antiviral, antiproliferative and immunomodulating activities.
  • the term “interferon” relates to native as well as recombinant proteins, and also proteins that are expressed in eukaryotic cells, in particular mammalian cells, and also prokaryotic cells.
  • the term “interferon” includes both IFN-ß-la and IFN-ß-lb with respect to IFN- ⁇ .
  • Interferons are secretory proteins that can be divided into two different subtypes.
  • Type I interferons include in particular the members of the interferon- ⁇ multigen family (there are approximately 14-20 different IFN- ⁇ molecules), IFN- ⁇ (also called trophoblast-IFN), as well as IFN-ß and IFN- ⁇ ,
  • the type I IFN genes are located as “clusters” on the short arm of chromosome 9. While IFN- ⁇ and IFN- ⁇ are preferably formed by cells of the hematopoietic system, IFN-ß is formed by non-hematopoietic cells, especially fibroblasts. IFN-ß is a glycoprotein (N-glycosylation), while most human IFN- ⁇ subspecies have no N-glycosylation. IFN- ⁇ and IFN-ß form dimers in the active form.
  • IFN- ⁇ belongs to the type II interferons. IFN- ⁇ is a glycoprotein that is also present as a dimer in the active form. IFN- ⁇ is especially formed in CD4 + T helper cells and in almost all CD8 + cells. Despite a great functional similarity, there is no significant structural similarity between Type I and Type II interferons.
  • Interferons are important pharmaceuticals for the therapy of e.g. viral diseases, tumor diseases and immune defects.
  • Systemic application is usually intravenous, subcutaneous or intramuscular.
  • local forms of application e.g. intratumoral injection and topical gel.
  • IFN- ⁇ the partial acid instability of the molecule also limits oral use.
  • cytokines include, but are not limited to, colony-stimulating factor 4, heparin-binding neutrotrophic factor (HBNF), midkin (MD) and thymopoeitin.
  • HBNF heparin-binding neutrotrophic factor
  • MD midkin
  • thymopoeitin thymopoeitin
  • monokines include interleukin-1, tumor necrosis factors (e.g. TNF- ⁇ and -ß), leukocyte-inhibiting factor (LIF) and the like.
  • tumor necrosis factors e.g. TNF- ⁇ and -ß
  • LIF leukocyte-inhibiting factor
  • hematopoietic factors include, for example, erythropoietin, granulocyte colony stimulating factor (G-CSF), granulocyte macrophage stimulating factor (GM-CSF) and macrophage colony stimulating factor (M-CSF).
  • Anticoagulants include blood clotting modifiers that circulate in the blood and control blood clotting.
  • Non-limiting examples of this are factor I, II, III, V, VI, VII, Vi ⁇ , EX, X, XI and XII, ⁇ l-antitrypsin, ⁇ 2-macroglobulin, antithrombin III, heparin cofactor ⁇ , kallikrein, plasmin, plasminogen, Prokallikrein, Protein C, Protein S, thrombomodulin and the like.
  • Peptide hormones include, for example, insulin, glucagon, growth hormone, luteinizing hormone releasing hormone (LH-RH), adrenocorticotrophin (ACTH), amylin, oxitozin, luteinizing hormone (LH), calcitonin, protein that controls the calcitonin gene, calcitonin N-terminal flanking peptide, somatotropin, somatostatin, somatomedin, tissue plasminogen activator (TPA), leuprolide acetate and the like.
  • growth factors include, for example, nerve growth factor (NGF), epidermis growth factor (EGF), fibroblast growth factor (FGF), insulin-like growth factor (IGF), transforming growth factor (TGF), platelet-derived growth factor (PDGF), hematocyte growth hormone growth hormone (hormone hormone) ), human growth hormone (hGH) and the like.
  • NGF nerve growth factor
  • EGF epidermis growth factor
  • FGF fibroblast growth factor
  • IGF insulin-like growth factor
  • TGF transforming growth factor
  • PDGF platelet-derived growth factor
  • hGH human growth hormone
  • Factors of the cardiovascular system are, for example, factors that regulate blood pressure, arterosclerosis and the like, such as endotheline, endofelin inhibitors, endothelin antagonists, vasopressin (ADH), renin, angiotensin, atrial natriuretic factor (ANP) and the like.
  • Hormones derived from peptides include, but are not limited to, activin, cholecystokinin (CCK), ciliary neurotrophic factor (CNTF), cortotropin-releasing factor (CRF or CRH), follicle-stimulating hormone (FSH), gastrin-inhibiting peptide ( GIP), gastrin releasing peptide, ghrelin, gonadotropin releasing factor (GnRF or GNRH), growth hormone releasing factor (GRF, GRH), human chorionic gonadotropin (hCH), inhibin A, inhibin B, leptin, lipotropm (LPH), ⁇ -Melanocyte stimulating hormone, ß-Melanocyte stimulating hormone, ⁇ - Melanocyte stimulating hormone, melatonin, motilin, pancreatic polypeptide, Parathyroid hormones (PTH), prolactin of the placenta, prolactin (PRL), prolactin release inhibiting factor (PIF),
  • Central or peripheral nervous system factors include, for example, opioid peptides (e.g. enkephalins, endo ⁇ hins, Kvto ⁇ hine), neutrotrophic factor (NTF), tyroid hormone releasing hormone (TRH), neurotensin and the like.
  • opioid peptides e.g. enkephalins, endo ⁇ hins, Kvto ⁇ hine
  • NTF neutrotrophic factor
  • TRH tyroid hormone releasing hormone
  • Endophine or pharmacologically active derivatives thereof include, in a non-limiting manner, dermoophine, dynophine, ⁇ -endophine, ⁇ -endophine, ⁇ -endophine, ⁇ -endophine [Leu5] enkephalin, [Met5] £ nkephalin, substance P and the like.
  • Factors of the gastrointestinal system are, for example, secretin and gastrin.
  • Immune system factors are, for example, factors that control inflammation and neoplasms and factors that attack infectious microorganisms, such as antibodies, chemotactic peptides or bradykinins.
  • an antibody can be a monoclonal antibody.
  • the antibody is a chimeric or humanized antibody, a fragment of a natural antibody or a synthetic antibody, which can be produced by combinatorial techniques.
  • Antibodies can also be coupled to specific diagnostic substances for the display of cells and tissues. They can also be coupled to therapeutically useful substances. Diagnostic agents include, but are not limited to, barium sulfate, iocetamic acid, lopanoic acid, calcium ipodate, sodium diatrizoate, meglumine diatrizoate, metrizamide, sodium tyropanoate, and radiodiagnostics, including positron emitters such as fluorine-18 and carbon-11, gamma emitters such as iodine-123, technetium-99m, iodine-131 and indium-111, nuclear magnetic resonance nuclides such as fluorine and gadolinium.
  • therapeutically useful substance means any therapeutically usable molecule, including anti-cancer agents, compounds provided with radioactive iodine, technetium or other radioisotopes, toxins, cytostatic or cytolytic drugs, etc.
  • Anti-cancer agents include, for example, aminoglutethimide, azathioprine, bleomycin sulfate, busulfan, carmustine, Chlorambucil, cisplatin, cyclophosphamide, cyclosporin, cytarabine, dacarbazine, dactinomycin, daunorabine, doxorubicin, taxol, etoposide, fluorouracil, interferon- ⁇ , lomustine, mercaptopurine, methotrexate, mitotan, procarbazine-HCl, vincristin sulfin, vincristin sulfin, vincristin sulfin, vincristin sulfin, vincristin sulfin, vincristin sulfin, vincristin sulfin, vincristin sulfin, vincristin sulfin, vincristin sul
  • Toxins can proteins like Pokeweed- antiviral protein, cholera toxin, pertu ssistoxin, ricin, gelonin, abrin, diphtheria exotoxin or Pseudomonas exotoxin.
  • Toxin residues can also be high-energy emitting radionulide such as cobalt-60.
  • the substance is a dermatological agent.
  • Dermatological agents include cosmetics such as sunscreens, the inner tissues of the skin (especially the tissues below the stratum corneum) from external factors such as UV rays in the UV-A and UV-B range (preferably radiation in the range from 280 to 400 nm) protect (e.g. p-aminobenzoic acid, p-dimethylaminobenzoic acid and its alkyl esters), skin lightening agents (e.g. hydroquinone), vitamins (e.g.
  • dermatological agents include agents for itching and erythema (e.g. hydrocortisone), for acne (e.g. erythromycin or tetracycline), for He ⁇ es simplex (e.g. 5-iodo-2-deoxyuridine), for psoriasis or skin cancer (e.g. fluorouracil).
  • erythema e.g. hydrocortisone
  • acne e.g. erythromycin or tetracycline
  • He ⁇ es simplex e.g. 5-iodo-2-deoxyuridine
  • psoriasis or skin cancer e.g. fluorouracil
  • the agent which enhances the absorption of a substance through the skin or mucosa is, if appropriate, with a particle biodegradable nanoparticles, optionally biodegradable microparticles, optionally biodegradable nanospheres, optionally biodegradable microspheres, a capsule, emulsion, micelle, a liposome, a non-viral vector system or a viral vector system, coupled or loaded with it.
  • the particle is preferably a particle derived from a Viras (virus-like particle), which preferably binds non-specifically or specifically to cells and can introduce a nucleic acid into them.
  • the particle contains a substance as described above, in particular a nucleic acid or a peptide or protein, which is to be absorbed by the skin or mucosa.
  • a substance as described above in particular a nucleic acid or a peptide or protein, which is to be absorbed by the skin or mucosa.
  • the particles preferably comprise: (a) a protein envelope, which preferably comprises a viral protein, a resorption enhancing agent, preferably a peptide or protein, and optionally a heterologous cell-specific binding site as a fusion molecule, and (b) a nucleic acid present in the protein envelope, the sequences for a virus-specific packaging signal and a structural gene.
  • virus encompasses DNA and RNA viruses, in particular adenoviruses, adeno-associated viruses, vaccinia viruses, baculoviruses, hepatitis C viruses, hepatitis A viruses, influenza viruses and Hepadna viruses.
  • adenoviruses in particular adenoviruses, adeno-associated viruses, vaccinia viruses, baculoviruses, hepatitis C viruses, hepatitis A viruses, influenza viruses and Hepadna viruses.
  • HBV HBV
  • WHV woodchuck hepatitis virus
  • GSHV ground squirrel hepatitis virus
  • RBSFIV red-bellied squirrel hepatitis viras
  • DHV Pekin duck hepatitis viras
  • HHN hereon hepatitis virus "heron hepatitis virus ")
  • the expression “structural gene” encompasses any gene which codes for a polypeptide or protein, such as
  • the agent that enhances the resorption of a substance through the skin or mucosa can be adsorbed, non-covalently or covalently coupled, either directly or via a linker, to the particle, to the particle (s) used for particle synthesis ) Polymer (s) or monomer (s) or bound to other constituents of the particle.
  • the particle is loaded with a therapeutic, prophylactic or diagnostic substance, the agent which increases the absorption of a substance through the skin or mucosa being bound to or loaded with the particle.
  • a particle according to the invention can be produced by customary methods.
  • Substances, in particular peptides or proteins, which are coupled according to the invention to a absorption-enhancing agent, in particular polypeptide or protein, can be used as immunogens to induce the production of antibodies which preferably bind the immunogen in an immunospecific manner.
  • the invention also relates to a method for producing antibodies, comprising inducing antibody production by administering substances, in particular peptides or proteins, which are coupled with resorption-enhancing agents according to the invention, to a living being, in particular a human or an animal, and one Isolation of these antibodies.
  • Figure 1 is a bar graph showing the amount of IFN- ⁇ detected in serum 4h and 8h after oral administration of IFN- ⁇ -la-TLM (TLM-1 and TLM-2).
  • Nl negative control 1 (untreated animals);
  • N2 negative control 2 (feeding rank of PreSlPreS2);
  • N3 negative control 3 '(feeding rank of commercial recombinant IFN-ß-la).
  • Figure 2 is a bar graph showing the amount of IFN- ⁇ detected in serum 4h and 8h after dermal administration of IFN- ⁇ -la-TLM (TLM).
  • Nl negative control 1 (untreated animals);
  • N2 Negative control 2 (dermal administration of commercially available recombinant IFN-ß-la).
  • the term "reso ⁇ tion” is understood to mean the absorption of substances from the body surface.
  • the resection comprises in particular a resection through the skin (i.e. transdermally, percutaneously) or via the mucosa (mucous membrane) (i.e. transmucosal), preferably in the blood, lymphatic system and / or lower skin layers, from where it can be distributed throughout the organism.
  • the reso ⁇ tion can take place via the passive mechanism of diffusion but also via active transport mechanisms.
  • a substance that is coupled to a resorption enhancing agent preferably enters the outermost layer of the skin (stratum corneum) in the event of resorption through the skin or mucosa of a patient.
  • the substance coupled with the absorption-enhancing agent reaches the layers below.
  • the substance coupled with the absorption-enhancing agent is released into the bloodstream.
  • reinforcement refers to an increase, increase or improvement over a previous state.
  • enhancement of reso ⁇ tion refers to an increase in reso ⁇ tion, i.e. a larger amount of a substance is absorbed in a certain period of time, in particular by increasing the speed at which a substance penetrates a body barrier such as the skin and mucous membrane.
  • bioavailability characterizes the speed and the extent to which the therapeutically effective portion of a drug is released and reabsorbed from the respective drug forms or is available at the site of action. It can be determined by measuring the drug concentration in the body fluids and the acute pharmacological effect.
  • permeability refers to the property, such as skin and mucosa to have a substance pass •.
  • permeability and penetration refer to the ability of a substance to cross such a barrier.
  • transdermal or transmucosal preparation refers to a substance, in particular a pharmaceutical active ingredient, which was originally not or only poorly absorbed by the skin or mucosa, but was modified so that it is absorbed by the skin or mucosa and therefore for administration to the skin or mucosa is suitable.
  • Mucosa or “mucous membrane” according to the invention can be any mucous membrane of a mammal, including humans.
  • mucous membranes examples include the mucous membrane of the gastrointestinal tract (eg intestinal mucosa, gastric mucosa), eye mucosa, nasal mucosa, tracheal / bronchial / lung mucosa, mucous membrane of the oral cavity, rectum, genital tract, vagina, ureter and the like.
  • the mucous membrane is preferably a mucous membrane of the nose, mouth or gastrointestinal tract.
  • Transdermal administration or “transmucosal administration” means delivery through the skin or mucosa.
  • agents which increase the absorption of a substance are those substances or preparations which promote the transport of other substances through barriers and constrictions, in particular permeation obstacles, and preferably their bioavailability, ability, to be absorbed and / or to increase permeability (penetration ability).
  • the obstacles to permeation include, in particular, human and animal skin layers, in particular Der is (in particular stratum comeum) and mucosa.
  • the agent that enhances the absorption of a substance through the skin or mucosa is free of toxic side effects.
  • Non-covalent bonds include, but are not limited to, ionic interactions, hydrogen bonds, van der Waals interactions (hydrophobic interactions), and bonds that result from the inclusion of one compound in another (eg, in crown ethers and cage compounds) ).
  • Covalent coupling of, for example, peptides and proteins can be carried out using coupling agents such as N, N'-dicyclohexylcarbodiimide (DCC) or N, N'-diisopropylcarbodiimide (DIPCDI) or by recombinant techniques in a manner known per se.
  • DCC N, N'-dicyclohexylcarbodiimide
  • DIPCDI N, N'-diisopropylcarbodiimide
  • a nucleic acid is preferably deoxyribonucleic acid (DNA) or ribonucleic acid (RNA).
  • nucleic acids include genomic DNA, cDNA, mRNA, rRNA, tRNA, recombinantly produced and chemically synthesized molecules.
  • a nucleic acid can be present as a single-stranded or double-stranded and linear or covalently circular molecule.
  • “derivative” of a nucleic acid means that single or multiple nucleotide substitution, deletion and / or addition are present in the nucleic acid. Furthermore, the term “derivative” also includes chemical derivatization of a nucleic acid on a base, a sugar or phosphate of a nucleotide. The term “derivative” also encompasses nucleic acids which contain non-naturally occurring nucleotides and nucleotide analogs.
  • isolated nucleic acid means that the nucleic acid (i) has been amplified in vitro, for example by polymerase chain reaction (PCR), (ii) has been produced recombinantly by cloning, (iii) has been purified, for example by cleavage and gel electrophoretic separation, or (iv) synthesized, for example by chemical synthesis.
  • An isolated nucleic acid is a nucleic acid that is available for manipulation by recombinant DNA techniques.
  • RNA or of RNA and protein are used according to the invention in its most general meaning and encompasses the production of RNA or of RNA and protein. It also includes partial expression of nucleic acids. Furthermore, the expression can be transient or stable.
  • sequence derived from an amino acid sequence relates to derivatives of the former sequence.
  • “Derivatives” of a protein or polypeptide or an amino acid sequence in the sense of this invention include amino acid insertion variants, amino acid deletion variants and / or amino acid substitution variants.
  • Amino acid insertion variants include amino- and / or carboxy-terminal fusions, as well as insertions of single or several amino acids in a certain amino acid sequence.
  • amino acid sequence variants with an insertion one or more amino acid residues are introduced into a predetermined position in an amino acid sequence, although a random insertion with suitable screening of the resulting product is also possible.
  • Amino acid deletion variants are characterized by the removal of one or more amino acids from the sequence.
  • Amino acid substitution variants are characterized in that at least one residue in the sequence is removed and another residue is inserted in its place.
  • the modifications are preferably at positions in the amino acid sequence that are not conserved between homologous proteins or polypeptides.
  • Amino acids are preferably replaced by others with similar properties, such as 1 hydrophobicity, hydrophilicity, electronegativity, volume of the side chain and the like (conservative substitution). For example, conservative substitutions involve the replacement of one amino acid by another, with both amino acids listed in the same group below:
  • amino acid variants described above can easily be made using known peptide synthesis techniques such as e.g. through “Solid Phase Synthesis” (Merrifield,
  • “derivatives” of proteins or polypeptides also include single or multiple substitutions, deletions and / or additions of any molecules which are associated with the enzyme, such as carbohydrates, lipids and / or proteins or polypeptides.
  • derivatives of proteins or polypeptides include those modified analogs which are characterized by glycosylation, acetylation, phosphoryl, or amidation, palmitoylation, myristylation, isoprenylation, lipidation, alkylation, derivatization, introduction of protective / blocking groups, proteolytic cleavage or binding to one Antibodies or to another cellular ligand arise.
  • Derivatives of proteins or polypeptides can also be prepared by other processes, such as, for example, by chemical cleavage with cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH 2 , acetylation ring, formylation ring, oxidation, reduction or by metabolic synthesis in the presence of tunicamycin.
  • a part or fragment of a polypeptide or protein has a functional property of the polypeptide or protein from which it is derived. Such functional properties include the interaction with other molecules such as antibodies, polypeptides or proteins, the selective binding of nucleic acids and an enzymatic activity.
  • a part or fragment of a peptide or protein preferably comprises a sequence of at least 6, in particular at least 8, at least 10, at least 12, at least 15, at least 20, at least 30 or at least 50, consecutive amino acids from the peptide or protein.
  • the terms “active pharmaceutical ingredient,“ pharmaceutically active substance ”or“ pharmaceutically active ” refer to any agent that can be used in therapy (including prophylaxis) or diagnosis.
  • the agent is in particular any therapeutic or prophylactic agent used in treatment (including prevention, relief or cure) of a disease, ailments or an injury to a patient and has the desired biological or pharmacological effect.
  • a pharmaceutical active substance can be a "dermally active dermatological active substance or a" systemically active dermatological active substance.
  • the term "dermally active dermatological agent as used herein refers to those chemical and biochemical substances which, when applied to a patient's skin, produce a beneficial topical effect, which are cosmetic or therapeutic in nature (e.g. a mitigation of a skin disease)
  • the term "systemic dermatological agent as used herein refers to those chemical and biochemical substances which, when applied to a patient's skin, enter the bloodstream and have a therapeutic effect.
  • the ; Terms "dermatologically active dermatological active substance and" systemically active dermatological active substance should not be mutually exclusive, since a number of pharmaceutical active substances are both dermally and systemically active.
  • a pharmaceutical active substance can also be a "mucosal active mucosal active substance or a" systemic active mucosal active substance, the terms “mucosal active mucosal active substance and” systemic active mucosal active substance being a dermatological active substance or "systemic dermatological active substance” as defined above Active substance have corresponding meaning.
  • the active pharmaceutical ingredient is preferably formulated in neutral or salt form.
  • Pharmaceutically acceptable salts include, but are not limited to, those that form with free amino or carboxyl groups.
  • Suitable acids for the preparation of acid addition salts are inorganic acids, such as HC1, HBr, H SO 4 , HNO, H PO 4 and the like, and organic acids, such as acetic acid, propionic acid, oxalic acid, Maleic acid, malonic acid, succinic acid, malic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.
