EP1526958A1 - Formkern eines spritzgiesswerkzeugs - Google Patents
Formkern eines spritzgiesswerkzeugsInfo
- Publication number
- EP1526958A1 EP1526958A1 EP03735314A EP03735314A EP1526958A1 EP 1526958 A1 EP1526958 A1 EP 1526958A1 EP 03735314 A EP03735314 A EP 03735314A EP 03735314 A EP03735314 A EP 03735314A EP 1526958 A1 EP1526958 A1 EP 1526958A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- mandrel
- mold core
- central axis
- cooling tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B99/00—Subject matter not provided for in other groups of this subclass
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47G—HOUSEHOLD OR TABLE EQUIPMENT
- A47G9/00—Bed-covers; Counterpanes; Travelling rugs; Sleeping rugs; Sleeping bags; Pillows
- A47G9/06—Travelling rugs; Sleeping rugs
- A47G9/064—Travelling rugs; Sleeping rugs for covering a standing user, e.g. transformable into a robe
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B3/00—Devices or single parts for facilitating escape from buildings or the like, e.g. protection shields, protection screens; Portable devices for preventing smoke penetrating into distinct parts of buildings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/72—Heating or cooling
- B29C45/73—Heating or cooling of the mould
- B29C45/7312—Construction of heating or cooling fluid flow channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/72—Heating or cooling
- B29C45/73—Heating or cooling of the mould
- B29C2045/7362—Heating or cooling of the mould turbulent flow of heating or cooling fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/081—Specified dimensions, e.g. values or ranges
- B29C2949/0811—Wall thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/25—Solid
- B29K2105/253—Preform
Definitions
- the invention relates to a mold core of an injection molding tool for injection molding plastic preforms, the mold core having the shape of a hollow sleeve closed on one side with a central axis, an outer surface, an inner surface and a hollow one in the mold core at a distance from it inner surface arranged cooling pipe in connection with coolant supply lines and coolant discharge lines.
- PET polyethylene terephthalate
- Preforms made of PET are produced in large numbers in high-performance injection molding machines. These preforms usually have relatively thick walls, usually from 1.5 mm to 4.0 mm. They are injection molded at relatively high temperatures of around 260 ° C to 310 ° C. The hollow preforms, which are closed on one side, are cooled after the injection molding, on the one hand on the mold core and, on the other hand, after removal from the injection molding machine, in order to prevent their deformation or sticking together. Their thick walls act like a heat insulator that traps the heat in the wall.
- the cooling of the surface of the molded preforms must be sufficient to allow them to be ejected from the mold without damage. In addition, additional cooling is necessary in order to also dissipate the heat coming from the interior of the walls to the surface. If the cooling in the injection molding machine is not carried out after the injection molding and the preforms after they have been removed from the machine, the temperature of the surface rises undesirably and causes the sprayed preforms to stick to one another, prone to damage to the surface, and bend or discard. Measures have therefore always been taken to improve the cooling of the molded preforms.
- coolant preferably water
- the mold core could be cooled somewhat via its inner surface.
- this cooling could still be improved and the entire production of preforms could thus be improved, in particular made more powerful.
- the object of the present invention is therefore to provide a mandrel of the type specified in the introduction, the cooling effect of which has been significantly increased compared to previously used mandrels.
- the cooling tube extends coaxially to the mandrel over its almost entire length and is provided at the downstream end with an outflow opening and that cooling grooves extending approximately transversely to the central axis are provided on the inner surface of the mandrel.
- the cooling tube extends practically into the entire interior of the mandrel and ends only "at the front” at the closed end of the mandrel shortly before the end of the interior in such a way that the cooling water which flows through the cooling tube reaches it leaving its front end through an opening in the cooling tube and coming into contact with the inner surface of the mandrel.
- the mandrel is closed like a bag at the front, and its inner surface forms the outer wall of the coaxial, gap-shaped annular space between the cooling tube and the mandrel. At the back, that is, downstream of the cooling water , this annulus is connected to the coolant discharge line mentioned.
