EP1528348B1 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP1528348B1
EP1528348B1 EP04024691.0A EP04024691A EP1528348B1 EP 1528348 B1 EP1528348 B1 EP 1528348B1 EP 04024691 A EP04024691 A EP 04024691A EP 1528348 B1 EP1528348 B1 EP 1528348B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
structures
tubes
housing
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04024691.0A
Other languages
English (en)
French (fr)
Other versions
EP1528348A1 (de
Inventor
Peter Dr. Geskes
Daniel Hendrix
Rainer Lutz
Ulrich Maucher
Jens Richter
Martin Schindler
Michael Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Priority to JP2006534726A priority Critical patent/JP4676438B2/ja
Priority to US10/576,523 priority patent/US20070017661A1/en
Priority to PCT/EP2004/011867 priority patent/WO2005040708A1/de
Priority to BRPI0415609-9A priority patent/BRPI0415609A/pt
Publication of EP1528348A1 publication Critical patent/EP1528348A1/de
Application granted granted Critical
Publication of EP1528348B1 publication Critical patent/EP1528348B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1653Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having a square or rectangular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Definitions

  • the invention relates to a heat exchanger, in particular for a motor vehicle, according to the preamble of claim 1, DE 10060102 discloses such a heat exchanger.
  • a heat exchanger is provided with a housing and at least one tube arranged in the housing, wherein structures are provided between the tubes and the housing and / or the tubes: the primary medium flows through the tubes.
  • the secondary medium is guided in the interstices between the tubes and / or between the tubes and the housing, in which also the structures are arranged are.
  • the structures increase the strength through a stiffening with respect to internal and external pressure stresses of the pipes.
  • the coupling between tubes and housing also provides a continuous compensation of the thermal stresses between the primary and secondary sides over the entire length of the radiator, so that the stresses at the ends of the tubes are significantly reduced.
  • the structures also serve for fluid conduction and distribution in the heat exchanger.
  • the ribbed plates also allow a better heat transfer, so that thermoelectric voltages can be reduced by the improved heat transfer. Due to the increased transfer surface, the tubes are better cooled and boiling can be avoided. Overall, this results in a significant increase in the power density of the heat exchanger over conventional heat exchangers without structures.
  • Preferred structures are sheet metal structures in the form of separate tubes, ribbed plates, dimpled plates, or the like. inserted.
  • the heat exchanger may in particular be an exhaust gas heat exchanger or charge air cooler, but also another heat exchanger, for example another gas-liquid heat exchanger in which hot gas flows through the heat exchanger (cooler) in tubes for cooling, a liquid-gas heat exchanger, in which cold gas in pipes passes through the heat exchanger (heater) for heating, or be a liquid-liquid heat exchanger.
  • the tubes and / or the housing can be correspondingly formed with structures, ie, in particular, the pipe surface may be formed rib-like and / or knob-like.
  • the structures preferably have a height of 1 mm to 5 mm, preferably 1 mm to 3 mm, particularly preferably 1.5 mm.
  • the pitch L of the structures is preferably 0.1 to 6 times, more preferably 0.5 to 4 times the structural height h.
  • the transverse dimension Q is preferably 0.15 to 8 times, more preferably 0.5 to 5 times the structural height h.
  • the ratio of channel height between the tubes and channel height in the tube is in the range of structures preferably 0.1 to 1, preferably 0.2 to 0.7.
  • the hydraulic diameter between the tubes in the region with structures is preferably 0.5 mm to 10 mm, preferably 1 mm to 5 mm.
  • the structures with the housing and / or the pipes are firmly connected, in particular soldered.
  • a fixed connection over a large length of the heat exchanger without or with interruptions, for example, for better coolant distribution provided.
  • the fixed connection increases the external pressure resistance (overpressure on the secondary side) very efficiently because the structures provide tie rods that prevent the tube from collapsing.
  • vibrations of the tubes which are relatively unstable in conventional heat exchangers, are damped by the structures, and a very efficient compensation of the thermoelectric voltages is brought about.
  • the fixed connection supports the heat transfer from the tubes to the structures, so that a better cooling of the tubes takes place. By an improved heat transfer can also reduce the number of tubes, so that the production costs can be reduced.
  • the tubes are preferably at least partially formed by flat tubes.