  • Basic compounds that can form salts with the carboxyl groups include, but are not limited to, NaOH, KOH, NH, Ca (OH) 2 , iron hydroxide, isopropylamine, triethylamine, 2-ethylaminoethanol, histidine, procaine, and the like.
  • the pharmaceutical active ingredient can also be a pharmaceutical precursor which can be activated before, during or after penetration of the active ingredient through the skin or mucosa.
  • drug precursor refers to an agent that is inactive but is convertible to an active form via an enzymatic, chemical, or physical activation.
  • compositions can be prepared in a manner known per se and usually contain suitable pharmaceutically acceptable auxiliaries and carriers.
  • pharmaceutically acceptable refers to a substance which causes no or only a slight significant irritation or toxicity in the patient being treated and which does not cancel or interact with the biological activity and properties of the active ingredient.
  • carrier relates to one or more compatible solid or liquid fillers, diluents, adjuvants, excipients or capsule substances which are suitable for administration to a human being.
  • carrier relates to an organic or inorganic component, natural or synthetic in nature, in which the active ingredient is combined to facilitate application
  • the ingredients of the pharmaceutical composition of the invention are usually such that there will be no interaction that would significantly affect the desired pharmaceutical efficacy.
  • the carriers are sterile liquids such as water or oils, including those derived from petroleum, animals or plants or of synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil, sunflower oil and the like. Saline solutions and aqueous dextrose and glycerol solutions can also be used as aqueous carriers.
  • auxiliaries and carriers are acrylic and methacrylic derivatives, alginic acid, sorbic acid derivatives such as ⁇ -octadecyl- ⁇ -hydroxypoly (oxyethylene) -5-sorbic acid,
  • Amino acids and their derivatives especially amine compounds such as choline, lecithin and phosphatidylcholine, gum arabic, flavorings, ascorbic acid, carbonates such as sodium, potassium, magnesium and calcium carbonate and hydrogen carbonate, hydrogen phosphates and phosphates of sodium, potassium, calcium and magnesium, Carmellose sodium, dimeticone, colors, flavors, buffer substances, preservatives, thickeners, plasticizers, gelatin, glucose syrups, malt, highly disperse silicon dioxide, hydromellose, benzoates, especially sodium and potassium benzoate, macrogol, skimmed milk powder, magnesium oxide, fatty acids and stearic acids and their derivatives and salts and their derivatives and salts Stearates, especially magnesium and potassium stearate, fatty acid esters and mono- and diglycerides of fatty acids, natural and artificial waxes such as beeswax, yellow wax and montanglycol wax, chlorides, especially sodium chloride, polyvidone, polyethylene glycols, poly
  • the pharmaceutical compositions can preferably also additionally contain wetting agents, emulsifiers and / or pH-buffering agents.
  • the pharmaceutical compositions can contain an additional absorption enhancer. These additional resorption enhancers can, if desired, replace an equimolar amount of the vehicle in the composition.
  • additional absorption enhancers include, but are not limited to, eucalyptol, N, N-diethyl-m-toluamide, polyoxyalkylene alcohols (such as propylene glycol and polyethylene glycol), N-methyl-2-pyrrolidone, isopropyl myristate, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), Dimefhylacetamide (DMA), urea, diethanolamine, triethanolamine and the like (see e.g. Percutaneous Penetration Enhancers, ed. Smith et al. (CRC Press, 1995)).
  • the amount of additional absorption enhancer in the composition may depend on the desired effects to be achieved.
  • protease inhibitor can be incorporated into the composition according to the invention in order to avoid degradation of a peptide or protein active ingredient and thereby to increase the bioavailability.
  • protease inhibitors include, but are not limited to, aprotinin, leupepsin, pepstatin, ⁇ 2-macroglobulin and trypsin inhibitor. These inhibitors can be used alone or in combination.
  • compositions according to the invention can be provided with one or more coatings.
  • the solid oral dosage forms are preferably provided with an enteric coating or are in the form of an enteric, hardened soft gelatin capsule.
  • Dosage forms can include materials that release the pharmaceutically active substance in a specific portion of the gastrointestinal tract, thereby enhancing site-directed delivery.
  • compositions described herein can also be administered as a sustained release formulation (ie, a formulation that causes slow release of the drug after administration).
  • sustained release formulations are known.
  • the pharmaceutical compositions of the invention may be formulated for administration by any transdermal or transmucosal route, including, for example, topical, oral, enteral, intracranial, sublingual, nasal, buccal, vaginal, ocular or urethral.
  • Enteral, more preferably oral dosage forms are particularly preferred, in particular enteric formulations and retarded formulations of oral forms.
  • rectal dosage forms such as suppositories, vaginal dosage forms such as suppositories, and nasally applicable preparations such as nasal sprays are also possible.
  • the pharmaceutical composition is incorporated into the matrix of a plaster in order to release the substance, in particular the pharmaceutical active substance, which is coupled to the absorption-enhancing agent to the skin over a longer period of time.
  • the pharmaceutical formulations are, for example, in the form of tablets, suppositories, troches, dragees, drops, solutions, suspensions, emulsions (preferably oil-in-water or water-in-oil emulsions), ointments, gels, pastes, films, juices , Syrups, nasal sprays, vaginal suppositories or tablets, capsules, granules, pellets, microtablets, powders, rectal suppositories, rectal capsules, aerosols, shampoos or sprays.
  • Hard or soft gelatin capsules are particularly preferred, optionally with an enteric coating, hardened soft gelatin capsules are very particularly preferred.
  • the pharmaceutical composition can be an indirect dosage form such as an oral formulation for administration to the gastric or intestinal mucosa.
  • the composition can also be administered directly to a mucous membrane.
  • the pharmaceutical compositions are preferably topically or orally administrable drugs.
  • the term “patient” means human, not human primacy or another animal, in particular mammal such as cow, horse, pig, sheep, goat, dog, cat, birds such as chicken or rodent such as mouse and rat. In a particularly preferred embodiment, the patient is a human.
  • compositions according to the invention are preferably sterile and are administered in effective amounts.
  • An "effective amount” refers to the amount that, alone or together with other doses, achieves a desired reaction or physiological effect.
  • the desired response is to inhibit the course of the disease. This includes slowing the progression of the disease and, in particular, stopping the progression of the disease.
  • the desired response in treating a disease or condition may also be to delay the onset or prevent the onset of the disease or condition.
  • the effective amount can be selected according to the activity of the specific active pharmaceutical ingredient and its therapeutically effective dose. However, it is preferred to incorporate a slightly larger amount than the desired dose since the bioavailability of any active substance can never be 100%, i.e. the dose administered is not completely absorbed.
  • physiologically active peptides or proteins are broken down by digestive juices in the gastrointestinal tract or hydrolyzed by enzymes in the gastrointestinal tract.
  • An effective amount of a pharmaceutical composition is also determined by factors such as the patient's condition to be treated, the severity of the disease, the patient's individual parameters, including age, physiological condition, height and weight, duration of treatment, type of accompanying therapy ( if available), the specific route of administration, the desired administration period and similar factors. In the event that a patient's response to an initial dose is inadequate, higher doses (or effectively higher doses obtained by another, more localized route of administration) can be used.
  • higher doses can be achieved by increasing the amount of absorption-enhancing agent, the concentration of the substance (in particular the pharmaceutical active ingredient) and / or the amount of additional absorption-enhancing agent in the formulation, and increasing the area to which the formulation is applied or a combination of them.
  • PQe8 expression vectors were produced which code for IFN-ß in fusion with the sequence PLSSIFSRIGDP (TLM) at the 5 ⁇ and 3 ⁇ end.
  • TLM sequence PLSSIFSRIGDP
  • cDNAs were amplified by means of PCR which code for IFN-ß-specific fusion proteins which comprise the TLM sequence at the N- or C-terminal end.
  • the forward primers had a BamHI-specific interface at their 5 "end and a HindII-specific interface at the 3 ⁇ end.
  • a cDNA was amplified which contains the sequence coding for the TLM at the 5 "end.
  • a sequence was amplified which contains the TLM-specific sequence at the 3" end .
  • the IFN-ß-specific cDNA was amplified without 5 ⁇ - or 3 "-specific extensions by combining the primers C / B.
  • the respective PCR products were purified by means of "PCR purification spin columns" in accordance with the manufacturer's instructions (Quiagen), BamHI / HindIII cleaved and cleaned again. The fragments restricted in this way were ligated into the BamHI / HindIII cleaved and dephosphorylated bacterial expression vector pQe8 (Quiagen).
  • the vector pQe8 contains the sequence coding for an amino-terminal hexa-His tag, so that all IFN-ß-specific proteins were formed as hexa-His fusion proteins.
  • the ligation approach was used to transform competent bacteria (DH5 ⁇ ).
  • the amp resistance encoded on the plasmid pQe8 allowed selection on media containing amp.
  • Plasmid DNA was isolated from the clones growing under these conditions and analyzed by means of BamHI / HindIII restriction. Positive clones were then characterized by sequencing.
  • IFN-ß-specific fusion proteins The formation of IFN-ß-specific fusion proteins was induced as follows:
  • the elution was carried out weakly bound proteins by means of a buffer containing 50 mM NaH 2 PO 4/300 mM NaCl / 20 mM imidazole, pH 8.0. Elution of the specifically bound hexa-His-tagged IFN-beta fusion proteins was effected by a linear gradient between buffer containing 50 mM NaH 2 PO 4/300 mM NaCl / 20 mM imidazole, pH 8.0 and a buffer of 50 mM NaH PO 4 / 300mM NaCl / 250mM imidazole, pH 8.0. The detection of eluted proteins was carried out by simultaneous detection of the absorption at 215, 260 and 280 nm. The eluate was collected in fractions of 1 ml.
  • the isolation was carried out using an AEKTA Explorer or AEKTA Purifier system.
  • a "reversed phase" chromatography was carried out in individual cases using an RP18 column.
  • the eluate of the Ni-NTA column was diluted 1: 5 with the running buffer of the RP column (0.1% TFA in H 2 O) and loaded onto the column. Elution was carried out using a linear gradient between 0.1 / TFA in H 2 0 and 80% acetonitrile / H 2 O.
  • the purity of the proteins isolated in this way was analyzed by SDS-PAGE according to Laemmli.
  • the gels were stained using Coomassie or subjected to silver staining (according to Heukeshoven / Dernick).
  • the identity of the detected protein bands with IFN-ß (IFN-ß-lb) was verified by Western blotting.
  • the proteins were transferred to a PVDF membrane by means of electroblottings using the semi-dry method (Kyshe / Andersen).
  • An IFN-ß-specific sheep serum was used to label the transferred IFN-ß-specific protein.
  • the detection was carried out fluorographically using a peroxidase-conjugated secondary antibody using the ECL system (Amersham).
  • the human hepatoma cell line huH7 was incubated for 30 min in the presence of 0.5 ⁇ M IFN-ß-lb-specific proteins in medium. To remove surface-bound IFNs, the cells were washed for 5 seconds with Na 2 CO 3 / NaHCO 3 buffer, pH 9.5 and then in PBS after removing the medium. After scraping, the cells were gently disrupted using a Potter homogenizer. After the undigested cells and the cell nuclei had been separated by centrifugation at 13 kUpm in an Eppendorf centrifuge for 30 seconds, the lysate was subjected to a differential centrifugation.
  • the cytosol and the microsomal fraction could be isolated by ultra-centrifugation at 100,000 rpm (430,000 g) for 18 min.
  • the cell fractions isolated in this way were subjected to SDS-PAGE and then analyzed by means of Western blotting using the IFN- ⁇ -specific serum.
  • the Western blotting analysis of the subcellular fractionation showed that only TLM-IFN-ß-lb, but not wt-IFN is detectable in the cytosol.
  • the detection of extracellularly added TLM-IFN-ß-lb in the cytosol confirms the cell permeability and underlines that the uptake was not via an endosome-associated pathway.
  • the human hepatoma cell line huH7 and COS cells (hamsters) were incubated in the medium for 30 min in the presence of 0.5 ⁇ M IFN- ⁇ -lb-specific proteins.
  • To remove surface-bound IFNs were the cells after removal of the medium '5 sec with Na 2 CO 3 / NaHCO 3 buffer, pH 9.5 and then washed in PBS. The washed cells were fixed for 10 min in ice-cold ethanol / DAPI (for staining the cell nucleus). After fixation, rehydration was carried out in PBST for 30 min. Non-specific binding sites were blocked using 10% BSA. HuNN-ß-specific sheep serum was used to label the IFN-ß. The detection was carried out by a Cy3-coupled secondary antibody. A Leica fluorescence microscope was used for evaluation.
  • TLM-IFN-ß-lb can be detected well in both the huH7 and COS cells. It can be detected in almost all cells. TLM-IFN-ß-lb is homogeneously distributed over the cell; no specific accumulation in individual subcellular compartments can be observed.
  • mice were kept without food overnight. The following morning the animals were given a weighed feedress soaked in IFN-ß-lb-specific protein solution. By weighing the pellet after the end of the feeding trial, the amount of the orally ingested IFN could be determined. The animals were sacrificed using CO 2 and the blood was removed as EDTA blood using cardiac puncture. After the cellular components had been separated off, the serum was analyzed using Western blotting or a huIFN-ß-specific ELISA.
  • the Elisa values were standardized to the absorbed IFN-ß-lb amount (amount of feed) and related to the c / o value.
  • the c / o value was set to 1.
  • Example 5 Production and use of IFN- ⁇ -TLM with the help of an eukaryotic IFN- ⁇ -TLM-specific expression vector
  • the cDNA coding for IFN-ß specific fusion proteins was amplified.
  • This cDNA codes for a complete IFN- ⁇ -specific fusion protein which comprises the cell permeability-mediating TLM coding sequence in the open reading frame at the C-terminal.
  • the primers were designed in such a way that the amplificate had a BamHI-specific interface at its 5 "end and 3" end.
  • the PCR product was purified by means of "PCR purification spin columns" according to the manufacturer's instructions (Quiagen), BamHI cleaved and cleaned again.
  • the fragments restricted in this way were ligated into the BamHI-cleaved and dephosphorylated eukaryotic expression vector pCDNA.3.1 (Invitrogen).
  • the ligation approach was used to transform competent bacteria (DH5 ⁇ ).
  • the amp resistance coded on the plasmid allowed selection on media containing amp.
  • Plasmid DNA was isolated from the clones propagated under these conditions and initially analyzed by means of BamHI restriction. Positive clones were then characterized by sequencing and checked for their orientation.
  • IFN-ß-specific fusion proteins in which IFN-ß was glycosylated as in the native protein were formed as described below:
  • the fractions identified as IFN-ß positive by West blot analysis using a huIFN-ß-specific antiseram were pooled and further purified on a MonoQ ion exchange column. Elution was carried out by a linear gradient of 20 to 1000 mM NaCl, buffered in 40 mM Tris with a pH of 7.5 and 2% ethanol. As determined by Westem blot analysis, silver-stained SDS gels and analytical HPLC, IFN-ß-la-TLM was isolated in this way in a purity of over 90%.
  • HepG2.2.15 cells a stable HBV-producing cell line
  • IFN-ß-la-TLM IFN-ß-la-TLM
  • IFN-ß can bind to cells that are not infected with a Viras and thereby induces the formation of, inter alia, the 2 ', 5' ⁇ oligoadenylate synthetase, which leads to a breakdown of viral RNA (cf. e.g. Takane et al, Jpn. J. Pharmacol. 90, 304-312, 2002).
  • mice were kept without food for 18 hours. At the beginning of the trial, the animals received a weighed piece of toast (about 3.5 to 4.5 g), the 10 4 U IF ⁇ -ß-la-TLM
  • Example 5 contained (TLM). Animals that none were used as negative controls
  • Fig. 1 shows that after oral administration of IFN-ß-la-TLM for 4h or 8h, the amount of IFN-ß in the serum was significantly increased, the amount after 4h was about twice as high as the amount after 8h. In contrast, no significant increase in IFN-ß was found in serum in any negative control. Consequently, the results show that the coupling of TLM to IFN-ß significantly increased the absorption of IFN-ß via the mucosa.
  • mice were carefully sheared so as not to injure the skin and kept for 4 or 8 hours with an outwardly impermeable gauze bandage (2 ⁇ 6 cm, 2-ply), which in 10 4 U IFN-ß-la-TLM Example 5 had been soaked (TLM).
  • Animals that were not subjected to treatment (Nl) or animals that were exposed to commercially available recombinant IFN-ß-la (N2) were used as controls. The animals were sacrificed using CO 2 and the blood was removed as EDTA blood using cardiac puncture. After separating cellular components, the serum was analyzed using a commercial huIFN-ß-specific ELISA. Different amounts of commercially available recombinant IFN-ß-la (krIFN-ß-la) were measured for a calibration curve. Tables 4 and 5 below show the measured values obtained (mean from two measurements):
  • Table 5 Measured values, mean values and calculated amounts after dermal administration of IFN-ß-la-TLM (TLM) or for the controls (Nl and N2)
  • FIG. 2 shows that after dermal administration of LFN-ß-la-TLM for 4 h and 8 h, an increased amount of IFN-ß was present in the serum, whereas no significant amount of IFN-ß could be detected in the serum in the controls , The results thus show that the coupling of TLM to IFN-ß increases the absorption of IFN-ß through the skin. It was surprisingly found that the amount of IFN- ⁇ detectable in the serum increased by a factor of 2 during the test period. Such a depot effect, as is typical for subcutaneous administration, is thus also achieved by the method according to the invention without the need for an invasive application.
  • Example 8 Detection of the functionality of the orally ingested IFN-ß-la-TLM
  • HBV-producing cell line HepG2.2.15 The functionality was examined as described above using the HBV-producing cell line HepG2.2.15. The cells were laid out in 24-well plates. After 24 h, the medium was changed and replaced by medium which was diluted 1: 1 with the mouse sera which are identified by a star in Example 6, Table 2 (IFN- ⁇ sera). Untreated cells (Nl) and mouse seram from untreated animals (N2) served as controls. This procedure was repeated after 24 h and after a further 24 h the amount of virus in the supernatant was quantified using taqman PCR (Stoeckl et al., 2003). Table 6 shows the values obtained (HBV genome / ml) as the mean of a duplicate determination.
  • B6 mice (9 animals) were kept without food for 18 hours. At the start of the experiment, the animals were given a weighed piece of toast bread (about 3.5 to 4.5 g), which had been soaked with 1 ml of a 200 ⁇ M PreSlPreS2 solution.
  • the PreSlPreS2 protein contains the HBV-TLM endogenously at its C-terminus. Animals remained untreated as negative controls (5 animals). The animals were fed for 8 hours. The animals were sacrificed using CO 2 and the blood was removed as EDTA blood using cardiac puncture. After separating cellular components, the serum was analyzed by Western blot analysis using a PreSlPreS2-specific serum. The Western blots showed that under these conditions 9 of 9 animals showed PreSlPreS2 protein in the serum, but not in the controls.
  • the animals were kept as described above and over a Feeded with PreSlPreS2 protein every 14 weeks. A total of 6 weeks after the first feeding, the animals were sacrificed as described above and the serum was obtained. Blot strips were produced on which one lane was loaded with cytochrome c (200 ng), one lane with PreSlPreS2 protein (20 ng) and one lane with the heavy IgG chain (marker). These strip blots were incubated with the sera obtained. The detection of the bound antibodies was carried out using a peroxidase-coupled anti-mouse IgG-specific secondary antibody.
  • B6 mice (9 animals) were carefully sheared so as not to injure the skin and kept for 8 hours with an externally impermeable gauze bandage (2 ⁇ 6 cm, 2-ply) which had been soaked in 1 ml of a 200 ⁇ M PreSlPreS2 solution was. Untreated animals served as controls (4 animals). The animals were sacrificed using CO 2 and the blood was cardiac punctured as EDTA blood. After separating cellular components, the serum was analyzed by Western blot analysis using a PreSlPreS2-specific serum.
  • the Western blots showed that under these conditions 8 of 9 animals showed the PreSlPreS2 protein in the serum, but not in the controls. 4 shows a typical example of a Western blot of this test series (lane 1: positive control; lanes 2 to 5: sera from untreated animals; lanes 6 to 9: sera from animals to which PreSlPreS2 was dermally administered).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Die Erfindung betrifft die Verstärkung der Resorption von Substanzen über die Haut und Schleimhaut. Ferner betrifft die Erfindung Substanzen mit einer erhöhten Fähigkeit, von der Haut und Schleimhaut resorbiert zu werden und pharmazeutische Zusammensetzungen, die solche Substanzen umfassen.