- the mold core is cooled to a certain extent by the contact of the cooling water with its inner surface, but this cooling effect can be improved according to the invention on the one hand by increasing the inner surface of the mold core. This is achieved by additionally introducing cooling fins into the otherwise closed inner surface of the mandrel. In a particularly favorable manner and surprisingly, the cooling effect is additionally increased, on the other hand, by the fact that the cooling fins or cooling grooves located on the inner surface of the mandrel not only extend lengthways but also run transversely to the central axis. "Cross" means vertical only in a special case, you can choose the direction of extension of the Think each cooling groove obliquely to the central axis of the mandrel.
- the cooling grooves do not need to follow a straight line on the way of their extension, but can somehow be curved or undulating. It should only be noted that the majority of the cooling grooves do not run in the direction of the central axis, but at an angle to it.
- cooling grooves running "transversely" to the central axis are correspondingly flowed to during operation, with the result that the coolant is subjected to not inconsiderable turbulence on its way after leaving the cooling tube from its opening front to rear along the gap-shaped annular space
- the cooling effect of the respective mandrel thus increased as a result of an increase in surface area by enlarging the otherwise smooth, closed inner surface of the mandrel, that is to say it contains ribs, grooves, grooves or the like, but on the other hand turbulence occurs in the coolant flow in the course of its flow path, and it is precisely this turbulence that significantly increases the cooling effect.
- the cooling grooves have a pointed and / or round profile in cross section.
- Profile here means the cross section through a cooling groove, which can be “round”, for example the bottom of a U; or “pointed”, such as the lower end of a pointed V. If, for example, a V-shaped profile is also considered two flanks intersecting at an acute angle, it may be particularly preferred to select this angle from the range between 10 ° and 70 °, preferably from the range between 20 ° and 50 °, or to select it at 40 °. This information does not mean that the considered angle of the profile must lie in these areas. This information only means that successful attempts with such angles have already been carried out in practice.
- flanks with "pointed” profiles it is also possible to use curved surfaces for the production of round profiles, as is known, for example, from round threads.
- the cooling grooves run helically according to the invention.
- the cooling grooves extend like a thread.
- This can have any type of geometry, provided that only the smooth surface, if no cooling grooves were provided, is enlarged.
- the radial geometry of the cooling grooves can preferably be designed as a trapezoidal thread or a sawtooth thread. It is advisable to choose a radial geometry for enlarging the surface and producing the turbulence. From a manufacturing point of view, it is also favorable if the cooling grooves run smoothly. Practical trials have already shown that it can be manufactured cheaply if rings, grooves, threads or all of these designs are brought together.
- the cooling grooves extend over that surface area of the mandrel on which the preform is injected. Lines and holders are provided in the rear area of the mandrel, so that the preform to be sprayed is kept away from this rear area of the mandrel. It is therefore not necessary to provide a special feature for cooling there. According to the invention, however, the cooling grooves are provided in the entire surface area, that is to say the area of the outer surface of the mandrel on which the plastic of the molded preform is seated and touches.
- the cooling grooves are provided at least over this surface area on which the preform is injected. It is not excluded that the thicker areas of the holder of the mandrel can also be provided with cooling grooves. However, surprising successes in increasing the cooling effect have already been achieved if cooling fins are provided on the inner surface of the mandrel only in the area of the preform that is seated.
- an outflow opening is provided at the front end of the cooling tube.
- the cooling water emerges from this and leaves the mold core after flowing through the gap-shaped annular space to the rear. If the outflow opening on the cooling tube is now allowed to have at least one recess extending in the direction of the central axis, it is also found that the cooling water emerges from the cooling tube more easily.
- the outflow opening at the front end of the cooling tube can be imagined in the simplest case by cutting off the theoretically closed cooling tube so that the area of the outflow opening is perpendicular to the central axis of the mandrel. The outer edge of such an outflow opening would then be circular.
- this circular edge is now provided with an additional recess, which extends at least partially in the direction of the central axis of the cooling tube, then the area of the outflow opening increases, with the result that the cooling water can exit there more easily into the gap-shaped annular space.
- a recess at the edge of the outflow opening can be thought of as V-shaped, U-shaped or with another profile, provided that the edge does not only follow the circular line, but is extended by said recess.