  • Flat tubes are thermodynamically much more efficient than round tubes, but have a lower pressure resistance, which is why pressure-increasing measures are required for flat tubes, as inventively a support structure on the outside of the tube.
  • the flat tubes in particular have an approximately rectangular cross-section with rounded corners.
  • one-piece rectangular tubes can be provided. These can have a longitudinal seam, which can be welded, for example laser-welded, friction-welded, induction-welded, or soldered.
  • the rectangular tubes can also be constructed of shells that are welded or soldered.
  • the tubes may also have any other shape, for example. Oval, and / or have lateral tabs which are soldered or welded.
  • the tubes for tolerance compensation between the housing and tubes and the structures arranged therebetween may be slightly convex.
  • Turbulizers winglets
  • the pipe surface inside and / or outside
  • the pipe surface can also be structured to generate turbulence.
  • the structures preferably have an inhomogeneous structure at least partially, as a result of which coolant can be supplied to critical areas in a targeted manner, so that overheating or boiling can be avoided. A corresponding increased supply of coolant can also be achieved by the partial omission of structures. These measures can be used to optimize the pressure loss of the heat exchanger and the transverse distribution of the coolant in the heat exchanger.
  • the regions with inhomogeneous structures are preferably in the region of the inlet and / or outlet of the fluid. They serve in particular the flow control and to keep the pressure loss as low as possible.
  • the housing is preferably formed in two or more parts, in particular as a U-shaped shell with a lid, wherein a water tank can be formed integrated in the lid.
  • a water tank can be formed integrated in the lid.
  • a one-piece construction for example with a molded-on water tank, possible.
  • Structures may also be provided in the tubes themselves, with all the above-mentioned structures that may be provided between the tubes also being able to be integrated into the tubes.
  • the structures are preferably formed by rib plates or dimpled sheets, which are connected to the pipe, for example, by welding, soldering or jamming.
  • the structures preferably have a height of 1 mm to 5 mm, preferably 1 mm to 3 mm, particularly preferably 1.5 mm.
  • the pitch L of the structures is preferably 0.5 to 6 times the structural height h.
  • the transverse dimension Q is preferably 0.5 to 8 times the structural height h.
  • the hydraulic diameter in the tube in the region with structures is preferably 0.5 mm to 10 mm, preferably 1 mm to 5 mm.
  • An exhaust gas heat exchanger 1 has a two-part housing 2 and a plurality of tubes 3 arranged in this housing 2. Ribs 4 are provided as structures between the individual tubes 3 and between the housing 2 and the tubes 3, these ribbed plates 4 being toothed in accordance with the present exemplary embodiment, as in FIG Fig. 3 shown and described in more detail later.
  • the tubes 3 are in the present case flat tubes.
  • the housing 2 in which the tubes 3 are arranged consists of a U-shaped first housing part 2 'and a housing cover 2 ", which is set from above onto the first housing part 2.
  • the housing 2' For the inlet and outlet of the coolant (liquid secondary medium ) are two coolant nozzle 5 in the housing cover 2 "provided, wherein the flow direction of the coolant in DC operation in Fig. 2 is shown by dashed arrows. It is also possible to flow through in countercurrent operation, including the flow direction is reversed. Since the coolant is passed through the housing 2 and around the tubes 3, the fin sheets 4 are arranged on the coolant side.
  • the straight toothed ribbed plates 4 point in the direction of in Fig. 3 Arrow shown with a solid line a slight passage and in the dashed line arrow on a heavier passage for the coolant.
  • the flow can be influenced.
  • these can also specifically support the coolant delivery to particularly critical points, including the rib sheets 4 are at least partially formed inhomogeneous.
  • a simple variant of a ribbed plate is shown with a rib running in a straight direction, which has a longitudinal pitch L of 2.4 mm and a rib or structural height h of 1.5 mm.
  • the ribbed sheet can also be bent from a perforated plate, so that the individual corrugations are permeable due to the perforation.
  • a corresponding structure for a charge air cooler is used.
  • Fig. 5a-d show various inhomogeneous regions of the rib sheets 4 forming structures. These cause a better distribution of the fluid in the inflow.
  • the in Fig. 5a is shown, transverse distribution channels are provided by forming or stamping.
  • the rib bleaching 4 were partially cut off.
  • Fig. 5d shows a variant with a special formed on the rib sheet 4 manifold structure. A the FIGS. 5a to 5d corresponding inhomogeneous region can also be provided on the outflow side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

