EP1531799A1 - Pharmazeutische nanopartikel-formulierungen mit hmg-coa-reduktase-inhibitoren ("statine"), neue kombinationen davon sowie herstellung dieser pharmazeutischen zusammensetzungen - Google Patents

Pharmazeutische nanopartikel-formulierungen mit hmg-coa-reduktase-inhibitoren ("statine"), neue kombinationen davon sowie herstellung dieser pharmazeutischen zusammensetzungen

Info

Publication number
EP1531799A1
EP1531799A1 EP03738952A EP03738952A EP1531799A1 EP 1531799 A1 EP1531799 A1 EP 1531799A1 EP 03738952 A EP03738952 A EP 03738952A EP 03738952 A EP03738952 A EP 03738952A EP 1531799 A1 EP1531799 A1 EP 1531799A1
Authority
EP
European Patent Office
Prior art keywords
less
statin
composition
ammonium chloride
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03738952A
Other languages
English (en)
French (fr)
Inventor
Eugene R. Cooper
Douglas Hovey
Greta Carey
Marie Lindner
Elaine Liversidge
Gary G. Liversidge
Tuula Ryde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elan Pharma International Ltd
Original Assignee
Elan Pharma International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elan Pharma International Ltd filed Critical Elan Pharma International Ltd
Publication of EP1531799A1 publication Critical patent/EP1531799A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4025Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil not condensed and containing further heterocyclic rings, e.g. cromakalim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to nanoparticulate compositions comprising statin, preferably lovastatin or simvastatin, and novel statin combinations.
  • the nanoparticulate statin particles preferably have an effective average particle size of less than about 2000 nm.
  • this invention includes novel combinations of statins and other cholesterol lowering agents and methods of using the same.
  • Nanoparticulate active agent compositions are particles consisting of a poorly soluble therapeutic or diagnostic agent having adsorbed onto, or associated with, the surface thereof a non- crosslinked surface stabilizer. Many factors can affect bioavailability including the dosage form and various properties, e.g., dissolution rate of the drug. Poor bioavailability is a significant problem encountered in the development of pharmaceutical compositions, particularly those containing an active ingredient that is poorly soluble in water. By decreasing the particle size of an active agent, the surface area of the composition is increased, thereby generally resulting in an increased bioavailability.
  • the '684 patent does not teach nanoparticulate compositions of statins.
  • Nanoparticulate active agent compositions are also described, for example, in U.S. Patent Nos. 5,298,262 for "Use of Ionic Cloud Point Modifiers to Prevent Particle Aggregation During Sterilization;" 5,302,401 for “Method to Reduce Particle Size Growth During Lyophilization;” 5,318,767 for “X-Ray Contrast Compositions Useful in Medical Imaging;” 5,326,552 for “Novel Formulation For Nanoparticulate X-Ray Blood Pool Contrast Agents Using High Molecular Weight Non-ionic Surfactants;” 5,328,404 for “Method of X-Ray Imaging Using lodinated Aromatic Propanedioates;” 5,336,507 for “Use of Charged Phospholipids to Reduce Nanoparticle Aggregation;” 5,340,564 for “Formulations Comprising Olin 10-G to Prevent Particle Aggregation and Increase Stability;” 5,346,702 for "Use of Non-Ionic Cloud Point
  • Amorphous small particle compositions are described, for example, in U.S. Patent Nos.4,783,484 for "Particulate Composition and Use Thereof as Antimicrobial Agent;" 4,826,689 for “Method for Making Uniformly Sized Particles from Water-Insoluble Organic Compounds;” 4,997,454 for “Method for Making Uniformly-Sized Particles From Insoluble Compounds;" 5,741,522 for "Ultrasmall, Non-aggregated Porous Particles of Uniform Size for Entrapping Gas Bubbles Within and Methods;" and 5,776,496, for "Ultrasmall Porous Particles for Enhancing Ultrasound Back Scatter.” II. Background Regarding Statins
  • statins have been introduced to reduce serum LDL cholesterol levels (representative examples of these drags are detailed in The Merck Index).
  • High LDL cholesterol levels have been shown to be an important risk factor in the development of arteriosclerosis and ischaemic heart disease.
  • Statins have been found to lower serum LDL cholesterol levels in a dose dependent manner. Additionally, these drugs lower serum triglyceride levels, which is another risk factor for heart disease.
  • Statins lower serum LDL cholesterol levels by competitive inhibition of 3- hydroxyl-3-methylglutaryl-Coenzyme A reductase (HMG-COA reductase), an enzyme involved in the biosynthesis of cholesterol.
  • HMG-COA reductase 3- hydroxyl-3-methylglutaryl-Coenzyme A reductase
  • statins block the reduction of HMG-CoA, a step necessary in the biosynthesis of cholesterol.
  • This inhibition of cholesterol biosynthesis by a statin results in a decrease in the production and secretion of LDL cholesterol.
  • the upregulation of LDL receptors especially in the liver, leads to the removal of LDLs from the serum.
  • statins effectively reduce overall serum LDL cholesterol levels.
  • statins typically have high oral availability and high hepatic extraction during their first pass through the liver. Statins have been associated with significant liver toxicity.
  • the present invention relates to nanoparticulate active agent compositions comprising at least one statin, such as lovastatin or simvastatin, and novel statin combinations.
  • the compositions preferably comprise at least one statin and at least one surface stabilizer adsorbed on or associated with the surface of the one or more statin particles.
  • the nanoparticulate statin particles preferably have an effective average particle size of less than about 2000 nm.
  • compositions comprising a nanoparticulate statin composition of the invention.
  • the pharmaceutical compositions preferably comprise at least one statin, at least one surface stabilizer, and at least one pharmaceutically acceptable carrier, as well as any desired excipients known to those in the art and formulated into the dosage form desired.
  • statins and at least one other cholesterol lowering agent are described and methods of using the same are taught.
  • Another aspect of the invention is directed to a nanoparticulate statin composition having improved pharmacokinetic profiles as compared to conventional microcrystalline statin formulations, such as improved T max , C max , and AUC parameters.
  • One embodiment of the invention encompasses a statin composition, wherein the pharmacokinetic profile of the statin is not substantially affected by the fed or fasted state of a subject ingesting the composition, preferably as defined by C max and AUC guidelines given by the U.S. Food and Drug Administration and/or the corresponding European regulatory agency (EMEA).
  • EMEA European regulatory agency
  • the invention encompasses a statin composition of the invention, wherein administration of the composition to a subject in a fasted state is bioequivalent to administration of the composition to a subject in a fed state, in particular as defined by C max and AUC guidelines given by the U.S. Food and Drag Administration and the corresponding European regulatory agency (EMEA).
  • EMEA European regulatory agency
  • nanoparticulate statin compositions which, as compared to conventional non- nanoparticulate formulations of the same statin, preferably have one or more of the following properties: (1) smaller tablet or other solid dosage form size; (2) smaller doses of drug required to obtain the same pharmacological effect; (3) increased bioavailability; (4) an increased rate of dissolution for the nanoparticulate statin compositions; and (6) bioadhesive statin compositions.
  • This invention further discloses a method of making a nanoparticulate statin composition according to the invention.
  • Such method comprises contacting one or more statins and at least one surface stabilizer for a time and under conditions sufficient to provide a nanoparticulate statin composition.
  • the one or more surface stabilizers can be contacted with the statin before, preferably during, or after size reduction of the statin.
  • the present invention is also directed to methods of treatment using the nanoparticulate statin compositions of the invention for conditions such as hypercholesterolemia, hypertriglyceridemia, coronary heart disease, and peripheral vascular disease (including symptomatic carotid artery disease).
  • the compositions of the invention can be used as adjunctive therapy to diet for the reduction of LDL-C, total-C, triglycerides, and Apo B in adult patients with primary hypercholesterolemia or mixed dyslipidemia (Fredrickson Types Ha and lib).
  • the compositions can be used as adjunctive therapy to diet for treatment of adult patients with hypertriglyceridemia (Fredrickson Types IN and V hyperlipidemia).
  • Markedly elevated levels of serum tryglycerides may increase the risk of developing pancreatitis.
  • Other diseases that may be directly or indirectly associated with elevated, uncontrolled cholesterol metabolism, e.g., restenosis and Alzheimer's disease may also be treated with the compositions of this invention.
  • Other methods of treatment using the nanoparticulate statin compositions of the present invention are know to those of skill in the art. Such methods comprise administering to a subject a therapeutically effective amount of a nanoparticulate statin pharmaceutical composition according to the invention.
