EP1530510A1 - Verfahren zur hydrophobierung der oberfläche eines porösen substrats unter beibehaltung seiner porosität - Google Patents

Verfahren zur hydrophobierung der oberfläche eines porösen substrats unter beibehaltung seiner porosität

Info

Publication number
EP1530510A1
EP1530510A1 EP03795121A EP03795121A EP1530510A1 EP 1530510 A1 EP1530510 A1 EP 1530510A1 EP 03795121 A EP03795121 A EP 03795121A EP 03795121 A EP03795121 A EP 03795121A EP 1530510 A1 EP1530510 A1 EP 1530510A1
Authority
EP
European Patent Office
Prior art keywords
titanate
metal
solution
substrate
activator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03795121A
Other languages
English (en)
French (fr)
Inventor
Walter Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanosys GmbH
Original Assignee
Nanosys GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanosys GmbH filed Critical Nanosys GmbH
Publication of EP1530510A1 publication Critical patent/EP1530510A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/49Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
    • C04B41/4905Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
    • C04B41/495Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as oligomers or polymers
    • C04B41/4961Polyorganosiloxanes, i.e. polymers with a Si-O-Si-O-chain; "silicones"
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/62Coating or impregnation with organic materials
    • C04B41/64Compounds having one or more carbon-to-metal of carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00267Materials permeable to vapours or gases