Description

Verstärkung der Resorption von Substanzen über die
Haut und Schleimhaut
Die Erfindung betrifft die Verstärkung der Resorption von Substanzen über die Haut und Schleimhaut. Ferner betrifft die Erfindung Substanzen mit einer erhöhten Fähigkeit, von der Haut und Schleimhaut resorbiert zu werden, und pharmazeutische Zusammensetzungen, die solche Substanzen umfassen.
Die Nerabreichung von biologisch und therapeutisch aktiven Substanzen durch eine parenterale Applikation (z.B. intravenöse, intramuskuläre und subkutane Injektion) wird häufig als die geeignetste Art der Nerabreichung betrachtet, falls eine schnelle und starke systemische Wirkung erreicht werden soll und die aktive Substanz nicht oder nur geringfügig vom Körper resorbiert oder im Gastrointestinaltrakt oder durch den Lebermetabolismus inaktiviert wird.
Jedoch weist die Nerabreichung durch eine Injektion eine Reihe von Nachteilen auf. So ist die Verwendung von sterilen Spritzen und Nadeln oder anderen mechanischen Vorrichtungen erforderlich und es können Schmerzen, Reizungen und Infektionen auftreten, insbesondere im Fall von wiederholten Injektionen. Des weiteren sollten Injektionen nur durch geschulte Personen verabreicht werden.
Es ist bekannt, dass bestimmte Arzneimittel an einen Patienten transdermal (perkutan, über die - unverletzte - Haut) oder transmucosal (über die Schleimhaut) verabreicht werden können. Diese Verabreichung umfasst im Wesentlichen das Auftragen des Arzneimittels auf die Oberfläche der Haut und/oder der Mucosa und ein Durchdringen der Haut oder Mucosa durch das Arzneimittel in den Blutkreislauf des Patienten.
Eine kutane oder mucosale Verabreichung ist dadurch interessant, dass dabei eine lokale sowie eine systemische Wirkung eines Arzneimittels erzeugt werden kann. Ferner kann diese Art der Verabreichung als Alternative zu einer parenteralen Verabreichung interessant sein, falls ein schnelles Einsetzen einer Wirkung des verabreichten Arzneimittels erforderlich ist.
Eine nicht-invasive Applikation erspart Arzt und Patienten ferner die Unannehmlichkeiten und Risiken, die mit Injektionen und Infusionen verbunden sind, und kann auch durch ungeschulte Personen, d.h. auch selbständig durch den Patienten, erfolgen. Diese Art der Arzneimittelapplikation ist daher mit einer höheren Patienten-Compliance verbunden als invasive Techniken. Dies gilt insbesondere für die topische (lokale) oder enterale Verabreichung, d. h. die Verabreichung auf oralem oder rektalem Wege.
Die topische Verabreichung von systemisch wirkenden Substanzen weist ferner einen signifikanten Vorteil gegenüber den Fällen auf, bei denen die Substanz oral schlecht resorbiert wird, Magenunverträglichkeiten auftreten oder die Substanz nach Resorption sofort in der Leber metabolisiert wird. In diesen Fällen besteht ein weiterer Vorteil darin, dass durch die topische Verabreichung eine systemische Wirkung bei einer geringeren Dosis als derjenigen, die für eine orale Verabreichung nötig ist, erzielt werden kann.
Allerdings ist die Haut und ScMeimhaut eine physikalische und physiologische Barriere, die bei einer Verabreichung von Arzneimitteln, die zu inneren Geweben gelangen sollen, überschritten werden muss. Oral verabreichte Arzneimittel müssen zudem gegenüber dem niedrigen pH- Wert und den Verdauungsenzymen im Gastrointestinaltrakt resistent sein.
Eine transdermale oder transmucosale Verabreichung ist daher nur für solche Arzneimittel geeignet, die gut "von der Haut oder Mucosa resorbiert werden.
Die Resorptionsgeschwindigkeit und die Resorptionsquote, d. h. das Verhältnis von resorbiertem Anteil zu applizierter Menge, und letztlich die erzielbaren Blutplasmaspiegel, d. h. die biologische Verfügbarkeit eines Wirkstoffes, hängen neben anderen Faktoren unter anderem von der ausreichenden Wasserlöslichkeit, anderen chemischen Stoffeigenschaften und den physiologischen Gegebenheiten am Applikations- bzw. Resorptionsort ab. Viele Arzneimittelwirkstoffe sind extrem groß und praktisch impermeabel für die Haut und Schleimhaut. Zudem sind viele Arzneimittelwirkstoffe aufgrund ihrer schlechten Wasserlöslichkeit bis Wasserunlöslichkeit schwierig über Schleimhäute zu resorbieren, was gegen deren Applikation über eben diese Schleimhäute beispielsweise auf enteralem (oralem und rektalem), nasalem, bukkalem, vaginalem oder urethralem Wege spricht.
Daher wurde versucht, die perkutane oder transmucosale Resorption von Arzneimitteln zu erhöhen, d.h. eine größere Menge der Substanz muss in einem bestimmten Zeitraum die Haut oder Schleimhaut durchdringen. Substanzen, die die Resorption oder den Transport von gering resorbierbaren Molekülen über biologische Membranen verstärken und somit die Bioverfügbarkeit dieser Moleküle verstärken, sind als Resorptionsverstärker bekannt (Lee et al., Critical Reviews in Therapeutic Drag Carrier Systems 8, 91, 1991).
Resorptionsverstärker wurden Arzneimitteln zugegeben, um deren Resorption über die Haut oder Schleimhaut zu verstärken. Diese Verbindungen verstärken dabei die Geschwindigkeit der Permeation des Arzneimittels durch die Haut oder Schleimhaut.
Beispiele solcher Resorptionsverstärker sind Alkohole und Glykole (US-A-5,296,222), Harnstoffderivate, Hyaluronsäuren, N,N-Dimethylformamid (DMF) und Dimethylsulfoxid (DMSO), Terpene (DE-A-10053383), Gallensäuresalze (JP-A-59-130820), Chelatoren (Cassidy and Tidball, J. Cell. Biol. 32, 685, 1967), Tenside (JP-A-4-247034, George et al, J. I fect. Dis. 136, 822, 1977), Salze von Fettsäuren (US-PS 4,476,116 und 6,333,046), synthetische hydrophile und hydrophobe Verbindungen, biodegradierbare polymere Verbindungen und Glycyrrhizinsäuresalze (JP-A-2-042027; US-A-6,333,046).
Verschiedene Mechanismen für die Wirkung von Resorptionsverstärkern wurden vorgeschlagen. Diese Wirkungsmechanismen umfassen zumindest für Protein- und Peptidarzneimittel (1) eine Verringerung der Viskosität und/oder Elastizität der Schleimhäute, (2) einen erleichterten transzellulären Transport durch Erhöhung der Fluidität der Bilayer von Membranen und (3) eine Erhöhung der thermodynamischen Aktivität von Arzneimitteln (Lee et al., Critical Reviews in Therapeutic Drag Carrier Systems 8, 91, 1991). Jedoch befindet sich momentan kaum ein resorptionsverstärkendes Produkt auf dem Markt. Die Gründe dafür umfassen die geringe Wirksamkeit und Sicherheit bezüglich einer Reizung und Schädigung der Schleimhäute, der unangenehme Geschmack und Geruch, usw.
Es treten beispielsweise Probleme bezüglich des Verhältnisses zwischen der verstärkenden Wirkung und der Konzentration des Resorptionsverstärkers in der Zubereitung auf. Bei DMSO hängt der resorptionsverstärkende Effekt größtenteils von seiner Konzentration ab und man glaubt, dass es bei einer Konzentration von weniger als 50% fast unwirksam ist. Ferner zeigt es nachteilige Wirkungen auf die Augen und weist auch Nebenwirkungen betreffend die Haut auf. Die resorptionsverstärkende Wirkung von Harnstoffderivaten, Hyaluronsäuren, N,N-Dimethylfoτmamid und Tensiden ist im Vergleich zu Dimethylsulfoxid gering.
Auch verstärken nicht alle Resorptionsverstärker die Resorption aller Arzneimittel. Der Resorptionsverstärker muss daher auf das jeweilige Arzneimittel abgestimmt sein.
Femer reizen bekannte Resorptionsverstärker häufig die Mucosa oder sind aufgrund eines unangenehmen Geruchs oder Geschmacks ungeeignet, führen häufig schon nach einer einzigen Verabreichung zu Schmerz und Lakrimation oder führen zu einer Reizung und Entzündung der Mucosa nach mehreren Anwendungen. Dies trifft beispielsweise für Derivate von Fusidinsäure, Gallensäuren, Tenside und verschiedene Glykole (Polyethylenglykol, Polypropylenglykol) zu.
Weiterhin führen viele dieser Resorptionsverstärker zu einer Schädigung der resorbierenden Gewebe und es wurde sogar vermutet, dass eine Schädigung der Mucosa, die durch diese Stoffe verursacht wird, der Grund für eine verbesserte Resorption ist (LeCluyse and Sutton, Advanced Drag Delivery Reviews 23, 163, 1997).
Daher sind die bekannten Verstärker der transdermalen oder transmucosalen Resorption im Hinblick auf ihre Wirkung und Sicherheit unzureichend. Des weiteren sind aus dem Stand der Technik so genannte Transferosomen bekannt (DE 41 07 152, DE 41 07 153 und DE 44 47 287). Sie dienen der nicht-invasiven Verabreichung geeigneter Wirkstoffe durch die Haut. Transferosomen zeichnen sich gegenüber anderen für die topische Anwendung beschriebenen Liposomen durch eine verbesserte Penetrationsfähigkeit aus. Transferosomen sind in der Regel viel größer als herkömmliche mizellenartige Trägerformulierungen und unterliegen daher anderen Diffusionsgesetzen. Die gesteigerte Penetrationsfähigkeit wird durch ihre spezielle Zusammensetzung erreicht, die sie genügend elastisch (hyperflexibel) macht, um die Konstriktionen in der Barriere, z.B. in der Haut, überwinden zu können.
Die Aufgabe der Erfindung besteht darin, die Resorptionsfähigkeit an sich schwer über die Haut und Schleimhaut resorbierbarer Substanzen zu verbessern, um so eine bessere Resorptionsquote für diese Substanzen bereitzustellen.
Dadurch soll eine icht-invasive Anwendung von Substanzen ermöglicht werden, die normalerweise nicht oder nur schlecht von Haut oder Schleimhäuten resorbiert werden, ohne gleichzeitig einen großen technischen Aufwand und einen hohen Wirkstoffverbrauch in Kauf nehmen zu müssen.
Diese Aufgabe wird erfindungsgemäß durch den Gegenstand der Patentansprüche gelöst.
Gelöst wird die erfindungsgemäße Aufgabe dadurch, dass ein Mittel, das die Resorption einer Substanz durch die Haut oder Mucosa verstärkt, mit der Substanz gekoppelt wird und so eine höhere Bioverfügbarkeit für die Substanz bereitgestellt wird.
Die erfindungsgemäße Kombination einer Substanz und einem die Resorption verstärkenden Mittel ermöglicht überraschenderweise eine Verbesserung der Resorptionsquote und/oder Permeation von Substanzen über die Haut und Schleimhäute, die bislang als schlecht oder nicht resorbierbar betrachtet wurden.
Die verstärkende Wirkung (Enhancerwirkung) von Mitteln auf die Resorption von Substanzen über bzw. durch die Haut oder Schleimhäute macht Applikationsformen von therapeutischen, diagnostischen oder kosmetischen Substanzen über die Haut und Mucosa wie die NasenscUeimhaut, Augenschleimhaut, Tracheal-/Bronchial-/Lungenschleimhaut, die Schleimhaut des Rektums, die Schleimhaut des Genitaltrakts, die Mundschleimhaut, die Magendarmschleimhäute, die Vaginalschleimhaut oder auch die Harnleiterschleimhaut auch für bisher schlecht oder nicht resorbierbare Substanzen zugänglich.
Das die Resorption verstärkende Mittel bewirkt hier als Resorptionsenhancer eine höhere Bioverfügbarkeit der Substanz. Trotz der schlechten ursprünglichen Resorption und damit verbundenen geringen Bioverfügbarkeit kann somit eine befriedigende Resorption mit allen therapeutischen Konsequenzen erzielt werden und die Dosierung der Substanz kann gegebenenfalls auch gegenüber der herkömmlichen Dosierung gesenkt werden bzw. kann bei gleich bleibender Dosierung eine verbesserte Wirkung erzielt werden.
Die Erfindung betrifft somit in einem Aspekt ein Verfahren zur Herstellung eines perkutanen oder transmucosalen Präparats, umfassend die Kopplung einer Substanz mit mindestens einem Mittel, das die Resorption der Substanz durch Haut oder Mucosa verstärkt.
Die Erfindung betrifft in einem weiteren Aspekt ein Verfahren zur Verstärkung der Bioverfügbarkeit einer Substanz bei einer Applikation an die Haut oder Mucosa, umfassend die Kopplung der Substanz mit mindestens einem Mittel, das die Resorption der Substanz durch Haut oder Mucosa verstärkt.
Die Erfindung betrifft auch ein Verfahren zur Verstärkung der Fähigkeit einer Substanz, bei einer Applikation an die Haut oder Mucosa von dieser resorbiert zu werden, umfassend die Kopplung der Substanz mit mindestens einem Mittel, das die Resorption der Substanz durch Haut oder Mucosa verstärkt.
Femer betrifft die Erfindung ein Verfahren zur Verstärkung der Permeationsfähigkeit (Penetrationsfähigkeit) einer Substanz für Haut oder Mucosa, umfassend die Kopplung der Substanz mit mindestens einem Mittel, das die Resorption der Substanz durch Haut oder Mucosa verstärkt. Die Erfindung betrifft in einem weiteren Aspekt die nach den erfindungsgemäßen Verfahren erhältlichen Substanzen mit verstärkter Bioverfügbarkeit, verstärkter Fähigkeit, von Haut oder Mucosa resorbiert zu werden, und/oder verstärkter Permeationsfähigkeit (Penetrationsfähigkeit) und pharmazeutische Zusammensetzungen, umfassend eine oder mehrere dieser Substanzen.
Des weiteren betrifft die Erfindung die Verwendung der nach den erfindungsgemäßen Verfahren erhältlichen Substanzen mit verstärkter Bioverfügbarkeit, verstärkter Fähigkeit, von Haut oder Mucosa resorbiert zu werden, und/oder verstärkter Permeationsfähigkeit (Penetrationsfähigkeit) und deren pharmazeutische Zusammensetzungen zur Applikation an die Haut oder Mucosa und zur Behandlung (einschließlich Prophylaxe und kosmetischer Behandlung) und/oder Diagnose von Erkrankungen, die mit diesen Substanzen ohne die erfindungsgemäße Veränderung gewöhnlich behandelt, verhindert oder diagnostiziert werden.
Fe er betrifft die Erfindung Verfahren zur Behandlung (einschließlich Prophylaxe und kosmetischer Behandlung) und/oder Diagnose einer Erkrankung in einem Patienten, umfassend die Verabreichung einer pharmazeutischen Zusammensetzung, die die nach dem erfindungsgemäßen Verfahren erhältlichen Substanzen mit verstärkter Bioverfügbarkeit, verstärkter Fähigkeit, von Haut oder Mucosa resorbiert zu werden, und/oder verstärkter Permeationsfähigkeit (Penetrationsfähigkeit) umfasst, an den Patienten, so dass die Konzentration (lokal oder systemisch, vorzugsweise systemisch) der Substanz mit verstärkter Bioverfügbarkeit, verstärkter Fähigkeit, von Haut oder Mucosa resorbiert zu werden, und/oder verstärkter Permeationsfähigkeit (Penetrationsfähigkeit) ausreichend ist, um die Erkrankung zu behandeln, zu verhindern und/oder zu diagnostizieren.
Die Erfindung betrifft in einem weiteren Aspekt ein Verfahren zur Aufklärung einer mucosalen, dermatologischen und/oder systemischen Wirkung einer Substanz, insbesondere eines pharmazeutischen Wirkstoffs, das eine Verabreichung über die Haut oder Schleimhaut einer pharmazeutischen Zusammensetzung, die die nach dem erfindungsgemäßen Verfahren erhältlichen Substanzen mit verstärkter Bioverfügbarkeit, verstärkter Fähigkeit, von Haut oder Mucosa resorbiert zu werden, und/oder verstärkter Permeationsfähigkeit (Penetrationsfähigkeit) enthält, in einer mucosal, dermal und/oder systemisch wirksamen Menge an einen Patienten umfasst.
Das resorptionsverstärkende Mittel kann erfindungsgemäß kovalent oder nicht kovalent mit einer Substanz verbunden (gekoppelt) sein. Vorzugsweise ist eine Bindung eine kovalente Bindung.
In einer Ausfiihrungsform liegt zwischen der Substanz und dem resorptionsverstärkenden Mittel ein Linker. Vorzugsweise ist der Linker z.B. enzymatisch oder chemisch, insbesondere durch in vivo Prozesse spaltbar, so dass die Substanz von dem resorptionsverstärkenden Mittel getrennt werden kann. Der Linker enthält in einer Ausführungsform eine spaltbare Ester- oder Carbamatfunktionalität oder ein durch eine Proteinase wie eine im Serum auftretende Proteinase erkennbares Peptid. In einer besonders bevorzugten Ausführungsform wird die Substanz von dem resorptionsverstärkenden Mittel nach Resorption durch die Haut oder Mucosa getrennt.
In einer Ausführangsform ist das resorptionsverstärkende Mittel mehrfach an die Substanz gekoppelt, d.h. mindestens 2, vorzugsweise 2 bis 10, mehr bevorzugt 2 bis 5, noch mehr bevorzugt 2 bis 3, insbesondere 2 resorptionsverstärkende Mittel, die gleich oder verschieden sein können, werden an die Substanz (kovalent und/oder nicht kovalent) gekoppelt. Diese mehrfach gekoppelten resorptionsverstärkenden Mittel können getrennt voneinander oder in Serie nacheinander, gegebenenfalls durch einen Linker getrennt, als Tandemkonstrulcte mit der Substanz verbunden sein. Vorzugsweise wird dadurch eine stärkere Bioverfügbarkeit, Fähigkeit, von Haut oder Mucosa resorbiert zu werden, und/oder verstärkter Permeationsfähigkeit (Penetrationsfähigkeit) erreicht als bei einer einfachen Kopplung des resorptionsverstärkenden Mittels.
In einer bevorzugten Ausfuhrungsform ist das resorptionsverstärkende Mittel ein Polypeptid oder Protein. Das Polypeptid oder Protein umfasst vorzugsweise eine von einem Virus abgeleitete Sequenz und insbesondere eine von einem Oberflächenprotein eines Viras abgeleitete Sequenz oder ein Derivat oder einen Teil davon. Der Ausdruck "Virus" umfasst DNA-und RNA- Viren, insbesondere Adenoviren, Adeno-assoziierte Viren, Vacciniaviren, Baculoviren, Hepatitis C-Viren, Hepatitis A- Viren, Influenzaviren, Herpesviren und Hepadna- Viren. Beispiele letzterer sind HBV, WHV ("woodchuck hepatitis virus"), GSHV ("ground squirrel hepatitis viras"), RBSHV ("red-bellied squirrel hepatitis virus"), DHN ("Pekin duck hepatitis virus") und HHN ("heron hepatitis virus"). In einer besonders bevorzugten Ausfuhrungsform umfasst das Peptid oder Protein eine von einem Hepatitis-Virus, Hepadna- Viras oder HIN, insbesondere einem Hepatitis B-Nixus abgeleitete Sequenz, ein Derivat oder einen Teil davon. Vorzugsweise umfasst das Peptid oder Protein eine von Antennapedia-abgeleitete, eine von HIV tat abgeleitete oder eine von VP22 eines Herpesvirus abgeleitete Sequenz.
In einer bevorzugten Ausführungsform umfasst der Begriff "Virus" diejenigen Viren, die in Menschen, nicht menschlichen Primaten oder anderen Tieren, insbesondere Säugetieren (wie Kuh, Pferd, Schwein, Schaf, Ziege, Hund und Katze), Vögeln (wie z.B. Huhn) oder Nagetieren (wie Maus und Ratte) vorkommen.
Das Polypeptid oder Protein, das als resorptionsverstärkendes Mittel fungiert, umfasst in einer bevorzugten Ausführungsform eine Sequenz, die unter die nachstehende allgemeine Formel fällt:
X1-X2-X3-X4-X5-X6-X7-X8-X9-X10-X11-X12,
worin XI, X6, X7, X9, XI 0 und XI 2 variabel sind, X2 und X5 hydrophobe Aminosäurereste und X3, X4, X8 und XI 1 hydrophile Aminosäurereste sind. X7 ist vorzugsweise ein hydrophiler Aminosäurerest.
In bestimmten Ausführungsformen umfasst das Polypeptid oder Protein, das als resorptionsverstärkendes Mittel fungiert, diese Sequenz, wobei 1 oder 2 Aminosäurereste, insbesondere 1 Aminosäurerest von XI bis X12 von dieser Hydropathieverteilung abweichen.
Aminosäureseitenketten mit geladenen Gruppen, Wasserstoffbrücken-bildenden Gruppen oder Dipolen können als hydrophil klassifiziert werden. Im Gegensatz dazu können neutrale organische Aminosäureseitenketten mit einem Kohlenwasserstoffcharakter, die keine signifikanten Dipole aufweisen und nicht die Fähigkeit besitzen, Wasserstoffbrücken zu bilden, als hydrophob klassifiziert werden.
Die nachstehende Tabelle zeigt den Hydropathie-Index von Aminosäure-Seitenketten nach Kyte und Doolittle, J. Mol. Biol. 157, 105, 1982:
Zu den hydrophoben Aminosäuren zählen erfindungsgemäß Alanin, Valin, Leucin, Isoleucin, Tryptophan, Phenylalanin und Methionin. Zu den hydrophilen Aminosäuren zählen erfindungsgemäß Glycin, Serin, Tyrosin, Threonin, Cystein, Asparaginsäure, Asparagin, Glutaminsäure, Glutamin, Lysin, Arginin, Histidin und Prolin. Ein variabler Aminosäurerest kann eine jegliche der vorstehend aufgeführten Aminosäuren sein.
XI ist vorzugsweise Prolin, Histidin, Leucin oder Threonin, mehr bevorzugt Prolin oder Threonin, insbesondere Prolin. X2 ist vorzugsweise Alanin, Valin, Leucin, oder Isoleucin, mehr bevorzugt Leucin oder Isoleucin, insbesondere Leucin. X3 ist vorzugsweise Serin, Asparagin, Asparaginsäure oder Glutamin, insbesondere Serin. X4 ist vorzugsweise Serin, Glutamin, Histidin oder Prolin, mehr bevorzugt Serin, Histidin oder Prolin, insbesondere Serin. X5 ist vorzugsweise Alanin, Valin, Leucin oder Isoleucin, mehrbevorzugt Isoleucin oder Valin, insbesondere Isoleucin. X6 ist vorzugsweise Phenylalanin, Serin, Alanin, Leucin, Methionin oder Valin, mehr bevorzugt Phenylalanin oder Valin, insbesondere Phenylalanin. X7 ist vorzugsweise Serin, Alanin, Glycin, Asparaginsäure oder Prolin, mehr bevorzugt Serin, Asparaginsäure oder Prolin, insbesondere Serin. X8 ist vorzugsweise Arginin, Histidin oder Threonin, mehr bevorzugt Arginin oder Histidm, insbesondere Arginin. X9 ist vorzugsweise Isoleucin, Threonin, Methionin oder Valin, mehr bevorzugt Isoleucin oder Valin, insbesondere Isoleucin. XI 0 ist vorzugsweise Glycin, Isoleucin, Glutamin, Asparaginsäure oder Serin, mehr bevorzugt Glycin oder Serin, insbesondere Glycin. XI 1 ist vorzugsweise Asparaginsäure, Prolin, Threonin oder Serin, mehr bevorzugt Asparaginsäure oder Threonin, insbesondere Asparaginsäure. XI 2 ist vorzugsweise Prolin, Lysin, Methionm, Valin, Isoleucin oder Threonin, insbesondere Prolin.