  • the present invention relates to nanoparticulate active agent compositions comprising at least one statin, such as lovastatin or simvastatin, and novel statin combinations.
  • the compositions preferably comprise at least one statin and at least one surface stabilizer adsorbed on or associated with the surface of the statin particles.
  • the nanoparticulate statin particles preferably have an effective average particle size of less than about 2000 nm.
  • compositions of nanoparticulate statins decrease the amount of drug needed and the amount that escapes from the liver and this, in turn, decreases adverse side effects while providing maximum dose response. Additionally, a longer plasma half -life is believed to be associated with nanoparticulate statin compositions of the invention. Moreover, increasing the duration of effect of the HMG-CoA reductase inhibitor is expected to result in even lower serum cholesterol levels, with a further reduction in dose expected.
  • the rate of dissolution of a particulate drug can increase with increasing surface area, e.g., decreasing particle size. Consequently, methods of making finely divided drugs have been studied and efforts have been made to control the size and size range of drug particles in pharmaceutical compositions.
  • nanoparticulate active agent formulations suitable for administration as a pharmaceutical require formulation of the active ingredient into a colloidal dispersion exhibiting the acceptable nanoparticle size range and the stability to maintain such size range and not agglomerate.
  • Merely increasing surface area by decreasing particle size does not assure success.
  • Further challenges include forming solid dose forms redispersible into the nanoparticle form upon administration to the patient to maintain the benefit of the nanoparticle statin over the traditional dosage form.
  • nanoparticulate statin formulations of the invention as compared to conventional non-nanoparticulate formulations of the same statin preferably include, but are not limited to: (1) smaller tablet or other solid dosage form size;
  • the present invention also includes nanoparticulate statin compositions together with one or more non-toxic physiologically acceptable carriers, adjuvants, or vehicles, collectively referred to as carriers.
  • the compositions can be formulated for parenteral injection (e.g., intravenous, intramuscular, or subcutaneous), oral administration in solid, liquid, or aerosol form, vaginal, nasal, rectal, ocular, local (powders, ointments or drops), buccal, intracisternal, intraperitoneal, or topical administration, and the like.
  • a preferred dosage form of the invention is a solid dosage form, although any pharmaceutically acceptable dosage form can be utilized.
  • Exemplary solid dosage forms include, but are not limited to, tablets, capsules, sachets, lozenges, powders, pills, or granules.
  • the solid dosage form can be, for example, a fast melt dosage form, controlled release dosage form, lyophilized dosage form, delayed release dosage form, extended release dosage form, pulsatile release dosage form, mixed immediate release and controlled release dosage form, or a combination thereof.
  • a solid dose tablet formulation is preferred.
  • Constant active agent shall mean an active agent which is solubilized or which has an effective average particle size of greater than about 2 microns.
  • “Poorly water soluble drugs” as used herein means those having a solubility of less than about 30 mg/ml, preferably less than about 20 mg/ml, preferably less than about 10 mg/ml, or preferably less than about 1 mg ml. Such drugs tend to be eliminated from the gastrointestinal tract before being absorbed into the circulation. Moreover, poorly water soluble drugs tend to be unsafe for intravenous administration techniques, which are used primarily in conjunction with highly water soluble drug substances.
  • stable includes, but is not limited to, one or more of the following parameters: (1) that the statin particles do not appreciably flocculate or agglomerate due to interparticle attractive forces, or otherwise significantly increase in particle size over time; (2) that the physical structure of the statin particles is not altered over time, such as by conversion from an amorphous phase to crystalline phase; (3) that the statin particles are chemically stable; and/or (4) where the statin has not been subject to a heating step at or above the melting point of the statin in the preparation of the nanoparticles of the invention.
  • “Therapeutically effective amount” as used herein with respect to a drug dosage shall mean that dosage that provides the specific pharmacological response for which the drug is administered in a significant number of subjects in need of such treatment. It is emphasized that "therapeutically effective amount,” administered to a particular subject in a particular instance will not always be effective in treating the diseases described herein, even though such dosage is deemed a 'therapeutically effective amount' by those skilled in the art. It is to be further understood that drug dosages are, in particular instances, measured as oral dosages, or with reference to drag levels as measured in blood.
  • statin compositions of the invention preferably exhibit increased bioavailability, at the same dose of the same statin, require smaller doses, and show longer plasma half-life as compared to prior conventional statin formulations.
  • statin compositions have enhanced bioavailability such that the statin dosage can be reduced, resulting in a decrease in toxicity associated with such statins. It has been surprisingly found in the present invention that stable compositions of nanoparticulate statins can be formed that permit therapeutic levels at desirably lower dosage.
  • statin compositions of the invention can enable a smaller solid dosage size. This is particularly significant for patient populations such as the elderly, juvenile, and infant.
  • the invention also preferably provides statin compositions having a desirable pharmacokinetic profile when administered to mammalian subjects.
  • the desirable pharmacokinetic profile of the statin compositions preferably includes, but is not limited to: (1) that the T max of a statin when assayed in the plasma of a mammalian subject following administration is preferably less than the T max for a conventional, non- nanoparticulate form of the same statin, administered at the same dosage; (2) that the C max of a statin when assayed in the plasma of a mammalian subject following administration is preferably greater than the C max for a conventional, non-nanoparticulate form of the same statin, administered at the same dosage; and/or (3) that the AUC of a statin when assayed in the plasma of a mammalian subject following administration, is preferably greater than the AUC for a conventional, non-nanoparticulate form of the same statin, administered at the same dosage.
  • the desirable pharmacokinetic profile is the pharmacokinetic profile measured after the initial dose of a statin.
  • the compositions can be formulated in any way as described below and as known to those of skill in the art.
  • a preferred statin composition of the invention exhibits in comparative pharmacokinetic testing with a non-nanoparticulate formulation of the same statin, administered at the same dosage, a T max not greater than about 90%, not greater than about 80%, not greater than about 70%, not greater than about 60%, not greater than about 50%, not greater than about 30%, not greater than about 25%, not greater than about 20%, not greater than about 15%, or not greater than about 10% of the T max , exhibited by the non-nanoparticulate formulation of the same statin.
  • a preferred statin composition of the invention exhibits in comparative pharmacokinetic testing with a non-nanoparticulate formulation of the same statin, administered at the same dosage, a C max which is at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 100% greater than the Cm ax exhibited by the non-nanoparticulate formulation of the same statin.
  • a preferred statin composition of the invention exhibits in comparative pharmacokinetic testing with a non-nanoparticulate formulation of the same statin, administered at the same dosage, an AUC which is at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 100% greater than the AUC exhibited by the non-nanoparticulate formulation of the same statin.
  • Any formulation giving the desired pharmacokinetic profile is suitable for administration according to the present methods. Exemplary types of formulations giving such profiles are liquid dispersions, gels, aerosols, ointments, creams, solid dose forms, etc. of a nanoparticulate statin.
  • the invention encompasses a statin composition wherein the pharmacokinetic profile of the statin is preferably not substantially affected by the fed or fasted state of a subject ingesting the composition, when administered to a human. This means that there is no substantial difference in the quantity of drug absorbed or the rate of drug absorption when the nanoparticulate statin compositions are administered in the fed versus the fasted state.
  • the invention also encompasses a statin composition in which administration of the composition to a subject in a fasted state is bioequivalent to administration of the composition to a subject in a fed state.