Definitions

  • the present invention relates to a method for hydrophobizing the surface of a porous substrate while maintaining its porosity.
  • a hydrophobic barrier layer is formed on the surface of the porous substrate, which shields the substrate from the outside, but this not only reduces or prevents water absorption and / or water permeability, but also an impairment of the gas absorption capacity and / or gas permeability coated substrate.
  • Coatings of this known type take place, for example, on raw or coated surfaces of wood or wood-based materials by staining, dyeing, painting, varnishing, etc. using solvent-based and / or water-dilutable paints.
  • film-forming paints are used which, when dried, leave a more or less compact film with an average thickness of 10 to 100 ⁇ m on the coated surface.
  • the cover layer formed in this way has a moderate to good barrier effect against liquid water, while its permeability to water vapor decreases with its thickness.
  • the coating of the surface of a substrate with a hydrophobic thin layer is known, for example, from WO-98/53921: the surface to be treated is treated with reagents containing Si-H residues in the presence of an activator based on a platinum metal; in this way the surface of a non-porous substrate such as metal or glass or a porous substrate such as sandstone, concrete, wood or textile. Whether the porosity of the substrate and in particular its gas absorption capacity and / or gas permeability is maintained after the treatment is not addressed in WO-98/53921, but is more or less to be expected with the specified layer thicknesses in the range of a few nanometers. A platinum metal compound is used in this process, which is correspondingly expensive.
  • the method according to the invention forms a hydrophobic thin layer on the surface of the treated substrate as a result of the treatment of the surface with at least one reagent which contains Si-H radicals in the presence of an activator which comprises at least one metal-organic compound of a transition metal.
  • this transition metal is preferably a metal of subgroup IV or II of the periodic table, such as titanium, zirconium or zinc, and this metal-organic compound is preferably easily hydrolyzable.
  • the method according to the invention makes it possible to largely prevent the wetting of the surface of a porous substrate by water and the resultant water absorption and / or water permeability (ie to reduce it to such an extent that the surface can be regarded as non-wetted), while maintaining the Porosi- tat of the substrate, in particular its gas absorption capacity and / or gas permeability are maintained.
  • the permeability of the thin film formed to water vapor and the maintenance of the porosity of the treated substrate can essentially be explained by the thinness of the layer, while it can be assumed that the good adhesion achieved by the thin film to covalent bonds, ie to a reaction between the surface to be treated and the reagent in the presence of the activator.
  • the hydrophobic thin layer formed on the surface of the substrate by the method according to the invention remains invisible and does not noticeably or insignificantly impair the gas absorption capacity and / or gas permeability of the substrate, while nevertheless successfully hydrophobizing the surface of the substrate.
  • organic titanium compounds can be mentioned, inter alia titanium acid esters, including preferably tetrabutyl titanate (ie titanium (IV) butoxide), but also tetraethyl titanate, tetrapropyl titanate, tetraisopropyl titanate, tetraisooctyl titanate, tetrakis (2-ethylhexyl) titanate and the like, and also zirconium organic compounds, including tetrabutyl zirconate, tetra octyl zirconate, tetrakis (2,4-pentandionato) zirconate and the like.
  • Zinc-organic compounds, including dioctyl zincate can be mentioned as examples of suitable metal-organic compounds of a metal of subgroup II of the periodic table.
  • Substrates whose surface has hydroxyl, carboxyl, ammonium, amino and / or imino residues can be treated with the desired success, in particular substrates made of high molecular weight organic compounds containing the residues mentioned.
  • suitable substrates are substrates made from cellulose or cellulose derivatives or from proteins, for example wood, wood-based materials (such as chipboard, medium-density fibreboard, multilayer board, wood fiber board, cements), paper, silk, cardboard, wool, linen, flax, hemp and the like, as well as objects made from them.
  • Suitable substrates with surfaces having the abovementioned residues can also result from a surface treatment of polymers: Examples of these are substrates made of polyamide, polyethylene terephthalate and polypropylene with a pretreated, namely by corona, plasma or flame treatment and the like, or by means of strong oxidizing agents such as chromium sulfuric acid , Hydrogen peroxide and the like modified surface. Substrates that can be treated with the desired success can also occur in mixed form: for example, wood fibers, glue, papers and / or plastics can be present on the surface of wood-based materials at the same time. In addition, it is to be expected that substrates whose surface has mercapto residues can also be treated with the desired success.
  • the method according to the invention can be applied to substrates with a naturally weathered surface, and the surface of the substrate can be both planar and non-planar.
  • the use of the method according to the invention is not restricted by the size and / or nature of the surface to be treated. That is why plates, continuous foils, whole objects, inside and outside surfaces and appropriately pretreated surfaces, for example of plastics and artificial stones, can be treated with the desired success.
  • the process according to the invention is applied to polymers (in the broadest sense), if appropriate after their surface pretreatment, a wide range of properties of the treated surface can be achieved because the treated polymers in addition to the required hydroxyl, carboxyl, ammonium, amino and / or imino residues can have further functional residues and / or the pretreated polymer surfaces can be modified further, for example through oxidation, which opens up a variety of possible applications.
  • Silanes, polysilanes, siloxanes, polysilazanes, polyhydrosiloxanes, polycarbosilanes, polysiloxanes and polysilsesquioxanes can be mentioned as examples of suitable reagents containing Si-H radicals.
  • suitable reagents are solids or liquids which, as such or in a medium, are in liquid, pasty or solid form and can be used, for example, as a solution, emulsion, suspension, foam or spray.
  • the activator can be used, for example, in the form of a solid, solution, emulsion, suspension, foam, spray or other systems containing liquid and / or solid phases.
  • the activator and reagent can first be mixed together and the resulting mixture is then applied to the surface to be treated.
  • Activator and / or reagent can also first be mixed with other substances and only then applied to the surface to be treated.
  • the activator can first be applied to the surface to be treated, which is only then treated with the reagent.
  • the reverse procedure i.e. The treatment of the surface first with the reagent and then with the activator is also possible and can lead to a very deep treatment if the reagent is left over for a long time.
  • hydrophobic thin layers with different properties can be produced on the surface of the treated substrate, which in turn opens up a variety of possible uses, for example as a protective, impregnating, covering, coloring agent. , Decorative, reflection, adhesion promoter, biocompatibility, adhesive, adhesive, sliding, anti-blocking, anti-flame, non-stick, anti-graffiti, anti-fog, separating and / or demolding layers.
  • the energy of the hydrophobic thin layers formed can be varied so that, for example, differently wettable hydrophilic, oleophilic, hydrophobic or oleophobic thin layers can be produced with different contact angles.
  • the method according to the invention enables their surface modification with corresponding applications in the protection or renovation of buildings, monuments and / or works of art, as well as in various areas of the construction, automotive and machine industries.
  • the method according to the invention enables the formation of well-adhering, weather-resistant, colorless and invisible, water-impermeable but water-vapor-permeable thin layers (which can be hydrophobic or hydrophilic, or oleophobic or oleophilic) directly on the wood or on wood surfaces previously coated with organic substances, for example on raw, stained, glazed, impregnated or lacquered surfaces of wood and wood-based materials such as medium-density fibreboard, chipboard, multi-layer board, wood fiber cement, which can then be used indoors or outdoors.
  • the method according to the invention can also be used for fungicide-free protective treatment (preservation and / or preservation) of wood.
  • the method according to the invention can be combined with other treatments in order to achieve or intensify effects of the type mentioned above.
  • the good adhesion of the thin layer to the treated surface of the substrate in combination with the properties of the thin layer itself that can be achieved on its free surface result in a wide variety of applications, including for the thermal application of plastics which are sprayed directly onto the treated surface or can be injected, or for non-stick finishing of wooden cement boards, for antigraffiti treatment, for fungicide treatment, for biocide treatment, for the treatment of skiing surfaces and the like.
  • the following examples illustrate individual aspects of the invention, the method according to the invention being used under room conditions. However, the method according to the invention can also be carried out without problems under other atmospheric conditions, for example under carbon dioxide, nitrogen, etc. at temperatures other than room temperature and under pressure or vacuum.
  • Solid beech served as substrate.
  • a 5% solution of hydride-terminated polysiloxane with a molecular weight of 26,000 in butyl acetate 98/100 was used as the reagent.
  • a 1% solution of tetrabutyl titanate in toluene was used as the activator.
  • the mixing ratio was 8% tetrabutyl titanate solid per 100 parts of polysiloxane. 10 g / m 2 of the reaction liquid were applied by brushing. After drying overnight at room temperature, the water wetting behavior was examined by dripping on distilled water for two hours: the treated surface could not be wetted.
  • Example 2 Solid spruce served as substrate.
  • the mixing ratio was 8 parts tetrabutyl titanate solid to 100 parts polysiloxane. 10 g / m 2 of the reaction liquid were applied by brushing. After drying overnight at room temperature, the water wetting behavior was examined by dripping on distilled water for two hours: the treated surface could not be wetted.
  • Example 3 Solid spruce served as a substrate, radial cut.
  • a 5% solution of hydride-terminated polysiloxane 40 mPas with an Si content of 4.2 mmol / g in ethyl acetate was used as the reagent.
  • a 1% solution of tetrabutyl titanate in butyl acetate 98/100 was used as an activator.
  • the mixing ratio was 10 parts tetrabutyl titanate solid to 100 parts polysiloxane. 10 g / m 2 of the reaction liquid were applied by brushing. After drying overnight at room temperature, the water wetting behavior was examined by dripping on distilled water for two hours: the treated end grain wood surface could not be wetted.
  • a medium-density fibreboard with a thickness of 19 mm served as the substrate.
  • Reagent was a 10% solution of trimethylsilyl-terminated polysiloxane 45 mPAs in ethyl acetate techn. A 1% solution of tetrabutyl titanate in ethyl acetate was used as the activator. The mixing ratio was 10 parts tetrabutyl titanate solid to 100 parts polysiloxane. 20 g / m 2 of the reaction liquid were applied by brushing. After drying overnight at room temperature, the water wetting behavior was examined by dripping on distilled water for two hours: the treated surface of the medium-density fiberboard could not be wetted either on the cut edge or on the surface.