- the cooling water flows from the outflow opening of the cooling tube, it is intended to provide the main throttling in the course of the flow path in the region of the gap-shaped annular space in which the preform is sprayed on the outside onto the outer surface.
- the coolant discharge lines can even have larger cross sections, so that the coolant relaxes there. There in the rear area, at a greater distance from the molded preform, no cooling, swirling and therefore no large areas are required. The coolant can flow smoothly and relaxed backwards without resistance.
- FIG. 1 shows a cross-sectional view of a mandrel with the thinner region arranged at the front and the feed and discharge lines arranged at the rear, and FIG. 2 greatly enlarged and broken off the detail II according to the circle II in FIG. 1.
- the preferably titanized mold core has the thicker area for the holder, for example in a core plate, shown at the rear (i.e. below) in FIG. 1, and the thinner area 10 at the front, over which the preform (not shown) is stretched after spraying.
- the wall of the mandrel 1 shown in dashed lines has the shape (in FIGS. 1 and 2 above) of a closed, hollow sleeve with the dash-dotted central axis 2.
- the mandrel 1 has an outer surface 3 and an inner surface 4.
- annular space 6 is formed between the inner surface 4 of the mandrel 1 and the cooling tube 5 on the outside.
- the annular space 6 is slit-shaped, i.e. it has a small radial expansion of preferably 1.5 mm to 3 mm, depending on the space available. Ideally, this gives an 80% backflow, i.e. the outflow is 80% of the inflow.
- the radial extension of the rear annular space 6 ' which is located in the thicker mounting area of the mandrel 1, is provided only for the coolant discharged to drain.
- coolant supply line 7 which can be located in a core plate as well as the coolant discharge line 8 arranged further ahead or in FIG. 1.
- the cooling tube 5 is open at the rear, where coolant from the coolant supply line 7 is centered in Direction of the central axis 2 flows upwards and forwards, as well as upwards at the front, where the outflow opening 9 is located on the cooling tube 5.
- cooling water was introduced centrally through the coolant supply line 7 into the cooling tube 5 at the top, and was pressed into the mold core 1 from the outlet opening 9 at the front.
- the cooling water in the gap-shaped annular space 6, parallel to the central axis 2 of the mandrel 1 flowed downward from the front upward from the area of the outlet opening 9 into the enlarged annular space 6 ', in order to flow out of it, outside the cooling tube 5, via the coolant discharge line 8 to be dissipated.
- the inner surface 4 of the mandrel 1 is in the front surface area 10 of the mandrel, on which in operation the one in the drawings I preform, not shown, is injected, provided with a screw thread to form cooling grooves 11.
- the straight lines which are at a small angle to the central axis 2 and which represent the cooling grooves 11.
- the preferred embodiment selected here is a helical cooling groove 11, which extends transversely to the central axis 2 and has a pointed profile.
- the shape of the cooling grooves can also be described with a sawtooth thread with a V-shaped profile, the two cheeks of which represent straight flanks in section. The section through the wall of the mandrel 1 according to FIG. 2 shows this V-shaped profile with the straight flanks.
- FIG. 2 also shows the shape of the outflow opening 9 on the cooling tube 5 at the front. If one were only to consider that edge of the outflow opening 9 which runs perpendicular to the central axis 2 and is designated by 12 in FIG. 2, then a part circle 12 would be seen in a plan view in the direction of the central axis 2. In between there are recesses 13 with an oblique cutting line 14. In other words, the outflow opening 9 on the cooling pipe 5 has four recesses 13 extending along the cutting line 14 in the direction of the central axis 2 (towards this). From the side, these recesses 13 appear in a V-shape at the front end next to the outlet opening 9.
- the cooling tube 5 shown here has four recesses 13 which are evenly distributed on the circumference of the circle 12, namely two recesses which are in line with the paper in FIG and two more in the direction perpendicular thereto, which is why the wall 5 ′ of the cooling tube 5 can be seen on the left in FIG. 2 and the plan view of the section line 14 above.