  • "Bioequivalency” is preferably established by a 90% Confidence Interval (CI) of between 0.80 and 1.25 for both C max and AUC under U.S. Food and Drug Administration regulatory guidelines, or a 90% CI for AUC of between 0.80 to 1.25 and a 90% CI for C max of between 0.70 to 1.43 under the European EMEA regulatory guidelines (T max is not relevant for bioequivalency determinations under USFDA and EMEA regulatory guidelines).
  • lovastatin given under fasting conditions has been shown to result in plasma concentrations of total inhibitors that were on average about two-thirds those found when lovastatin was administered immediately after a standard test meal. This significant difference of about 33% in absorption observed with conventional statin formulations is undesirable.
  • the nanoparticulate statin formulations of the invention alleviate this problem, as the nanoparticulate statin formulations of the invention reduce differences in or preferably do not produce significantly different, absorption levels when administered under fed as compared to fasting conditions.
  • Benefits of a dosage form which substantially eliminates the effect of food include an increase in subject convenience, thereby increasing subject compliance, as the subject does not need to ensure that they are taking a dose either with or without food. This is significant, as with poor subject compliance an increase in the medical condition for which the drug is being prescribed may be observed.
  • the difference in absorption of the statin compositions of the invention, when administered in the fed versus the fasted state, preferably is less than about 100%, less than about 90%, less than about 80%, less than about 70%, less than about 60%, less than about 50%, less than about 40%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, or less than about 3%.
  • statin compositions of the invention preferably have unexpectedly dramatic dissolution profiles. Rapid dissolution of an administered active agent is preferable, as faster dissolution generally leads to faster onset of action and greater bioavailability. To improve the dissolution profile and bioavailability of statins it would be useful to increase the drag's dissolution so that it could attain a level close to 100%.
  • the statin compositions of the invention preferably have a dissolution profile in which within about 5 minutes at least about 20% of the composition is dissolved. In other embodiments of the invention, at least about 30% or about 40% of the statin composition is dissolved within about 5 minutes. In yet other embodiments of the invention, preferably at least about 40%, about 50%, about 60%, about 70%), or about 80% of the statin composition is dissolved within about 10 minutes. Finally, in another embodiment of the invention, preferably at least about 70%, about 80%, about 90%, or about 100% of the statin composition is dissolved within about 20 minutes.
  • Dissolution is preferably measured in a medium which is discriminating. Such a dissolution medium will produce two very different dissolution curves for two products having very different dissolution profiles in gastric juices; i.e., the dissolution medium is predictive of in vivo dissolution of a composition.
  • An exemplary dissolution medium is an aqueous medium containing the surfactant sodium lauryl sulfate at 0.025 M. Determination of the amount dissolved can be carried out by spectrophotometry. The rotating blade method (European Pharmacopoeia) can be used to measure dissolution.
  • statin compositions of the invention preferably redisperse such that the effective average particle size of the redispersed statin particles is less than about 2 microns. This is significant, as if upon administration the nanoparticulate statin compositions of the invention did not redisperse to a substantially nanoparticulate particle size, then the dosage form may lose the benefits afforded by formulating the statin into a nanoparticulate particle size.
  • nanoparticulate active agent compositions benefit from the small particle size of the active agent; if the active agent does not redisperse into the small particle sizes upon administration, then "clumps" or agglomerated active agent particles are formed, owing to the extremely high surface free energy of the nanoparticulate system and the thermodynamic driving force to achieve an overall reduction in free energy. With the formation of such agglomerated particles, the bioavailability of the dosage form may fall well below that observed with the liquid dispersion form of the nanoparticulate active agent.
  • the nanoparticulate statin compositions of the invention preferably exhibit dramatic redispersion of the nanoparticulate statin particles upon administration to a mammal, such as a human or animal, as demonstrated by reconstitution/redispersion in a biorelevant aqueous media such that the effective average particle size of the redispersed statin particles is less than about 2 microns.
  • biorelevant aqueous media can be any aqueous media that exhibit the desired ionic strength and pH, which form the basis for the biorelevance of the media.
  • the desired pH and ionic strength are those that are representative of physiological conditions found in the human body.
  • Such biorelevant aqueous media can be, for example, aqueous electrolyte solutions or aqueous solutions of any salt, acid, or base, or a combination thereof, which exhibit the desired pH and ionic strength.
  • Biorelevant pH is well known in the art.
  • the pH ranges from slightly less than 2 (but typically greater than 1) up to 4 or 5.
  • the pH can range from 4 to 6, and in the colon it can range from 6 to 8.
  • Biorelevant ionic strength is also well known in the art. Fasted state gastric fluid has an ionic strength of about 0.1M while fasted state intestinal fluid has an ionic strength of about 0.14. See e.g., Lindahl et al., "Characterization of Fluids from the Stomach and Proximal Jejunum in Men and Women," Pharm. Res., 14 (4): 497-502 (1997).
  • pH and ionic strength of the test solution is more critical than the specific chemical content. Accordingly, appropriate pH and ionic strength values can be obtained through numerous combinations of strong acids, strong bases, salts, single or multiple conjugate acid-base pairs (i.e., weak acids and corresponding salts of that acid), monoprotic and polyprotic electrolytes, etc.
  • electrolyte solutions can be, but are not limited to, HCl solutions, ranging in concentration from about 0.001 to about 0.1 M, and NaCl solutions, ranging in concentration from about 0.001 to about 0.1 M, and mixtures thereof.
  • electrolyte solutions can be, but are not limited to, about 0.1 M HCl or less, about 0.01 M HCl or less, about 0.001 M HCl or less, about 0.1 M NaCl or less, about 0.01 M NaCl or less, about 0.001 M NaCl or less, and mixtures thereof.
  • 0.01 M HCl and/or 0.1 M NaCl are most representative of fasted human physiological conditions, owing to the pH and ionic strength conditions of the proximal gastrointestinal tract.
  • Electrolyte concentrations of 0.001 M HCl, 0.01 M HCl, and 0.1 M HCl correspond to pH 3, pH 2, and pH 1, respectively.
  • a 0.01 M HCl solution simulates typical acidic conditions found in the stomach.
  • a solution of 0.1 M NaCl provides a reasonable approximation of the ionic strength conditions found throughout the body, including the gastrointestinal fluids, although concentrations higher than 0.1 M may be employed to simulate fed conditions within the human GI tract.
  • Exemplary solutions of salts, acids, bases or combinations thereof, which exhibit the desired pH and ionic strength include but are not limited to phosphoric acid/phosphate salts + sodium, potassium and calcium salts of chloride, acetic acid/acetate salts + sodium, potassium and calcium salts of chloride, carbonic acid/bicarbonate salts + sodium, potassium and calcium salts of chloride, and citric acid/citrate salts + sodium, potassium and calcium salts of chloride.
  • the redispersed statin particles of the invention (redispersed in an aqueous, biorelevant, or any other suitable media) have an effective average particle size of less than about 1900 nm, less than about 1800 nm, less than about 1700 nm, less than about 1600 nm, less than about 1500 nm, less than about 1400 nm, less than about 1300 nm, less than about 1200 nm, less than about 1100 nm, less than about 1000 nm, less than about 900 nm, less than about 800 nm, less than about 700 nm, less than about 600 nm, less than about 500 nm, less than about 400 nm, less than about 300 nm, less than about 250 nm, less than about 200 nm, less than about 150 nm, less than about 100 nm, less than about 75 nm, or less than about 50 nm, as measured by light-scattering methods, microscopy, or other
  • an effective average particle size of less than about 2000 nm it is meant that at least 50% of the statin particles have a particle size less than the effective average, by weight, i.e., less than about 2000 nm, 1900 nm, 1800 nm, etc., when measured by the above-noted techniques.
  • at least about 70%, about 90%, about 95%, or about 99% of the statin particles have a particle size less than the effective average, i.e., less than about 2000 nm, 1900 nm, 1800 nm, 1700 nm, etc.
  • Redispersibility can be tested using any suitable means known in the art. See e.g., the example sections of U.S. Patent No. 6,375,986 for "Solid Dose Nanoparticulate Compositions Comprising a Synergistic Combination of a Polymeric Surface Stabilizer and Dioctyl Sodium Sulfosuccinate.” F. Bioadhesive Statin Compositions
  • Bioadhesive statin compositions of the invention comprise at least one cationic surface stabilizer, which are described in more detail below.