  • Example 5 A pure silk tie painted with silk paints served as the substrate.
  • a 5% solution of trimethylsilyl-terminated polysiloxane 45 mPAs with 7.8 mmol / g Si-H content in ethyl acetate was used as the reagent.
  • a 1% solution of tetrabutyl titanate in ethyl acetate was used as the activator.
  • the mixing ratio was 5 parts tetrabutyl titanate solid to 100 parts polysiloxane. 10 g / m 2 of the reaction liquid were applied by brushing. After drying overnight at room temperature, the wetting behavior of red wine of 12.0% alcohol by dripping was examined: the treated silk tie surface did not absorb the test reagent and remained free of stains.
  • a 13 mm thick chipboard was used as the substrate.
  • a 10% solution of trimethylsilyl-terminated polysiloxane 100 mPAs with 3.8 mmol / g Si-H content in naphtha (bp approx. 130-160 ° C.) was used as the reagent.
  • the activator served a 1% solution of tetrabutyl titanate in white spirit freed from aromatic compounds.
  • the mixing ratio was 7 parts tetrabutyl titanate solid to 100 parts polysiloxane.
  • 20 g / m 2 of the reaction liquid were applied by brushing. After drying overnight at room temperature, the water wetting behavior was examined by dripping on distilled water for two hours: the treated chipboard could not be wetted either on the surface or on the cut edge.
  • Example 8 An impregnated and dark red-brown, solvent-containing spruce board of unknown origin, which had been impregnated and glazed with an oil / alkyd resin glaze, was used as the substrate and was exposed to the weather for 5 years.
  • a 5% solution of trimethylsilyl-terminated polysiloxane 500 mPAs with 2.1 mmol / g Si-H content in naphtha (bp. Approx. 130-160 ° C.) was used as the reagent.
  • a 1% solution of tetrabutyl titanate in white spirit freed from aromatic compounds served as the activator.
  • the mixing ratio was 7 parts tetrabutyl titanate solid to 100 parts polysiloxane.
  • Exposed sandstone of the "rorschacher sandstone" type served as the substrate.
  • a 10% solution of dimethylsiloxane-methylhydrogensiloxane copolymer 45 mPas in butyl acetate 98/100 was used as the reagent.
  • a 1% solution of tetrabutyl titanate in toluene was used as the activator.
  • the mixing ratio was 7% solid tetrabutyl titanate per 100 parts of polysiloxane.
  • 30 g / m 2 of the reaction liquid were applied by spraying. After drying overnight, the water wetting behavior was examined by spraying with tap water: the treated surface could not be wetted.
  • a fiber cement facade painted with a solvent-based facade paint based on acrylate served as the substrate.
  • a 5% solution of Si-H-terminated polydimethylsiloxane 500 mPas in butyl acetate 98/100 was used as the reagent.
  • a 1% solution of tetrabutyl titanate in white spirit with 18% by weight of aromatic compounds served as the activator.
  • the mixing ratio was 10% solid to 100 parts of polysiloxane. 50 g / m 2 of the reaction liquid were applied by spraying. After drying overnight, the water Wetting behavior examined by spraying with tap water: The treated surface could not be wetted.
  • Example 12 A weathered shutter, painted with a silicone alkyd resin paint, served as the substrate.
  • a 5% solution of Si-H-terminated polydimethylsiloxane 3 cSt in butyl acetate 98/100 was used as the reagent.
  • a 1% solution of tetrabutyl titanate in white spirit with 18% by weight of aromatic compounds served as the activator.
  • the mixing ratio was 7% solid tetrabutyl titanate per 100 parts of polysiloxane. 50 g / m 2 of the reaction liquid were applied by spraying. After drying overnight, the water wetting behavior was examined by spraying with tap water: the treated surface could not be wetted.
  • a tennis ball of an unknown brand served as the substrate.
  • a 5% solution of Si-H-terminated polydimethylsiloxane 100 cSt in butyl acetate 98/100 was used as the reagent.
  • a 1% solution of tetrabutyl titanate in white spirit with 18% by weight of aromatic compounds served as the activator.
  • the mixing ratio was 7% solid tetrabutyl titanate per 100 parts of polysiloxane. 10 g of the reaction liquid were applied uniformly over the surface by spraying. After drying overnight, the water wetting behavior was examined by submerging it several times in tap water: the treated tennis ball did not get wet.
  • An interior plaster served as the substrate.
  • a 5% solution of Si-H-terminated polydimethylsiloxane 500 cSt in butyl acetate 98/100 was used as the reagent.
  • a 1% solution of tetrabutyl titanate in white spirit with 18% by weight of aromatic compounds served as the activator.
  • the mixing ratio was 7% solid tetrabutyl titanate per 100 parts of polysiloxane.
  • Oak parquet pieces served as the substrate.
  • a 5% solution of Si-H-terminated polydimethylsiloxane 1000 cSt in butyl acetate 98/100 was used as the reagent.
  • a 1% solution of tetrabutyl titanate in toluene was used as the activator.
  • the mixing ratio was 8% tetrabutyl titanate solid per 100 parts of polysiloxane.
  • 20 g / m 2 of the reaction liquid were applied to the cut edges by spraying. After drying overnight at room temperature, the water wetting behavior of the cut edges was examined by dripping on distilled water for 30 minutes: the treated surface could not be wetted.
  • Maple parquet straps served as the substrate.
  • a 5% solution of hydride-terminated polysiloxane with a molecular weight of 26,000 in butyl acetate 98/100 was used as the reagent.
  • a 1% solution of tetrabutyl titanate in toluene was used as the activator.
  • the mixing ratio was 8% tetrabutyl titanate solid per 100 parts of polysiloxane.
  • 20 g / m 2 of the reaction liquid were applied to the cut edges by spraying. After drying overnight at room temperature, the water wetting behavior of the cut edges was examined by dripping on distilled water for 30 minutes: the treated surface could not be wetted.
  • Beech parquet straps served as the substrate.
  • a 5% solution of hydride-terminated polysiloxane with a molecular weight of 26,000 in butyl acetate 98/100 was used as the reagent.
  • a 1% solution of tetrabutyl titanate in toluene was used as the activator.
  • the mixing ratio was 8% tetrabutyl titanate solid per 100 parts of polysiloxane.
  • 20 g / m 2 of the reaction liquid were applied to the cut edges by spraying. After drying overnight at room temperature, the wetting behavior the cut edges were examined by brushing on a water-thinnable parquet sealing lacquer: the parquet lacquer did not adhere to the treated surface.
  • Cross-sections of pine branches served as the substrate.
  • a 10% solution of hydride-terminated polysiloxane of molecular weight 26,000 in xylene was used as the reagent.
  • a 1% solution of tetrabutyl titanate in toluene was used as the activator.
  • the mixing ratio was 7% solid tetrabutyl titanate to 100 parts polysiloxane.
  • 50 g / m 2 of the reaction liquid were applied to the cut edges by spraying. After drying overnight at room temperature, the wetting behavior of the cut edges was investigated by dripping tap water: the treated surface could not be wetted.
  • Solid spruce served as the substrate.
  • a 5% solution of hydride-terminated polysiloxane with a molecular weight of 26,000 in toluene was used as the reagent.
  • a 1% solution of tetrabutyl titanate in xylene was used as an activator.
  • the mixing ratio was 8 parts tetrabutyl titanate solid to 100 parts polysiloxane.
  • the spruce test specimens were immersed in the reaction liquid for 5 seconds. After drying overnight at room temperature, the water wetting behavior was examined by dripping on distilled water for two hours: the treated surface could not be wetted.
  • Solid ash served as the substrate.
  • a 5% solution of hydride-terminated polysiloxane with a molecular weight of 26,000 in toluene was used as the reagent.
  • a 1% solution of tetrabutyl titanate in xylene was used as an activator.
  • the mixing ratio was 8 parts tetrabutyl titanate solid to 100 parts polysiloxane.
  • the ash test specimens were immersed in the reaction liquid for 10 seconds. After drying overnight at room temperature, the water wetting behavior was determined by dripping on distillation Water was examined for two hours: the treated surface could not be wetted.
  • Example 21 A raw blockboard was used as the substrate.
  • a 5% solution of hydride-terminated polysiloxane with a molecular weight of 26,000 in toluene was used as the reagent.
  • a 1% solution of tetrabutyl titanate in xylene was used as an activator.
  • the mixing ratio was 8 parts tetrabutyl titanate solid to 100 parts polysiloxane.
  • the block board was once brushed with the reaction liquid. After drying overnight at room temperature, the water wetting behavior was examined by dripping on distilled water for two hours: the treated surface could not be wetted.
  • a new concrete control panel served as the substrate.
  • a 5% solution of hydride-terminated polysiloxane with a molecular weight of 26,000 in toluene was used as the reagent.
  • a 1% solution of tetrabutyl titanate in xylene was used as an activator.
  • the mixing ratio was 8 parts tetrabutyl titanate solid to 100 parts polysiloxane.
  • the control panel was brushed once on all sides with the reaction liquid. After drying overnight at room temperature, the water wetting behavior was examined by dripping on distilled water for two hours: the treated surface could not be wetted.
  • a new precision control panel served as the substrate.
  • a 5% solution of hydride-terminated polysiloxane with a molecular weight of 26,000 in toluene was used as the reagent.
  • a 1% solution of tetrabutyl titanate in xylene was used as the activator.
  • the mixing ratio was 8 parts tetrabutyl titanate solid to 100 parts polysiloxane.
  • the control panel was brushed once on all sides with the reaction liquid. After drying overnight at room temperature, the water wetting behavior was determined by dripping on distilled water examined for two hours: the treated surface could not be wetted.
  • Example 24 Nordic spruce, radial cut, solid served as substrate.
  • the mixing ratio was 8% tetrakis (2,4-pentanedionato) zirconate solid to 100 parts of polysiloxane.
  • 40 g / m 2 of the reaction liquid were applied by brushing. After drying overnight at room temperature, the water wetting behavior was examined by dripping on distilled water for two hours: the treated surface could not be wetted.
  • Example 29 Nordic spruce, radial cut, solid served as substrate.
  • a 5% solution of hydride-terminated polysiloxane with a molecular weight of 26,000 in naphtha (bp. Approx. 130-160 ° C.) was used as the reagent.
  • a 1% solution of tetraisopropyl titanate in toluene was used as the activator.
  • the mixing ratio was 8% solid tetraisopropyl titanate per 100 parts of lysiloxan. 40 g / m 2 of the reaction liquid were applied by brushing. After drying overnight at room temperature, the water wetting behavior was examined by dripping on distilled water for two hours: the treated surface could not be wetted.
  • Example 31 Nordic spruce, radial cut, solid served as substrate.
  • a 5% solution of hydride-terminated polysiloxane with a molecular weight of 26,000 in naphtha (bp. Approx. 130-160 ° C.) was used as the reagent.
  • a 1% solution of tetraisooctyl titanate in toluene was used as an activator.
  • the mixing ratio was 8% solid tetraisooctyl titanate per 100 parts polysiloxane.
  • 40 g / m 2 of the reaction liquid were applied by brushing. After drying overnight at room temperature, the water wetting behavior was examined by dripping on distilled water for two hours: the treated surface could not be wetted.
  • concentrations and times given in the examples given above were chosen so that practical conditions for coating a surface, for example with an impregnating were simulated with it.
  • the method according to the invention can also be carried out with other concentrations, application quantities and / or exposure times.
  • the coating was carried out by brushing, spraying, spraying or dipping.
  • the coating can also be carried out in another way, for example by flooding, misting, gassing, rolling, printing or rolling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