- cooling water flows through the supply line 7 centrally into the cooling tube 5 upwards and forwards and emerges from the outlet opening 9 at the front in accordance with the arrow 15 in FIG. 2.
- the cooling water As soon as the cooling water has flowed forward over the cutting lines 14, it is directed through the curved inner surface 4 of the mandrel 1 along the arrow 16 (FIG. 2) in an arcuate and radially outward direction.
- the cooling water now touches the inner surface 4 of the mandrel 1 and begins to cool it through intensive contact.
- the cooling water flows in the gap-shaped annular space 6 from front to back parallel to the central axis 2, ie downwards in FIGS. 1 and 2.
- the cooling water On its flow path to the rear, the cooling water passes the cooling grooves 11 running transversely to the central axis 2 and is swirled in accordance with the partially circular arrows 17. In this swirled and turbulent state, the cooling water flows further to the rear (downwards in FIGS. 1 and 2). to then get into the large annular space 6 'for relaxation and flow through the discharge line 8.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Outer Garments And Coats (AREA)
- Respiratory Apparatuses And Protective Means (AREA)
Abstract
Beschrieben wird ein Formkern (1) eines Spritzgiesswerkzeugs zum Spritzgiessen von Vorformlingen aus Kunststoff. Der Formkern (1) hat die Gestalt einer einseitig geschlossenen, hohlen Hülse mit einer Mittelachse, einer äussgeren Oberfläche (3), einer inneren Oberfläche (4) und einem hohlen, in dem Formkern (1) mit Abstand von dessen innerer Oberfläche (4) angeordneten Kühlrohr in Verbindung mit Kühlmittelzuführleitungen und Kühlmittelabführleitungen. Um die Kühlwirkung des Formkerns (1) gegenüber bisher eingesetzten Formkernen wesentlich zu vergrössern, sieht die Erfindung vor, dass sich das Kühlrohr koaxial zum Formkern (1) über dessen nahezu gesamte Länge erstreckt und am abstromseitigen Ende mit einer Ausströmöffnung (9) versehen ist, und dass auf der inneren Oberfläche des Formkerns (1) etwa quer zur Mittelachse (2) verlaufende Kühlnuten (11) angebracht sind.
Description
Formkern eines Spritzgießwerkzeugs
Die Erfindung betrifft einen Formkern eines Spritzgießwerkzeugs zum Spritzgießen von Vorformlin- gen aus Kunststoff, wobei der Formkern die Gestalt einer einseitig geschlossenen, hohlen Hülse hat mit einer Mittelachse, einer äußeren Oberfläche, einer inneren Oberfläche und einem hohlen, in dem Formkern mit Abstand von dessen innerer Oberfläche angeordneten Kühlrohr in Verbindung mit Kuhlmittelzufuhrleitungen und Kuhlmittelabfuhrleitungen.
Es ist bekannt, Flaschen aus mehr oder weniger durchsichtigem Kunststoff aus Vorformlingen zu blasen, insbesondere die bekannten PET-Flaschen (PET=Polyethylenterephthalat). Vorformlinge aus PET werden in großer Stückzahl in leistungsstarken Spritzgießmaschinen hergestellt. Diese Vorformlinge haben gewöhnlich relativ dicke Wände, üblicherweise von 1 ,5 mm bis 4,0 mm. Sie werden bei relativ hohen Temperaturen von etwa 260° C bis 310° C durch Spritzgießen geformt. Die einseitig geschlossenen, hohlen Vorformlinge werden nach dem Spritzgießen zum einen auf dem Formkern und zum anderen auch nach dem Herausnehmen aus der Spritzgießmaschine gekühlt, um ihre Verformung oder ein Aneinanderkleben zu verhindern. Ihre dicken Wände wirken wie ein Wärmeisolator, welcher die Hitze in der Wand festhält.
Um die Herstellungsleistung der bekannten Spritzgießmaschinen zu steigern, versucht man die Kühlzeit zu verringern mit dem Nachteil, daß hier eine Untergrenze nicht unterschritten werden kann, ohne eine Beschädigung der Vorformlinge nach dem Spritzvorgang in Kauf zu nehmen.