  • Bioadhesive formulations of statins exhibit exceptional bioadhesion to biological surfaces, such as mucous.
  • the term bioadhesion refers to any attractive interaction between two biological surfaces or between a biological and a synthetic surface.
  • bioadhesion is used to describe the adhesion between the nanoparticulate statin compositions and a biological substrate (i.e. gastrointestinal mucin, lung tissue, nasal mucosa, etc.). See e.g., U.S. Patent No. 6,428,814 for "Bioadhesive Nanoparticulate Compositions Having Cationic Surface Stabilizers," which is specifically incorporated by reference.
  • bioadhesion phenomena There are basically two mechanisms which may be responsible for this bioadhesion phenomena: mechanical or physical interactions and chemical interactions.
  • the first of these, mechanical or physical mechanisms involves the physical interlocking or interpenetration between a bioadhesive entity and the receptor tissue, resulting from a good wetting of the bioadhesive surface, swelling of the bioadhesive polymer, penetration of the bioadhesive entity into a crevice of the tissue surface, or interpenetration of bioadhesive composition chains with those of the mucous or other such related tissues.
  • the second possible mechanism of bioadhesion incorporates forces such as ionic attraction, dipolar forces, van der Waals interactions, and hydrogen bonds.
  • bioadhesion which is primarily responsible for the bioadhesive properties of the nanoparticulate statin compositions of the invention.
  • physical and mechanical interactions may also play a secondary role in the bioadhesion of such nanoparticulate compositions.
  • the bioadhesive statin compositions of the invention are useful in any situation in which it is desirable to apply the compositions to a biological surface.
  • the bioadhesive statin compositions coat the targeted surface in a continuous and uniform film which is invisible to the naked human eye.
  • a bioadhesive statin composition slows the transit of the composition, and some statin particles would also most likely adhere to tissue other than the mucous cells and therefore give a prolonged exposure to the statin, thereby increasing absorption and the bioavailability of the administered dosage.
  • statin compositions of the invention can additionally comprise one or more compounds useful: (1) in treating conditions such as dyslipidemia, hyperlipidemia, hypercholesterolemia, cardiovascular disorders, hypertriglyceridemia, coronary heart disease, and peripheral vascular disease (including symptomatic carotid artery disease), or related conditions; (2) as adjunctive therapy to diet for the reduction of LDL-C, total-C, triglycerides, and/or Apo B in adult patients with primary hypercholesterolemia or mixed dyslipidemia (Fredrickson Types Ha and ⁇ b); (3) as adjunctive therapy to diet for treatment of adult patients with hypertriglyceridemia (Fredrickson Types IN and V hyperlipidemia); (4) in treating pancreatitis; (5) in treating restenosis; and/or (6) in treating Alzheimer's disease.
  • conditions such as dyslipidemia, hyperlipidemia, hypercholesterolemia, cardiovascular disorders, hypertriglyceridemia, coronary heart disease, and peripheral vascular disease (including symptomatic carotid artery disease), or related
  • non-statin compositions useful in the claimed invention include, but are not limited to, cholesterol lowering agents, polycosanols, alkanoyl L-carnitines, antihypertensives, sterols and/or stanols.
  • Useful cholesterol lowering agents are well known to those of skill in the art and include, but are not limited to, ACE inhibitors, nicotinic acid, niacin, bile acid sequestrants, fibrates, vitamins, fatty acid derivatives such as fish oil, long chain plant extract alcohols such as policosinol, ezetimibe, and celluloses.
  • Useful polycosanols include, but are not limited to, triacontanol, hexacontanol, ecocosanol, hexacosanol, tetracosanol, dotriacontanol, tetracontanol, or natural products or extracts from natural products containing such compounds.
  • Useful alkanoyl L-carnitines include, but are not limited to, acetyl L-carnitine, propionyl L-carnitine, butyryl L-camitine, valeryl L-carnitine, and isovaleryl L-carnitine, or a pharmacologically acceptable salt thereof.
  • antihypertensives include, but are not limited to diuretics ("water pills"), beta blockers, alpha blockers, alpha-beta blockers, sympathetic nerve inhibitors, angiotensin converting enzyme (ACE) inhibitors, calcium channel blockers, angiotensin receptor blockers (formal medical name angiotensin-2-receptor antagonists, known as "sartans" for short).
  • sterols and stanols include, but are not limited to plant sterols, plant sterol esters, fish oil, sitosterol, sitostanol, phytosterol, campestanol, stigmasterol, coprostanol, cholestanol, beta-sitosterol, and the like.
  • Such additional compounds can have a conventional non-nanoparticulate particle size, i.e., an effective average particle size greater than about 2 microns, or such additional compounds can be formulated into a nanoparticulate particle size, i.e., an effective average particle size of less than about 2 microns.
  • a conventional non-nanoparticulate particle size i.e., an effective average particle size greater than about 2 microns
  • additional compounds can be formulated into a nanoparticulate particle size, i.e., an effective average particle size of less than about 2 microns.
  • preferably such non-statin compounds are poorly soluble in at least one liquid media (poorly soluble as defined in the "Definitions" section, above), and have at least one surface stabilizer adsorbed on or associated with the surface of the non-statin compound.
  • the one or more surface stabilizers utilized in the composition of the non-statin compound can be the same as or different from the one or more surface stabilizers utilized in the statin composition
  • the present invention is directed to nanoparticulate active agent compositions comprising at least one statin, such as lovastatin or simvastatin, and novel statin combinations.
  • the compositions preferably comprise at least one statin and at least one surface stabilizer adsorbed on, or associated with, the surface of the statin.
  • the nanoparticulate statin particles preferably have an effective average particle size of less than about 2000 nm.
  • novel combinations of statins and other cholesterol lowering agents are described and methods of using the same are taught.
  • the present invention also includes nanoparticulate statin compositions together with one or more non-toxic physiologically acceptable carriers, adjuvants, or vehicles, collectively referred to as carriers.
  • compositions can be formulated for various routes of administration including but not limited to, oral, rectal, ocular, and parenteral injection (e.g., intravenous, intramuscular, or subcutaneous), oral administration in solid (the preferred route), liquid, or aerosol form, vaginal, nasal, rectal, ocular, local (e.g., in powder, ointment or drop form), buccal, intracisternal, intraperitoneal, or topical administration, and the like.
  • routes of administration including but not limited to, oral, rectal, ocular, and parenteral injection (e.g., intravenous, intramuscular, or subcutaneous), oral administration in solid (the preferred route), liquid, or aerosol form, vaginal, nasal, rectal, ocular, local (e.g., in powder, ointment or drop form), buccal, intracisternal, intraperitoneal, or topical administration, and the like.
  • statin means any HMG-CoA Reductase Inhibitor (including their analogs), or a salt thereof, having preferably the solubility in water of lovastatin or simvastatin, or a solubility in water of less than about 30 mg/ml, less than about 20 mg/ml, less than about 10 mg/ml, or more preferably less than about 1 mg/ml.
  • the one or more statin particles, or salt thereof can be in a crystalline phase, an amorphous phase, a semi-crystalline phase, a semi-amorphous phase, or a mixture thereof.
  • statin compounds include, but are not limited to, atorvastatin (Lipitor®) (U.S. Patent No. 4,681,893) and other 6-[2-(substituted-pyrrol-l-yl)alkyl]pyran-2-ones and derivatives as disclosed in U.S. Patent No. 4,647,576); fluvastatin (Lescol ® ) (U.S. Patent No. 5,354,772); lovastatin (U.S. Patent No. 4,231,938); pravastatin (U.S. Patent No. 4,346,227); simvastatin (U.S. Patent No.
  • Lovastatin is one of the most important known cholesterol lowering agents. Lovastatin as used herein (CAS Registry No. 75330-75-5) is also known as mevinolin or monacolin K and is chemically known as beta,beta-dihydroxy-7-[l, 2,6,7,8, 8a-hexahydro- 2,6-dimethyl-8-(2-methyl -butyryloxy)-l-napthalen-l-yl]-heptanoic acid beta-lactone. Lovastatin is one member of a class of compounds which are referred to generally as statins and which are known to exist in open ring hydroxy acid and in lactone form.
  • Lovastatin and its analogs inhibit HMG-CoA reductase.
  • Lovastatin is specifically advantageous because, as a result of its application, biosynthetic intermediates that have a toxic steroid skeleton formed at a later stage of biosynthesis fail to accumulate.
  • Lovastatin also increases the number of LDL-receptors at the surface of the cell membrane, which remove the LDL cholesterol circulating in the blood, thereby inducing the lowering of blood plasma cholesterol level.
  • Lovastatin is routinely produced via fermentation and is a white, nonhygroscopic crystalline powder that is insoluble in water and sparingly soluble in ethanol, methanol, and acetonitrile.
  • Lovastatin tablets are commercially supplied as 10 mg, 20 mg, and 40 mg tablets for oral administration.