Es wird mindestens ein Si-H-Reste enthaltendes Reagens in Gegenwart eines Aktivators, der mindestens eine Metall-organische Verbindung eines Metalls der IV. oder II. Nebengruppe des Periodensystems umfasst, mit der zu hydrophobierenden Oberfläche des Substrats in Kontakt gebracht. Die Metall-organische Verbindung ist vorzugsweise unter Titanorganischen, Zirconium-organischen und Zink-organischen Verbindungen ausgewählt und kann insbesondere ein unter Tetrabutyltitanat, Tetra-ethyltitanat, Tetrapropyltitanat, Tetraisopropyltitanat, Tetraisooctyltitanat und Tetrakis(2-ethylhexyl)titanat ausgewählter Titansäureester, ein insbesondere unter Tetrabutylzirconat, Tetraoctylzirconat und Tetrakis(2,4pentandionato)zirconat ausgewählter Zirconiumsäureester oder ein Zinhsäureester wie Dioctylzinkat sein. Vorzugsweise ist die Metall-organische Verbindung leicht hydrolysierbar.

Description

Verfahren zur Hydrophobierung der Oberfläche eines porösen Substrats unter Beibehaltung seiner Porosität
Technisches Gebiet Die vorliegende Erfindung betrifft ein Verfahren zur Hydrophobierung der Oberfläche eines porösen Substrats unter Beibehaltung seiner Porosität.
Stand der Technik
Es ist bekannt, ein poröses Substrat mit einer hydrophoben Schicht zu überdecken, um das Substrat vor Wasser zu schützen. Dabei wird an der Oberfläche des porösen Substrats eine hydrophobe Sperrschicht gebildet, die das Substrat nach aussen hin abschirmt, was aber nicht nur eine Verminderung bzw. Verhinderung der Wasseraufnahme und/oder Wasserdurchlässigkeit, sondern auch eine Beeinträchtigung der Gasaufnah- mefähigkeit und/oder Gasdurchlässigkeit des beschichteten Substrats zur Folge hat.
Beschichtungen dieser bekannten Art erfolgen beispielsweise an rohen oder beschichteten Oberflächen von Holz oder Holzwerkstoffen durch Bei- zen, Färben, Lackieren, Lasieren usw. mittels lösungsmittelhaltigen und/oder wasserverdünnbaren Anstrichstoffen. Dazu werden Film bildende Anstrichstoffe verwendet, die beim Trocknen auf der beschichteten Oberfläche einen mehr oder weniger kompakten Film mit einer durchschnittlichen Dicke von 10 bis 100 μm hinterlassen. Je nach Dicke und Beschaffenheit ergibt die so gebildete Deckschicht eine massige bis gute Sperrwirkung gegen flüssiges Wasser, während deren Durchlässigkeit für Wasserdampf mit deren Dicke abnimmt.
Die Beschichtung der Oberfläche eines Substrats mit einer hydrophoben Dünnschicht ist beispielsweise aus WO-98/53921 bekannt: die zu behandelnde Oberfläche wird mit Si-H-Resten enthaltenden Reagenzien in Gegenwart eines Aktivators auf Basis eines Platinmetalles behandelt; auf solche Weise kann die Oberfläche eines nicht porösen Substrats wie unter anderem Metall oder Glas oder eines porösen Substrats wie unter ande- rem Sandstein, Beton, Holz oder Textil behandelt werden. Ob dabei die Porosität des Substrats und insbesondere dessen Gasaufnahmefähigkeit und/oder Gasdurchlässigkeit nach der Behandlung beibehalten wird, wird in WO-98/53921 nicht angesprochen, ist jedoch bei den angegebenen Schichtdicken im Bereich einiger Nanometer mehr oder weniger zu erwarten. Bei diesem Verfahren wird eine Platinmetall-Verbindung verwendet, was entsprechend kostspielig ist.
Darstellung der Erfindung Demnach ist es Aufgabe der Erfindung, zur Hydrophobierung der Oberfläche eines porösen Substrats unter Beibehaltung seiner Porosität ein Verfahren vorzuschlagen, das kostengünstiger ist als beim vorgenannten Stand der Technik.
Zur Lösung dieser Aufgabe ist ein Verfahren der eingangs genannten Art gekennzeichnet durch die im Anspruch 1 definierte Kombination von Massnahmen. Vorteilhafte Ausführungsformen des Verfahrens sind in den abhängigen Ansprüchen definiert.
Wege zur Ausführung der Erfindung
An der Oberfläche des behandelten Substrats bildet das erfindunαsαemasse Verfahren eine hydrophobe Dünnschicht als Resultat der Behandlung der Oberfläche mit mindestens einem Reagens, das Si-H-Reste enthält, in Gegenwart eines Aktivators, der mindestens eine Metall-organische Ver- bindung eines Übergangsmetalls umfasst, wobei dieses Übergangsmetall vorzugsweise ein Metall der IV. oder II. Nebengruppe des Periodensystems wie beispielsweise Titan, Zirconium oder Zink ist, und wobei diese Metall-organische Verbindung vorzugsweise leicht hydrolysierbar ist.
Das erfindungsgemässe Verfahren ermöglicht, die Benetzung der Oberfläche eines porösen Substrats durch Wasser und dessen sich daraus ergebende Wasseraufnahme und/oder Wasserdurchlässigkeit weitgehend zu verhindern (d.h. soweit zu vermindern, dass die Oberfläche als unbe- netzt betrachtet werden kann), während mit der Beibehaltung der Porosi- tat des Substrats insbesondere dessen Gasaufnahmefähigkeit und/oder Gasdurchlässigkeit beibehalten werden. Die Durchlässigkeit der gebildeten Dünnschicht für Wasserdampf und die Beibehaltung der Porosität des behandelten Substrats lassen sich im Wesentlichen durch die Dünne der Schicht erklären, während anzunehmen ist, dass die erreichte gute Haftung der Dünnschicht auf kovalente Bindungen d.h. auf eine Reaktion zwischen der zu behandelnden Oberfläche und dem Reagens in Gegenwart des Aktivators zurückzuführen ist.
Es erweist sich, dass die durch das erfindungsgemässe Verfahren an der Oberfläche des Substrats gebildete hydrophobe Dünnschicht unsichtbar bleibt und die Gasaufnahmefähigkeit und/oder Gasdurchlässigkeit des Substrats nicht erkennbar bzw. unwesentlich beeinträchtigt, während sie dennoch die Oberfläche des Substrats erfolgreich hydrophobiert.
Als Beispiele von geeigneten Metall-organischen Verbindungen eines Metalls der IV. Nebengruppe des Periodensystems können Titan-organische Verbindungen genannt werden, unter anderem Titansäureester, darunter vorzugsweise Tetrabutyltitanat (d.h. Titan(IV)butoxid), aber auch Tetraethyltitanat, Tetrapropyltitanat, Tetraisopropyltitanat, Tetraisooctyl- titanat, Tetrakis(2-ethylhexyl)titanat und dergleichen, ferner Zirconium- organische Verbindungen, darunter Tetrabutylzirconat, Tetra octylzirco- nat, Tetrakis(2,4-pentandionato)zirconat und dergleichen. Als Beispiele von geeigneten Metall-organischen Verbindungen eines Metalls der II. Nebengruppe des Periodensystems können Zink-organische Verbindungen genannt werden, unter anderem Dioctylzinkat.
Mit dem gewünschten Erfolg behandelbar sind Substrate, deren Oberfläche Hydroxyl-, Carboxyl-, Ammonium-, Amino- und/oder Iminoreste auf- weist, insbesondere Substrate aus die genannten Reste enthaltenden hochmolekularen organischen Verbindungen. Beispiele solcher geeigneten Substrate sind Substrate aus Cellulose bzw. Cellulosederivaten oder aus Proteinen, beispielsweise Holz, Holzwerkstoffe (wie beispielsweise Spanplatten, mitteldichten Faserplatten, Mehrschichtplatten, Holzfaser- zemente), ferner Papier, Seide, Karton, Wolle, Leinen, Flachs, Hanf und dergleichen, sowie daraus bestehende Gegenstände. Geeignete Substrate mit die genannten Reste aufweisenden Oberflächen können sich auch aus einer Oberflächenbehandlung von Polymeren ergeben: Beispiele davon sind Substrate aus Polyamid, Polyethylenterephthalat und Polypropylen mit einer vorbehandelten, nämlich durch Corona-, Plasma- oder Flammenbehandlung und dergleichen oder mittels starker Oxidationsmittel wie beispielsweise Chromschwefelsäure, Wasserstoffperoxid und dergleichen modifizierten Oberfläche. Mit dem gewünschten Erfolg behandelbare Sub- strate können auch in gemischter Form auftreten: beispielsweise können an der Oberfläche von Holzwerkstoffen gleichzeitig Holzfasern, Leime, Papiere und/oder Kunststoffe vorhanden sein. Zudem ist zu erwarten, dass auch Substrate, deren Oberfläche Mercaptoreste aufweist, mit dem gewünschten Erfolg behandelbar sind.
Mit dem gewünschten Erfolg kann das erfindungsgemässe Verfahren an Substraten mit natürlich abgewitterter Oberfläche angewendet werden, auch kann die Oberfläche des Substrats sowohl planar als auch nichtpla- nar sein.
Generell wird die Anwendung des erfindungsgemässen Verfahrens nicht durch die Grosse und/oder Beschaffenheit der zu behandelnden Oberfläche beschränkt. Deshalb können Platten, Endlosfolien, ganze Gegenstände, Innen- und Aussenflächen und entsprechend vorbehandelte Oberflä- chen beispielsweise von Kunststoffen und Kunststeinen mit dem gewünschten Erfolg behandelt werden.
Bei der Anwendung des erfindungsgemässen Verfahrens auf Polymere (im weitesten Sinne) ggf. nach deren Oberflächenvorbehandlung ist eine grosse Variationsspanne von Eigenschaften der behandelten Oberfläche erreichbar, weil die behandelten Polymere zusätzlich zu den erforderlichen Hydroxyl-, Carboxyl-, Ammonium-, Amino- und/oder Iminoresten weitere funktionelle Reste aufweisen können und/oder die vorbehandelten Polymeroberflächen weiter modifiziert werden können, beispielsweise durch Oxidation, was eine Vielfalt von Anwendungsmöglichkeiten eröffnet.
Als Beispiele von geeignete Si-H-Reste enthaltenden Reagenzien können Silane, Polysilane, Siloxane, Polysilazane, Polyhydrosiloxane, Polycarbosi- lane, Polysiloxane und Polysilsesquioxane genannt werden. Solche Reagenzien sind Feststoffe oder Flüssigkeiten, die, als solche oder in einem Medium, in flüssiger, pastöser oder fester Form vorliegen und beispielsweise als Lösung, Emulsion, Suspension, Schaum oder Spray anwendbar sind.
Der Aktivator kann beispielsweise in Form von Feststoff, Lösung, Emulsion, Suspension, Schaum, Spray oder anderen flüssige und/oder feste Phasen enthaltenden Systemen angewendet werden.
Aktivator und Reagens können zuerst miteinander vermischt werden, und die erhaltene Mischung wird dann auf die zu behandelnde Oberfläche aufgebracht. Auch können Aktivator und/oder Reagens zunächst mit anderen Substanzen gemischt und erst dann auf die zu behandelnde Oberflä- ehe aufgebracht werden. Wahlweise kann zuerst der Aktivator auf die zu behandelnde Oberfläche aufgebracht werden, welche erst danach mit dem Reagens behandelt wird. Das umgekehrte Vorgehen, d.h. die Behandlung der Oberfläche zuerst mit dem Reagens und dann mit dem Aktivator, ist ebenfalls möglich und kann bei langer Einwirkung des Reagens zu einer sehr tiefenwirksamen Behandlung führen.
Je nach Wahl des geeignete Si-H-Reste enthaltenden Reagens können an der Oberfläche der behandelten Substrats hydrophobe Dünnschichten mit verschiedenen Eigenschaften hergestellt werden, was wiederum eine Viel- falt von Anwendungsmöglichkeiten eröffnet, beispielsweise als Schutz-, Imprägnier-, Deck-, Färb-, Zier-, Reflexions-, Haftvermittler-, Biokompa- tibilitäts-, Haft-, Klebe-, Gleit-, Antiblock-, Antiflamm-, Antihaft-, Anti- graffiti-, Antibeschlag-, Trenn- und/oder Entformungsschichten. Insbesondere kann durch den Einsatz entsprechender Reagenzien die Grenzflä- chenenergie der gebildeten hydrophoben Dünnschichten variiert werden, so dass beispielsweise unterschiedlich benetzbare hydrophile, oleophile, hydrophobe oder oleophobe Dünnschichten mit unterschiedlichen Kontaktwinkeln hergestellt werden können.