  • Die Erfindung betrifft einen Wärmetauscher, insbesondere für ein Kraftfahrzeug, gemäß dem Oberbegriff des Anspruchs 1, DE 10060102 offenbart einen solchen Wärmetauscher.
  • Um die zunehmenden Anforderungen an moderne Motoren bezüglich Emissionsreduzierung und Kraftstoffverbrauch erfüllen zu können, sind umfangreiche Maßnahmen, wie zum Beispiel erhöhte Aufladung, genauere Beeinflussung der Verbrennungsbedingungen, erforderlich. Dies führt auch bei Kraftfahrzeug-Wärmetauschern zu härteren Einsatzbedingungen, nämlich höheren Gas- und Kühlmitteldrücken, erhöhten Temperaturen und größeren Volumendurchsätzen. Gleichzeitig wachsen die Anforderungen an die Leistungsdichte und Lebensdauer. Teilweise sind daher neue Kühlkonzepte erforderlich. So werden bei Ladeluft-Kühlern die herkömmlicher Weise verwendeten Luft/Luft-Kühler zumindest teilweise durch Luft/Flüssigkeits-Kühler ersetzt, um die geforderten Leistungen und Leistungsdichten zu erzielen, die auf Grund der hohen Motoraufladung erforderlich sind. Bei Abgas-Wärmetauschern sind immer höhere Abgasrückführraten erforderlich bei ebenfalls immer härteren Betriebsbedingungen bezüglich Drücken, Temperaturen und Leistungsdichten. Somit treten bei modernen Wärmetauschern immer höhere mechanische Belastungen auf, insbesondere in Hinblick auf Druck und Schwingungen.
  • Hohe Temperaturunterschiede des zu kühlenden Primärmediums (in der Regel gasförmig) und des kühlenden Sekundärmediums (hier in der Regel flüssig) führen zu unterschiedlichen Bauteilerhitzungen auf der Primär- und Sektundärseite. Bei Abgas-Wärmetauschern kann die Temperaturdifferenz bis zu über 700K, bei Ladeluft-Kühlern bis zu 300K betragen. Dabei kommt es zu in Folge unterschiedlicher thermischer Längenausdehnungen zwischen Primär- und Sekundärseite zu starken Thermospannungen. Bei schnellen Wechseln des Betriebszustands können diese Thermospannungen durch ungleichmäßige Temperaturverteilungen noch verstärkt werden (Thermoschock).
  • Auf Grund höherer Leistungsdichten der Wärmetauscher erhöht sich zudem die Gefahr des Siedens des Kühlmittels, was zu starken Leistungs- und Lebensdauereinbußen führen kann.
  • Schließlich sind die verwendeten Prozesse und Materialien wegen des Auftretens stark korrosiver Medium, z.B. Kondensat aus dem Abgas beim Abgas-Wärmetauscher, stark eingeschränkt, was bei weiter zunehmenden Anforderungen an die Leistungsdichte zu immer größeren Problemen führt, eine dauerfeste technische Lösung zur Verfügung zu stellen, eine ausreichende Innen- und Außendruckfestigkeit der Strömungskanäle, ein Vermeiden des Siedens und ausreichende Festigkeit gegen Schwingungsanregungen und Thermospannungen miteinander zu vereinen.
  • Es ist Aufgabe der Erfindung, einen verbesserten Wärmetauscher zur Verfügung zu stellen.
  • Diese Aufgabe wird gelöst durch einen Wärmetauscher mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
  • Erfindungsgemäß ist ein Wärmetauscher vorgesehen, mit einem Gehäuse und mindestens einem in dem Gehäuse angeordneten Rohr, wobei Strukturen zwischen den Rohren und dem Gehäuse und/oder den Rohren vorgesehen sind: Das Primärmedium durchströmt die Rohre. Das Sekundärmedium wird in den Zwischenräumen zwischen den Rohren und/oder zwischen den Rohren und dem Gehäuse geführt, in denen auch die Strukturen angeordnet sind. Die Strukturen erhöhen die Festigkeit durch eine Versteifung bezüglich Innen- und Außendruckbeanspruchungen der Rohre. Durch die Koppelung zwischen Rohren und Gehäuse erfolgt zudem ein kontinuierlicher Ausgleich der Thermospannungen zwischen Primär- und Sekundärseite über die gesamte Kühlerlänge, so dass die Spannungen an den Enden der Rohre deutlich reduziert werden. Die Strukturen dienen zudem der Fluidleitung und - verteilung im Wärmetauscher. Dabei ermöglichen die Rippenbleche ferner einen besseren Wärmeübergang, so dass durch die verbesserte Wärmeübertragung Thermospannungen reduziert werden können. Durch die erhöhte Übertragungsfläche werden die Rohre besser gekühlt und ein Sieden kann vermieden werden. Insgesamt ergibt sich somit eine erhebliche Steigerung der Leistungsdichte des Wärmetauschers gegenüber herkömmlichen Wärmetauschern ohne Strukturen. Bevorzugt werden als Strukturen Blechstrukturen in Form von separaten Rohren, Rippenblechen, Noppenblechen, o.