In einer bevorzugten Ausführungsform umfasst das Polypeptid oder Protein, das als resorptionsverstärkendes Mittel fungiert, eine Ammosäuresequenz, die unter die nachstehende allgemeine Formel fällt:
(I) X1-X2-S-S-I-X6-X7-R-X9-G-D-P, . -
worin
XI eine variable Aminosäure, vorzugsweise Prolin, Histidin, Leucin oder Threonin, mehr bevorzugt Prolin oder Histidin, insbesondere Prolin ist,
X2 eine hydrophobe Aminosäure, vorzugsweise Alanin, Valin, Leucin oder Isoleucin, mehr bevorzugt Leucin oder Isoleucin, insbesondere Leucin ist, X6 eine variable Aminosäure, vorzugsweise Phenylalanin, Serin Alanin, Leucin, Methionm oder Valin, mehr bevorzugt Phenylalanin oder Serin, insbesondere Phenylalanin ist, X7 eine variable Aminosäure, vorzugsweise Serin, Alanin, Glycin, Asparaginsäure oder Prolin, mehr bevorzugt Serin oder Alanin, insbesondere Serin ist und X9 eine variable Aminosäure, vorzugsweise Isoleucin, Threonin, Methionin oder Valin, mehr bevorzugt Isoleucin oder Threonin, insbesondere Isoleucin ist. In einer weiteren bevorzugten Ausführungsform umfasst das Polypeptid oder Protein, das als resorptionsverstärkendes Mittel fungiert, eine Aminosäuresequenz, die unter die nachstehende allgemeine Formel fällt:
(II) T-I-X3-H-N-X6-D-H-X9-X10-X11-X12,
worin
X3 eine hydrophile Aminosäure, vorzugsweise Serin, Asparagin, Asparaginsäure oder
Glutamin, insbesondere Asparaginsäure oder Glutamin ist, X6 eine variable Aminosäure, vorzugsweise Phenylalanin, Serin, Alanin, Leucin,
Methionin oder Nalin, insbesondere Leucin oder Methionin ist,
X9 eine variable Aminosäure, vorzugsweise Isoleucin, Threonin, Methionin oder Nalin, insbesondere Nalin oder Isoleucin ist,
XI 0 eine variable Aminosäure, vorzugsweise Glycin, Isoleucin, Glutamin, Asparaginsäure oder Serin, insbesondere Asparaginsäure oder Glutamin ist,
XI 1 eine hydrophile Aminosäure, vorzugsweise Asparaginsäure, Prolin, Threonin oder
Serin, insbesondere Serin oder Threonin ist und
X12 eine variable Aminosäure, vorzugsweise Prolin, Lysin, Methionin, Nalin, Isoleucin oder Threonin, insbesondere Valin oder Methionin ist.
In einer weiteren bevorzugten Ausführungsform umfasst das Polypeptid oder Protein, das als resorptionsverstärkendes Mittel fungiert, eine Aminosäuresequenz, die unter die nachstehende allgemeine Formel fällt:
(IH) T-L-S-P-V-V-P-TN-S-T-X12,
worin
XI 2 eine variable Aminosäure, vorzugsweise Prolin, Lysin, Methionin, Valin, Isoleucin oder Threonin, insbesondere Isoleucin oder Threonin ist. In einer weiteren Ausführungsform umfasst das Polypeptid oder Protein, das als resorptionsverstärkendes Mittel fungiert, eine der nachstehend aufgeführten Aminosäuresequenzen oder eine hiervon abgeleitete Aminosäuresequenz:
(1) P-L-S-S-I-F-S-R-I-G-D-P;
(2) P-I-S-S-I-F-S-R-I-G-D-P;
(3) P-I-S-S-I-F-S-R-T-G-D-P;
(4) H-I-S-S-I-S-A-R-T-G-D-P;
(5) L-L-N-Q-L-A-G-R-M-I-P-K; (6) T-I-D-HN-L-D-H-V-Q-T-M;
(7) T-I-Q-H-V-M-D-H-I-D-S-V;
(8) T-L-S-P-V-V-P-T-V-S-T-I;
(9) T-L-S-P-V-V-P-T-V-S-T-T.
In der am meisten bevorzugten Ausführurigsform umfasst das Polypeptid oder Protein, das als resorptionsverstärkendes Mittel fungiert, die Aminosäuresequenz:
(1) P-L-S-S-I-F-S-R-I-G-D-P
Die erfindungsgemäß beschriebenen Polypeptide oder Proteine, die als resorptionsverstärkende Mittel fungieren, können auch Derivate davon, insbesondere Aminosäure-Insertionsvarianten, Aminosäure-Deletionsvarianten und/oder Aminosäure- Substitutionsvarianten sein. Vorzugsweise werden Aminosäuren durch andere mit ähnlichen Eigenschaften, wie Hydrophobizität, Hydrophilizität, Elektronegativität, Volumen der Seitenkette und ähnliches, ersetzt (konservative Substitution). Konservative Substitutionen betreffen hierbei beispielsweise den Austausch einer Aminosäure durch eine andere, wobei beide Aminosäuren in derselben nachstehenden Gruppe aufgeführt sind:
1. kleine aliphatische, nicht-polare oder leicht-polare Reste: Ala, Ser, Thr (Pro, Gly) 2. negativ geladene Reste und ihre Amide: Asn, Asp, Glu, Gin
3. positiv geladene Reste: His, Arg, Lys
4. große aliphatische, nicht-polare Reste: Met, Leu, Ile, Val (Cys) 5. große aromatische Reste: Phe, Tyr, Trp.
Drei Reste sind aufgrund ihrer besonderen Rolle für die Proteinarchitektur in Klammern gesetzt. Gly ist der einzige Rest ohne eine Seitenkette und verleiht der Kette somit Flexibilität. Pro besitzt eine ungewöhnliche Geometrie, die die Kette stark einschränkt. Cys kann eine Disulfidbrücke bilden.
In einer Ausführungsform können in den erfindungsgemäß beschriebenen Polypeptiden oder Proteinen, die als resorptionsverstärkende Mittel fungieren, 1 bis 6, bevorzugt 1 bis 4, mehr bevorzugt 1 bis 3, insbesondere 1 bis 2 Aminosäuren ersetzt sein.
Die erfindungsgemäß beschriebenen Polypeptide oder Proteine, die als resorptionsverstärkende Mittel fungieren, können auch nicht natürlich auftretende Aminosäuren wie D-Aminosäuren, nicht-klassische Aminosäuren oder chemische Aminosäure- Analoga umfassen. Nicht-klassische Aminosäuren und chemische Aminosäure-Analoga umfassen in nicht begrenzender Weise α-Aminobuttersäure, Aminobuttersäuren, Aminohexansäuren, Aminopropionsäuren, ß-Alanin, γ- Carboxyglutaminsäure, Ornithin, Norleucin, Norvalin, Hydroxyprolin, Sarcosin, Citrullin, Cysteinsäure, t-Butylglycm, t-Butylguanin, Phenylglycin, Cyclohexylalanin, P-Alanin, Fluoraminosäuren, Phenylalanin, dessen Ring methyliert ist, und dergleichen. Jeder Aminosäurerest kann durch eine nicht-klassische Aminosäure oder ein chemisches Aminosäure-Analogon ersetzt werden. Vorzugsweise kann hierdurch die Löslichkeit, Stabilität oder die Resorption durch die Haut oder Mucosa verstärkt werden.
Das Polypeptid oder Protein, das als resoφtionsverstärkendes Mittel fungiert, umfasst in einer weiteren Ausführungsform eine Aminosäuresequenz oder hiervon abgeleitete Sequenz, die ein Hydropathieprofil aufweisen, das einer oder mehreren der nachstehend aufgeführten Aminosäuresequenzen entspricht:
(1) P-L-S-S-I-F-S-R-I-G-D-P;
(2) P-I-S-S-I-F-S-R-I-G-D-P;
(3) P-I-S-S-I-F-S-R-T-G-D-P; (4) H-I-S-S-I-S-A-R-T-G-D-P;
(5) L-L-N-Q-L-A-G-R-M-I-P-K;
(6) T-I-D-H-V-L-D-H-V-Q-T-M;
(7) T-I-Q-H-V-M-D-H-I-D-SN; (8) T-L-S-P-V-V-P-T-V-S-T-I;
(9) T-L-S-P-V-V-P-T-V-S-T-T.
Der Begriff "Hydropahthieprofil, das einer Aminosäuresequenz entspricht" bedeutet erfmdungsgemäß, dass an sich entsprechenden Positionen von zwei oder mehreren Aminosäuresequenzen Aminosäurereste auftreten, die jeweils hydrophilen, hydrophoben oder variablen Aminosäureresten zuzuordnen sind.
In einer bevorzugten Ausführungsform umfasst das Polypeptid oder Protein, das als resorptionsverstärkendes Mittel fungiert, eine Ajuinosäuresequenz, die bezüglich mindestens 10, mehr bevorzugt mindestens 11, insbesondere 12 Aminosäurereste dem Hydropathieprofil dieser Aminosäuresequenzen (1) bis (9) entweder einzeln oder in einer Zusammenschau von zwei oder mehreren Aminosäuresequenzen entspricht.
Falls die Substanz, mit der das Peptid 'oder Protein, das als resorptionsverstärkendes Mittel fungiert, gekoppelt werden soll, ebenfalls ein Peptid oder Protein ist, kann das resoφtionsverstärkende Polypeptid oder Protein am N-, C-Tenriinus, an einer Seitenkette und/oder im inneren als Insertion (intern) der zu koppelnden Substanz vorliegen. Peptide oder Proteine, die das resoφtionsverstärkende Mittel am N- und/oder C-Terminus enthalten, können rekombinant dadurch hergestellt werden, dass eine für das resoφtionsverstärkende Polypeptid oder Protein kodierende Nukleinsäure mit der
Nukleinsäure, die für das zu koppelnde Peptid oder Protein kodiert, fusioniert wird und die fusionierte Sequenz z.B. in einer Zelle exprimiert wird. Femer kann, falls die Substanz, die eine Peptid oder Protein ist, das resoφtionsverstärkende Mittel intern enthalten soll, die für das resoφtionsverstärkende Mittel kodierende Nukleinsäure in die für die Substanz kodierende Nukleinsäure inseriert werden. Die Erfindung betrifft auch solche Peptid/Proteinkonstrukte und dafür kodierende Nukleinsäuren und Derivate davon.
Diese Peptid/Proteinkonstrukte und Nukleinsäuren oder Derivate davon sind vorzugsweise rekombinante Konstrukte und keine Peptide/Proteine oder Nukleinsäuren, die erfindungsgemäß beschriebene Polypeptide oder Proteine, die als resoφtionsverstärkendes Mittel fungieren, bzw. dafür kodierende Nukleinsäuren natürlicherweise enthalten, wobei der Begriff "natürlicherweise" ein Peptid, Protein oder eine Nukleinsäure betrifft, das/die in der Natur, z.B. in einem Tier oder einer Pflanze, ohne menschliches Einwirken aufzufinden ist.
Eine Kopplung einer Peptid/Protein-Substanz mit einem Polypeptid oder Protein, das als resoφtionsverstärkendes Mittel fungiert, über die Seitenkette(n) der Peptid/Protein- Substanz kann beispielsweise über saure Aminosäuren und deren Amide wie Asparaginsäure, Asparagin, Glutaminsäure und Glutamin oder basische Aminosäuren wie Lysin und Arginin direkt oder über einen Linker erfolgen.
Erfindungsgemäß kann eine jegliche Substanz, anorganischer oder organischer Natur, mit einem Mittel gekoppelt werden, das die Resoφtion der Substanz durch Haut oder Mucosa verstärkt. Die Substanz kann als solches resorbiert, schlecht resorbiert oder nicht resorbiert werden. Vorzugsweise handelt es sich bei der Substanz um einen pharmazeutischen Wirkstoff, dessen transdermale oder transmucosale Resoφtion verbessert werden kann. Der pharmazeutische Wirkstoff kann tierischen oder pflanzlichen Ursprungs sein, und ist bevorzugt eine Reinsubstanz tierischen oder pflanzlichen Ursprungs, oder kann synthetischen Ursprungs sein.
In einer weiteren Ausführungsform sind mindestens 2, bevorzugt 2 bis 4, mehr bevorzugt 2 bis 3, insbesondere 2 Substanzen, die gleich oder verschieden sein können, miteinander gekoppelt und dieses Koηjugat ist vorzugsweise mit mindestens 1, bevorzugt 1 bis 5, mehr bevorzugt 1 bis 3, noch mehr bevorzugt 1 oder 2, insbesondere 1 gleichen oder verschiedenen resoφtionsverstärkenden Mitteln gekoppelt. In einer bevorzugten Ausführungsform sind die Substanzen und/oder das/die resoφtionsverstärkende(n) Mittel über Linker gekoppelt. In dieser Ausführungsform ist es möglich, therapeutische, prophylaktische und/oder diagnostische Wirkungen, die auf verschieden Substanzen beruhen, durch die Verabreichung nur einer Verbindung zu erreichen.
In einer bevorzugten Ausführungsform kann die Substanz, die mit dem resoφtionsverstärkenden Mittel gekoppelt ist, ihre native (d.h. natürlich auftretende und aktive) Struktur oder eine modifizierte Struktur aufweisen. Unter dem Begriff "modifizierte Struktur" wird erfindungsgemäß jede nicht native Struktur der Substanz verstanden. Eine modifizierte Struktur umfasst beispielsweise ein modifiziertes Polypeptid oder Protein, bei dem im Vergleich zum nativen Polypeptid oder Protein eine oder mehrere Modifikationen, insbesondere posttranslationale Modifikationen fehlen und/oder zusätzlich vorhanden sind. Modifikationen, insbesondere posttranslationale Modifikationen umfassen in nicht begrenzender Weise Glykosylierangen, Oxidationen von Cystein-Seitenketten, Isomerisierungen von Disulfid-Brücken und Peptidyl-Prolyl-Bindungen, Hydroxylierungen, Carboxylierungen, Acylierungen und dergleichen.
In einer weiteren Ausführungsform kann die Substanz, die mit dem resoφtionsverstärkenden Mittel gekoppelt ist, vor oder nach transdermaler oder transmucosaler Resoφtion eine Aktivität aufweisen, die der der nativen Substanz entspricht oder geringer oder höher ist. In verschiedenen Ausführungsformen beträgt die Aktivität der Substanz vor oder nach transdermaler oder transmucosaler Resoφtion weniger als 100%, weniger als 80%, weniger als 60% oder weniger als 50% der Aktivität der nativen Substanz. In einer Ausführungsform weist die Substanz keine Aktivität auf, d.h. sie ist im Vergleich zur nativen Substanz inaktiv. In dieser Ausführungsform kann die Substanz insbesondere zur Irnmunisierung eingesetzt werden.
Ein pharmazeutischer Wirkstoff kann erfindungsgemäß eine jede biologisch aktive Substanz umfassen, die aus der Gruppe ausgewählt ist: Analgetika, Aminosäuren, Anorektika, Antibiotika, Antiallergika, Antiarrhythmika, Anticholinergika, Antidepressiva, Antidiabetika, Antidots, Antiemetika, Antiepileptika, antiinfektiöse Mittel, Antigene, Antihistamine und Histamine, Antihypertonika, Antikoagulanzien, Antikonvulsiva, Antiköφer, Antimykotika, Antineoplastika, Antiphlogistika, Antipsorika, Antipyretika, Antiseptika, Antitumormittel, Antitussiva (Asthmamittel) und andere Mittel, die die Atmung betreffen, Antivirus- und Antikrebsmittel, Antiwurmmittel, Anxiolytika, Augenarzneimittel (einschließlich Antiglaukommittel), Betabiocker, bildgebende Mittel, Blutfaktoren, Bronchodilatatoren, Chaperone, Chemokine, Chemotherapeutika, cholesterinsenkende Mittel, Cytokine, dermatologische Mittel, diagnostische Mittel, Diuretika und Antidiuretika, DNA-modifizierende Mittel, Enzyme, Emährungszusatzmittel, Fibrinolytika, Gaba-Antagonisten, gastrointestinale Hormone und Derivate davon, Geschlechtshormone, Glutamat-Antagonisten, Glycin-Antagonisten, Hämatopoietika, Hormone, Hypnotika, Hypophysenhormone und Derivate davon, Hypothalamushormone und Derivate davon, Inhibitoren eines Signalweiterleitungsweges, Integrine, Interferone, Interleukine, inverse Peptide, Kardiotonika, Kinaseinhibitoren, Kontrastmittel, Kontrazeptiva, Kortikosteroide und Derivate davon, Kosmetika, Leukotriene, Lokalanästhetika, Lymphokine, MHC/HLA-Moleküle, Mittel gegen Angina, Mittel gegen Demenz oder Parkinson, Mittel gegen Hyperlipidämie, Mittel gegen Hypoglykämie, Mittel gegen Migräne, Monokine, Muskelrelaxanzien, Mx-Proteine, Narkotika, Nebe nierenhormone, Pankreashormone und Derivate davon, Parasympathomimetika, Parasympatholytika, Peptidomimetika, Plasmide, Potenzsteigernde Mittel, Promotoren, Prostaglandine, Psychopharmaka, rekombinante Proteine, Repressoren, Schilddrüsenhormone und Derivate, Sedativa, Spasmolytika, Steroidhormone, Sympathomimetika, Terminatoren, therapeutische Mittel für Osteoporose, Tranquilizer, Thrombolytika, Vaccinen, Vasokonstriktoren, Vasodilatatoren, Vitamine, Zeiladhäsionsmoleküle und Ähnliches.
Analgetika umfassen in nicht begrenzender Weise Fentanyl, Moφhin, Tramadol, Hydrocodein, Methadon, Lidocain, Diclofenac, Paverin und dergleichen.
Antiarrhythmika umfassen Substanzen, die den Erregungsprozess des Herzens beeinflussen, um vorzugsweise Herzrhythmusstörungen zu behandeln. Ein Beispiel für eine Klasse von Antiarrhythmika sind die Betabiocker wie z.B. Propanolol, Alprenolol, Timolol, Nadoxolol und dergleichen. Antibiotika, antiinfektiöse Mittel, Antimykotika und Antivirusmittel umfassen in nicht begrenzender Weise Tetracycline, Tetracyclin-artige Antibiotika, Erythromycin, 2- Thiopyridin-N-oxid, Halogenverbindungen (bevorzugt iodhaltige Verbindungen wie Iod- Polyvinylpyrrolidon-Komplex), ß-Lactam- Verbindungen wie Penicilin- Verbindungen (z.B. Penicilin G oder V), Cephalosporine, Sulfonamid-Verbindungen, Aminoglykosid- Verbindungen (wie Streptomycin), Amphothericin B, 5-Iod-2-desoxyuridin, Gramicidin, Nystatin und dergleichen.
Antidiuretika und Diuretika umfassen in nicht begrenzender Weise Desmopressin, Vasopressin, Furosemid und dergleichen.
Nicht begrenzende Beispiele für Antiemetika umfassen Pipamazin, Chloφromazin, Dimenhydrinat, Meclozin, Metoclopramid und dergleichen.
Antihistamine umfassen Verbindungen, die die Wirkungen von Histamin hemmen. Nicht begrenzende Beispiele hierfür sind 3-(2-Aminoethyl)pyrazol, Cimetidin, Cyproheptadinhydrochlorid und dergleichen.
Antihypertonika, Mittel gegen Angina und Vasodilatatoren umfassen in nicht begrenzender Weise Verbindungen wie Clonidin, α-Methyldopa, Nitroglycerin, Polynitrate von Polyalkoholen (z.B. Erythritoltetranitrat und Mannitolhexanitrat), Papaverin, Dipyridamol, Nifedipin, Diltiazem und dergleichen.
Antiphlogistika umfassen in nicht begrenzender Weise steroidale und nicht-steroidale Antiphlogistika. Beispiele hierfür sind Cortison, Hydrocortison, Betamethason, Dexamethason, Prednisolon, Ibuprofen, Aspirin, Salicylsäure, Flumethason, Fluprednisolon, Aminopyrin, Antipyrin, Fluprofen und Derivate davon.
Antitussiva umfassen in nicht begrenzender Weise Verbindungen wie Cromoglykat und dessen Derivate, Beclomethason, Budesonid, Salbutamol, Mometason, Terbutalin und dergleichen. Kontrazeptiva betreffen Verbindungen, die bei weiblichen Patienten die Ovulation oder die Einnistung des befruchteten Eis in die Plazenta oder bei männlichen Patienten die Spermienreifung verhindern. Nicht begrenzende Beispiele Merfür sind Ethinylestradiol, Medroxyprogesteronacetat und Anti-Progestine (wie z.B. RU 486).
Mittel gegen Migräne umfassen in nicht begrenzender Weise Heparin, Hirudin und dergleichen.
Beispiele für Muskelrelaxanzien umfassen in nicht begrenzender Weise Cyclobenzapyrinhydrochlorid, Diazepam, Alcuronium, Vecuro ium, Succinyldicholin und dergleichen.
Narkotika und Lokalanästhetika umfassen in nicht begrenzender Weise Benzocain, Procain, Propoxycain, Dibucain, Lidocain, Naloxon, Naltrexon und Derivate davon.
Peptidomimetika und inverse Peptide umfassen Peptid-ähnliche Verbindungen, die als Peptide wirken, aber nicht die typische Peptidstruktur aufweisen. Ein nicht begrenzendes Beispiel hierfür ist ein Peptid-Analog, das im Gegnsatz zu seinem nativen Peptid nur aus D-Aminosäuren aufgebaut ist.
Potenz-steigernde Mittel umfassen in nicht begrenzender Weise solche pharmazeutischen Wirkstoffe, die die Libido eines Patienten steigern und/oder zu einer verlängerten sexuellen Leistungsfähigkeit führen. Beispiele für Potenz-steigernde Mittel sind diejenigen, die die NO-Synthese im Patienten steigern (z.B. Sildenafin).
Steroidhormone sind diejenigen Hormone, die sich von Cholesterin ableiten. Steroidhormone umfassen in nicht begrenzender Weise Gestagene (wie Progesteron), Kortikoide, die Glukokortikoide (wie Cortison und Cortisol) und Mineralkortikoide (wie Aldosteron) umfassen, Geschlechtshormone wie Androgene (z.B. Testosteron) und Ostrogene (z.B. Östron und Ostradiol) sowie Derivate davon (z.B. Dexamethason, Betamethason, Prednisolon, Beclomethason, Mometason und dergleichen). Der Wirkstoff kann auch eine Nukleinsäure oder "Antisense" -Nukleinsäure oder ein Derivat davon sein.
"Antisense"-Moleküle oder "Antisense"-Nukleinsäuren können zur Regulierung, insbesondere der Reduktion der Expression einer Nukleinsäure verwendet werden. Der Begriff "Antisense-Molekül" oder "Antisense-Nukleinsäure" betrifft erfindungsgemäß ein Oligonukleotid, das ein Oligoribonukleotid, Oligodesoxyribonukleotid, modifiziertes Oligoribonukleotid oder modifiziertes Oligodesoxyribonukleotid ist und das unter physiologischen Bedingungen an DNA, die ein bestimmtes Gen umfasst, oder mRNA dieses Gens hybridisiert, wodurch die Transkription dieses Gens und/oder die Translation dieser mRNA gehemmt wird. Ein "Antisense-Molekül" umfasst erfindungsgemäß auch ein Konstrukt, das eine Nukleinsäure oder einen Teil davon in reverser Orientierung in Bezug auf ihren natürlichen Promotor enthält. Ein Antisense-Transkript einer Nukleinsäure oder eines Teils davon kann ein Duplexmolekül mit der natürlich vorkommenden mRNA, die das Enzym spezifiziert, eingehen und so eine Akkumulation von oder die Translation der mRNA in das aktive Enzym verhindern.
In bevorzugten Ausführungsformen; ist ein Oligonukleotid ein "modifiziertes" Oligonukleotid. Dabei kann das Oligonukleotid, um beispielsweise seine Stabilität oder therapeutische Wirksamkeit zu erhöhen, auf verschiedenste Art und Weise modifiziert sein, ohne dass seine Fähigkeit, an sein Ziel zu binden, beeinträchtigt wird. Der Begriff "modifiziertes Oligonukleotid" bedeutet erfindungsgemäß ein Oligonukleotid, bei dem (i) mindestens zwei seiner Nukleotide durch eine synthetische Intemukleosidbindung (d.h. eine Intemukleosidbindung, die keine Phosphodiesterbindung ist) miteinander verknüpft sind und oder (ii) eine chemische Gruppe kovalent mit dem Oligonukleotid verbunden ist, die normalerweise nicht bei Nukleinsäuren auftritt. Bevorzugte synthetische Intemukleosidbindungen sind Phosphorothioate, Alkylphosphonate, Phosphorodithioate, Phosphatester, Alkylphosphonothioate, Phosphoramidate, Carbamate, Carbonate, Phosphattriester, Acetamidate, Carboxymethylester und Peptide.
Der Begriff "modifiziertes Oligonukleotid" umfasst auch Oligonukleotide mit einer kovalent modifizierten Base und/oder Zucker und Oligonukleotide, die nicht in der Natur vorkommende Nukleotide und/oder Nukleotid-Analoga enthalten. "Modifizierte Oligonukleotide" umfassen beispielsweise Oligonukleotide mit Zuckerresten, die kovalent an organische Gruppen mit einem geringen Molekulargewicht gebunden sind, die keine Hydroxylgruppe an der 3'-Position und keine Phosphatgruppe an der 5'-Position sind. Modifizierte Oligonukleotide können beispielsweise einen 2'-O-all ylierten Riboserest oder einen anderen Zucker anstelle von Ribose wie Arabinose umfassen. Modifizierte Oligonukleotide können auch modifizierte Basen und/oder Basen- Analoga wie z.B. 7- Deazaadenosin, 7-Deazaguanosin, Isoguanosin, 2-Thiopyrimidin, Isocytidin, Universalbase und dergleichen enthalten.