Im Zusammenhang mit Lacken und Farben ermöglicht das erfindungsgemässe Verfahren deren Oberflächenmodifizierung mit entsprechenden Anwendungen beim Schutz oder bei der Sanierung von Bauten, Denkmälern und/oder Kunstwerken, sowie in verschiedenen Bereichen der Bau-, Automobil- und Maschinenindustrie.
Bei Holzprodukten ermöglicht das erfindungsgemässe Verfahren die Bildung von gut haftenden, wetterbeständigen, farblosen und unsichtbaren, wasserundurchlässigen aber wasserdampfdurchlässigen Dünnschichten (die hydrophob oder hydrophil, bzw. oleophob oder oleophil sein können) direkt auf das Holz oder auf zuvor mit organischen Substanzen beschichteten Holzoberflächen, beispielsweise auf rohe, gebeizte, lasierte, imprägnierte oder lackierte Oberflächen von Holz und Holzwerkstoffen wie mitteldichten Faserplatten, Spanplatten, Mehrschichtplatten, Holzfaser- zementen, die daraufhin im Innen- oder Aussenbereich anwendbar sind. Auch kann das erfindungsgemässe Verfahren zur fungizidfreien Schutzbehandlung (Präservation und/oder Konservation) von Holz dienen.
Generell kann das erfindungsgemässe Verfahren zusammen mit anderen Behandlungen kombiniert werden, um Wirkungen der oben genannten Art zu erzielen oder zu verstärken. So ergeben sich aus der guten Haftung der Dünnschicht auf der behandelten Oberfläche des Substrats in Kombination mit den auf ihrer freien Oberfläche erreichbaren Eigenschaften der Dünnschicht selber die verschiedensten Anwendungen, unter an- derem zum thermischen Aufbringen von Kunststoffen, welche direkt an die behandelte Oberfläche angespritzt oder hinterspritzt werden können, oder noch zur Antihaftausrüstung von Holzzementplatten, zur Antigraffiti- Behandlung, zur Fungizid-Behandlung, zur Biozid-Behandlung, zur Behandlung von Skilaufflächen und dergleichen mehr. Die nachfolgenden Beispiele veranschaulichen einzelne Aspekte der Erfindung, wobei das erfindungsgemässe Verfahren unter Raumbedingungen angewendet wurde. Das erfindungsgemässe Verfahren lässt sich aber auch problemlos unter anderen Atmosphärenbedingungen, beispielsweise unter Kohlendioxid, Stickstoff usw. bei anderen Temperaturen als Raumtemperatur sowie unter Druck oder Vakuum durchführen.
Beispiel 1
Als Substrat diente Buche massiv. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Bu- tylacetat 98/100. Als Aktivator diente eine l%ige Lösung von Tetrabutyl- titanat in Toluol. Das Mischverhältnis betrug 8% Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 10 g/m2 der Reaktionsflüssigkeit durch Pinseln aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 2 Als Substrat diente Fichte massiv. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan 50 mPas in Toluol. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Xylol. Das Mischverhältnis betrug 8 Teile Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 10 g/m2 der Reaktionsflüssigkeit durch Pinseln aufgetragen. Nach Trock- nung über Nacht bei Raumtemperatur wurde das Wasserbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 3 Als Substrat diente Fichte massiv, Radialschnitt. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan 40 mPas mit einem Si- Gehalt von 4,2 mmol/g in Ethylacetat techn. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Butylacetat 98/100. Das Mischverhältnis betrug 10 Teile Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 10 g/m2 der Reaktionsflüssigkeit durch Pinseln aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbe- netzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Hirnholzoberfläche liess sich nicht benetzen.
Beispiel 4
Als Substrat diente eine mitteldichte Faserplatte der Stärke 19 mm. Als
Reagens diente eine 10%ige Lösung von trimethylsilylterminiertem Poly- siloxan 45 mPAs in Ethylacetat techn. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Ethylacetat techn. Das Mischverhältnis betrug 10 Teile Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 20 g/m2 der Reaktionsflüssigkeit durch Pinseln aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbenet- zungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche der mitteldichten Faserplatte liess sich weder an der Schnittkante noch auf der Fläche benetzten.
Beispiel 5 Als Substrat diente eine mit Seidenfarben bemalte reine Seidenkravatte. Als Reagens diente eine 5%ige Lösung von trimethylsilylterminiertem Polysiloxan 45 mPAs mit 7,8 mmol/g Si-H-Gehalt in Ethylacetat techn. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Ethylacetat techn. Das Mischverhältnis betrug 5 Teile Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 10 g/m2 der Reaktionsflüssigkeit durch Pinseln aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Benetzungsverhalten durch Rotwein von 12,0% Alkoholgehalt durch Auftröpfeln untersucht: Die behandelte Seidenkravatten-Oberfläche nahm das Prüfreagens nicht auf und blieb fleckenfrei.
Beispiel 6
Als Substrat diente eine Spanplatte der Stärke 13 mm. Als Reagens diente eine 10%ige Lösung von trimethylsilylterminiertem Polysiloxan 100 mPAs mit 3.8 mmol/g Si-H-Gehalt in Naphtha (Sdp. ca. 130-160°C). Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in von aromatischen Verbindungen befreitem Testbenzin (white spirit). Das Mischverhältnis betrug 7 Teile Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 20 g/m2 der Reaktionsflüssigkeit durch Streichen aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbe- netzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Spanplatte liess sich weder an der Oberfläche noch auf der Schnittkante benetzen.
Beispiel 7
Als Substrat diente ein imprägniertes und mit einer Öl-/Alkydharzlasur lasiertes, dunkelrotbraunes, lösungsmittelhaltiges Fichtenbrett. Als Reagens diente eine 5%ige Lösung von trimethylsilylterminiertem Polysiloxan 500 mPAs mit 1,1 mmol/g Si-H-Gehalt in Naphtha (Sdp. ca. 130-160°C). Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in von aromatischen Verbindungen befreitem Testbenzin (white spirit).. Das Mischverhältnis betrug 7 Teile Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 15 g/m2 der Reaktionsflüssigkeit durch Aufsprühen aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Was- serbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Das behandelte Fichtenbrett liess sich auf der lasierten Seite nicht benetzen.
Beispiel 8 Als Substrat diente ein imprägniertes und mit einer Öl-/Alkydharzlasur lasiertes, dunkelrotbraunes, lösungsmittelhaltiges Fichtenbrett unbekannter Herkunft, das 5 Jahre lang der Witterung ausgesetzt war. Als Reagens diente eine 5%ige Lösung von trimethylsilylterminiertem Polysiloxan 500 mPAs mit 2,1 mmol/g Si-H-Gehalt in Naphtha (Sdp. ca. 130-160°C). Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in von aromatischen Verbindungen befreitem Testbenzin (white spirit). Das Mischverhältnis betrug 7 Teile Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 50 g/m2 der Reaktionsflüssigkeit durch Aufsprühen aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbe- netzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Das behandelte Fichtenbrett liess sich auf der lasierten, abgewitterten Seite nicht benetzen.
Beispiel 9
Als Substrat diente der Witterung ausgesetzter Sandstein der Sorte "ror- schacher Sandstein". Als Reagens diente eine 10%ige Lösung von Di- methylsiloxan-Methylhydrogensiloxan-Copolymer 45 mPas in Butylacetat 98/100. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Toluol. Das Mischverhältnis betrug 7% Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 30 g/m2 der Reaktionsflüssigkeit durch Spritzen aufgetragen. Nach Trocknung über Nacht wurde das Wasserbenetzungs- verhalten durch Anspritzen mit Leitungswasser untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 10
Als Substrat diente Beton. Als Reagens diente eine 10%ige Lösung von Si-H-terminiertem Polydimethylsiloxan 3 mPas in Butylacetat 98/100. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Testbenzin (white spirit). Das Mischverhältnis betrug 10% Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 50 g/m2 der Reaktionsflüssigkeit durch Spritzen aufgetragen. Nach Trocknung über Nacht wurde das Wasserbe- netzungsverhalten durch Anspritzen mit Leitungswasser untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 11
Als Substrat diente eine mit einer lösungsmittelhaltigen Fassadenfarbe auf Acrylatbasis gestrichene Faserzementfassade. Als Reagens diente eine 5%ige Lösung von Si-H-terminiertem Polydimethylsiloxan 500 mPas in Butylacetat 98/100. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Testbenzin (white spirit) mit 18 Gew.-% aromatische Verbindungen.. Das Mischverhältnis betrug 10% Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 50 g/m2 der Reaktionsflüssigkeit durch Spritzen aufgetragen. Nach Trocknung über Nacht wurde das Wasserbe- netzungsverhalten durch Anspritzen mit Leitungswasser untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 12 Als Substrat diente ein mit einer Silikonalkydharzfarbe gestrichener, angewitterter Fensterladen. Als Reagens diente eine 5%ige Lösung von Si- H-terminiertem Polydimethylsiloxan 3 cSt in Butylacetat 98/100. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Testbenzin (white spirit) mit 18 Gew.-% aromatische Verbindungen. Das Mischverhältnis betrug 7% Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 50 g/m2 der Reaktionsflüssigkeit durch Spritzen aufgetragen. Nach Trocknung über Nacht wurde das Wasserbenetzungsverhalten durch Anspritzen mit Leitungswasser untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 13
Als Substrat diente ein Tennisball unbekannter Marke. Als Reagens diente eine 5%ige Lösung von Si-H-terminiertem Polydimethylsiloxan 100 cSt in Butylacetat 98/100. Als Aktivator diente eine l%ige Lösung von Tetrabu- tyltitanat in Testbenzin (white spirit) mit 18 Gew.-% aromatische Verbindungen. Das Mischverhältnis betrug 7% Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 10 g der Reaktionsflüssigkeit gleichmässig über die Oberfläche durch Spritzen aufgetragen. Nach Trocknung über Nacht wurde das Wasserbenetzungsverhalten durch mehrmaliges Unter- tauchen in Leitungswasser untersucht: Der behandelte Tennisball wurde nicht nass.
Beispiel 14
Als Substrat diente ein Innenputz. Als Reagens diente eine 5%ige Lösung von Si-H-terminiertem Polydimethylsiloxan 500 cSt in Butylacetat 98/100. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Testbenzin (white spirit) mit 18 Gew.-% aromatische Verbindungen. Das Mischverhältnis betrug 7% Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 30 g/m2 der Reaktionsflüssigkeit gleichmässig über die Oberfläche durch Spritzen aufgetragen. Nach Trocknung über Nacht wurde das Wasserbenetzungsverhalten durch Anspritzen mit Leitungswasser untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 15