ä. eingeschoben. Der Wärmetauscher kann insbesondere ein Abgas-Wärmetauscher oder Ladeluft-Kühler, jedoch auch ein anderer Wärmetauscher, beispielsweise ein anderer Gas-Flüssigkeits-Wärmetauscher, bei dem heißes Gas in Rohren den Wärmetauscher (Kühler) zur Kühlung durchströmt, ein Flüssigkeits-Gas-Wärmetauscher, bei dem kaltes Gas in Rohren den Wärmetauscher (Heizer) zum Erwärmen durchströmt, oder ein Flüssigkeits-Flüssigkeits-Wärmetauscher sein. Anstelle der Verwendung von Blechstrukuren können auch die Rohre und/oder das Gehäuse entsprechend mit Strukturen ausgebildet sein, d.h. insbesondere kann die Rohroberfläche rippenartig und/oder noppenartige ausgebildet sein. Die Strukturen weisen bevorzugt eine Höhe von 1 mm bis 5 mm, vorzugsweise 1 mm bis 3 mm, insbesondere bevorzugt 1,5 mm auf. Die Teilung L der Strukturen beträgt bevorzugt das 0,1- bis 6fache, besonders bevorzugt das 0,5- bis 4fache der Strukturhöhe h. Die Querteilung Q beträgt bevorzugt das 0,15- bis 8fache, besonders bevorzugt das 0,5- bis 5fache der Strukturhöhe h. Das Verhältnis von Kanalhöhe zwischen den Rohren und Kanalhöhe im Rohr beträgt im Bereich von Strukturen bevorzugt 0,1 bis 1, vorzugsweise 0,2 bis 0,7. Der hydraulische Durchmesser zwischen den Rohren beträgt im Bereich mit Strukturen bevorzugt 0,5 mm bis 10 mm, vorzugsweise 1 mm bis 5 mm.
  • Bevorzugt sind die Strukturen mit dem Gehäuse und/oder den Rohren fest verbunden, insbesondere verlötet. Dabei ist insbesondere eine feste Verbindung über einen Großteil Länge des Wärmetauschers ohne oder mit Unterbrechungen, beispielsweise zur besseren Kühlmittelverteilung, vorgesehen. Durch die feste Verbindung wird sehr effizient die Außendruckfestigkeit (Überdruck auf der Sekundärseite) erhöht, da die Strukturen Zuganker bereitstellen, die das Einfallen des Rohres verhindern. Weiterhin werden Schwingungen der bei herkömmlichen Wärmetauschern relativ labilen Rohre durch die Strukturen gedämpft, sowie ein sehr effizienter Ausgleich der Thermospannungen herbeigeführt. Ferner unterstützt die feste Verbindung den Wärmeübergang von den Rohren zu den Strukturen, so dass eine bessere Kühlung der Rohre erfolgt. Durch einen verbesserten Wärmeübergang lässt sich außerdem die Zahl der Rohre reduzieren, so dass die Herstellungskosten gesenkt werden können.
  • Die Rohre werden vorzugsweise zumindest teilweise durch Flachrohre gebildet. Dabei sind Flachrohre thermodynamisch wesentlich leistungsfähiger als Rundrohre, haben jedoch eine geringere Druckfestigkeit, weshalb bei Flachrohren druckfestigkeitssteigernde Maßnahmen erforderlich sind, wie erfindungsgemäß eine Stützstruktur auf der Rohraußenseite. Dabei haben die Flachrohre insbesondere einen etwa rechteckförmigen Querschnitt mit gerundeten Ecken. Ferner können einteilige Rechteckrohre vorgesehen sein. Diese können eine Längsnaht aufweisen, die geschweißt, bspw. lasergeschweißt, reibgeschweißt, induktionsgeschweißt, oder verlötet sein kann. Die Rechteckrohre können auch aus Schalen aufgebaut sein, die verschweißt oder verlötet sind. Die Rohre können auch eine beliebige andere Form, bspw. oval, aufweisen und/oder seitliche Laschen aufweisen, die verlötet oder verschweißt werden. Ferner können die Rohre zum Toleranzausgleich zwischen Gehäuse und Rohren sowie den dazwischen angeordneten Strukturen leicht ballig ausgebildet sein. In und/oder an den Rohren können auch Turbulatoren (Winglets) vorgesehen sein. Die Rohroberfläche (innen und/oder außen) kann zur Turbulenzerzeugung auch strukturiert ausgebildet sein.
  • Bevorzugt weisen die Strukturen zumindest teilweise einen inhomogenen Aufbau auf, wodurch gezielt Kühlmittel kritischen Bereichen zugeleitet werden kann, so dass ein Überhitzen oder Sieden vermieden werden kann. Eine entsprechende erhöhte Zuleitung von Kühlmittel kann auch durch das teilweise Weglassen von Strukturen erreicht werden. Durch diese Maßnahmen lässt sich der Druckverlust des Wärmetauschers und die Querverteilung des Kühlmittel im Wärmetauscher optimieren. Die Bereiche mit inhomogenen Strukturen liegen vorzugsweise im Bereich des Ein- und/oder Auslaufs des Fluids. Sie dienen insbesondere der Strömungslenkung und um den Druckverlust möglichst gering zu halten.
  • Durch eine zumindest teilweise Verzahnung lässt sich die Stabilität der Strukturen erhöhen und ferner die Strömungswege des Kühlmittels optimieren.
  • Zum vereinfachten Bau des Wärmetauschers ist das Gehäuse bevorzugt zwei- oder mehrteilig ausgebildet, insbesondere als U-förmige Schale mit einem Deckel, wobei ein Wasserkasten im Deckel integriert ausgebildet sein kann. Prinzipiell ist jedoch auch ein einteiliger Aufbau, beispielsweise mit einem angeformten Wasserkasten, möglich.