Die Kühlung der Oberfläche der gespritzten Vorformlinge muß ausreichen, um deren Auswerfen aus der Spritzform ohne Beschädigung zu erlauben. Darüber hinaus ist eine zusätzliche Kühlung notwendig, um die aus dem Inneren der Wandungen zur Oberfläche gelangende Wärme ebenfalls abzuführen. Falls die Kühlung in der Spritzgießmaschine nach dem Spritzgießen und der Vorformlinge nach deren Herausnehmen aus der Maschine unterlassen wird, steigt die Temperatur der Oberflä- ehe in unerwünschter Weise an und bewirkt, daß die gespritzten Vorformlinge aneinanderkleben, anfällig auf Beschädigung der Oberfläche werden, sich verbiegen oder verwerfen. Es sind daher immer wieder Maßnahmen vorgesehen worden, um die Kühlung der gespritzten Vorformlinge zu verbessern.
In der Praxis hat man so zum Beispiel versucht, das äußere, den Vorformling außen umgebende Werkzeugteil ebenso zu kühlen wie den Formkern. Man hat festgestellt, daß der Vorformling kurz-
zeitig nach seinem Spritzvorgang nach innen auf den Kern schrumpft mit der Folge, daß sich zwischen dem äußeren Werkzeugteil und dem Produkt selbst, dem Vorformling, ein schmaler Spalt ergibt, der den Wärmeübergang von dem äußeren, gekühlten Werkzeugteil auf den Vorformling erheblich erschwert und praktisch eine Kühlung wirkungslos macht. Daher hat man das Augenmerk verstärkt auf die Kühlung des Formkerns gerichtet. Man hat in der Praxis ein Kühlrohr so in den Formkern eingelegt, daß dieses praktisch den ganzen Innenraum des Formkerns einnimmt mit der Ausnahme eines spaltförmigen Ringraumes um das Kühlrohr herum und innerhalb der inneren Oberfläche des Formkerns. Durch am offenen unteren Ende des Kühlrohres angeschlossene Zuführleitungen hat man Kühlmittel, vorzugsweise Wasser, in das Kühlrohr eingeführt und läßt das Wasser die innere Oberfläche des Formkerns kühlend benetzen, wonach das Wasser durch Abführleitungen abgeleitet wird. Tatsächlich konnte man den Formkern über dessen innere Oberfläche einigermaßen kühlen. Man hat aber erkannt, daß diese Kühlung noch verbessert werden könnte und damit die gesamte Produktion von Vorformlingen verbessert, insbesondere leistungsstärker gestaltet werden könnte.
Aufgabe der vorliegenden Erfindung ist es daher, einen Formkern der eingangs näher bezeichneten Art vorzusehen, dessen Kühlwirkung gegenüber bisher eingesetzten Formkernen wesentlich vergrößert ist.
Die Lösung dieser Aufgabe gelingt erfindungsgemäß dadurch, daß sich das Kühlrohr koaxial zum Formkern über dessen nahezu gesamte Länge erstreckt und am abstromseitigen Ende mit einer Ausströmöffnung versehen ist und daß auf der inneren Oberfläche des Formkerns etwa quer zur Mittelachse verlaufende Kühlnuten angebracht sind. Wie bei der im Betrieb bereits verwendeten Praxis erstreckt sich das Kühlrohr praktisch in den gesamten Innenraum des Formkerns und endet nur „vorn" an dem geschlossenen Ende des Formkerns kurz vor dem Ende des Innenraumes derart, daß das Kühlwasser, welches das Kühlrohr durchströmt, dieses an seinem vorderen Ende über eine Öffnung im Kühlrohr verlassen und gegen die innere Oberfläche des Formkerns gelangen kann. Der Formkern ist sackartig vorn geschlossen, und seine innere Oberfläche bildet die Außenwand des koaxialen, spaltförmigen Ringraumes zwischen Kühlrohr und Formkern. Hinten, also abstromig von dem Kühlwasser, ist dieser Ringraum an die erwähnte Kühlmittelabführleitung angeschlossen.