Als Substrat dienten Eichenparkettstücke. Als Reagens diente eine 5%ige Lösung von Si-H-terminiertem Polydimethylsiloxan 1000 cSt in Butylacetat 98/100. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Toluol. Das Mischverhältnis betrug 8% Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 20 g/m2 der Reaktionsflüssigkeit auf die Schnittkanten durch Sprühen aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbenetzungsverhalten der Schnittkanten durch Auftröpfeln von destilliertem Wasser während 30 Minuten untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 16
Als Substrat dienten Ahornparkettriemen. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Butylacetat 98/100. Als Aktivator diente eine l%ige Lösung von Tetra- butyltitanat in Toluol. Das Mischverhältnis betrug 8% Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 20 g/m2 der Reaktionsflüssigkeit auf die Schnittkanten durch Sprühen aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbenetzungsverhalten der Schnittkanten durch Auftröpfeln von destilliertem Wasser während 30 Minuten untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 17
Als Substrat dienten Buchenparkettriemen. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Butylacetat 98/100. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Toluol. Das Mischverhältnis betrug 8% Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Es wurden 20 g/m2 der Reaktionsflüssigkeit auf die Schnittkanten durch Sprühen aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Benetzungsverhalten der Schnittkanten durch Aufstreichen eines wasserverdünnbaren Parkettversiegelungslackes untersucht: Auf der behandelten Oberfläche haftete der Parkettlack nicht.
Beispiel 18
Als Substrat dienten Querschnitte von Föhrenästen. Als Reagens diente eine 10%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Xylol. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Toluol. Das Mischverhältnis betrug 7% Tetrabutyltita- nat fest auf 100 Teile Polysiloxan. Es wurden 50 g/m2 der Reaktionsflüssigkeit auf die Schnittkanten durch Sprühen aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Benetzungsverhalten der Schnittkanten durch Auftröpfeln von Leitungswasser untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 19
Als Substrat diente Fichte massiv. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Toluol. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Xylol. Das Mischverhältnis betrug 8 Teile Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Die Fichtenprüfkörper wurden während 5 Sekunden in der Reaktionsflüssigkeit getaucht. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 20
Als Substrat diente Esche massiv. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Tolu- ol. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Xylol. Das Mischverhältnis betrug 8 Teile Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Die Eschenprüfkörper wurden 10 Sekunden in der Reaktionsflüssigkeit getaucht. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbenetzungsverhalten durch Auftröpfeln von destillier- tem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 21 Als Substrat diente eine rohe Tischlerplatte. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Toluol. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Xylol. Das Mischverhältnis betrug 8 Teile Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Die Tischlerplatte wurde allseitig mit der Reak- tionsflüssigkeit einmal bepinselt. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 22
Als Substrat diente eine neue Betonschaltafel. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Toluol. Als Aktivator diente eine l%ige Lösung von Tetrabutyltitanat in Xylol. Das Mischverhältnis betrug 8 Teile Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Die Schaltafel wurde allseitig mit der Reaktionsflüssigkeit einmal bepinselt. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 23
Als Substrat diente eine neue Feinschaltafel. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Toluol. Als Aktivator diente eine l%ige Lösung von Tetrabutylti- tanat in Xylol. Das Mischverhältnis betrug 8 Teile Tetrabutyltitanat fest auf 100 Teile Polysiloxan. Die Schaltafel wurde allseitig mit der Reaktionsflüssigkeit einmal bepinselt. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 24 Als Substrat diente nordische Fichte, Radialschnitt, massiv. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Xylol techn. Als Aktivator diente eine l%ige Lösung von Tetrakis(2,4-pentandionato)zirconat ("Zirconium(IV)- acetylacetonat") in Toluol. Das Mischverhältnis betrug 8% Tetrakis(2,4- pentandionato)zirconat fest auf 100 Teile Polysiloxan. Es wurden 40 g/m2 der Reaktionsflüssigkeit durch Pinseln aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 25
Als Substrat diente nordische Fichte, Radialschnitt, massiv. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Xylol techn. Als Aktivator diente eine l%ige Lö- sung von Tetrabutylzirconat in Toluol. Das Mischungsverhältnis betrug 8% Tetrabutylzirconat fest auf 100 Teile Polysiloxan. Es wurden 40 g/m2 der Reaktionsflüssigkeit durch Pinseln aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 26
Als Substrat diente nordische Fichte, Radialschnitt, massiv. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Mole- kulargewicht 26000 in Naphtha (Sdp. ca. 130-160 °C). Als Aktivator diente eine l%ige Lösung von Tetrapropyltitanat ("Tetrapropylorthotita- nat") in Toluol. Das Mischungsverhältnis betrug 8% Tetrapropyltitanat fest auf 100 Teile Polysiloxan. Es wurden 40 g/m2 der Reaktionsflüssigkeit durch Pinseln aufgetragen. Nach Trocknung über Nacht bei Raum- temperatur wurde das Wasserbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 27
Als Substrat diente nordische Fichte, Radialschnitt, massiv. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Naphtha (Sdp. ca. 130-160 °C ). Als Aktivator diente eine l%ige Lösung von Tetra-tett-butyltitanat in Toluol. Das Mi- schungsverhältnis betrug 8% Tetra-üe/t-butyltitanat fest auf 100 Teile Polysiloxan. Es wurden 40 g/m2 der Reaktionsflüssigkeit durch Pinseln aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nur wenig benetzen.
Beispiel 28
Als Substrat diente nordische Fichte, Radialschnitt, massiv. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Mole- kulargewicht 26000 in Naphtha (Sdp. ca. 130-160 °C ). Als Aktivator diente eine l%ige Lösung von Tetraethyltitanat in Toluol. Das Mischungsverhältnis betrug 8% Tetraethyltitanat fest auf 100 Teile Polysiloxan. Es wurden 40 g/m2 der Reaktionsflüssigkeit durch Pinseln aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Was- serbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 29 Als Substrat diente nordische Fichte, Radialschnitt, massiv. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Naphtha (Sdp. ca. 130-160 °C ). Als Aktivator diente eine l%ige Lösung von Tetraisopropyltitanat in Toluol. Das Mischungsverhältnis betrug 8% Tetraisopropyltitanat fest auf 100 Teile Po- lysiloxan. Es wurden 40 g/m2 der Reaktionsflüssigkeit durch Pinseln aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 30
Als Substrat diente nordische Fichte, Radialschnitt, massiv. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Mole- kulargewicht 26000 in Naphtha (Sdp. ca. 130-160 °C ). Als Aktivator diente eine l%ige Lösung von Tetrakis(2-ethylhexyl)titanat in Toluol. Das Mischungsverhältnis betrug 8% Tetrakis(2-ethylhexyl)titanat fest auf 100 Teile Polysiloxan. Es wurden 40 g/m2 der Reaktionsflüssigkeit durch Pinseln aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wur- de das Wasserbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche konnte nach einer Stunde benetzt werden.
Beispiel 31 Als Substrat diente nordische Fichte, Radialschnitt, massiv. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Naphtha (Sdp. ca. 130-160 °C ). Als Aktivator diente eine l%ige Lösung von Tetraisooctyltitanat in Toluol. Das Mischungsverhältnis betrug 8% Tetraisooctyltitanat fest auf 100 Teile Poly- siloxan. Es wurden 40 g/m2 der Reaktionsflüssigkeit durch Pinseln aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Wasserbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Beispiel 32
Als Substrat diente nordische Fichte, Radialschnitt, massiv. Als Reagens diente eine 5%ige Lösung von hydridterminiertem Polysiloxan von Molekulargewicht 26000 in Xylol techn. Als Aktivator diente eine l%ige Lö- sung von Dioctylzinkat ("Zinkoctoat") mit 8% Metallgehalt in Toluol. Das Mischungsverhältnis betrug 8% Dioctylzinkat fest auf 100 Teile Polysiloxan. Es wurden 40 g/m2 der Reaktionsflüssigkeit durch Pinseln aufgetragen. Nach Trocknung über Nacht bei Raumtemperatur wurde das Was- serbenetzungsverhalten durch Auftröpfeln von destilliertem Wasser während zwei Stunden untersucht: Die behandelte Oberfläche liess sich nicht benetzen.
Alle Experimente, wie sie in den vorstehend angegebenen Beispielen be- schrieben sind, wurden zur Kontrolle auch ohne Aktivator durchgeführt: Bei sämtlichen Kontrollexperimenten zeigte sich, dass ohne Aktivator das entsprechende Si-H-enthaltende Reagens nicht oder nur unwesentlich an die Oberfläche bindet, und die gewünschten Eigenschaften nicht oder nur in geringem Masse erreicht werden. Versuche mit reinem Lösungsmittel oder mit einer nur den Aktivator enthaltenden Lösung oder Suspension ergaben ebenfalls kein solches Ergebnis, wie es mit den entsprechenden Si-H-Reagenzien erhalten wurde.
In Gegenwart des Aktivators ergab sich bei allen Experimenten, wie sie in den vorstehend angegebenen Beispielen beschrieben sind, eine Beschichtung mit einer unsichtbaren Dünnschicht, die sich mit Xylol, Naphtha und/oder Butylacetat nicht entfernen liess. Die direkt auf Holzfaser erzeugten Dünnschichten waren Geschirrspülmaschinenfest über mehr als 10 Waschzyklen (Waschmittel M-Net, von Migros). Nach einmonatiger Lagerung in Wasser zeigten die Dünnschichten immer noch ihr ursprüngliches Verhalten. Nach dem erfindungsgemässen Verfahren behandelte rohe Fichtentäfer zeigten, auch nachdem sie sechs Monate lang im Freien der Witterung ausgesetzt geblieben waren (45°, nach Süden orientiert), keine Abnahme der durch die Beschichtung auf der Holzfaser erzeugten Hydrophobie.
Die in den vorstehend angegebenen Beispielen angegebenen Konzentrationen und Zeiten waren so gewählt, dass praxisgerechte Bedingungen zur Beschichtung einer Oberfläche beispielsweise mit einer Imprägnie- rung damit simuliert wurden. Das erfindungsgemässe Verfahren lässt sich aber auch mit anderen Konzentrationen, Auftragsmengen und/oder Einwirkungszeiten durchführen.
Bei einem Teil der Beispiele erfolgte die Beschichtung durch Aufpinseln, Aufsprühen, Spritzen bzw. Eintauchen. Die Beschichtung kann aber auch auf andere Art und Weise erfolgen, beispielsweise durch Fluten, Benebeln, Begasen, Walzen, Bedrucken oder Rollen.