  • Strukturen können auch in den Rohren selbst vorgesehen sein, wobei alle o.g. Strukturen, die zwischen den Rohren vorgesehen sein können, auch in die Rohre integriert werden können. Die Strukturen werden bevorzugt durch Rippenbleche oder Noppenbleche gebildet, die beispielsweise durch Verschweißen, Verlöten oder Verklemmen mit dem Rohr verbunden sind. Die Strukturen weisen bevorzugt eine Höhe von 1 mm bis 5 mm, vorzugsweise 1 mm bis 3 mm, insbesondere bevorzugt 1,5 mm auf. Die Teilung L der Strukturen beträgt bevorzugt das 0,5- bis 6fache der Strukturhöhe h. Die Querteilung Q beträgt bevorzugt das 0,5- bis 8fache der Strukturhöhe h. Der hydraulische Durchmesser im Rohr beträgt im Bereich mit Strukturen bevorzugt 0,5 mm bis 10 mm, vorzugsweise 1 mm bis 5 mm.
  • Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung im Einzelnen erläutert. In der Zeichnung zeigen:
  • Fig. 1
    einen Schnitt durch einen Abgas-Wärmetauscher,
    Fig. 2
    eine perspektivische Ansicht des Wärmetauschers von Fig. 1,
    Fig. 3
    eine schematische perspektivische Ansicht eines Rippenblechs,
    Fig. 4
    eine schematische perspektivische Ansicht eines Rippenblechs gemäß einer Variante, und
    Fig. 5a-d
    verschiedene Varianten von Einlaufbereichen.
  • Ein Abgas-Wärmetauscher 1 weist ein zweiteiliges Gehäuse 2 und eine Mehrzahl in diesem Gehäuse 2 angeordnete Rohre 3 auf. Zwischen den einzelnen Rohren 3 sowie zwischen dem Gehäuse 2 und den Rohren 3 sind als Strukturen Rippenbleche 4 vorgesehen, wobei diese Rippenbleche 4 gemäß dem vorliegenden Ausführungsbeispiel verzahnt ausgebildet sind, wie in Fig. 3 dargestellt und an späterer Stelle näher beschrieben. Bei den Rohren 3 handelt es sich vorliegend um Flachrohre.
  • Durch die einzelnen Rohre 3 wird das vom Motor kommende, zu kühlende Abgas (gasförmiges Primärmedium) geleitet, wobei in Fig. 2 die Strömungsrichtung durch zwei durchgehende Pfeile angedeutet ist. Das Gehäuse 2, in dem die Rohre 3 angeordnet sind, besteht aus einem U-förmigen ersten Gehäuseteil 2' und einem Gehäusedeckel 2", welcher von oben auf das erste Gehäuseteil 2' gesetzt ist. Zum Ein- und Auslass des Kühlmittels (flüssiges Sekundärmedium) sind zwei Kühlmittelstutzen 5 im Gehäusedeckel 2" vorgesehen, wobei die Strömungsrichtung des Kühlmittels im Gleichstrombetrieb in Fig. 2 durch gestrichelte Pfeile dargestellt ist. Es ist ebenfalls ein Durchströmen im Gegenstrombetrieb möglich, wozu die Strömungsrichtung umgekehrt ist. Da das Kühlmittel durch das Gehäuse 2 und um die Rohre 3 geleitet wird, sind die Rippenbleche 4 kühlmittelseitig angeordnet.
  • Die gerade verzahnt ausgebildeten Rippenbleche 4 weisen in Richtung des in Fig. 3 mit einer durchgehenden Linie dargestellten Pfeils einen leichten Durchgang und in der mit einer gestrichelten Linie dargestellten Pfeil einen schwereren Durchgang für das Kühlmittel auf. Durch Veränderungen der Längsteilung L und der Querteilung Q sowie der Rippenhöhe h kann die Strömung beeinflusst werden. Neben einer geraden Verzahnung ist auch eine Schrägverzahnung möglich. Bei entsprechender Ausgestaltung der einzelnen Rippenbleche 4 können diese auch gezielt die Kühlmittelförderung zu besonders kritischen Stellen unterstützen, wozu die Rippenbleche 4 zumindest bereichsweise inhomogen ausgebildet sind.
  • In Fig. 4 ist eine einfache Variante eines Rippenblechs mit einer in gerader Richtung verlaufenden Rippe dargestellt, das eine Längsteilung L von 2,4 mm und eine Rippen- oder Strukturhöhe h von 1,5 mm aufweist. Dabei kann das Rippenblech auch aus einem Lochblech gebogen sein, so dass die einzelnen Wellenflanken auf Grund der Lochung durchlässig sind.
  • Gemäß einer nicht in der Zeichnung dargestellten Variante ist ein entsprechender Aufbau für einen Ladeluft-Kühler verwendet.
  • Fig. 5a-d zeigen verschiedene inhomogene Bereiche der die Rippenbleche 4 bildenden Strukturen. Diese bewirken eine bessere Verteilung des Fluids bei der Zuströmung. Gemäß der ersten Variante, die in Fig. 5a dargestellt ist, sind Querverteilungskanäle durch Umformen oder Stanzen vorgesehen. Gemäß den Varianten von Fig. 5b und 5c wurden die Rippenbleiche 4 teilweise abgeschnitten. Fig. 5d zeigt eine Variante mit eine speziellen am Rippenblech 4 ausgebildeten Verteilerstruktur. Ein den Figuren 5a bis 5d entsprechender inhomogener Bereich kann auch auf der Ausströmseite vorgesehen sein.