  • each tablet contains cellulose, lactose, magnesium stearate, and starch.
  • Butylated hydroxyanisole (BHA) is added as a preservative.
  • Lovastatin is well known in the art and is readily recognized by one of ordinary skill. High LDL cholesterol is usually first treated with exercise, weight loss in obese individuals, and a diet low in cholesterol and saturated fats. When these measures fail, cholesterol-lowering medications such as lovastatin can be added.
  • the National Cholesterol Education Program (NCEP) has published treatment guidelines for use of statins such as lovastatin. These treatment guidelines take into account the level of LDL cholesterol as well as the presence of other risk factors such as diabetes, hypertension, cigarette smoking, low HDL cholesterol level, and family history of early coronary heart disease.
  • the effectiveness of the statin medications in lowering cholesterol is dose- related. Blood cholesterol determinations are performed in regular intervals during treatment so that dosage adjustments can be made. A reduction in LDL cholesterol level can be seen two weeks after starting therapy with a statin.
  • Surface stabilizers especially useful herein physically adhere on or associate with the surface of the nanoparticulate statin but do not chemically react with the statin particles or itself.
  • individual molecules of the surface stabilizer are essentially free of intermolecular cross-linkages.
  • a surface stabilizer for a statin is non-trivial and required extensive experimentation to realize a desirable formulation for the active ingredient's therapeutic effect desired.
  • the effectiveness of using of a particular stabilizer with an active ingredient is unpredictable because the stabilizer among other factors, will effect dissolution and pharmacokinetic profiles for a statin.
  • the present invention is directed to the surprising discovery that stable, therapeutically useful, nanoparticulate statin compositions can be made.
  • Combinations of more than one surface stabilizer can preferably be used in the invention.
  • Useful surface stabilizers which can be employed in the invention include, but are not limited to, known organic and inorganic pharmaceutical excipients. Such excipients include various polymers, low molecular weight oligomers, natural products, and surfactants. Preferred surface stabilizers include nonionic, anionic, cationic, and zwitterionic surfactants.
  • surface stabilizers include hydroxypropylmethylcellulose (anionic), hydroxypropylcellulose, polyvinylpyrrolidone, sodium lauryl sulfate, dioctylsulfosuccinate (anionic), gelatin, casein, lecithin (phosphatides), dextran, gum acacia, cholesterol, tragacanth, stearic acid, benzalkonium chloride, calcium stearate, glycerol monostearate, cetostearyl alcohol, cetomacrogol emulsifying wax, sorbitan esters, polyoxyethylene alkyl ethers (e.g., macrogol ethers such as cetomacrogol 1000), polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters (e.g., the commercially available Tweens ® such as e.g., Tween 20 ® and Tween 80 ® (ICI Speciality Chemicals)); polyethylene glycols (e.g
  • useful surface stabilizers include, but are not limited to, polymers, biopolymers, polysaccharides, cellulosics, alginates, phospholipids, and nonpolymeric compounds, such as zwitterionic stabilizers, poly-n-methylpyridinium, anthryul pyridinium chloride, cationic phospholipids, chitosan, polylysine, polyvinylimidazole, polybrene, polymethylmethacrylate trimethylammoniumbromide bromide (PMMTMABr), hexadecyltrimethylammonium bromide (HDMAB), and polyvinylpyrrolidone-2-dimethylaminoethyl methacrylate dimethyl sulfate.
  • polymers biopolymers, polysaccharides, cellulosics, alginates, phospholipids, and nonpolymeric compounds, such as zwitterionic stabilizers, poly-n-methylpyridinium, an
  • cationic stabilizers include, but are not limited to, cationic lipids, sulfonium, phosphonium, and quarternary ammonium compounds, such as stearyltrimethylammonium chloride, benzyl-di(2-chloroethyl)ethylammonium bromide, coconut trimethyl ammonium chloride or bromide, coconut methyl dihydroxyethyl ammonium chloride or bromide, decyl triethyl ammonium chloride, decyl dimethyl hydroxyethyl ammonium chloride or bromide, Cn- ⁇ dimethyl hydroxyethyl ammonium chloride or bromide, coconut dimethyl hydroxyethyl ammonium chloride or bromide, myristyl trimethyl ammonium methyl sulphate, lauryl dimethyl benzyl ammonium chloride or bromide, lauryl dimethyl (ethenoxy) 4 ammonium chloride or bromide,
  • Such exemplary cationic surface stabilizers and other useful cationic surface stabilizers are described in J. Cross and E. Singer, Cationic Surfactants: Analytical and Biological Evaluation (Marcel Dekker, 1994); P. and D. Rubingh (Editor), Cationic Surfactants: Physical Chemistry (Marcel Dekker, 1991); and J. Richmond, Cationic Surfactants: Organic Chemistry, (Marcel Dekker, 1990).
  • Nonpolymeric surface stabilizers are any nonpolymeric compound, such benzalkonium chloride, a carbonium compound, a phosphonium compound, an oxonium compound, a halonium compound, a cationic organometallic compound, a quarternary phosphorous compound, a pyridinium compound, an anilinium compound, an ammonium compound, a hydroxylammonium compound, a primary ammonium compound, a secondary ammonium compound, a tertiary ammonium compound, and quarternary ammonium compounds of the formula NR ⁇ R 2 R 3 R 4 (+) .
  • benzalkonium chloride a carbonium compound, a phosphonium compound, an oxonium compound, a halonium compound, a cationic organometallic compound, a quarternary phosphorous compound, a pyridinium compound, an anilinium compound, an ammonium compound, a hydroxylammonium compound, a primary am
  • Such compounds include, but are not limited to, behenalkonium chloride, benzethonium chloride, cetylpyridinium chloride, behentrimonium chloride, lauralkonium chloride, cetalkonium chloride, cetrimonium bromide, cetrimonium chloride, cethylamine hydrofluoride, chlorallylmethenamine chloride (Quaternium-15), distearyldimonium chloride (Quaternium-5), dodecyl dimethyl ethylbenzyl ammonium chloride(Quaternium- 14), Quaternium-22, Quaternium-26, Quaternium-18 hectorite, dimethylaminoethylchloride hydrochloride, cysteine hydrochloride, diethanolammonium POE (10) oletyl ether phosphate, diethanolammonium POE (3)oleyl ether phosphate, tallow alkonium chloride, dimethyl dioctadecylammoniumben
  • the surface stabilizers are commercially available and/or can be prepared by techniques known in the art.
  • compositions according to the invention may also comprise one or more binding agents, filling agents, lubricating agents, suspending agents, sweeteners, flavoring agents, preservatives, buffers, wetting agents, disintegrants, effervescent agents, and other excipients depending upon the route of administration and the dosage form desired.
  • excipients are known in the art.
  • filling agents are lactose monohydrate, lactose anhydrous, and various starches
  • binding agents are various celluloses and cross-linked polyvinylpyrrolidone, macrocrystalline cellulose, such as Avicel ® PHI 01 and Avicel ® PH102, microcrystalline cellulose, and silicified microcrystalline cellulose (ProSolv SMCCTM).
  • Suitable lubricants including agents that act on the flowability of the powder to be compressed, are colloidal silicon dioxide, such as Aerosil 200, talc, stearic acid, magnesium stearate, calcium stearate, and silica gel.
  • sweeteners are any natural or artificial sweetener, such as sucrose, xylitol, sodium saccharin, cyclamate, aspartame, and acsulfame.
  • flavoring agents are Magnasweet ® (trademark of MAFCO), bubble gum flavor, and fruit flavors, and the like.
  • preservatives are potassium sorbate, methylparaben, propylparaben, benzoic acid and its salts, other esters of parahydroxybenzoic acid such as butylparaben, alcohols such as ethyl or benzyl alcohol, phenolic compounds such as phenol, or quarternary compounds such as benzalkonium chloride.
  • Suitable diluents include pharmaceutically acceptable inert fillers, such as microcrystalline cellulose, lactose, dibasic calcium phosphate, saccharides, and/or mixtures of any of the foregoing.
  • examples of diluents include microcrystalline cellulose, such as Avicel ® PH101 and Avicel ® PH102; lactose such as lactose monohydrate, lactose anhydrous, and Pharmatose ® DCL21; dibasic calcium phosphate such as Emcompress ® ; mannitol; starch; sorbitol; sucrose; and glucose.
  • Suitable disintegrants include lightly crosslinked polyvinyl pyrrolidone, corn starch, potato starch, maize starch, and modified starches, croscarmellose sodium, cross- povidone, sodium starch glycolate, and mixtures thereof.
  • effervescent agents are effervescent couples such as an organic acid and a carbonate or bicarbonate.
  • Suitable organic acids include, for example, citric, tartaric, malic, fumaric, adipic, succinic, and alginic acids and anhydrides and acid salts.
  • Suitable carbonates and bicarbonates include, for example, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium glycine carbonate, L-lysine carbonate, and arginine carbonate.
  • sodium bicarbonate component of the effervescent couple may be present.
  • compositions of the invention contain statin nanoparticles, such as lovastatin or simvastatin nanoparticles, which have an effective average particle size of less than about 2000 nm (i.e., 2 microns).