Der Wirkstoff kann auch ein Gen, ein Gen-korrigierendes Oligonukleotid, ein aptamerisches Oligonukleotid, Tripel-Helix-Nukleotid oder ein Ribozym sein.
Der Wirkstoff kann auch ein Polypeptid oder Protein oder ein Derivat davon sein. Ferner kann er ein Konjugat aus mehreren Peptiden oder Proteinen sein, die chemisch oder genetisch miteinander gekoppelt wurden. Die erfindungsgemäß verwendeten Peptide oder Proteine können aus einer natürlichen Quelle abgeleitet oder rekombinant oder chemisch synthetisierte Substanzen sein. Die erfindungsgemäß eingesetzten Polypeptide und Proteine sind vorzugsweise isoliert. Die Begriffe "isoliertes Protein" oder "isoliertes Polypeptid" bedeuten, dass das Protein oder Polypeptid von seiner natürlichen Umgebung getrennt ist. Ein isoliertes Protein oder Polypeptid kann in einem im Wesentlichen aufgereinigten Zustand vorliegen. Der Begriff "im Wesentlichen aufgereinigt" bedeutet, dass das Protein oder Polypeptid im Wesentlichen frei von anderen Substanzen vorliegt, mit denen es in der Natur oder in vivo vorliegt.
Die Polypeptide oder Proteine, die erfindungsgemäß eingesetzt werden können, umfassen in nicht begrenzender Weise Antibiotika, Hämatopoietika, antiinfektiöse Mittel, Mittel gegen Demenz, Antivirusmittel, Antitumormittel, Antipyretika, Analgetika, Antiphlogistika, Antiallergika, Antidepressiva, Antipsorika, Psychopharmaka, Kardiotonika, Antiarrythmika, Vasodilatatoren, Antihypertonika, Antidiabetika, Antikoagulanzien, cholesterinsenkende Mittel, therapeutische Mittel für Osteoporose, Hormone, Vaccinen und Ähnliches sowie diejenigen Polypeptide und Proteine, die vorstehend als pharmazeutische Wirkstoffe beschrieben wurden.
Besonders bevorzugte Peptide oder Proteine umfassen Cytokine, Peptidhormone, Wachstumsfaktoren, Faktoren des kardiovaskulären Systems, Faktoren des zentralen und peripheren Nervensystems, Faktoren des Gastrointestinalsystems, Faktoren des Immunsystems, Enzyme und Vaccinen.
Besonders bevorzugt sind Lymphokine, Monokine, hämatopoie tische Faktoren und Ähnliches.
Lymphokine umfassen Interferone (z.B. α-, ß- und γ-Interferon und deren Subtypen, einschließlich IFN-α-2a, IFN-α-2b und IFN-α-n3), Interleukine (z.B. Interleukin 1-17) und Ähnliches.
"Interferon" ist ein Begriff, der im Allgemeinen eine Gruppe von Glykoproteinen und Proteinen aus Vertebraten umfasst, die bekanntlich verschiedene biologische Aktivitäten wie antivirale, antiproliferative und immunmodulierende Aktivitäten aufweisen. Der Begriff "Interferon" betrifft erfindurigsgemäß native wie auch rekombinante Proteine, sowie Proteine, die in eukaryontischen Zellen, insbesondere Säugerzellen wie auch prokaryontischen Zellen exprimiert werden. Somit umfasst der Begriff "Interferon" bezüglich IFN-ß sowohl IFN-ß-la als auch IFN-ß-lb.
Interferone sind sekretorische Proteine, die in zwei verschiedene Subtypen unterteilt werden können.
Zu den Typ I Interferonen zählen insbesondere die Mitglieder der Interferon-α- Multigenfamilie (es existieren ca. 14-20 verschiedene IFN-α-Moleküle), IFN-τ (auch Trophoblast-IFN genannt), sowie IFN-ß und IFN-ω. Die Typ I IFN-Gene liegen als „cluster" auf dem kurzen Arm des Chromosoms 9. Während IFN-α und IFN-ω bevorzugt von Zellen des hämatopoietischen Systems gebildet werden, wird IFN-ß von nicht-hämatopoietischen Zellen, insbesondere Fibroblasten gebildet. Bei IFN-ß handelt es sich um ein Glykoprotein (N-Glykosylierung), während die meisten humanen IFN-α-Subspecies keine N-Glykosylierung aufweisen. In der aktiven Form bilden IFN-α wie auch IFN-ß Dimere.
Im Unterschied zu den Intron-freien IFN-Type I-Genen enthält das huIFN-γ-Gen drei Introns. IFN-γ gehört zu den Typ II Interferonen. Es handelt sich bei IFN-γ um ein Glykoprotein, das in der aktiven Form ebenfalls als Dimer vorliegt. IFN-γ wird insbesondere in CD4+ T-Helferzellen und in nahezu allen CD8+ Zellen gebildet. Trotz einer großen funktionellen Ähnlichkeit besteht keine wesentliche strukturelle Ähnlichkeit zwischen Typ I und Typ II Interferonen.
Interferone sind wichtige Pharmazeutika zur Therapie von z.B. viralen Erkrankungen, Tumorerkrankungen und Immundefekten. Die systemische Applikation erfolgt in der Regel intravenös, subkutan oder intramuskulär. Darüber hinaus gibt es auch die lokalen Applikationsformen (z.B. intratumorale Injektion und topisches Gel). Neben der fehlenden Resorbierbarkeit schränkt im Falle von IFN-γ auch die teilweise Säurelabilität des Moleküls eine orale Anwendung ein.
Weitere Cytokine umfassen in nicht begrenzender Weise Kolonie-stimulierender Faktor 4, Heparin-bindender neutrotropher Faktor (HBNF), Midkin (MD) und Thymopoeitin.
Monokine umfassen erfindungsgemäß Interleukin-1, Tumomekrosefaktoren (z.B. TNF-α und -ß), Leukozyten-inhibierender Faktor (LIF) und Ahnliches.
Hämatopoietische Faktoren umfassen erfindungsgemäß beispielsweise Erythropoietin, Granulozytenkolonie-stimulierender Faktor (G-CSF), Granulozyten-Makrophagen- stimulierender Faktor (GM-CSF) und Makrophagen-Kolonie-stimulierender Faktor (M- CSF). Antikoagulanzien umfassen Blutgerinnungsmodifizierungsmittel, die im Blut zirkulieren und die Blutgerinnung steuren. Nicht begrenzende Beispiele hierfür sind Faktor I, II, III, V, VI, VII, Viπ, EX, X, XI und XII, αl-Antitrypsin, α2-Macroglobulin, Antithrombin III, Heparin-Cofaktor π, Kallikrein, Plasmin, Plasminogen, Prokallikrein, Protein C, Protein S, Thrombomodulin und dergleichen.
Peptidhormone umfassen beispielsweise Insulin, Glucagon, Wachstumshormon, luteinisierendes Hormon-freisetzendes Hormon (LH-RH), Adrenokortikotropin (ACTH), Amylin, Oxitozin, luteinisierendes Hormon (LH), Calcitonin, Protein, das das Calcitonin- Gen steuert, Calcitonin N-terminales flankierendes Peptid, Somatotropin, Somatostatin, Somatomedin, Gewebe-Plasminogen-Aktivator (TPA), Leuprolidacetat und Ähnliches.
Wachstumsfaktoren umfassen erfmdungsgemäß beispielsweise Nervenwachstumsfaktor (NGF), Epidermiswachstumsfalctor (EGF), Fibroblastenwachstumsfaktor (FGF), insulinähnlicher Wachstumsfaktor (IGF), transformierender Wachstumsfaktor (TGF), von Blutplättchen abgeleiteter Wachstumsfaktor (PDGF), Hämatozytenwachstumsfaktor (HGF), Wachstumshormon-freisetzendes Hormon (GHRH), humanes Wachstumshormon (hGH) und Ähnliches.
Faktoren des kardiovaskulären Systems sind beispielsweise Faktoren, die den Blutdruck, Arterosklerose und Ähnliches regulieren wie Endotheline, Endofhelinhemmer, Endothelin- Antagonisten, Vasopressin (ADH), Renin, Angiotensin, atrialer natriuretischer Faktor (ANP) und Ähnliches.
Hormone, die sich von Peptiden ableiten, umfassen in nicht begrenzender Weise Activin, Cholecystokinin (CCK), ziliarer neurotrophischer Faktor (CNTF), Cortotropin- freisetzender Faktor (CRF oder CRH), Follikel-stimulierendes Hormon (FSH), Gastrin- inhibierendes Peptid (GIP), Gastrin-freisetzendes Peptid, Ghrelin, Gonadotropin- freisetzender Faktor (GnRF oder GNRH), Wachstumshormon-freisetzender Faktor (GRF, GRH), humanes Choriongonadotropin (hCH), Inhibin A, Inhibin B, Leptin, Lipotropm (LPH), α-Melanozyten-stimulierendes Hormon, ß-Melanozyten-stimulierendes Hormon, γ- Melanozyten-stimulierendes Hormon, Melatonin, Motilin, Pankreaspolypeptid, Parathyroidhormone (PTH), Prolactin der Plazenta, Prolactin (PRL), Prolactin-Freisetzung- inhibierender Faktor (PIF), Prolactin-freisetzender-Faktor (PRF), Thyrotropin (Thyroid- stimulierendes Hormon, TSH), Thyroxin, Triiodothyronin, vasoaktives intestinales Peptid (VIP) und dergleichen.
Faktoren des zentralen oder peripheren Nervensystems sind beispielsweise Opioidpeptide (z.B. Enkephaline, Endoφhine, Kvtoφhine), neutrotrophischer Faktor (NTF), Tyroidhormon-freisetzendes Hormon (TRH), Neurotensin und Ähnliches.
Endoφhine oder pharmakologische aktive Derivate davon umfassen in nicht begrenzender Weise Dermoφhin, Dynoφhin, α-Endoφhin, ß-Endoφhin, γ-Endoφhin, σ-Endoφhin [Leu5]Enkephalin, [Met5]£nkephalin, Substanz P und dergleichen.
Faktoren des Gastrointestinalsystems sind beispielsweise Sekretin und Gastrin.
Faktoren des Immunsystems sind beispielsweise Faktoren, die Entzündungen und Neoplasmen steuern, und Faktoren, die infektiöse Mikroorganismen angreifen, wie Antiköφer, chemotaktische Peptide oder Bradykinine.
Ein Antiköφer kann ein monoklonaler Antiköφer sein. In weiteren Ausführungsformen ist der Antiköφer ein chimärer oder humanisierter Antiköφer, ein Fragment eines natürlichen Antiköφers oder ein synthetischer Antiköφer, die durch kombinatorische Techniken hergestellt werden können.
Die vorstehend beschriebenen Antiköφer und andere Bindemoleküle können beispielsweise für die Identifizierung von Gewebe verwendet werden. Antiköφer können auch an spezifische diagnostische Stoffe für eine Darstellung von Zellen und Geweben gekoppelt werden. Sie können ferner an therapeutisch nützliche Stoffe gekoppelt werden. Diagnostische Stoffe umfassen in nicht begrenzender Weise Bariumsulfat, Iocetaminsäure, lopansäure, Calcium-Ipodat, Natrium-Diatrizoat, Meglumin-Diatrizoat, Metrizamid, Natrium-Tyropanoat und Radiodiagnostika, einschließlich Positronen-Emitter wie Fluor- 18 und Kohlenstoff-11, gamma-Emitter wie Iod-123, Technetium-99m, Iod-131 und Indium- 111, Nuklide für magnetische Kernresonanz wie Fluor und Gadolinium.
Der Begriff "therapeutisch nützlicher Stoff' meint erfindungsgemäß jedes therapeutisch verwendbare Molekül, einschließlich Antikrebsmittel, mit radioaktivem Iod, Technetium oder weiteren Radioisotopen versehene Verbindungen, Toxine, cytostatische oder cytolytische Arzneistoffe, usw. Antikrebsmittel umfassen beispielsweise Aminoglutethimid, Azathioprin, Bleomycinsulfat, Busulfan, Carmustin, Chlorambucil, Cisplatin, Cyclophosphamid, Cyclosporin, Cytarabin, Dacarbazin, Dactinomycin, Daunorabin, Doxorubicin, Taxol, Etoposid, Fluoruracil, Interferon-α, Lomustin, Mercaptopurin, Methotrexat, Mitotan, Procarbazin-HCl, Thioguanin, Vinblastinsulfat und Vincristinsulfat. Weitere Antikrebsmittel sind beispielsweise in Goodman und Gilman, "The Pharmacological Basis of Therapeutics", 8. Auflage, 1990, McGraw-Hill, Inc., insbesondere Kapitel 52 (Antineoplastic Agents (Paul Calabresi und Bruce A. Chabner)) beschrieben. Toxine können Proteine wie Pokeweed-antivirales Protein, Choleratoxin, Pertussistoxin, Ricin, Gelonin, Abrin, Diphtherie-Exotoxin oder Pseudomonas-Exotoxin sein. Toxinreste können auch Hochenergie-emittierende Radionuldide wie Kobalt-60 sein.
In einer weiteren Ausführungsform ist die Substanz ein dermatologisches Mittel. Dermatologische Mittel umfassen Kosmetika wie Sonnenschutzmittel, die innere Gewebe der Haut (insbesondere die Gewebe unterhalb des stratum corneum) vor äußeren Faktoren wie UV-Strahlen im UV-A- und UV-B-Bereich (bevorzugt Strahlung im Bereich von 280 bis 400 nm) schützen (z.B. p-Aminobenzoesäure, p-Dimethylaminobenzoesäure und deren Alkylester), Mittel zur Aufhellung der Haut (z.B. Hydrochinon), Vitamine (z.B. Vitamin A, C, D, E, K, Nicotinsäure, Thiamin, Pyridoxin, Vitamin Bi , Biotin, Retinoide, Flavonoide, Pantothenat), Provitamine, Antioxidanzien, Pigmente, Färbemittel und dergleichen. Weiterhin umfassen dermatologische Mittel Mittel gegen Juckreiz und Ery hemen (z.B. Hydrocortison), gegen Akne (z.B. Erythromycin oder Tetracycline), gegen Heφes simplex (z.B. 5-Iod-2-desoxyuridin), gegen Schuppenflechte oder Hautkrebs (z.B. Fluoruracil).
In einer weiteren Ausführungsform wird das Mittel, das die Resoφtion einer Substanz durch die Haut oder Mucosa verstärkt, mit einem Partikel, bevorzugt einem gegebenenfalls bioabbaubaren Nanopartikel, gegebenenfalls bioabbaubaren Mikropartikel, gegebenenfalls bioabbaubaren Nanokügelchen, gegebenenfalls bioabbaubaren Mikrokügelchen, einer Kapsel, Emulsion, Mizelle, einem Liposom, einem nicht-viralen Vektorsystem oder einem viralem Vektorsystem, gekoppelt oder damit beladen. Vorzugsweise ist das Partikel ein von einem Viras abgeleitetes Partikel (Virus-ähnliches Partikel), das vorzugsweise unspezifisch oder gezielt an Zellen binden und in diese eine Nukleinsäure einbringen kann. Das Partikel enthält eine Substanz wie vorstehend beschrieben, insbesondere eine Nukleinsäure oder ein Peptid oder Protein, die von der Haut oder Mucosa resorbiert werden soll. Solche Partikel sind beispielsweise in der WO-A-00/46376 beschrieben. Die Partikel umfassen vorzugsweise: (a) eine Proteinhülle, die vorzugsweise als Fusionsmolekül ein virales Protein, ein resoφtionsverstärkendes Mittel, vorzugsweise ein Peptid oder Protein, und gegebenenfalls eine heterologe zellspezifische Bindungsstelle umfasst, und (b) eine in der Proteinhülle vorliegende Nukleinsäure, die Sequenzen für ein Virus-spezifisches Veφackungssignal und ein Strul tur-Gen aufweist. Der Ausdruck "Virus" umfasst DNA- und RNA- Viren, insbesondere Adenoviren, Adeno-assoziierte Viren, Vacciniaviren, Baculoviren, Hepatitis C- Viren, Hepatitis A- Viren, Influenzaviren und Hepadna- Viren. Beispiele letzterer sind HBV, WHV ("woodchuck hepatitis virus"), GSHV ("ground squirrel hepatitis virus"), RBSFIV ("red-bellied squirrel hepatitis viras"), DHV ("Pekin duck hepatitis viras") und HHN ("heron hepatitis virus"), wobei HBV bevorzugt ist. Der Ausdrack "Strukturgen" umfasst jedes Gen, das für ein Polypeptid oder Protein kodiert, wie die vorstehend beschriebenen Polypeptide und Proteine.
In einer bevorzugten Ausführungsform kann das Mittel, das die Resoφtion einer Substanz durch die Haut oder Mucosa verstärkt, durch Adsoφtion, nicht-kovalente oder kovalente Kopplung, entweder direkt oder über einen Linker, an das Partikel, an das/die für die Partikelsynthese verwendete^) Polymer(e) oder Monomer(e) oder an andere Bestandteile des Partikels gebunden sein.
In einer bevorzugten Ausführungsform wird das Partikel mit einer therapeutischen, prophylaktischen oder diagnostischen Substanz beladen, wobei das Mittel, das die Resoφtion einer Substanz durch die Haut oder Mucosa verstärkt, an das Partikel gebunden oder damit beladen ist. Ein erfindungsgemäßes Partikel kann durch übliche Verfahren hergestellt werden.
Substanzen, insbesondere Peptide oder Proteine, die erfindungsgemäß mit einem resoφtionsverstärkenden Mittel, insbesondere Polypeptid oder Protein, gekoppelt sind, können als Immunogene verwendet werden, um die Produktion von Antiköφer zu induzieren, die vorzugsweise immunospezifϊsch das Immunogen binden.
Somit betrifft die Erfindung auch ein Verfahren zur Herstellung von Antiköφern, umfassend eine Induktion der Antiköφer-Produktion durch Verabreichung von Substanzen, insbesondere Peptiden oder Proteinen, die erfindungsgemäß mit resoφtionsverstärkenden Mitteln gekoppelt sind, an ein Lebewesen, insbesondere einen Menschen oder ein Tier, und eine Isolierung dieser Antiköφer.
Kurze Beschreibung der Zeichnungen
Fig. 1 ist ein Balkendiagramm, das die im Serum nachgewiesene Menge an IFN-ß 4h bzw. 8h nach oraler Verabreichung von IFN-ß-la-TLM (TLM-1 und TLM-2) zeigt. Nl : Negativkontrolle 1 (unbehandelte Tiere); N2: Negativkontrolle 2 (Verfütterang von PreSlPreS2); N3: Negativkontrolle 3 '(Verfütterang von käuflichem rekombinantem IFN- ß-la).
Fig. 2 ist ein Balkendiagramm, das die im Serum nachgewiesene Menge an IFN-ß 4h bzw. 8h nach dermaler Verabreichung von IFN-ß-la-TLM (TLM) zeigt. Nl: Negativkontrolle 1 (unbehandelte .Tiere); N2: Negativkontrolle 2 (dermale Verabreichung von käuflichem rekombinantem IFN-ß-la).
Fig. 3 zeigt Western Blot- Analysen zum Nachweis von PreSlPreS2-spezifischen Antiköφern nach oraler Verabreichung von PreSlPreS2. Spur 1: Cytochrom c; Spur 2: PreSlPreS2; Spur 3: schwere IgG-Kette.
Fig. 4 zeigt Western Blot- Analysen zum Nachweis von PreSlPreS2 im Serum nach dermaler Verabreichung von PreSlPreS2. Spur 1: Positivkontrolle; Spuren 2 bis 5: Negativkontrollen (unbehandelte Tiere); Spuren 6 bis 9: Seren von mit PreSlPreS2 behandelten Tieren.
Detaillierte Beschreibung der Erfindung
Unter dem Begriff "Resoφtion" wird erfindungsgemäß die Aufnahme von Stoffen von der Köφeroberfläche verstanden. Die Resoφtion umfasst insbesondere eine Resoφtion über die Haut (d.h. transdermal, perkutan) oder über Mucosa (Schleimhaut) (d.h. transmucosal) vorzugsweise in Blut-, Lymphbahnen und/oder untere Hautschichten, von wo aus die Verteilung in den gesamten Organismus erfolgen kann. Die Resoφtion kann über den passiven Mechanismus der Diffusion aber auch über aktive Transportmechanismen erfolgen.
Vorzugsweise tritt erfindungs gemäß bei einer Resoφtion über die Haut oder Mucosa eines Patienten eine Substanz, die mit einem resoφtionsverstärkenden Mittel gekoppelt ist, in die äußerste Schicht der Haut (stratum corneum) ein. In einer bevorzugten Ausführangsform gelangt die mit dem resorptionsverstärkenden Mittel gekoppelte Substanz in die darunter liegenden Schichten. In einer weiteren bevorzugten Ausführungsform wird die mit dem resoφtionsverstärkenden Mittel gekoppelte Substanz in den Blutkreislauf freigesetzt.
Der Begriff "Verstärkung" betrifft eine Erhöhung, Steigerung oder Verbesserung gegenüber einem vorherigen Zustand. So betrifft zum Beispiel der Begriff "Verstärkung der Resoφtion" eine Erhöhung der Resoφtion, d.h. eine größere Menge eines Stoffs wird in einem bestimmten Zeitraum resorbiert, insbesondere dadurch, dass die Geschwindigkeit, bei der ein Stoff eine Köφerbarriere wie Haut und Schleimhaut durchdringt, erhöht wird.
Dies kann den Fall betreffen, dass ein Stoff ursprünglich nicht in der Lage war, resorbiert zu werden, und der Stoff nach der "Verstärkung der Resoφtion" in der Lage ist, resorbiert zu werden. Es kann auch den Fall betreffen, dass ein Stoff ursprünglich schon resorbiert werden konnte, jedoch die Fähigkeit des Stoffs, resorbiert zu werden, nach der "Verstärkung der Resoφtion" gesteigert ist. Der Begriff "Substanz, die schlecht resorbiert wird" bedeutet, dass die Substanz nicht oder nur gering resorbiert wird und insbesondere bei einer gewöhnlichen Dosismenge keine therapeutisch wirksame Konzentration bereitstellt.
Die Begriffe "Verstärkung der Bioverfügbarkeit" und "Verstärkung der Permeabilität" sind in entsprechender Weise auszulegen.
Der Begriff "Bioverfügbarkeit" charakterisiert die Geschwindigkeit und das Ausmaß, in denen der therapeutische wirksame Anteil eines Arzneimittels aus den jeweiligen Arzneiformen freigesetzt und resorbiert bzw. am Wirkort verfügbar wird. Sie lässt sich durch Messung der Arzneistoffkonzentration in den Köφerflüssigkeiten sowie des akuten pharmakologischen Effekts bestimmen.
Der Begriff "Permeabilität" betrifft die Eigenschaft, z.B. von Haut und Schleimhaut, einen Stoff durchtreten zu lassen. Die Begriffe "Permeationsfähigkeit" und "Penetrationsfähigkeit" betreffen die Fähigkeit einer Substanz, eine solche Barriere zu durchtreten.
"Transdermales oder transmucosales Präparat" bezeichnet erfindungsgemäß eine Substanz, insbesondere einen pharmazeutischen Wirkstoff, die ursprünglich nicht oder schlecht von Haut oder Mucosa resorbiert wurde, jedoch so verändert wurde, dass sie von der Haut oder Mucosa resorbiert wird und daher für eine Verabreichung an die Haut oder Mucosa geeignet ist.
"Mucosa" oder "Schleimhaut" kann erfindungsgemäß eine jegliche Schleimhaut eines Säugers, einschließlich des Menschen sein.
Beispiele von Schleimhäuten umfassen erfindungsgemäß die Schleimhaut des Gastrointestinaltrakts (z.B. Darmschleimhaut, Magenschleimhaut), Augenschleimhaut, Nasenschleimhaut, Tracheal-/Bronchial-/Lungenschleimhaut, Schleimhaut der Mundhöhle, des Rektums, des Genitaltrakts, der Vagina, des Harnleiters und Ähnliches. Vorzugsweise ist die Schleimhaut eine Schleimhaut der Nase, des Mundes oder des Gastrointestinaltrakts.
"Transdermale Verabreichung" oder "transmucosale Verabreichung" bedeutet eine Bereitstellung über die Haut oder Mucosa.
"Mittel, die die Resoφtion einer Substanz verstärken", "Resoφtionsverstärker" oder "resoφtionsverstärkende Mittel" im Sinne der vorliegenden Erfindung sind solche Stoffe oder Präparate, welche den Transport anderer Stoffe über Barrieren und Konstriktionen, insbesondere Permeationshindernisse fördern und vorzugsweise deren Bioverfügbarkeit, Fähigkeit, resorbiert zu werden, und/oder Permeationsfähigkeit (Penetrationsfähigkeit) verstärken. Zu den Permeationshindernissen zählen insbesondere menschliche und tierische Hautschichten, insbesondere Der is (insbesondere stratum comeum) und Mucosa. Vorzugsweise ist das Mittel, das die Resoφtion einer Substanz durch die Haut oder Mucosa verstärkt, frei von toxischen Nebenwirkungen.
Verfahren zum kovalenten oder nicht-kovalenten Verbinden (Koppeln) zweier oder mehrerer Reagenzien sind dem Fachmann bekannt.
"Nicht-kovalente" Bindungen umfassen in nicht begrenzender Weise ionische Wechselwirkungen, Wasserstoff-Brücken-Bindungen, van-der-Waals- Wechselwirkungen (hydrophobe Wechselwirkungen) und Bindungen, die durch den Einschluss einer Verbindung in eine andere entstehen (z.B. in Kronenethern und Käfigverbindungen).