Der Formkern wird durch die Berührung des kühlenden Wassers mit seiner inneren Oberfläche zwar zu einem gewissen Grad gekühlt, diese Kühlwirkung kann erfindungsgemäß aber zum einen dadurch verbessert werden, daß die innere Oberfläche des Formkerns vergrößert wird. Dies gelingt dadurch, daß man zusätzlich Kühlrippen in die sonst geschlossene innere Oberfläche des Formkerns einbringt. In besonders günstiger Weise und überraschend erhöht man den Kühleffekt aber zum anderen zusätzlich dadurch, daß die sich auf der inneren Oberfläche des Formkerns befindenden Kühlrippen oder Kühlnuten nicht nur längs erstrecken, sondern quer zur Mittelachse verlaufen. „Quer" bedeutet nur in einem Spezialfall senkrecht, man kann sich die Erstreckungsrichtung der
jeweiligen Kühlnut auch schräg zur Mittelachse des Formkerns denken. Die Kühlnuten brauchen auch nicht auf dem Weg ihrer Erstreckung einer Geraden zu folgen, sondern können irgendwie gebogen oder wellenförmig verlaufen. Es sollte lediglich beachtet werden, daß der überwiegende Teil der Kühlnuten nicht in Richtung der Mittelachse, sondern unter einem Winkel zu dieser angestellt verlaufen.
Es hat sich nämlich gezeigt, daß „quer" zur Mittelachse verlaufende Kühlnuten im Betrieb entsprechend quer angeströmt werden mit der Folge, daß das Kühlmittel auf seinem Weg nach dem Verlassen des Kühlrohres von dessen Öffnung vorn nach hinten längs des spaltförmigen Ringraumes nicht unerheblichen Turbulenzen unterworfen wird. Der Kühleffekt des jeweiligen Formkerns erhöhte sich also zwar bereits durch eine Oberflächenvergrößerung, indem die sonst glatte, geschlossene innere Oberfläche des Formkerns vergrößert wird, also Rippen, Rillen, Nuten oder dergleichen erhält; andererseits entstehen aber Turbulenzen in dem Kühlmittelstrom im Verlauf seines Strömungsweges, und es sind gerade diese Turbulenzen, welche den Kühleffekt erheblich vergrößern.
Bei vorteilhafter weitere Ausgestaltung der Erfindung haben die Kühlnuten im Querschnitt ein spitzes und/oder rundes Profil. Mit Profil ist hier der Querschnitt durch eine Kühlnut gemeint, der „rund" sein kann, wie zum Beispiel der Boden eines U; oder „spitz" sein kann, wie das untere Ende eines spitzen V. Betrachtet man beispielsweise ein V-förmiges Profil mit zwei sich unter einem spitzen Winkel schneidenden Flanken, dann kann es besonders bevorzugt sein, diesen Winkel aus dem Bereich zwischen 10° und 70°, vorzugsweise aus dem Bereich zwischen 20° und 50° auszusuchen oder ihn 40° zu wählen. Diese Angaben bedeuten nicht, daß der betrachtete Winkel des Profils in diesen Bereichen liegen muß. Diese Angaben bedeuten lediglich, daß in der Praxis bereits erfolgreiche Versuche mit solchen Winkeln durchgeführt wurden.
Anstelle der Flanken bei „spitzen" Profilen kann man für die Herstellung von runden Profilen auch bogenförmige Flächen verwenden, wie man sie beispielsweise bei Rundgewinden kennt.
So ist es auch zweckmäßig, wenn erfindungsgemäß die Kühlnuten schraubenförmig verlaufen. Mit anderen Worten erstrecken sich die Kühlnuten wie ein Gewinde. Dieses kann eine beliebige Art von Geometrie haben, sofern nur die glatte Oberfläche, wenn keine Kühlnuten vorgesehen wären, vergrößert wird. Die Kühlnuten können mit ihrer radialen Geometrie vorzugsweise als Trapezgewinde oder Sägezahngewinde ausgestaltet sein. Für die Oberflächenvergrößerung und Herstellung der Turbulenzen ist es zweckmäßig, eine radiale Geometrie zu wählen. Auch herstellungstechnisch ist es günstig, wenn die Kühlnuten rund laufen. Praktische Versuche haben bereits eine günstige Herstellung ergeben, wenn man Ringe, Rillen, Gewinde oder alle diese Gestaltungen zusammen einbringt. Das über diese Kühlnuten strömende Wasser wird dadurch starken Verwirbelungen unterworfen mit der Folge einer guten Turbulenz und damit großen Kühlwirkung.