Claims (14)

  1. Wärmetauscher, insbesondere für Kraftfahrzeuge, mit einem Gehäuse (2) und in dem Gehäuse (2) angeordneten Rohren (3), wobei Strukturen in dem Bereich zwischen den Rohren (3) vorgesehen sind, wobei die Strukturen als Blechstrukturen gebildet sind, wobei die Blechstrukturen Rippenbleche sind, dadurch gekennzeichnet, dass Strukturen zwischen den Rohren (3) und dem Gehäuse (2) angeordnet sind, wobei die Strukturen aus Blechstrukturen gebildet sind, wobei die Blechstrukturen Rippenbleche (4) sind.
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass die Strukturen direkt am Gehäuse (2) und/oder an den Rohren (3) ausgebildet sind.
  3. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strukturen mit dem Gehäuse (2) und/oder den Rohren (3) fest verbunden, insbesondere verlötet, sind.
  4. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rohre (3) zumindest teilweise durch Flachrohre gebildet sind.
  5. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rohre (3) Stütznoppen auf der Rohraußenseite aufweisen.
  6. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rohre (3) eine Rohroberfläche innen und/oder außen aufweisen, die zur Turbulenzerzeugung strukturiert ausgebildet ist.
  7. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strukturen (4) zumindest teilweise eine inhomogene Struktur aufweisen.
  8. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strukturen (4) zumindest teilweise verzahnt ausgebildet sind.
  9. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (2) zwei- oder mehrteilig ausgebildet ist.
  10. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strukturen im Inneren mindestens eines Rohres angeordnet sind.
  11. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strukturen als zumindest eine Rippe ausgebildet ist, die insbesondere gerade oder tiefengewellt ausgebildet ist und/oder insbesondere Kiemen aufweist.
  12. Verwendung eines Wärmetauschers nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in den Rohren (3) ein zu kühlendes Medium und im Zwischenraum zwischen dem Gehäuse (2) und den Rohren (3) und Strukturen (4) ein Kühlmittel strömt.
  13. Verwendung eines Wärmetauschers nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strukturen (4) im Gehäuse (2) des Wärmetauschers (1) kühlmittelseitig angeordnet sind.
  14. Verwendung eines Wärmetauschers nach einem der Ansprüche 1 bis 13 als Abgas-Wärmetauscher oder Ladeluft-Kühler eines Kraftfahrzeugs.
EP04024691.0A 2003-10-20 2004-10-15 Wärmetauscher Active EP1528348B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006534726A JP4676438B2 (ja) 2003-10-20 2004-10-20 熱交換器
US10/576,523 US20070017661A1 (en) 2003-10-20 2004-10-20 Heat exchanger
PCT/EP2004/011867 WO2005040708A1 (de) 2003-10-20 2004-10-20 Wärmetauscher
BRPI0415609-9A BRPI0415609A (pt) 2003-10-20 2004-10-20 trocador de calor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10349259 2003-10-20
DE10349259 2003-10-20