  • the statin nanoparticles have an effective average particle size of less than about 1900 nm, less than about 1800 nm, less than about 1700 nm, less than about 1600 nm, less than about 1500 nm, less than about 1400 nm, less than about 1300 nm, less than about 1200 nm, less than about 1100 nm, less than about 1000 nm, less than about 900 nm, less than about 800 nm, less than about 700 nm, less than about 600 nm, less than about 500 nm, less than about 400 nm, less than about 300 nm, less than about 250 nm, less than about 200 nm, less than about 150 nm, less than about 100 nm,
  • an effective average particle size of less than about 2000 nm it is meant that at least 50% of the statin particles have a particle size less than the effective average, by weight, i.e., less than about 2000 nm, about 1900 nm, about 1800 nm, etc., when measured by the above-noted techniques.
  • at least about 70%, about 90%, about 95%, or about 99% of the statin particles have a particle size of less than the effective average, i.e., less than about 2000 nm, about 1900 nm, about 1800 nm, etc..
  • the value for D50 of a nanoparticulate statin composition is the particle size below which 50% of the statin particles fall, by weight.
  • D90 is the particle size below which 90% of the statin particles fall, by weight.
  • the relative amounts of at least one statin and one or more surface stabilizers can vary widely.
  • the optimal amount of the individual components depends, for example, upon one or more of the physical and chemical attributes of the particular statin selected and surface stabilizer(s) selected, such as the hydrophilic lipophilic balance (HLB), melting point, and the surface tension of water solutions of the stabilizer, etc.
  • HLB hydrophilic lipophilic balance
  • the concentration of the at least one statin can vary from about 99.5% to about 0.001%, preferably from about 95% to about 0.1%, preferably from about 90% to about 0.5%, by weight, based on the total combined weight of the statin and at least one surface stabilizer, not including other excipients. Higher concentrations of the active ingredient are generally preferred from a dose and cost efficiency standpoint.
  • the concentration of the at least one surface stabilizer can vary from about 0.5% to about 99.999%, from about 5.0% to about 99.9%, or from about 10% to about 99.5%, by weight, based on the total combined dry weight of the statin and at least one surface stabilizer, not including other excipients.
  • Exemplary useful ratios of active ingredient to stabilizers herein are preferably about 1:1, preferably about 2:1, preferably about 3:1, preferably about 4:1, preferably about 5:1, preferably about 6:1, preferably about 7:1, preferably about 8:1, and preferably about 10:1, by weight, based on the total combined dry weight of the statin and at least one surface stabilizer, not including other excipients.
  • the nanoparticulate statin compositions can be made using any suitable method known in the art such as, for example, milling, homogenization, or precipitation techniques. Exemplary methods of making nanoparticulate compositions are described in the '684 patent. Methods of making nanoparticulate compositions are also described in U.S. Patent No. 5,518,187 for "Method of Grinding Pharmaceutical Substances;” U.S. Patent No. 5,718,388 for "Continuous Method of Grinding Pharmaceutical Substances;” U.S. Patent No. 5,862,999 for "Method of Grinding Pharmaceutical Substances;” U.S. Patent No. 5,665,331 for "Co-Microprecipitation of Nanoparticulate Pharmaceutical Agents with Crystal Growth Modifiers;" U.S.
  • Patent No. 5,662,883 for "Co- Microprecipitation of Nanoparticulate Pharmaceutical Agents with Crystal Growth Modifiers;” U.S. Patent No. 5,560,932 for “Microprecipitation of Nanoparticulate Pharmaceutical Agents;” U.S. Patent No. 5,543,133 for "Process of Preparing X-Ray Contrast Compositions Containing Nanoparticles;” U.S. Patent No. 5,534,270 for "Method of Preparing Stable Drag Nanoparticles;” U.S. Patent No. 5,510,118 for “Process of Preparing Therapeutic Compositions Containing Nanoparticles;” and U.S. Patent No. 5,470,583 for "Method of Preparing Nanoparticle Compositions Containing Charged Phospholipids to Reduce Aggregation,” all of which are specifically incorporated by reference.
  • the resultant nanoparticulate statin compositions or dispersions can be utilized in solid or liquid dosage formulations, such as liquid dispersions, gels, aerosols, ointments, creams, controlled release formulations, fast melt formulations, lyophilized formulations, tablets, capsules, delayed release formulations, extended release formulations, pulsatile release formulations, mixed immediate release and controlled release formulations, etc.
  • Solid dose forms of the dispersions of novel statin formulations according to the present invention can be made as described in U.S. Patent No. 6,375,986.
  • Milling a statin to obtain a nanoparticulate statin dispersion comprises dispersing statin particles in a liquid dispersion medium in which the statin is poorly soluble, followed by applying mechanical means in the presence of grinding media to reduce the particle size of the statin to the desired effective average particle size.
  • the dispersion medium can be, for example, water, safflower oil, ethanol, t-butanol, glycerin, polyethylene glycol (PEG), hexane, or glycol.
  • the statin particles can be reduced in size preferably in the presence of at least one surface stabilizer.
  • the statin particles can be contacted with one or more surface stabilizers after attrition.
  • Other compounds, such as a diluent, can be added to the statin/surface stabilizer composition during the size reduction process.
  • Dispersions can be manufactured continuously or in a batch mode.
  • Another method of forming the desired nanoparticulate statin composition is by microprecipitation.
  • This is a method of preparing stable dispersions of poorly soluble active agents in the presence of one or more surface stabilizers and one or more colloid stability enhancing surface active agents free of any trace toxic solvents or solubilized heavy metal impurities.
  • Such a method comprises, for example: (1) dissolving statin in a suitable solvent; (2) adding the formulation from step (1) to a solution comprising at least one surface stabilizer; and (3) precipitating the formulation from step (2) using an appropriate non-solvent.
  • the method can be followed by removal of any formed salt, if present, by dialysis or diafiltration and concentration of the dispersion by conventional means.
  • Such a method comprises dispersing statin particles in a liquid dispersion media in which the statin is poorly soluble, followed by subjecting the dispersion to homogenization to reduce the particle size of the statin to the desired effective average particle size.
  • the statin particles can be reduced in size in the presence of at least one surface stabilizer.
  • the statin particles can be contacted with one or more surface stabilizers either before or after attrition.
  • Other compounds, such as a diluent can be added to the statin/surface stabilizer composition either before, during, or after the size reduction process.
  • Dispersions can be manufactured continuously or in a batch mode.
  • statin compositions of the present invention can be administered to a subject via any conventional means including, but not limited to, preferably orally, rectally, ocularly, parenterally (e.g., intravenous, intramuscular, or subcutaneous), intracisternally, pulmonary, intravaginally, intraperitoneally, locally (e.g., powders, ointments or drops), or as a buccal or nasal spray.
  • parenterally e.g., intravenous, intramuscular, or subcutaneous
  • intracisternally e.g., intravenous, intramuscular, or subcutaneous
  • pulmonary e.g., intravaginally
  • intraperitoneally e.g., powders, ointments or drops
  • buccal or nasal spray e.g., powders, ointments or drops
  • the present invention provides a method of prolonging plasma levels of statin in a subject while achieving the desired therapeutic effect.
  • a method comprises orally administering to a subject an effective amount of a composition of this invention comprising statin.
  • compositions of the invention are useful in treating conditions that may be directly or indirectly associated with elevated and/or uncontrolled cholesterol metabolism as described herein and known to those in the art.
  • Compositions suitable for parenteral injection may comprise physiologically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into sterile injectable solutions or dispersions.
  • aqueous and nonaqueous carriers examples include water, ethanol, polyols (propyleneglycol, polyethylene-glycol, glycerol, and the like), suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate.
  • a coating such as lecithin
  • surfactants for example, water, alcohol, alcohol, and the like.
  • the nanoparticulate statin compositions may also contain adjuvants such as preserving, wetting, emulsifying, and dispensing agents. Prevention of the growth of microorganisms can also be ensured by various antibacterial and antifungal agents, such as parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, such as aluminum monostearate and gelatin.
  • Solid dosage forms for oral administration are preferred and include, but are not limited to, capsules, tablets, pills, powders, caplets, and granules.
  • the active agent i.e. the composition of this invention
  • the active agent is admixed with at least one of the following: (a) one or more inert excipients (or carriers), such as sodium citrate or dicalcium phosphate; (b) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and silicic acid; (c) binders, such as carboxymethylcellulose, alignates, gelatin, polyvinylpyrrolidone, sucrose, and acacia; (d) humectants, such as glycerol; (e) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain complex silicates, and sodium carbonate; (f) solution retarders, such as paraffin; (g