Ein kovalentes Koppeln von z.B. Peptiden und Proteinen kann unter Verwendung von Kopplungsmitteln wie N,N'-Dicyclohexylcarbodiimid (DCC) oder N,N'- Diisopropylcarbodiimid (DIPCDI) oder durch rekombinante Techniken in an sich bekannter Weise erfolgen. Geeignete Syntheseverfahren sind z.B. in "The Peptides: Analysis, Structure", Biology, Band 1: "Methods of Peptide Bond Formation", Gross und Meienhofer (Hrsg.), Academic Press, New York (1979) und Izumiya, et al, "Synthesis of Peptides", Maruzen Publishing Co., Ltd., (1975), beschrieben. Eine Nukleinsäure ist erfindungsgemäß vorzugsweise Desoxyribonukleinsäure (DNA) oder Ribonukleinsäure (RNA). Nukleinsäuren umfassen erfindungsgemäß genomische DNA, cDNA, mRNA, rRNA, tRNA, rekombinant hergestellte und chemisch synthetisierte Moleküle. Eine Nukleinsäure kann erfindungsgemäß als einzelsträngiges oder doppelsträngiges und lineares oder kovalent kreisförmig geschlossenes Molekül vorliegen.
Mit "Derivat" einer Nukleinsäure ist erfindungsgemäß gemeint, dass einzelne oder multiple Nukleotidsubstitution, -deletion und/oder -addition in der Nukleinsäure vorliegen. Weiterhin umfasst der Begriff "Derivat" auch eine chemische Derivatisierung einer Nukleinsäure an einer Base, einem Zucker oder Phosphat eines Nukleotids. Der Begriff "Derivat" umfasst auch Nukleinsäuren, die nicht in der Natur vorkommende Nukleotide und Nukleotidanaloga enthalten.
Die erfindungsgemäß beschriebenen Nukleinsäuren sind vorzugsweise isoliert. Der Begriff "isolierte Nukleinsäure" bedeutet erfindungsgemäß, dass die Nukleinsäure (i) in vitro aπrplifiziert wurde, zum Beispiel durch Polymerase-Kettenreaktion (PCR), (ii) rekombinant durch Klonierung produziert wurde, (iii) gereinigt wurde, zum Beispiel durch Spaltung und gelelektrophoretische Auftrennung, oder (iv) synthetisiert wurde, zum Beispiel durch chemische Synthese. Eine isolierte Nukleinsäure ist eine Nukleinsäure, die für eine Manipulierung durch rekombinante DNA-Techniken zur Verfügung steht.
Der Begriff "Expression" wird erfindungsgemäß in seiner allgemeinsten Bedeutung verwendet und umfasst die Produktion von RNA oder von RNA und Protein. Er umfasst auch eine teilweise Expression von Nukleinsäuren. Des weiteren kann die Expression transient oder stabil erfolgen.
Der Begriff "von einer Aminosäuresequenz abgeleitete Sequenz" betrifft erfindungsgemäß Derivate der ersteren Sequenz.
"Derivate" eines Proteins oder Polypeptids oder einer Aminosäuresequenz im Sinne dieser Erfindung umfassen Aminosäure-Insertionsvarianten, Aminosäure-Deletionsvarianten und/oder Aminosäure-Substitutionsvarianten. Aminosäure-Insertionsvarianten umfassen amino- und/oder carboxyterminale Fusionen, sowie Insertionen von einzelnen oder mehreren Aminosäuren in einer bestimmten Aminosäuresequenz. Bei Aminosäure-Sequenzvarianten mit einer Insertion werden ein oder mehrere Aminosäurereste in eine vorbestimmte Stelle in einer Aminosäuresequenz eingebracht, obwohl eine zufällige Insertion mit geeignetem Screening des resultierenden Produkts auch möglich ist. Aminosäure-Deletionsvarianten sind durch das Entfernen von einer oder mehreren Aminosäuren aus der Sequenz charakterisiert. Aminosäure- Substitutionsvarianten zeichnen sich dadurch aus, dass wenigstens ein Rest in der Sequenz entfernt und ein anderer Rest an dessen Stelle eingefügt wird. Vorzugsweise befinden sich die Modifikationen an Positionen in der Aminosäuresequenz, die zwischen homologen Proteinen oder Polypeptiden nicht konserviert sind. Vorzugsweise werden Aminosäuren durch andere mit ähnlichen Eigenschaften, wie1 Hydrophobizität, Hydrophilizität, Elektronegativität, Volumen der Seitenkette und ähnliches, ersetzt (konservative Substitution). Konservative Substitutionen betreffen beispielsweise den Austausch einer Aminosäure durch eine andere, wobei beide Aminosäuren in derselben nachstehenden Gruppe aufgeführt sind:
1. kleine aliphatische, nicht-polare oder leicht-polare Reste: Ala, Ser, Thr (Pro, Gly)
2. negativ geladene Reste und ihre Amide: Asn, Asp, Glu, Gin 3. positiv geladene Reste: His, Arg, Lys
4. große aliphatische, nicht-polare Reste: Met, Leu, He, Val (Cys)
5. große aromatische Reste: Phe, Tyr, Tφ.
Drei Reste sind aufgrund ihrer besonderen Rolle für die Proteinarchitektur in Klammem gesetzt. Gly ist der einzige Rest ohne eine Seitenkette und verleiht der Kette somit Flexibilität. Pro besitzt eine ungewöhnliche Geometrie, die die Kette stark einschränkt. Cys kann eine Disulfidbrücke bilden.
Die vorstehend beschriebenen Aminosäure-Varianten können leicht mit Hilfe von bekannten Peptidsynthesetechniken wie z.B. durch "Solid Phase Synthesis" (Merrifield,
1964) und ähnliche Verfahren oder durch rekombinante DNA-Manipulation hergestellt werden. Techniken, um Substitutionsmutationen an vorbestimmten Stellen in DNA einzubringen, die eine bekannte oder teilweise bekannte Sequenz besitzt, sind gut bekannt und umfassen z.B. M13-Mutagenese. Die Manipulation von DNA-Sequenzen zur Herstellung von Proteinen mit Substitutionen, Insertionen oder Deletionen und die allgemeinen rekombinanten Verfahren zur Expression von Proteinen z.B. in einem biologischen System (wie Säuger-, Insekten-, Pflanzen- und viralen Systeme) sind z.B. in Sambrook et. al. (1989) ausführlich beschrieben.
"Derivate" von Proteinen oder Polypeptiden umfassen erfindungsgemäß auch einzelne oder multiple Substitutionen, Deletionen und/oder Additionen jeglicher Moleküle, die mit dem Enzym assoziiert sind, wie Kohlenhydrate, Lipide und/oder Proteine oder Polypeptide.
In einer Ausführungsform umfassen "Derivate" von Proteinen oder Polypeptiden diejenigen modifizierten Analoga, die durch Glykosylierung, Acetylierang, Phosphorylierang, Amidierung, Palmitoylierung, Myristolylierung, Isoprenylierung, Lipidierung, Alkylierung, Derivatisierang, Einbringen von Schutz-/Blockierungsgruppen, proteolytische Spaltung oder Bindung an einen Antiköφer oder an einen anderen zellulären Liganden entstehen. Derivate von Proteinen oder Polypeptiden können auch durch andere Verfahren wie beispielsweise durch chemische Spaltung mit Bromcyan, Trypsin, Chymotrypsin, Papain, V8-Protease, NaBH2, Acetylierang, ' Formylierang, Oxidation, Reduktion oder durch metabolische Synthese in Gegenwart von Tunicamycin hergestellt werden.
Femer erstreckt sich der Begriff "Derivat" auch auf alle funktioneilen chemischen Äquivalente der Proteine oder Polypeptide.
Ein Teil oder Fragment eines Polypeptids oder Proteins weist erfindungsgemäß eine funktionelle Eigenschaft des Polypeptids oder Proteins auf, aus dem es abgeleitet ist. Solche funktionellen Eigenschaften umfassen die Interaktion mit anderen Molekülen wie Antiköφern, Polypeptiden oder Proteinen, die selektive Bindung von Nukleinsäuren und eine enzymatische Aktivität. Vorzugsweise umfasst ein Teil oder Fragment eines Peptids oder Proteins erfindungsgemäß eine Sequenz von mindestens 6, insbesondere mindestens 8, mindestens 10, mindestens 12, mindestens 15, mindestens 20, mindestens 30 oder mindestens 50 aufeinanderfolgenden Aminosäuren aus dem Peptid oder Protein. Die Begriffe "pharmazeutischer Wirkstoff, "pharmazeutisch wirksame Substanz" oder "pharmazeutisch wirksam" betreffen erfindungsgemäß jedes in der Therapie (einschließlich Prophylaxe) oder Diagnose einsetzbare Mittel. Das Mittel ist insbesondere jedes therapeutische oder prophylaktische Mittel, das bei der Behandlung (einschließlich Prävention, Linderung oder Heilung) einer Erkrankung, von Beschwerden oder einer Verletzung eines Patienten eingesetzt werden kann und die gewünschte biologische oder pharmakologische Wirkung aufweist.
Ein pharmazeutischer Wirkstoff kann ein "dermal wirkender dermatologischer Wirkstoff oder ein "systemisch wirkender dermatologischer Wirkstoff sein. Der Begriff "dermal wirkender dermatologischer Wirkstof wie hierin verwendet betrifft diejenigen chemischen und biochemischen Substanzen, die, wenn sie auf die Haut eines Patienten aufgetragen werden, eine günstige topische Wirkung hervorrufen, die von kosmetischer Natur oder von therapeutischer Natur (z.B. eine Abmilderang einer Hauterkrankung) sein kann. Der Begriff "systemisch wirkender dermatologischer Wirkstoff wie hierin verwendet betrifft diejenigen chemischen und biochemischen Substanzen, die, wenn sie auf die Haut eines Patienten aufgetragen werden, in den Blutkreislauf gelangen und eine therapeutische Wirkung zeigen. Die; Begriffe "dermal wirkender dermatologischer Wirkstoff und "systemisch wirkender dermatologischer Wirkstoff sollen sich nicht gegenseitig ausschließen, da eine Reihe von pharmazeutischen Wirkstoffen sowohl dermal als auch systemisch wirksam sind. Ein pharmazeutischer Wirkstoff kann auch ein "mucosal wirkender mucosaler Wirkstoff oder ein "systemisch wirkender mucosaler Wirkstoff sein, wobei die Begriffe "mucosal wirkender mucosaler Wirkstoff und "systemisch wirkender mucosaler Wirkstoff eine den vorstehend definierten Begriffen "dermal wirkender dermatologischer Wirkstoff bzw. "systemisch wirkender dermatologischer Wirkstoff entsprechende Bedeutung haben.
Bevorzugt ist der pharmazeutische Wirkstoff in neutraler oder Salzform formuliert. Pharmazeutisch verträgliche Salze umfassen in nicht begrenzender Weise diejenigen, die sich mit freien Amino- oder Carboxylgruppen bilden. Geeignete Säuren zur Herstellung von Säureadditionssalzen sind anorganische Säuren, wie HC1, HBr, H SO4, HNO , H PO4 und dergleichen, und organische Säuren, wie Essigsäure, Propionsäure, Oxalsäure, Maleinsäure, Malonsäure, Bernsteinsäure, Äpfelsäure, Fumarsäure, Weinsäure, Zitronensäure, Benzoesäure, Zimtsäure, Mandelsäure, Methansulfonsäure, p- Toluolsulfonsäure, Salicylsäure und dergleichen. Basische Verbindungen, die mit den Carboxylgruppen Salze ausbilden können, umfassen in nicht begrenzender Weise NaOH, KOH, NH , Ca(OH)2, Eisenhydroxid, Isopropylamin, Triethylamin, 2-Ethylaminoethanol, Histidin, Procain und dergleichen.
Der pharmazeutische Wirkstoff kann auch ein Arzneimittelvorläufer sein, der vor, während oder nach einer Penetration des Wirkstoffs durch die Haut oder Mucosa aktivierbar ist.
Der Begriff "Arzneimittelvorläufer" betrifft ein Mittel, das inaktiv ist, jedoch in eine aktive Form über eine enzymatische, chemische oder physikalische Aktivierung umwandelbar ist.
Pharmazeutische Zusammensetzungen können in an sich bekannter Weise hergestellt werden und enthalten gewöhnlich geeignete pharmazeutisch verträgliche Hilfs- und Trägerstoffe.
Der Begriff "pharmazeutisch verträglieh" betrifft einen Stoff, der keine oder nur eine geringfügige signifikante Reizung oder Toxizität bei dem behandelten Patienten hervorruft und die biologische Aktivität und Eigenschaften des wirksamen Bestandteils nicht aufhebt oder damit wechselwirkt.
Der Begriff "Trägerstoff betrifft erfindungsgemäß einen oder mehrere kompatible feste oder flüssige Füllstoffe, Verdünnungsmittel, Adjuvanzien, Exzipienzien oder Kapselsubstanzen, die für eine Verabreichung an einen Menschen geeignet sind. Der Begriff "Träger" betrifft einen organischen oder anorganischen Bestandteil, natürlicher oder synthetischer Natur, in dem der aktive Bestandteil kombiniert wird, um eine Anwendung zu erleichtem. Die Bestandteile der erfindungsgemäßen pharmazeutischen Zusammensetzung sind gewöhnlich derart, dass keine Interaktion auftritt, die die gewünschte pharmazeutische Wirksamkeit wesentlich beeinträchtigt. Vorzugsweise sind die Trägerstoffe sterile Flüssigkeiten wie Wasser oder Öle, einschließlich derjenigen, die sich von Erdöl, Tieren oder Pflanzen ableiten oder synthetischen Ursprungs sind, wie z.B. Erdnussöl, Sojabohnenöl, Mineralöl, Sesamöl, Sonnenblumenöl und dergleichen. Salzlösungen und wässrige Dextrose- und Glycerinlösungen können auch als wässrige Trägerstoffe verwendet werden.
Beispiele für Hilfs- und Trägerstoffe sind Acryl- und Methacrylderivate, Alginsäure, Sorbinsäurederivate wie α-Octadecyl-ω-hydroxypoly(oxyethylen)-5-sorbinsäure,
Aminosäuren und deren Derivate, insbesondere Aminverbindungen wie Cholin, Lecithin und Phosphatidylcholin, Gummi arabicum, Aromastoffe, Ascorbinsäure, Carbonate wie beispielsweise Natrium-, Kalium-, Magnesium- und Calciumcarbonat und -hydrogencarbonat, Hydrogenphosphate und Phosphate von Natrium, Kalium, Calcium und Magnesium, Carmellosenatrium, Dimeticon, Farbstoffe, Geschmacksstoffe, Puffersubstanzen, Konservierungsmittel, Verdickungsmittel, Weichmacher, Gelatine, Glucosesirupe, Malz, hochdisperses Siliziumdioxid, Hydromellose, Benzoate, insbesondere Natrium- und Kaliumbenzoat, Macrogol, Magermilchpulver, Magnesiumoxid, Fettsäuren und deren Derivate und Salze wie Stearinsäure und Stearate, insbesondere Magnesium- und Caleiumstearat, Fettsäureester sowie Mono- und Diglyceride von Speisefettsäuren, natürliche und künstliche Wachse wie Bienenwachs, gelbes Wachs und Montanglycolwachs, Chloride, insbesondere Natriumchlorid, Polyvidon, Polyethylenglykole, Polyvinylpyrrolidon, Povidon, Öle wie Rizinusöl, Sojaöl, Kokosnussöl, Palmkernöl, Zucker und Zuckerderivate, insbesondere Mono- und Disaccharide wie Glucose, Fructose, Mannose, Galactose, Lactose, Maltose, Xylose, Saccharose, Dextrose und Cellulose und deren Derivate, Schellack, Stärke und Stärkederivate, insbesondere Maisstärke, Talg, Talkum, Titandioxid, Weinsäure, Zuckeralkohole wie Glycerin, Mannit, Sorbit und Xylit und deren Derivate, Glykol, Ethanol und Gemische derselben.
Vorzugsweise können die pharmazeutischen Zusammensetzungen zusätzlich auch Benetzungsmittel, Emulgatoren und/oder pH-puffernde Mittel enthalten. In einer weiteren Ausfuhrungsform können die pharmazeutischen Zusammensetzungen einen zusätzlichen Resoφtionsverstärker enthalten. Diese zusätzlichen Resoφtionsverstärker können, falls gewünscht, eine äquimolare Menge des Trägerstoffs in der Zusammensetzung ersetzen. Beispiele für solche zusätzlichen Resoφtionsverstärker umfassen in nicht begrenzender Weise Eucalyptol, N,N-Diethyl-m-toluamid, Polyoxyalkylenalkohole (wie Propylenglykol und Polyethylenglykol), N-Methyl-2- pyrrolidon, Isopropylmyristat, Dimethylformamid (DMF), Dimethylsulfoxid (DMSO), Dimefhylacetamid (DMA), Harnstoff, Diethanolamin, Triethanolamin und dergleichen (siehe z.B. Percutaneous Penetration Enhancers, Hrsg. Smith et al. (CRC Press, 1995)). Die Menge an zusätzlichem Resoφtionsverstärker in der Zusammensetzung kann von den gewünschten zu erreichenden Wirkungen abhängen.
Da eine Vielzahl proteolytischer Enzyme in der Mucosa und in ihrer Umgebung auftritt, kann ein Protease-Inhibitor in die erfindungsgemäße Zusammensetzung eingebaut werden, um einen Abbau eines Peptid- oder Proteinwirkstoffs zu vermeiden und dadurch die Bioverfügbarkeit zu erhöhen. Beispiele für Protease-Inhibitoren umfassen in nicht- begrenzender Weise Aprotinin, Leupepsin, Pepstatin, α2-Makroglobulin und Trypsin- Inhibitor. Diese Inhibitoren können alleine oder in Kombination verwendet werden.
Die erfindungsgemäßen pharmazeutischen Zusammensetzungen können mit einer oder mehreren Beschichtungen versehen sein. Vorzugsweise sind die festen oralen Darreichungsformen mit einer magensaftresistenten Beschichtung versehen oder liegen in Form einer magensaftresistenten, gehärteten Weichgelatinekapsel vor.
Die Dosierungsformen können Materialien umfassen, die die pharmazeutisch wirksame Substanz in einem spezifischen Abschnitt des Gastrointestinaltrakts freisetzen, wodurch eine stellengerichtete Bereitstellung verstärkt wird.
Die hier beschriebenen Zusammensetzungen können auch als Formulierung mit einer verzögerten Freisetzung verabreicht werden (d.h. eine Formulierung, die eine langsame Freisetzung des Arzneimittels nach einer Verabreichung bewirkt). Solche Formulierungen mit verzögerter Freisetzung sind bekannt. Die pharmazeutischen Zusammensetzungen können erfindungsgemäß für eine Verabreichung auf irgendeinem transdermalen oder transmucosalen Weg formuliert sein, einschließlich z.B. für eine topische, orale, enterale, inτrakraniale, sublinguale, nasale, bukkale, vaginale, okkulare oder urethrale Verabreichung. Besonders bevorzugt sind enterale, noch stärker bevorzugt orale Darreichungsformen, insbesondere magensaftresistente Formulierungen und retardierte Formulierungen oraler Formen. Möglich sind aber auch rektale Arzneiformen wie Zäpfchen, vaginale Arzneiformen wie Suppositorien, sowie nasal anwendbare Zubereitungen wie Nasensprays.
In einer bevorzugten Ausführungsform wird die pharmazeutische Zusammensetzung in die Matrix eines Pflasters eingebaut, um die Substanz, insbesondere den pharmazeutischen Wirkstoff, die/der mit dem resoφtionsverstärkenden Mittel gekoppelt ist, über einen längeren Zeitraum an die Haut abzugeben.
Die pharmazeutischen Formulierungen liegen beispielsweise in Form von Tabletten, Suppositorien, Pastillen, Dragees, Tropfen, Lösungen, Suspensionen, Emulsionen (bevorzugt Öl-in- Wasser- oder Wasser-in-Öl-Emulsionen), Salben, Gelen, Pasten, Filmen, Säften, Sirupen, Nasensprays, Vaginalzäpfchen oder -tabletten, Kapseln, Granulaten, Pellets, Mikrotabletten, Pulvern, Rektalzäpfchen, Rektalkapseln, Aerosolen, Shampoos oder Sprays vor. Besonders bevorzugt sind Hart- oder Weichgelatinekapseln, gegebenenfalls mit magensaftresistenter Beschichtung, ganz besonders bevorzugt sind gehärtete Weichgelatinekapseln.
Die pharmazeutische Zusammensetzung kann erfindungsgemäß eine indirekte Dosisform sein wie eine orale Formulierung für eine Verabreichung an die Magen- oder Darmschleimhaut. Die Zusammensetzung kann jedoch auch direkt an eine Schleimhaut verabreicht werden.
Die pharmazeutischen Zusammensetzungen sind erfϊndungsgemäß vorzugsweise topisch oder oral verabreichbare Medikamente. Der Begriff "Patient" bedeutet erfindungsgemäß Mensch, nicht menschlicher Primat oder ein anderes Tier, insbesondere Säugetier wie Kuh, Pferd, Schwein, Schaf, Ziege, Hund, Katze, Vögel wie Huhn oder Nagetier wie Maus und Ratte. In einer besonders bevorzugten Ausführungsform ist der Patient ein Mensch.
Die erfindungsgemäßen pharmazeutischen Zusammensetzungen sind vorzugsweise steril und werden in wirksamen Mengen verabreicht. Eine "wirksame Menge" betrifft die Menge, die alleine oder zusammen mit weiteren Dosen eine gewünschte Reaktion oder eine gewünschte physiologische Wirkung erzielt. Im Fall einer Behandlung einer bestimmten Erkrankung oder eines bestimmten Zustands betrifft die gewünschte Reaktion die Hemmung des Krankheitsverlaufs. Dies umfasst die Verlangsamung des Fortschreitens der Erkrankung und insbesondere eine Unterbrechung des Fortschreitens der Erkrankung. Die gewünschte Reaktion bei einer Behandlung einer Krankheit oder eines Zustands kann auch die Verzögerung des Ausbruchs oder eine Verhinderung des Ausbruchs der Krankheit oder des Zustands sein.
Die wirksame Menge kann gemäß der Aktivität des spezifischen pharmazeutischen Wirkstoffs und seiner therapeutisch wirksamen Dosis ausgewählt werden. Jedoch ist bevorzugt, eine etwas größere Menge als die gewünschte Dosis einzubauen, da die Bio Verfügbarkeit einer jeglichen aktiven Substanz niemals 100% betragen kann, d.h. die verabreichte Dosis wird nicht vollständig resorbiert. Beispielsweise werden physiologisch aktive Peptide oder Proteine durch Verdauungssäfte im Gastrointestmaltrakt abgebaut oder durch Enzyme im Gastrointestinaltrakt hydrolysiert.
Eine wirksame Menge einer pharmazeutischen Zusammensetzung wird auch durch Faktoren wie dem zu behandelnden Zustand des Patienten, der Schwere der Erkrankung, den individuellen Parametern des Patienten, einschließlich Alter, physiologischer Zustand, Größe und Gewicht, der Dauer der Behandlung, der Art einer begleitenden Therapie (falls vorhanden), dem spezifischen Verabreichungsweg, dem gewünschten Verabreichungszeitraum und ähnlichen Faktoren abhängen. Für den Fall, dass eine Reaktion bei einem Patienten bei einer anfänglichen Dosis unzureichend ist, können höhere Dosen (oder effektiv höhere Dosen, die durch einen anderen, stärker lokalisierten Verabreichungsweg erzielt werden) eingesetzt werden.
Alternativ können höhere Dosen dadurch erreicht werden, dass die Menge an resoφtionsverstärkendem Mittel, die Konzentration der Substanz (insbesondere des pharmazeutischen Wirkstoffs) und/oder die Menge an zusätzlichem Resoφtionsverstärker in der Formulierung erhöht wird, die Fläche, auf die die Formulierung aufgetragen wird, vergrößert wird oder durch eine Kombination davon.
Die vorliegende Erfindung wird durch die nachstehenden Beispiele und Figuren ausführlich beschrieben, die ausschließlich der Erläuterung dienen und nicht begrenzend zu verstehen sind. Dem Fachmann sind aufgrund der Beschreibung und der Beispiele weitere Ausführungsformen zugänglich, die nicht über den Rahmen der Erfindung und den Umfang der anhängenden Ansprüche hinausgehen.
Beispiele:
Beispiel 1: Herstellung und Verwendung von Proteinexpressionskonstrukten
a. Klonierung
Es wurden pQe8-Expressionsvektoren hergestellt, die für IFN-ß in Fusion mit der Sequenz P-L-S-S-I-F-S-R-I-G-D-P (TLM) am 5Λ- bzw. 3^-Ende kodierten. Für Kontrollexperimente wurden die entsprechenden Konstrukte ohne TLM hergestellt. Die Identität dieser Konstrukte wurde durch Sequenzierung sichergestellt.
Ausgehend von dem Konstrukt pCI-elFNb.mv das eine huIFN-ß spezifische cDNA enthält, wurden mittels PCR cDNAs amplifiziert, die für IFN-ß-spezifische Fusionsproteine kodieren, welche N- oder C-terminal die TLM-Sequenz umfassen. Die forward-Primer wiesen an ihrem 5"-Ende eine BamHI-spezifische Schnittstelle und am 3Λ-Ende eine Hindlll-spezifische Schnittstelle auf. Im Einzelnen wurden folgende Primer verwendet: A) ggg aag ctt tca agg gtc ccc aat cct cga gaa gat tga cga taa ggg gtt tcg gag gta acc tgt aag
B) ggg aag ctt tca gtt tcg gag gta acc tgt
C) ggg gga tcc atg agc tac aac ttg ctt gga D) ggg gga tcc ccc tta tcg tca atc ttc tcg agg att ggg gac cct atg agc tac aac ttg ctt gga
Durch Kombination der Primer D/B wurde eine cDNA amplifϊziert, welche die für das TLM kodierende Sequenz am 5 "-Ende beinhaltet. Durch Kombination der Primer C/A wurde eine Sequenz amplifiziert, welche die TLM-spezifische Sequenz am 3 "-Ende beinhaltet. Für Kontrollexperimente wurde die IFN-ß-spezifische cDNA ohne 5Λ- oder 3"- spezifische Extensionen durch Kombination der Primer C/B amplifiziert.
Die jeweiligen PCR-Produkte wurden mittels "PCR-purification spin columns" gemäß den Anweisungen des Herstellers (Quiagen) gereinigt, BamHI/Hindlll gespalten und erneut gereinigt. Die so restringierten Fragmente wurden in den BamHI/Hindlll gespaltenen und dephosphorylierten bakteriellen Expressionsvektor pQe8 (Quiagen) ligiert. Der Vektor pQe8 enthält die für einen aminotermiήalen hexa-His-Tag kodierende Sequenz, so dass sämtliche IFN-ß-spezifischen Proteine als hexa-His-Fusionsproteine gebildet wurden.
Der Ligationsansatz wurde zur Transformation kompetenter Bakterien (DH5α) verwendet. Die auf dem Plasmid pQe8 kodierte Amp-Resistenz erlaubte eine Selektion auf Amp- haltigen Medien.
Aus den unter diesen Bedingungen wachsenden Klonen wurde Plasmid-DNA isoliert und mittels BamHI/Hindlll-Restriktion analysiert. Positive Klone wurden anschließend mittels Sequenzierung charakterisiert.
b. Expression
Die Induktion der Bildung IFN-ß -spezifischer Fusionsproteine erfolgte wie folgt:
900 ml Amp-haltiges LB-Medium (cAn,p= 100 mg/1) wurden mit 100 ml einer stationär gewachsenen Vorkultur angeimpft und bei 37°C bis zu einer OD6OQ von 0.8 vermehrt. Die Induktion der Genexpression erfolgte durch Zusatz von IPTG zu einer Endkonzentration von 1 mM (Die Expression von Genen, die in pQe8 inseriert sind, erfolgt unter der Kontrolle des lac-Repressors). Das Abernten erfolgte 2-3h nach Beginn der Induktion.
Beispiel 2: Proteinisolierung
Das in PBS zweifach gewaschene Bakterienpellet wurde in 50 mM NaH2PO4/300 mM NaCl/8 mM Imidazol, pH 8.0 resuspendiert (native Aufreinigung) und die Bakterien mittels Ultraschall aufgeschlossen. Nicht-aufgeschlossene Bakterien, sowie Balcterientrümmer wurden durch Zentrifugation sedimentiert. Der Überstand wurde auf eine mit 50 mM NaH2PO4/300 mM NaCl/8 mM Imidazol, pH 8.0 äquilibrierte Ni-NTA- Agarose-Säule geladen (Ni-NTA-Agarose ermöglicht die affinitätschromatographische Aufreinigung hexa-His-getagter Proteine). Das Beladen der Säule erfolgte bei einer Flussrate von 1 ml/min.
Nach dem Beladen der Säule und dem Auswaschen ungebundener Proteine erfolgte die Elution schwach gebundener Proteine mittels eines Puffers mit 50 mM NaH2PO4/300 mM NaCl/20 mM Imidazol, pH 8.0. Die Elution der spezifisch gebundenen hexa-His-getagten IFN-ß Fusionsproteine erfolgte durch einen linearen Gradienten zwischen einem Puffer mit 50 mM NaH2PO4/300 mM NaCl/20 mM Imidazol, pH 8.0 und einem Puffer mit 50 mM NaH PO4/300 mM NaCl/250 mM Imidazol, pH 8.0. Die Detektion eluierter Proteine erfolgte durch simultane Detektion der Absoφtion bei 215, 260 und 280 nm. Das Eluat wurde in Fraktionen zu 1 ml gesammelt.
Die Isolierung erfolgte unter Verwendung eines AEKTA-Explorer- bzw. AEKTA-Purifier- Systems.
Zur weiteren Reinigung wurde in Einzelfallen unter Verwendung einer RP18-Säule noch eine "reversed phase"-Chromatographie durchgeführt. Dazu wurde das Eluat der Ni-NTA- Säule 1 :5 mit dem Laufpuffer der RP-Säule (0.1% TFA in H2O) verdünnt und auf die Säule geladen. Die Elution erfolgte mittels eines linearen Gradienten zwischen 0.1 /TFA in H20 und 80% Acetonitril/H2O. Analyse der Proteine:
Die Reinheit der so isolierten Proteine wurde mittels SDS-PAGE nach Laemmli analysiert. Die Gele wurden mittels Coomassie gefärbt oder einer Silberfärbung (nach Heukeshoven/Dernick) unterzogen. Die Identität der nachgewiesenen Proteinbanden mit IFN-ß (IFN-ß- lb) wurde mittels Westem-Blottings nachgewiesen. Der Transfer der Proteine auf eine PVDF-Membran erfolgte mittels Elektroblottings nach dem semi-dry-Verfahren (Kyshe/Andersen). Zur Markierung des transferierten IFN-ß-spezifischen Proteins diente ein IFN-ß-spezifisches Schafserum. Der Nachweis erfolgte fluorographisch mittels eines Peroxidase-konjugierten Sekundärantiköφers unter Verwendung des ECL-Systems (Amersham).
Es konnte so mit über 95% Reinheit IFN-ß-lb bzw. TLM-IFN-ß-lb isoliert werden. Die Ausbeute lag bei ca. 400-700 μg pro Liter.
Durch reversed phase-Chromatographie konnte TLM-IFN-ß-lb von über 98% Reinheit isoliert werden.
Beispiel 3: Nachweis der Zellpermeabilität
a. Zellfraktionierang
Die humane Hepatomzelllinie huH7 wurde 30 min in Gegenwart von 0.5 μM IFN-ß-lb- spezifischer Proteine in Medium inkubiert. Zum Entfernen Oberflächen-gebundener IFNs wurden die Zellen nach dem Entfernen des Mediums für 5 sec mit Na2CO3/NaHCO3- Puffer, pH 9.5 und anschließend in PBS gewaschen. Nach dem Abschaben wurden die Zellen mittels eines Potter-Homogenisators schonend aufgeschlossen. Nach dem Abtrennen nicht-aufgeschlossener Zellen und der Zellkerne durch 30 sec. Zentrifugation bei 13 kUpm in einer Eppendorf-Zentrifuge wurde das Lysat einer differentiellen Zentrifugation unterzogen. Durch Ultra-Zentrifugation bei 100.000 Upm (430.000g) für 18 min konnte das Cytosol sowie die mikrosomale Fraktion isoliert werden. Die so isolierten Zellfraktionen wurden einer SDS-PAGE unterzogen und anschließend mittels Westem- Blottings unter Verwendung des IFN-ß-spezifischen Serums analysiert. Die Western-Blotting- Analyse der subzellulären Fraktionierung zeigte, dass nur TLM-IFN- ß-lb, nicht jedoch wt-IFN im Cytosol nachweisbar ist. Der Nachweis von extrazellulär zugegebenem TLM-IFN-ß-lb im Cytosol bestätigt die Zellpermeabilität und unterstreicht, dass die Aufnahme nicht über einen Endosomen-assoziierten Weg erfolgt ist.
b. Irnmunfluoreszenzmikroskopie.
Die humane Hepatomzelllinie huH7 sowie COS-Zellen (Hamster) wurden für 30 min in Gegenwart von 0.5 μM IFN-ß-lb-spezifischer Proteine im Medium inkubiert. Zum Entfernen Oberflächen-gebundener IFNs wurden die Zellen nach dem Entfernen des Mediums' 5 sec mit Na2CO3/NaHCO3-Puffer, pH 9.5 und anschließend in PBS, gewaschen. Die Fixierung der gewaschenen Zellen erfolgte für 10 min in eiskaltem Ethanol/DAPI (zur Färbung des Zellkerns). Nach der Fixierung erfolgte die Rehydratisierung für 30 min in PBST. Die Blockierung unspezifischer Bindungsstellen erfolgte mittels 10% BSA. Zur Markierung des IFN-ß diente huIFN-ß-spezifisches Schafserum. Der Nachweis erfolgte durch einen Cy3 -gekoppelten Sekundärantiköφer. Zur Auswertung wurde ein Leica Fluoreszenzmikroskop verwendet.
Die Irnmunfluoreszenzmikroskopie zeigte, dass im Unterschied zum wtIFN, das nur ein sehr schwaches Hintergrundsignal ergab, TLM-IFN-ß-lb gut in den huH7-, wie auch in den COS-Zellen nachweisbar ist. Es ist in nahezu allen Zellen nachweisbar. TLM-IFN-ß- lb ist homogen über die Zelle verteilt, eine spezifische Anreicherung in einzelnen subzellulären Kompartimenten ist nicht zu beobachten.
Beispiel 4: Nachweis der oralen Verfügbarkeit durch Fütterungsversuche
B6-Mäuse wurden über Nacht ohne Futter gehalten. Am nachfolgenden Morgen bekamen die Tiere einen gewogenen Futteφressling, der mit IFN-ß-lb-spezifischer Proteinlösung durchtränkt war. Durch Wiegen des Presslings nach dem Ende des Fütterangsversuchs konnte auf die Menge des oral aufgenommenen IFNs rückgeschlossen werden. Die Tiere wurden mittels CO2 getötet und das Blut mittels Herzpunktion als EDTA-Blut entnommen. Nach dem Abtrennen zellulärer Bestandteile wurde das Serum mittels Westem-Blottings bzw. eines huIFN-ß-spezifischen ELISAs analysiert.
Die Elisa- Werte wurden auf die aufgenommene IFN-ß- lb-Menge (Futtermenge) normiert und in Relation zum c/o-Wert gesetzt. Der c/o Wert wurde auf 1 gesetzt.
Es ergaben sich folgende Werte bei den Tieren, an die TLM-IFN-ß-lb verfüttert wurde (Tiere 1-4), und bei den Tieren, die wtIFN erhielten (Tiere 5-7):
Diese Ergebnisse zeigen, dass oral verabreichtes TLM-IFN-ß-lb deutlich im Serum nachweisbar war, während oral verabreichtes wtIFN nur in geringen Mengen nachgewiesen wurde.
Beispiel 5: Herstellung und Verwendung von IFN-ß-la-TLM mit Hilfe eines eukaryontischen IFN-ß-TLM-spezifischen Expressionsvektors
a) Klonierung
Ausgehend von dem Konstrukt pCI-eIFNb.mv, das eine humane IFN-ß (huIFN-ß) spezifische cDNA enthält, wurde mittels PCR die für IFN-ß-spezifische Fusionsproteine, kodierende cDNA amplifiziert. Diese cDNA kodiert für ein komplettes IFN-ß-spezifisches Fusionsprotein, das C-terminal im offenen Leserahmen die Zellpermeablität-vermittelnde TLM-kodierende Sequenz umfasst. Die Primer waren derart gestaltet, dass das Amplifikat an seinem 5"-Ende und 3"-Ende jeweils eine BamHI-spezifische Schnittstelle aufwies. Das PCR-Produkt wurde mittels "PCR-purification spin columns" gemäß den Anweisungen des Herstellers (Quiagen) gereinigt, BamHI gespalten und erneut gereinigt. Die so restringierten Fragmente wurden in den BamHI gespaltenen und dephosphorylierten eukaryontischen Expressionsvektor pCDNA.3.1 (Invitrogen) ligiert. Der Ligationsansatz wurde zur Transformation kompetenter Bakterien (DH5α) verwendet. Die auf dem Plasmid kodierte Amp-Resistenz erlaubte eine Selektion auf Amp-haltigen Medien. Aus den unter diesen Bedingungen vermehrten Klonen wurde Plasmid-DNA isoliert und mittels BamHI- Restriktion zunächst analysiert. Positive Klone wurden anschließend mittels Sequenzierung charakterisiert und auf ihre Orientierung übeφriift.
b. Expression und Aufreinigung
Die Bildung IFN-ß -spezifischer F sionsproteine, in denen IFN-ß wie im nativen Protein glykosyliert war (IFN-ß- la), erfolgte wie nachstehend beschrieben:
30 Flaschen (T175) huH7 Zellen von 70%iger Konfluenz wurden mit 6μg pCIFNbTLM mittels Lipofectin transient transfϊziert. Die Transfektion erfolgte gemäß den Angaben des Herstellers (DOTAP, Röche). 48h nach dem Mediumwechsel wurde das Medium gesammelt und das produzierte IFN-ß-la-TLM mittels fraktionierter Ammoniumsulfatfällung (20%ige Ammoniumsulfat-Sättigung, gefolgt von 70%iger Ammoiumsulfat-Sättigung) angereichert. Das Präzipitat wurde in PBS resuspendiert und für 12 bis 18h gegen PBS dialysiert, um das überschüssige Ammoniumsulfat zu entfernen. Anschließend erfolgte eine präparative Gelfiltration unter Verwendung einer kalibrierten Superdex 75 Säule. Die durch Westem Blot-Analyse unter Verwendung eines huIFN-ß- spezifischen Antiserams als IFN-ß-positiv identifizierten Fraktionen wurden vereinigt und über eine MonoQ-Ionentauschersäule weiter aufgereinigt. Die Elution erfolgte durch einen linearen Gradienten von 20 bis 1000 mM NaCl, gepuffert in 40 mM Tris mit einem pH- Wert von 7,5 und 2% Ethanol. Wie durch Westem Blot-Analyse, Silber-gefärbte SDS-Gele und analytische HPLC festgestellt, konnte auf diese Weise IFN-ß-la-TLM in einer Reinheit von über 90% isoliert werden.
Der Nachweis der Funktionalität erfolgte: - durch Messung der antiviralen Aktivität. Hierzu wurden HepG2.2.15 Zellen (eine stabil HBV-produzierende Zelllinie) in Gegenwart unterschiedlicher Mengen IFN-ß-la-TLM inkubiert. Mittels taqman-PCR konnte eine Regression der Virusproduktion um den Faktor 1000 beobachtet werden (siehe auch Beispiel 8).
- durch Messung der Induktion der 2',5'-Oligoadenylatsynthetase mittels eines spezifischen RIAs. Grundlage dieses Tests ist, dass IFN-ß an Zellen, die nicht mit einem Viras infiziert sind, binden kann und dadurch die Bildung von unter anderem der 2',5'~ Oligoadenylatsynthetase induziert, was zu einem Abbau von viraler RNA führt (vgl. z.B. Takane et al, Jpn. J. Pharmacol. 90, 304-312, 2002).
Beispiel 6: Nachweis der oralen Verfügbarkeit von IFN-ß-la-TLM durch Fütterungsversuche
B6-Mäuse wurden 18h ohne Futter gehalten. Am Nersuchsbeginn bekamen die Tiere ein abgewogenes Stückchen Toastbrot (etwa 3,5 bis 4,5 g), das 104 U IFΝ-ß-la-TLM aus
Beispiel 5 enthielt (TLM). Als Νegativkontrollen wurden Tiere verwendet, die keiner
Behandlung unterzogen wurden (Νl), die Futter mit 1 ml einer 200 μM PreSlPreS2-
Lösung (Νegativkontrolle Ν2) oder Futter mit 104 U käuflichem rekombinantem IFN-ß-la
(Negativkontrolle N3) erhielten. Die Fütterung der Tiere erfolgte für 4 bzw. 8h. Es wurden zwei getrennte Experimente für alle Behandlungsprotokolle durchgeführt (TLM-1, TLM-2,
Nl-1, Nl-2, usw.). Die Tiere wurden mittels CO2 getötet und das Blut mittels
Herzpunktion als EDTA-Blut entnommen. Nach dem Abtrennen zellulärer Bestandteile wurde das Serum mittels eines kommerziellen huIFN-ß -spezifischen ELISAs analysiert.
Für eine Kalibrierangskurve wurden verschiedene Mengen an käuflichem rekombinantem IFN-ß-la (krIFN-ß-la) vermessen. Die nachstehenden Tabellen 1 bis 3 geben die erhaltenen Messwerte wieder: Tabelle 1 : Messwerte für die Kalibrierungskurven
Tabelle 2: Messwerte, Mittelwerte und berechnete Mengen nach oraler Verabreichung von IFN-ß-la-TLM
berücksichtigt wurde auf IFN-ß-Aktivität getestet (siehe Beispiel 8) Tabelle 3 : Messwerte, Mittelwerte und berechnete Mengen für die Negativkontrollen
Die ELISA- Werte wurden für jedes Experiment gemittelt und die im Serum nachgewiesene Menge anhand der Kalibrierungskurve berechnet. In Fig. 1 sind die berechneten Mengen (I.E.) des im Serum nachgewiesenen IFN-ß in einem Balkendiagramm aufgetragen. Fig. 1 zeigt, dass nach oraler Verabreichung von IFN-ß-la-TLM für 4h bzw. 8h die Menge an IFN-ß im Serum deutlich erhöht war, wobei die Menge nach 4h etwa doppelt so hoch war wie die Menge nach 8h. Im Gegensatz dazu konnte bei keiner Negativkontrolle eine signifikante Erhöhung der IFN-ß-Menge im Serum festgestellt werden. Folglich zeigen die Ergebnisse, dass durch die Kopplung von TLM an IFN-ß die Resoφtion von IFN-ß über die Schleimhaut deutlich erhöht werden konnte.
Beispiel 7: Nachweis der dermalen Verfügbarkeit von IFN-ß-la-TLM
B6-Mäuse wurden vorsichtig geschoren, um die Haut nicht zu verletzen, und 4 bzw. 8h mit einem nach außen undurchlässigen Mullverband (2 x 6 cm, 2-lagig) gehalten, der in 104 U IFN-ß-la-TLM aus Beispiel 5 getränkt worden war (TLM). Als Kontrollen wurden Tiere verwendet, die keiner Behandlung unterzogen wurden (Nl), bzw. Tiere, die unter identischen Bedingungen käuflichem rekombinantem IFN-ß-la ausgesetzt wurden (N2). Die Tiere wurden mittels CO2 getötet und das Blut mittels Herzpunktion als EDTA-Blut entnommen. Nach dem Abtrennen zellulärer Bestandteile wurde das Serum mittels eines kommerziellen huIFN-ß-spezifischen ELISAs analysiert. Für eine Kalibrierungskurve wurden verschiedene Mengen an käuflichem rekombinantem IFN-ß-la (krIFN-ß-la) vermessen. Die nachstehenden Tabellen 4 und 5 geben die erhaltenen Messwerte (Mittel aus 2 Messungen) wieder:
Tabelle 4: Messwerte für die Kalibrierungskurve
Tabelle 5: Messwerte, Mittelwerte und berechnete Mengen nach dermaler Verabreichung von IFN-ß-la-TLM (TLM) bzw. für die Kontrollen (Nl undN2)
Die ELISA- Werte wurden für jedes Experiment gemittelt und die im Serum nachgewiesene Menge anhand der Kalibrierangskurve berechnet. In Fig. 2 sind die berechneten Mengen (I.E.) des im Serum nachgewiesenen IFN-ß in einem Balkendiagramm aufgetragen. Fig. 2 zeigt, dass nach dermaler Verabreichung von LFN-ß-la-TLM für 4h bzw. 8h eine erhöhte Menge an IFN-ß im Serum vorhanden war, während bei den Kontrollen keine signifikante Menge an IFN-ß im Serum nachgewiesen werden konnte. Die Ergebnisse zeigen somit, dass durch die Kopplung von TLM an IFN-ß die Resoφtion von IFN-ß über die Haut erhöht wird. Überraschenderweise stellte sich heraus, dass die Menge an im Serum nachweisbarem IFN-ß während der Testdauer um den Faktor 2 zunahm. Eine solche Depotwirkung, wie sie für eine subkutane Verabreichung typisch ist, wird somit auch durch das erfindungsgemäße Verfahren erreicht, ohne dass hierzu eine invasive Applikation notwendig ist.
Beispiel 8: Nachweis der Funktionalität des oral aufgenommenen IFN-ß-la-TLMs
Die Untersuchung der Funktionalität erfolgte wie vorstehend beschrieben mittels der HBV- produzierenden Zelllinie HepG2.2.15. Die Zellen wurden in 24-Lochplatten ausgelegt. Nach 24 h wurde das Medium gewechselt und durch Medium ersetzt, das 1:1 mit den Mäuseseren verdünnt war, die in Beispiel 6, Tabelle 2 durch einen Stem gekennzeichnet sind (IFN-ß-Seren). Als Kontrollen dienten unbehandelte Zellen (Nl) und Mäuseseram aus unbehandelten Tieren (N2). Diese Verfahren wurde nach 24h wiederholt und nach weiteren 24h wurde die Virusmenge im Überstand mittels taqman-PCR quantifiziert (Stoeckl et al., 2003). In Tabelle 6 sind die erhaltenen Werte (HBV-Genom/ml) als Mittelwert einer Doppelbestimmung angegeben.
Tabelle 6: Virasmengen im Überstand
Die Ergebnisse zeigen, dass die Virusvermehrung durch die Seren, die aus den mit IFN-ß- la-TLM behandelten Tieren aus Beispiel 6 gewonnen wurden, um 99,5% vermindert wurde, während die Seren aus den unbehandelten Tieren nur eine sehr geringe antivirale Wirkung aufwiesen.
Beispiel 9: Nachweis der oralen Verfügbarkeit von PreSlPreS2 durch Fütterungsversuche
B6-Mäuse (9 Tiere) wurden 18h ohne Futter gehalten. Am Versuchsbeginn bekamen die Tiere ein abgewogenes Stückchen Toastbrot (etwa 3,5 bis 4,5 g), das mit 1 ml einer 200 μM PreSlPreS2-Lösung getränkt worden war. Das PreSlPreS2-Protein enthält endogen an seinem C-Terminus das HBV-TLM. Als Negativkontrollen blieben Tiere unbehandelt (5 Tiere). Die Fütterung der Tiere erfolgte für 8h. Die Tiere wurden mittels CO2 getötet und das Blut mittels Herzpunktion als EDTA-Blut entnommen. Nach dem Abtrennen zellulärer Bestandteile wurde das Serum mittels Western Blot-Analyse unter Verwendung eines PreSlPreS2-spezifϊschen Serums analysiert. Die Westem Blots zeigten, dass unter diesen Bedingungen bei 9 von 9 Tieren PreSlPreS2-Protein im Serum nachweisbar war, jedoch nicht bei den Kontrollen.
In einer weiteren Serie von Experimenten wurde untersucht, inwieweit das oral aufgenommene PreSlPreS2-Protein zur Entstehung PreSlPreS2-spezifischer Antiköφer fuhren kann. Hierzu wurden die Tiere wie vorstehend beschrieben gehalten und über einen Zeitraum von 4 Wochen 14-tägig mit PreSlPreS2-Protein gefuttert. Insgesamt 6 Wochen nach der ersten Fütterung wurden die Tiere wie vorstehend beschrieben getötet und das Serum gewonnen. Es wurden Blotstreifen hergestellt, auf denen eine Spur mit Cytochrom c (200 ng), eine Spur mit PreSlPreS2-Protein (20 ng) und eine Spur mit der schweren IgG- Kette (Marker) beladen wurde. Diese Streifenblots wurden mit den gewonnenen Seren inkubiert. Die Detektion der gebundenen Antiköφer erfolgte unter Verwendung eines Peroxidase-gekoppelten anti-Maus-IgG-spezifϊschen Sekundärantiköφers. insgesamt waren in 9 von 9 Seren PreSlPreS2-spezifische Antiköφer nachzuweisen. Die Kontrolle (Cytochrom c) ergab in keinem Fall ein Signal, was die Spezifität der Antiköφer unterstreicht. Fig. 3 zeigt zwei typische Western Blots dieser Versuchsreihe (Spur 1: Cytochrom c; Spur 2: PreSlPreS2; Spur 3: schwere IgG-Kette).
Beispiel 10: Nachweis der dermalen Verfügbarkeit von PreSlPreS2
B6-Mäuse (9 Tiere) wurden vorsichtig geschoren, um die Haut nicht zu verletzen, und 8h mit einem nach außen undurchlässigen Mullverband (2 x 6 cm, 2-lagig) gehalten, der in 1 ml einer 200 μM PreSlPreS2-Lösung getränkt worden war. Als Kontrollen (4 Tiere) dienten unbehandelte Tiere. Die Tiere -wurden mittels CO2 getötet und das Blut mittels Herzpunktion als EDTA-Blut entnommen. Nach dem Abtrennen zellulärer Bestandteile wurde das Serum mittels Westem Blot-Analyse unter Verwendung eines PreSlPreS2- spezifischen Serums analysiert.
Die Westem Blots zeigten, dass unter diesen Bedingungen bei 8 von 9 Tieren das PreSlPreS2-Protein im Serum nachweisbar war, jedoch nicht bei den Kontrollen. Fig. 4 zeigt ein typisches Beispiel eines Western Blots dieser Versuchsreihe (Spur 1: Positivkontrolle; Spuren 2 bis 5: Seren von unbehandelten Tieren; Spuren 6 bis 9: Seren von Tieren, an die PreSlPreS2 dermal verabreicht wurde).