Publications (2)

Publication Number Publication Date
EP1528348A1 EP1528348A1 (de) 2005-05-04
EP1528348B1 true EP1528348B1 (de) 2014-03-05

Family

ID=34399543

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04024691.0A Active EP1528348B1 (de) 2003-10-20 2004-10-15 Wärmetauscher

Country Status (3)

Country Link
EP (1) EP1528348B1 (de)
CN (1) CN100447518C (de)
DE (1) DE102004050567A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107246610A (zh) * 2017-05-22 2017-10-13 中国北方车辆研究所 一种扩散燃烧室及包括燃烧室的燃烧器系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005042315A1 (de) * 2005-09-06 2007-03-08 Behr Gmbh & Co. Kg Kühlmittelkühler, insbesondere für ein Kraftfahrzeug
US8002022B2 (en) 2005-09-16 2011-08-23 Behr Gmbh & Co. Kg Heat exchanger, in particular exhaust gas heat exchanger for motor vehicles
US8915292B2 (en) 2006-02-07 2014-12-23 Modine Manufacturing Company Exhaust gas heat exchanger and method of operating the same
DE102006005362A1 (de) * 2006-02-07 2007-08-09 Modine Manufacturing Co., Racine Abgaswärmetauscher in einer Abgasrückführungsanordnung
WO2008113540A2 (de) 2007-03-16 2008-09-25 Behr Gmbh & Co. Kg Strömungskanal, wärmetauscher, abgasrückführsystem, ladeluft-zuführsystem, verwendung eines wärmetauschers
DE102007024379A1 (de) * 2007-05-23 2008-11-27 Mingatec Gmbh Plattenapparat für Wärmeübertragungsvorgänge
DE102009012027A1 (de) * 2009-03-10 2010-09-16 Behr Gmbh & Co. Kg Vorrichtung zur Zuführung von Verbrennungsluft zu einem Verbrennungsmotor
DE102009035723B3 (de) * 2009-07-31 2011-02-03 Pierburg Gmbh Kühlvorrichtung für eine Verbrennungskraftmaschine
ES2401626B1 (es) 2011-10-05 2014-09-02 Valeo Térmico, S. A. Intercambiador de calor para gases, en especial de los gases de escape de un motor
DE102012217872A1 (de) * 2012-09-28 2014-04-03 Behr Gmbh & Co. Kg Wärmeübertrager
CN105486150A (zh) * 2016-01-11 2016-04-13 芜湖美的厨卫电器制造有限公司 换热件和换热器
CN110513678B (zh) * 2017-05-22 2021-06-08 中国北方车辆研究所 一种车辆加温器系统
CN107246346B (zh) * 2017-05-22 2018-11-27 中国北方车辆研究所 一种燃烧器安装底座及包括底座的燃烧器系统
CN110274225B (zh) * 2017-05-22 2020-10-30 中国北方车辆研究所 一种安装支架及其燃烧器系统
GB2565145B (en) * 2017-08-04 2021-06-30 Hieta Tech Limited Heat exchanger
CN108626037A (zh) * 2018-06-11 2018-10-09 山东宇洋汽车尾气净化装置有限公司 一种紧凑式egr冷却器
CN109612311A (zh) * 2019-01-17 2019-04-12 广东环葆嘉节能科技有限公司 一种换热组件及换热器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174169A (ja) * 1999-12-20 2001-06-29 Denso Corp 熱交換器
JP2001330394A (ja) * 2000-05-22 2001-11-30 Denso Corp 排気熱交換器
JP3985509B2 (ja) * 2000-12-19 2007-10-03 株式会社デンソー 排気熱交換装置
JP4221931B2 (ja) * 2001-07-10 2009-02-12 株式会社デンソー 排気熱交換器
US7077190B2 (en) * 2001-07-10 2006-07-18 Denso Corporation Exhaust gas heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107246610A (zh) * 2017-05-22 2017-10-13 中国北方车辆研究所 一种扩散燃烧室及包括燃烧室的燃烧器系统
CN107246610B (zh) * 2017-05-22 2020-05-12 中国北方车辆研究所 一种扩散燃烧室及包括燃烧室的燃烧器系统