  • Liquid dosage forms for oral administration include pharmaceutically acceptable dispersions, emulsions, solutions, suspensions, syrups, and elixirs.
  • the liquid dosage forms may comprise inert diluents commonly used in the art, such as water or other solvents, solubilizing agents, and emulsifiers.
  • Exemplary emulsifiers are ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propyleneglycol, 1,3-butyleneglycol, dimethylformamide, oils, such as cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil, and sesame oil, glycerol, tetrahydrofurfuryl alcohol, polyethyleneglycols, fatty acid esters of sorbitan, or mixtures of these substances, and the like.
  • oils such as cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil, and sesame oil
  • glycerol tetrahydrofurfuryl alcohol
  • polyethyleneglycols fatty acid esters of sorbitan, or mixtures of these substances, and the like.
  • composition can also include adjuvants, such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
  • adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
  • statin composition of this invention can be determined empirically and can be employed in pure form or, where such forms exist, in pharmaceutically acceptable salt, ester, or prodrag form.
  • Actual dosage levels of statin in the nanoparticulate compositions of the invention may be varied to obtain an amount of statin that is effective to obtain a desired therapeutic response for a particular composition and method of administration and the condition to be treated.
  • the selected dosage level therefore depends upon the desired therapeutic effect, the route of administration, the potency of the administered statin, the desired duration of treatment, and other factors.
  • Dosage unit compositions may contain such amounts of such submultiples thereof as may be used to make up the daily dose. It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors: the type and degree of the cellular or physiological response to be achieved; activity of the specific agent or composition employed; the specific agents or composition employed; the age, body weight, general health, sex, and diet of the patient; the time of administration, route of administration, and rate of excretion of the agent; the duration of the treatment; drugs used in combination or coincidental with the specific agent; and like factors well known in the medical arts.
  • Statin compositions of the present invention are also particularly useful when given pursuant to the method of this invention in combination with a therapeutically effective amount of at least one other active agent useful: (1) in treating conditions such as dyslipidemia, hyperlipidemia, hypercholesterolemia, cardiovascular disorders, hypertriglyceridemia, coronary heart disease, and peripheral vascular disease (including symptomatic carotid artery disease), or related conditions; (2) as adjunctive therapy to diet for the reduction of LDL-C, total-C, triglycerides, and/or Apo B in adult patients with primary hypercholesterolemia or mixed dyslipidemia (Fredrickson Types Ila and lib); (3) as adjunctive therapy to diet for treatment of adult patients with hypertriglyceridemia (Fredrickson Types IN and N hyperlipidemia); (4) in treating pancreatitis; (5) in treating restenosis; and/or (6) in treating Alzheimer's disease.
  • active agent such as dyslipidemia, hyperlipidemia, hypercholesterolemia, cardiovascular disorders, hypertriglyceridemia,
  • non-statin compositions useful in the claimed invention include, but are not limited to, cholesterol lowering agents, polycosanols, alkanoyl L-carnitines, antihypertensives, sterols and/or stanols.
  • Useful cholesterol lowering agents are well known to those of skill in the art and include, but are not limited to, ACE inhibitors, nicotinic acid, niacin, bile acid sequestrants, fibrates, vitamins, fatty acid derivatives such as fish oil, long chain plant extract alcohols such as policosinol, ezetimibe, and celluloses.
  • Useful polycosanols include, but are not limited to, triacontanol, hexacontanol, ecocosanol, hexacosanol, tetracosanol, dotriacontanol, tetracontanol, or natural products or extracts from natural products containing such compounds.
  • Useful alkanoyl L-carnitines include, but are not limited to, acetyl L-camitine, propionyl L-carnitine, butyryl L-camitine, valeryl L-carnitine, and isovaleryl L-carnitine, or a pharmacologically acceptable salt thereof.
  • antihypertensives include, but are not limited to diuretics ("water pills"), beta blockers, alpha blockers, alpha-beta blockers, sympathetic nerve inhibitors, angiotensin converting enzyme (ACE) inhibitors, calcium channel blockers, angiotensin receptor blockers (formal medical name angiotensin-2-receptor antagonists, known as "sartans" for short).
  • sterols and stanols include, but are not limited to plant sterols, plant sterol esters, fish oil, sitosterol, sitostanol, phytosterol, campestanol, stigmasterol, coprostanol, cholestanol, beta-sitosterol, and the like.
  • Stanols as used herein mean plant stanol esters, a food ingredient that can help reduce LDL cholesterol. Plant stanols are derived from naturally occurring substances in plants by techniques known to those in the art. The stanols are frequently combined with a small amount of canola oil to form stanol esters, producing an ingredient that can be used in a wide variety of foods and in combination with the compositions of this invention.
  • the particle sizes were measured using a Horiba LA- 910 Laser Scattering Particle Size Distribution Analyzer (Horiba Instraments, Irvine, CA).
  • the particle mean and D 9 o (which is the size below which 90% of the distribution is located) are obtained from a weight distribution. Furthermore, all formulations are given in weight % (w/w).
  • the purpose of this example was to prepare nanoparticulate dispersions of lovastatin, and to test the prepared compositions for stability at varying temperatures.
  • lovastatin Four formulations of lovastatin were milled, as described in Table 1, by milling the components of the compositions under high energy milling conditions in a DYNO®- Mill KDL (Willy A. Bachofen AG, Maschinenfabrik, Basle, Switzerland) for 2 to 3 hours until the desired particle size was achieved.
  • Formulation 1 comprised 5% (w/w) lovastatin, 1.25% (w/w) Hydroxypropylcellulose, super-low viscosity grade (HPC-SL), and 0.05% (w/w) dioctyl sodium sulfosuccinate (DOSS).
  • Formulation 2 comprised 5% (w/w) lovastatin, 1.25% (w/w) hydroxypropylmethylcellulose (HPMC), and 0.05% (w/w) dioctyl sodium sulfosuccinate (DOSS).
  • Formulation 3 comprised 5% (w/w) lovastatin, 1.25% (w/w) Povidone USP, Plasdone® K29/52 (PVPK29Y32), and 0.05%) (w/w) dioctyl sodium sulfosuccinate (DOSS).
  • Formulation 4 comprised 5% (w/w) lovastatin, 1.25% (w/w) Plasdone S630 (S630), and 0.05% (w/w) dioctyl sodium sulfosuccinate (DOSS).
  • the particle size of the resultant compositions was measured using a Horiba LA- 910 Laser Scattering Particle Size Distribution Analyzer ((Horiba Instraments, Irvine, CA).
  • lovastatin has a potential for oxidative degradation.
  • an HPLC analysis was performed on the compositions prepared in Example 1.
  • the method was a reversed phase HPLC method based on an existing assay method found in the literature (Pharmazie, Volume 56, September 2001, p 738-740). The results of these sample rans were compared to an active pharmaceutical ingredient (API), commercially available lovastatin, standard to determine which milled sample was least oxidized.
  • API active pharmaceutical ingredient
  • Formulation #2 containing HPMC compared the best with the API standard. Both had similar amount of impurities, percent lovastain, and comparable peak areas at RRT 0.87.
  • the sample containing PVP K29/32 had the highest amount of impurities, lowest percent lovastatin, and the largest peak area at RRT 0.87.
  • the purpose of this example was to evaluate the efficacy of nanoparticulate lovastatin compositions.
  • New Zealand White rabbits were fed a diet enriched with 1% cholesterol for four weeks. At the four week time point the animals were maintained on a high cholesterol diet but were dosed (in the fed state) each day for a additional four week period with 6 mg/kg dose of either suspensions of Formulation #2 (Example 1) or commercially available lovastatin (Mevacor®) tablets mortarized into a crude suspension comprising the same quantities of HPMC and DOSS as Formulation #2. Placebo also comprised the same quantities of HPMC and DOSS as formulation #2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Neurology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Surgery (AREA)
  • Psychiatry (AREA)
  • Urology & Nephrology (AREA)
  • Emergency Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
EP03738952A 2002-06-10 2003-06-10 Pharmazeutische nanopartikel-formulierungen mit hmg-coa-reduktase-inhibitoren ("statine"), neue kombinationen davon sowie herstellung dieser pharmazeutischen zusammensetzungen Withdrawn EP1531799A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US38740402P 2002-06-10 2002-06-10
US387404P 2002-06-10
PCT/US2003/016206 WO2003103640A1 (en) 2002-06-10 2003-06-10 Nanoparticulate formulations comprising hmg coa reductase inhibitor derivatives (“statins”), novel combinations thereof as well as manufacturing of these pharmaceutical compositions