Claims

Patentansprüche
1. Verfahren zur Verstärkung der Fähigkeit einer Substanz, bei einer Applikation an die Haut oder Mucosa von dieser resorbiert zu werden, umfassend die Kopplung der Substanz mit mindestens einem Mittel, das die Resoφtion der Substanz durch Haut oder Mucosa verstärkt.
2. Verfahren nach Anspruch 1, wobei die Bioverfügbarkeit der Substanz bei einer Applikation an die Haut oder Mucosa durch das Verfahren erhöht wird.
3. Verfahren nach Ansprach 1 oder 2, wobei das Mittel, das die Resoφtion der Substanz durch Haut oder Mucosa verstärkt, die Resoφtionsquote und/oder Permeationsfähigkeit der Substanz durch Haut oder Mucosa verstärkt.
4. Verfahren nach einem der Ansprüche 1-3, wobei das resoφtionsverstärkende Mittel kovalent mit der Substanz gekoppelt wird.
5. Verfahren nach einem der Ansprüche 1-4, wobei das resoφtionsverstärkende Mittel ein Polypeptid oder Protein ist.
6. Verfahren nach Anspruch 5, wobei das Polypeptid oder Protein die Sequenz: X1-X2-X3-X4-X5-X6-X7-X8-X9-X10-X11-X12 umfasst, worin XI, X6, X7, X9, XlO und X12 variabel sind, X2 und X5 hydrophobe Aminosäurereste und X3, X4, X8 und XI 1 hydrophile Aminosäurereste sind.
7. Verfahren nach Anspruch 6, wobei das Polypeptid oder Protein die Sequenz P-L-S-S-I-F-S-R-I-G-D-P umfasst.
8. Verfahren nach einem der Ansprüche 1-7, wobei die Substanz, die mit dem resoφtionsverstärkenden Mittel gekoppelt wird, ein Polypeptid oder Protein ist.
9. Verfahren nach Anspruch 8, wobei die Substanz, die mit dem resoφtionsverstärkenden Mittel gekoppelt wird, ein Interferon ist.
10. Verfahren nach Anspruch 9, wobei das Interferon nach Resoφtion aktiv oder inaktiv ist.
11. Verfahren nach einem der Ansprüche 1-7, wobei die Substanz, die mit dem resoφtionsverstärkenden Mittel gekoppelt wird, ein Virus oder Viras-ähnliches Partikel ist.
12. Verfahren nach einem der Ansprüche 1-11, wobei die Mucosa eine Mucosa des Gastrointestinaltrakts (z.B. Darmschleimhaut, Magenschleimhaut), Augenschleimhaut, Nasenschleimhaut, Tracheal-/Bronchial-/Lungenschleimhaut, Schleimhaut der Mundhöhle, des Rekrums, des Genitaltrakts oder der Vagina ist.
13. Transdermales oder transmucosales Präparat, erhältlich nach einem Verfahren nach einem der Ansprüche 1-12.
14. Pharmazeutische Zusammensetzung, die ein transdermales oder transmucosales Präparat nach Anspruch 13 umfasst.
15. Pharmazeutische Zusammensetzung nach Anspruch 14, dadurch gekennzeichnet, dass sie für eine topische oder orale Nerabreichung geeignet ist.
16. Verwendung eines transdermalen oder transmucosalen Präparats nach Ansprach 13 oder einer pharmazeutischen Zusammensetzung nach Anspruch 14 oder 15 zur Applikation an die Haut oder Mucosa.
17. Verwendung nach Anspruch 16, wobei die Mucosa eine Mucosa des Gasfromtestinaltrakts (z.B. Darmschleimhaut, MagenscMeimhaut),
Augenschleimhaut, Nasenschleimhaut, Tracheal-/Bronchial-/Lungenschleimhaut, Schleimhaut der Mundhöhle, des Rektums, des Genitaltrakts oder der Vagina ist.
EP03757780A 2002-09-04 2003-09-03 Verstarkung der resorption von substanzen über die haut und schleimhaut Withdrawn EP1534315A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10240894 2002-09-04
DE10240894A DE10240894A1 (de) 2002-09-04 2002-09-04 Verstärkung der Resorption von Subtanzen über die Haut und Schleimhaut
PCT/EP2003/009788 WO2004022657A2 (de) 2002-09-04 2003-09-03 Verstärkung der resorption von substanzen über die haut und schleimhaut

Publications (1)

Publication Number Publication Date
EP1534315A2 true EP1534315A2 (de) 2005-06-01

Family

ID=31502367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03757780A Withdrawn EP1534315A2 (de) 2002-09-04 2003-09-03 Verstarkung der resorption von substanzen über die haut und schleimhaut

Country Status (7)

Country Link
US (1) US20070172516A1 (de)
EP (1) EP1534315A2 (de)
JP (1) JP2005537328A (de)
AU (1) AU2003273817A1 (de)
CA (1) CA2497696A1 (de)
DE (1) DE10240894A1 (de)
WO (1) WO2004022657A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354116B2 (en) * 2007-06-18 2013-01-15 Biochemics, Inc. Bifunctional synthetic molecules
WO2024004159A1 (ja) * 2022-06-30 2024-01-04 Eps創薬株式会社 舌下投与用ワクチン組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545985A (en) * 1984-01-26 1985-10-08 The United States Of America As Represented By The Secretary, Dept. Of Health And Human Services Pseudomonas exotoxin conjugate immunotoxins
DE3584486D1 (de) * 1984-02-08 1991-11-28 Cetus Corp Toxinkonjugate.
CA2094217A1 (en) * 1992-04-17 1993-10-18 Yasutaka Igari Transmucosal therapeutic composition
US5766620A (en) * 1995-10-23 1998-06-16 Theratech, Inc. Buccal delivery of glucagon-like insulinotropic peptides
WO1999005302A1 (en) * 1997-07-24 1999-02-04 The Perkin-Elmer Corporation Conjugates of transporter peptides and nucleic acid analogs, and their use
DE19850718C1 (de) * 1998-11-03 2000-05-18 Hildt Eberhardt Zellpermeabilität-vermittelndes Polypeptid
DE19904800C1 (de) * 1999-02-05 2001-02-08 Eberhard Hildt Partikel zur Gentherapie
US6887462B2 (en) * 2001-04-09 2005-05-03 Chiron Corporation HSA-free formulations of interferon-beta
US6835810B2 (en) * 2002-05-13 2004-12-28 Geneshuttle Biopharma, Inc. Fusion protein for use as vector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004022657A2 *

Also Published As

Publication number Publication date
DE10240894A1 (de) 2004-03-11
WO2004022657A2 (de) 2004-03-18
WO2004022657A8 (de) 2004-04-22
CA2497696A1 (en) 2004-03-18
US20070172516A1 (en) 2007-07-26
AU2003273817A8 (en) 2004-03-29
JP2005537328A (ja) 2005-12-08
WO2004022657A3 (de) 2004-09-02
AU2003273817A1 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
DE69930015T2 (de) Polymerkonjugate von interferon-beta-1a und deren verwendungen
DE3486028T2 (de) Verabreichungsform von arzneimitteln.
DE69839251T2 (de) Alpha interferon-polymer konjugate mit erhöhter biologischer wirksamkeit sowie verfahren zu deren herstellung
DE69327788T2 (de) Pharmazeutische zusammenstezungen zur hemmung von tumoren in verbindung mit prostaten adenokarzinom magenkrebs und brustkrebs
DE69425427T2 (de) Ein pharmazeutisches präparat zur topischen verabreichung von antigenen und/oder vakzinen an die schleimhäute von säugern
DE68911019T2 (de) Kombiniertes Hepatitis A- und B-Vakzin mit Adjuvans.
DE69430251T2 (de) Verbesserte interferon-polymerkonjugate
US9687495B2 (en) Methods and systems for the delivery of a therapeutic agent
DE60013773T2 (de) Methoden zur Herstellung von therapeutischen Kalziumphosphat Partikeln
DE69327755T2 (de) Zusammensetzung zum Unterdrücken von Infektion und Wachstum des menschlichen Immunschwäche-Virus unter Verwendung eines eisenbindenden Proteins
DE19735587B4 (de) Peptid mit radioprotektiver Wirkung, dieses enthaltende kosmetische oder pharmazeutische Zusammensetzung, für dieses kodierende Nukleinsäure, Herstellungsverfahren für dieses Peptid und die Verwendung als radioprotektives Agens
DE69631544T2 (de) Fettleibigkeitsprotein (ob) zur erhögung der mageren körpermasse
DE69534676T2 (de) Orale Verabreichung von chemisch modifizierten Proteinen
JP6295314B2 (ja) 治療薬を送達するための方法および組成物
DE69628838T2 (de) Chemokin bindendes protein und verfahren zu seiner verwendung
DE60032255T2 (de) Polymer-stabilisierte neuropeptide
DE102007030904A1 (de) Humanes zirkulierendes antivirales Albumin-Fragment (ALB-408) und seine Verwendung
DE69219590T2 (de) BPC-Peptide, deren Herstellung und Verwendung
DE69900756T2 (de) Verwendung von hmg proteinen zur herstellung von arzneimitteln mit zytotoxischer wirkung
EP0346501B1 (de) Arzneimittelzubereitung zur behandlung des immunmangels
WO2002005844A2 (de) Proteinkomplex als vehikel für oral verfügbare arzneimittel
DE69606466T2 (de) Verwendung eines Pulvers oder eines Extraktes von Guava zur Behandlung von Allergien
DE69921486T2 (de) Dextran-leptin konjugate, pharmazeutische zusammentsetzungen und verbundene verfahren
DE3232033A1 (de) Pharmazeutisches mittel
DE3830271A1 (de) Mittel mit immunsuppressiver wirkung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050228

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DIAFERON GMBH

17Q First examination report despatched

Effective date: 20101112

PUAJ Public notification under rule 129 epc

Free format text: ORIGINAL CODE: 0009425

17Q First examination report despatched

Effective date: 20101203

32PN Public notification

Free format text: ANMELDUNG NR. EP 03 757 780.6 (DIAFERON GMBH - OLSCHEWSKIBOGEN 7 - 80935 MUENCHEN. DIE MITTEILUNG GEMAESS ARTIKEL 94(3) EPUE VOM 12.11.2010 UND 03.12.2010 KONNTE NICHT ZUGESTELLT WERDEN: ADRES

PUAJ Public notification under rule 129 epc

Free format text: ORIGINAL CODE: 0009425

32PN Public notification

Free format text: FESTSTELLUNG EINES RECHTSVERLUSTS NACH REGEL 112(1) EPUE (EPA FORM 2524 VOM 12/06/2012)

PUAJ Public notification under rule 129 epc

Free format text: ORIGINAL CODE: 0009425

PUAJ Public notification under rule 129 epc

Free format text: ORIGINAL CODE: 0009425

32PN Public notification

Free format text: FESTSTELLUNG EINES RECHTSVERLUSTS NACH REGEL 112(1) EPUE (EPA FORM 2524 VOM 12/06/2012)

32PN Public notification

Free format text: FESTSTELLUNG EINES RECHTVERLUSTS NACH REGEL 112(1)EPUE (EPA FORM 2524 VOM 12/06/12

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110401