Claims

Patentansprüche
1. Verfahren zur Hydrophobierung der Oberfläche eines porösen Substrats unter Beibehaltung seiner Porosität, wobei mindestens ein Si- H-Reste enthaltendes Reagens in Gegenwart eines mindestens eine
Metall-organische Verbindung umfassenden Aktivators mit der zu hydrophobierenden Oberfläche des Substrats in Kontakt gebracht wird, dadurch gekennzeichnet, dass das Metall der Metallorganischen Verbindung ein Übergangsmetall ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Übergangsmetall ein Metall der IV. Nebengruppe des Periodensystems ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Metall Titan ist.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Metall-organische Verbindung ein Titansäureester ist.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Titansäureester unter Tetrabutyltitanat, Tetraethyltitanat, Tetrapropyltitanat, Tetraisopropyltitanat, Tetraisooctyltitanat und Tetra- kis(2-ethylhexyl)titanat ausgewählt ist.
6. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Metall Zirconium ist.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Me- tall-organische Verbindung ein Zirconiumsäureester ist.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Zirconiumsäureester unter Tetrabutylzirconat, Tetraoctylzirconat und Tetrakis(2,4-pentandionato)zirconat ausgewählt ist.
. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Übergangsmetall ein Metall der II. Nebengruppe des Periodensystems ist.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Metall Zink ist.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Metall-organische Verbindung ein Zinksäureester ist.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der Zinksäureester Dioctylzinkat ist.
13. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Me- tall-organische Verbindung leicht hydrolysierbar ist.
EP03795121A 2002-08-27 2003-08-15 Verfahren zur hydrophobierung der oberfläche eines porösen substrats unter beibehaltung seiner porosität Withdrawn EP1530510A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH14632002 2002-08-27
CH14632002 2002-08-27
PCT/IB2003/003680 WO2004024407A1 (de) 2002-08-27 2003-08-15 Verfahren zur hydrophobierung der oberfläche eines porösen substrats unter beibehaltung seiner porosität