Also Published As

Publication number Publication date
CN1898519A (zh) 2007-01-17
DE102004050567A1 (de) 2005-06-09
CN100447518C (zh) 2008-12-31
EP1528348A1 (de) 2005-05-04

Similar Documents

Publication Publication Date Title
WO2005040708A1 (de) Wärmetauscher
EP1528348B1 (de) Wärmetauscher
EP1999423B1 (de) Abgaskühler für ein kraftfahrzeug
EP2066992B1 (de) Abgaskühler
DE102008002430C5 (de) Abgaswärmetauscher mit schwingungsgedämpftem Tauscher-Rohrbündel
EP1929231B1 (de) Wärmeübertrager, insbesondere abgaswärmeübertrager für kraftfahrzeuge
EP2092259B1 (de) Wärmeübertrager für kraftfahrzeug mit stranggepresstem gekrümmten strömungskanal
DE102009047620B4 (de) Wärmeübertrager mit Rohrbündel
EP1996888B1 (de) Wärmetauscher für ein kraftfahrzeug
DE102007049665A1 (de) Wärmeaustauscher
DE102005035258A1 (de) Fluidleitende Rippenplatte, Verfahren zur Herstellung derselben und Wärmetauscherrohr und Wärmetauscher oder Gaskühlungsvorrichtung des Wärmetauschertyps mit einer Rippenplatte im Innern
DE102008001659B4 (de) Abgaswärmetauscher mit integrierter Montageschnittstelle
DE102008001660A1 (de) Leichtbau Strömungswärmetauscher
DE102007005370A1 (de) Wärmetauscher
DE102006041985A1 (de) Wärmetauscherrohr
DE10136861A1 (de) Luftgekühlter Ladeluftkühler
DE102007059673A1 (de) Wärmetauscher zum Wärmetausch zwischen einem ersten Fluid und einem zweiten Fluid
EP1522813A1 (de) Vorrichtung zum Austausch von Wärme und Verfahren zur Herstellung einer derartigen Vorrichtung
DE112015005115T5 (de) Wärmeaustausch-Vorrichtung und Herstellungsverfahren für eine Wärmeaustausch-Vorrichtung
EP3039372B1 (de) Wärmeübertrager
DE102009000263B4 (de) Wärmetauscher für den Abgasstrang eines Kraftfahrzeugs mit verbessertem Temperaturausgleich im Kühlmittel
DE102005045098B4 (de) Kühlvorrichtung für eine Verbrennungskraftmaschine
DE10321065A1 (de) Kraftfahrzeug und Kraftstoffkühler mit lamellenartigen Innenstrukturen zum Anschluss an die Klimaanlage
EP2950031B1 (de) Abgaswärmetauscher aus duplexstahl
EP1832830B1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20051104

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20110510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502004014536

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F28D0007160000

Ipc: F28F0009020000

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 21/00 20060101ALN20130726BHEP

Ipc: F28F 9/02 20060101AFI20130726BHEP

Ipc: F28F 1/14 20060101ALI20130726BHEP

Ipc: F28D 7/16 20060101ALI20130726BHEP

Ipc: F28F 1/12 20060101ALI20130726BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130917

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 655171

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014536

Country of ref document: DE

Effective date: 20140417

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140605

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014536

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140707

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

26N No opposition filed

Effective date: 20141208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014536

Country of ref document: DE

Effective date: 20141208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004014536

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004014536

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20150324

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004014536

Country of ref document: DE

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE

Effective date: 20150324

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004014536

Country of ref document: DE

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE

Effective date: 20140307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141015

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141015

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 655171

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20041015

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181026

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231020

Year of fee payment: 20