Publications (1)

Publication Number Publication Date
EP1531799A1 true EP1531799A1 (de) 2005-05-25

Family

ID=29736310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03738952A Withdrawn EP1531799A1 (de) 2002-06-10 2003-06-10 Pharmazeutische nanopartikel-formulierungen mit hmg-coa-reduktase-inhibitoren ("statine"), neue kombinationen davon sowie herstellung dieser pharmazeutischen zusammensetzungen

Country Status (5)

Country Link
EP (1) EP1531799A1 (de)
JP (1) JP4831965B2 (de)
AU (1) AU2003245313A1 (de)
CA (1) CA2488499C (de)
WO (1) WO2003103640A1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2295816T3 (es) 2003-01-14 2008-04-16 Arena Pharmaceuticals, Inc. Derivados arilo y heteroarilo 1,2,3-trisustituidos como moduladores del metabolismo, y profilaxis y tratamiento de transtornos relacionados con los mismos, tales como la diabetes y la hiperglucemia.
DE10339354A1 (de) * 2003-08-27 2005-04-07 Beisel, Günther Mittel zur Behandlung des metabolischen Syndroms
US9173847B2 (en) 2003-10-10 2015-11-03 Veloxis Pharmaceuticals A/S Tablet comprising a fibrate
CA2540984C (en) 2003-10-10 2011-02-08 Lifecycle Pharma A/S A solid dosage form comprising a fibrate
CA2560595C (en) 2004-03-29 2013-01-22 Wyeth Multi-vitamin and mineral nutritional supplements
ES2255426B1 (es) * 2004-10-19 2007-08-16 Gp Pharm, S.A. Formulacion farmaceutica que comprende microcapsulas de estatinas suspendidas en ester alquilicos de acidos grasos poliinsaturados (pufa).
JP2008526855A (ja) * 2005-01-06 2008-07-24 エラン ファーマ インターナショナル リミテッド ナノ粒子のカンデサルタン製剤
AU2006235487B2 (en) 2005-04-12 2011-12-22 Elan Pharma International Limited Nanoparticulate quinazoline derivative formulations
PL1894576T3 (pl) * 2005-06-08 2011-10-31 Kowa Co Nowy środek do obniżania poziomu triglicerydów
JP5112669B2 (ja) * 2005-09-30 2013-01-09 富山化学工業株式会社 難溶性薬物のナノ微粒子を含有する水性懸濁液剤
JP5113527B2 (ja) * 2005-11-11 2013-01-09 持田製薬株式会社 ゼリー組成物
GB0523810D0 (en) * 2005-11-23 2006-01-04 Astrazeneca Ab Pharmaceutical compositions
JP2009529051A (ja) * 2006-03-07 2009-08-13 オステオスクリーン アイピー, エルエルシー HMGCo−Aレダクターゼ阻害剤による骨および軟骨の強化
DK2018153T3 (da) 2006-04-26 2012-07-23 Rosemont Pharmaceuticals Ltd Flydende orale sammensætninger
GB0613925D0 (en) 2006-07-13 2006-08-23 Unilever Plc Improvements relating to nanodispersions
EP2057987B1 (de) * 2006-08-30 2015-03-04 Kyushu University, National University Corporation Pharmazeutische zusammensetzung mit statin-verkapseltem nanopartikel
JP4896220B2 (ja) * 2007-04-27 2012-03-14 国立大学法人九州大学 肺疾患治療薬
HUE043897T2 (hu) 2007-09-25 2019-09-30 Solubest Ltd Lipofil hatóanyagot tartalmazó készítmények és eljárás elõállításukra
FR2937537A1 (fr) * 2008-10-29 2010-04-30 Centre Nat Rech Scient Nanoparticules de statine
TR200904500A2 (tr) 2009-06-10 2009-10-21 Öner Levent Ezetimib nanokristallerinin hazırlanması için yöntem ve farmasötik formülasyonları.
CN103539791B (zh) 2010-09-22 2017-01-11 艾尼纳制药公司 Gpr119 受体调节剂和对与其相关的障碍的治疗
ITFI20120268A1 (it) * 2012-12-03 2014-06-04 Diopeite Consulting Ltd Composizioni farmaceutiche per il trattamento dell'obesita'
WO2015185240A1 (en) 2014-06-04 2015-12-10 Sigma-Tau Industrire Farmaceutiche Riunite S.P.A. Compositions containing simvastatin in omega-3 polyunsaturated fatty acids
CN107405332A (zh) 2015-01-06 2017-11-28 艾尼纳制药公司 治疗与s1p1受体有关的病症的方法
US10301262B2 (en) 2015-06-22 2019-05-28 Arena Pharmaceuticals, Inc. Crystalline L-arginine salt of (R)-2-(7-(4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclo-penta [b]indol-3-yl)acetic acid(Compund1) for use in SIPI receptor-associated disorders
EP3582772A1 (de) 2017-02-16 2019-12-25 Arena Pharmaceuticals, Inc. Verbindungen und verfahren zur behandlung von primärer biliärer cholangitis
WO2019143981A1 (en) * 2018-01-19 2019-07-25 Arizona Board Of Regents On Behalf Of The University Of Arizona Compositions and methods for delivering pharmaceutical agents

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2053000C (en) * 1990-10-15 1995-08-29 Michael J. Conder Biosynthetic production of 6(r)-[2-(8(s)-hydroxy-2(s), 6(r)-dimethyl-1,2,6,7,8,8a(r)-hexahydronaphthyl)-ethyl]-4 (r)-hydroxy-3,4,5,6-tetrahydro-2h-pyran-2-one triol acid by enzymatic hydrolysis of lovastatin acid using an enzyme derived from__lonostachys compactiuscula
US5145684A (en) * 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5399363A (en) * 1991-01-25 1995-03-21 Eastman Kodak Company Surface modified anticancer nanoparticles
DK0644755T3 (da) * 1992-06-10 1997-09-22 Nanosystems Llc Overflademodificerede NSAID-nanopartikler
US5585108A (en) * 1994-12-30 1996-12-17 Nanosystems L.L.C. Formulations of oral gastrointestinal therapeutic agents in combination with pharmaceutically acceptable clays
US6045829A (en) * 1997-02-13 2000-04-04 Elan Pharma International Limited Nanocrystalline formulations of human immunodeficiency virus (HIV) protease inhibitors using cellulosic surface stabilizers
WO1998035666A1 (en) * 1997-02-13 1998-08-20 Nanosystems Llc Formulations of nanoparticle naproxen tablets
AU755993C (en) * 1998-06-19 2003-10-30 Skyepharma Canada Inc. Processes to generate submicron particles of water-insoluble compounds
JP2002536405A (ja) * 1999-02-11 2002-10-29 イーデンランド、インコーポレイテッド ウイルス感染症の治療方法
US6242003B1 (en) * 2000-04-13 2001-06-05 Novartis Ag Organic compounds
AU6294501A (en) * 2000-09-20 2002-04-02 Rtp Pharma Inc Spray drying process and compositions of fenofibrate
JP2004509146A (ja) * 2000-09-20 2004-03-25 スカイファーマ・カナダ・インコーポレーテッド 安定化フィブレート微粒子
EP1361867B1 (de) * 2001-02-22 2007-03-21 Jagotec AG Fibrat-statin kombinationen mit verminderten von der nahrungsaufnahme abhängigen auswirkungen
GB0119480D0 (en) * 2001-08-09 2001-10-03 Jagotec Ag Novel compositions
US20040018242A1 (en) * 2002-05-06 2004-01-29 Elan Pharma International Ltd. Nanoparticulate nystatin formulations
CA2488617A1 (en) * 2002-06-10 2003-12-18 Eugene R. Cooper Nanoparticulate sterol formulations and sterol combinations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03103640A1 *

Also Published As

Publication number Publication date
JP4831965B2 (ja) 2011-12-07
WO2003103640A1 (en) 2003-12-18
JP2005532352A (ja) 2005-10-27
CA2488499C (en) 2013-03-19
AU2003245313A1 (en) 2003-12-22
CA2488499A1 (en) 2003-12-18

Similar Documents

Publication Publication Date Title
US7763278B2 (en) Nanoparticulate polycosanol formulations and novel polycosanol combinations
US20110027371A1 (en) Nanoparticulate statin formulations and novel statin combinations
CA2488499C (en) Nanoparticulate formulations comprising hmg coa reductase inhibitor derivatives ("statins"),combinations thereof as well as manufacturing of these pharmaceutical compositions
US7927627B2 (en) Nanoparticulate fibrate formulations
CA2487054C (en) Nanoparticulate fibrate formulations
US20040033202A1 (en) Nanoparticulate sterol formulations and novel sterol combinations
US20080213378A1 (en) Nanoparticulate statin formulations and novel statin combinations
AU2006309295A1 (en) Nanoparticulate acetaminophen formulations
JP2006508105A5 (de)
WO2006069098A1 (en) Nanoparticulate bicalutamide formulations
US20100221327A1 (en) Nanoparticulate azelnidipine formulations
ZA200410209B (en) Nanoparticulate fibrate formulations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: RYDE, TUULA

Inventor name: LIVERSIDGE, GARY, G.

Inventor name: LIVERSIDGE, ELAINE

Inventor name: LINDNER, MARIE

Inventor name: CAREY, GRETA

Inventor name: HOVEY, DOUGLAS

Inventor name: COOPER, EUGENE, R.

17Q First examination report despatched

Effective date: 20080424

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140103