Publications (1)

Publication Number Publication Date
EP1530510A1 true EP1530510A1 (de) 2005-05-18

Family

ID=31983655

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03795121A Withdrawn EP1530510A1 (de) 2002-08-27 2003-08-15 Verfahren zur hydrophobierung der oberfläche eines porösen substrats unter beibehaltung seiner porosität

Country Status (3)

Country Link
EP (1) EP1530510A1 (de)
AU (1) AU2003253192A1 (de)
WO (1) WO2004024407A1 (de)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US8958917B2 (en) 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
US9056783B2 (en) 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
KR101185613B1 (ko) 2004-04-27 2012-09-24 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 소프트 리소그래피용 복합 패터닝 장치
US7799699B2 (en) 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US8217381B2 (en) 2004-06-04 2012-07-10 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US7943491B2 (en) 2004-06-04 2011-05-17 The Board Of Trustees Of The University Of Illinois Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp
CN104716170B (zh) 2004-06-04 2019-07-26 伊利诺伊大学评议会 用于制造并组装可印刷半导体元件的方法和设备
KR100635261B1 (ko) * 2005-08-12 2006-10-23 주식회사 나노텍세라믹스 폴리머 배합물 기재의 접착개선제 및 이를 포함하는 폴리머배합조성물
KR101519038B1 (ko) 2007-01-17 2015-05-11 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 프린팅­기반 어셈블리에 의해 제조되는 광학 시스템
KR101755207B1 (ko) 2008-03-05 2017-07-19 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 펴고 접을 수 있는 전자장치
WO2010005707A1 (en) 2008-06-16 2010-01-14 The Board Of Trustees Of The University Of Illinois Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
JP5646492B2 (ja) 2008-10-07 2014-12-24 エムシー10 インコーポレイテッドMc10,Inc. 伸縮可能な集積回路およびセンサアレイを有する装置
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
WO2010132552A1 (en) 2009-05-12 2010-11-18 The Board Of Trustees Of The University Of Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
WO2011041727A1 (en) 2009-10-01 2011-04-07 Mc10, Inc. Protective cases with integrated electronics
US10441185B2 (en) 2009-12-16 2019-10-15 The Board Of Trustees Of The University Of Illinois Flexible and stretchable electronic systems for epidermal electronics
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
JP6046491B2 (ja) 2009-12-16 2016-12-21 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ コンフォーマル電子機器を使用した生体内での電気生理学
EP2974673B1 (de) 2010-03-17 2017-03-22 The Board of Trustees of the University of Illionis Implantierbare biomedizinische vorrichtungen auf bioresorbierbaren substraten
WO2012097163A1 (en) 2011-01-14 2012-07-19 The Board Of Trustees Of The University Of Illinois Optical component array having adjustable curvature
WO2012158709A1 (en) 2011-05-16 2012-11-22 The Board Of Trustees Of The University Of Illinois Thermally managed led arrays assembled by printing
KR102000302B1 (ko) 2011-05-27 2019-07-15 엠씨10, 인크 전자, 광학, 및/또는 기계 장치 및 시스템, 그리고 이를 제조하기 위한 방법
US8934965B2 (en) 2011-06-03 2015-01-13 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
JP6231489B2 (ja) 2011-12-01 2017-11-15 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ プログラム可能な変化を被るように設計された遷移デバイス
CN105283122B (zh) 2012-03-30 2020-02-18 伊利诺伊大学评议会 可共形于表面的可安装于附肢的电子器件
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
JP2018524566A (ja) 2015-06-01 2018-08-30 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ 代替的uvセンシング手法
EP3304430A4 (de) 2015-06-01 2019-03-06 The Board of Trustees of the University of Illionis Miniaturisierte elektronische systeme mit drahtlosstrom- und nahfeldkommunikationfähigkeiten
US10925543B2 (en) 2015-11-11 2021-02-23 The Board Of Trustees Of The University Of Illinois Bioresorbable silicon electronics for transient implants
CN106965273A (zh) * 2017-04-17 2017-07-21 南京林业大学 利用常压等离子体改性塑料薄膜制备环保胶合板的方法
CN107236546B (zh) * 2017-06-23 2019-07-23 河北麦森钛白粉有限公司 与植物和/或微生物联用的土壤修复促进剂的制备方法
US11299644B2 (en) * 2017-11-30 2022-04-12 Hewlett-Packard Development Company, L.P. Anti-coalescing agent for three-dimensional printing
DE102019103765B4 (de) 2019-02-14 2023-01-12 Umicore Ag & Co. Kg Verfahren zur Herstellung von Autoabgaskatalysatoren

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1155696B (de) * 1955-02-08 1963-10-10 Bradford Dyers Ass Ltd Verfahren zur Herstellung sehr duenner, wasserabstossender UEberzuege auf nicht poroesen Stoffen, wie Kunststoffen, Metallen, Keramiken oder Glas
BE550709A (de) * 1956-08-31
US3639154A (en) * 1968-07-20 1972-02-01 Kanegafuchi Spinning Co Ltd Process for manufacturing fibrous structure having excellent recovery from extension by treatment with polyorganosiloxane and a polyethylene glycol or derivative thereof
AU7329598A (en) * 1997-05-28 1998-12-30 Global Surface Aktiengesellschaft Method for coating a surface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004024407A1 *

Also Published As

Publication number Publication date
AU2003253192A1 (en) 2004-04-30
WO2004024407A1 (de) 2004-03-25

Similar Documents

Publication Publication Date Title
WO2004024407A1 (de) Verfahren zur hydrophobierung der oberfläche eines porösen substrats unter beibehaltung seiner porosität
DE68928031T2 (de) Siloxan-Polymere und -Copolymere als Schutzbeschichtungen
EP0754737B1 (de) Beschichtungsmassen auf Basis von in Wasser redispergierbaren, wasserlösliches Polymer und Organosiliciumverbindung enthaltenden Pulvern
EP1144332B1 (de) Form- oder beschichtungsmaterial und dessen verwendung
DE69311639T2 (de) Thermische Behandlung von Siliziumhydrid enthaltenden Materialen in einer Stickstoffoxyd-Atmosphäre
EP1549511B8 (de) Blatt- oder bahnförmige dekorative beschichtungsfolie sowie verfahren zum herstellen einer solchen
EP0792846A1 (de) Barriereschichten
EP2174780B1 (de) Aufwickelbarer Fliesenaufbau, Verfahren zur Herstellung sowie die Verwendung
DE102006008130A1 (de) Verfahren zur Beschichtung von Substraten und Trägersubstraten
EP3253589A1 (de) Dekoratives laminat
WO2010112511A1 (de) Haftvermittler für lackierungen und drucke
EP1888812A1 (de) Verfahren zur verbesserung der barriereeigenschaften keramischer sperrschichten
DE19606966A1 (de) System zur Verhinderung von Bewuchs
AU2007260411A9 (en) A method for impregnation of porous objects
DE3016560A1 (de) Verfahren zum aufbringen von metallen auf feste substrate
DE102009054406A1 (de) Wertdokument mit Silikonharzbeschichtung und Verfahren zu seiner Herstellung
DE10161093A1 (de) Dekorfolien mit großer Oberflächenhärte und hohen Kratz- und Abriebfestigkeiten und Verfahren zur Herstellung
DE102007030672B4 (de) Verfahren zum Konservieren poröser Stoffe
DE102016104983B4 (de) Beschichtungszusammensetzung, Beschichtung, Beschichtungssystem, Verfahren zur Herstellung einer Beschichtung und Verwendung einer Beschichtung
DE3029659C2 (de) Anstrichmittel
US3511691A (en) Method for chemically stabilizing and protecting elongate wood strips
DE102006053192A1 (de) Verfahren zum Schutz von patinierten Oberflächen von Kupferprodukten sowie patiniertes Kupferprodukt
DE2005190A1 (de) Verfahren zur Erzeugung wasserabstoßender Oberflächen
DE102007058712A1 (de) Modulares Sol-Gel-System und Verfahren zum Einstellen der Eigenschaften des Sol-Gel-Systems
KR102385634B1 (ko) 한지의 함습 방지 및 장기 보존을 위한 발수 한지 제조 방법 및 이에 의해 제조된 발수 한지

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070809

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071220