Eine besonders durchgreifende Verbesserung des Kühleffekts ergibt sich, wenn sich erfindungsgemäß die Kühlnuten über denjenigen Oberflächenbereich des Formkerns erstrecken, auf welchem der Vorformling gespritzt wird. Im hinteren Bereich des Formkerns sind Leitungen und Halterungen vorgesehen, so daß der zu spritzende Vorformling von diesem hinteren Bereich des Formkerns ferngehalten wird. Deshalb braucht dort auch nicht ein besonderes Merkmal für die Kühlung vorgesehen sein. In dem gesamten Oberflächenbereich, also dem Bereich der äußeren Oberfläche des Formkerns, auf welchem der Kunststoff des gespritzten Vorformlings aufsitzt und berührt, werden aber erfindungsgemäß die Kühlnuten vorgesehen. Wenigstens über diesen Oberflächenbereich, auf welchem der Vorformling gespritzt wird, sind erfindungsgemäß die Kühlnuten vorgesehen. Dabei ist nicht ausgeschlossen, daß man die zum Teil dickeren Bereiche der Halterung des Formkerns auch mit Kühlnuten versehen kann. Schon jetzt aber haben sich überraschende Erfolge zur Steigerung des Kühleffekts eingestellt, wenn man allein im Bereich des aufsitzenden Vorformlings auf der inneren Oberfläche des Formkerns Kühlrippen vorsieht.
In der Praxis des bereits durchgeführten Betriebes mit dem beschriebenen Formkern ist am Vorderende des Kühlrohres eine Ausströmöffnung vorgesehen. Aus dieser tritt das Kühlwasser aus und verläßt den Formkern nach Durchströmen des spaltförmigen Ringraumes nach hinten. Wenn man nun weiterhin die Ausströmöffnung am Kühlrohr wenigstens eine sich in Richtung der Mittelachse erstreckende Ausnehmung aufweisen läßt, stellt man zusätzlich ein leichteres Austreten des Kühl- wassers aus dem Kühlrohr fest. Die Ausströmöffnung am Vorderende des Kühlrohres kann man sich im einfachsten Fall so vorstellen, daß man das theoretisch vorn geschlossene Kühlrohr abschneidet, so daß die Fläche der Ausströmöffnung senkrecht zur Mittelachse des Formkerns liegt. Der äußere Rand einer solchen Ausströmöffnung wäre dann kreisförmig. Versieht man nun diesen kreisförmigen Rand mit einer zusätzlichen Ausnehmung, die sich wenigstens teilweise in Richtung auf die Mit- telachse des Kühlrohres erstreckt, dann erhöht sich die Fläche der Ausströmöffnung mit der Folge, daß das Kühlwasser dort leichter in den spaltförmigen Ringraum austreten kann. Man kann sich eine solche Ausnehmung am Rand der Ausströmöffnung V-förmig, U-förmig oder mit anderweitigem Profil denken, sofern der Rand nicht nur der Kreislinie folgt, sondern durch die besagte Ausnehmung verlängert ist.
Beim Strömen des Kühlwassers aus der Ausströmöffnung des Kühlrohres ist beabsichtigt, die Hauptdrosselung im Verlauf des Strömungsweges in demjenigen Bereich des spaltförmigen Ringraumes vorzusehen, in welchem der Vorformling außen auf die äußere Oberfläche aufgespritzt wird. Weiter nach hinten hin können die Kuhlmittelabfuhrleitungen sogar größere Querschnitte haben, so daß sich das Kühlmittel dort entspannt. Dort im hinteren Bereich, in größerer Entfernung von dem gespritzten Vorformling, braucht man keine Kühlung, keine Verwirbelung und daher auch keine großen Flächen mehr. Das Kühlmittel kann dort glatt und entspannt ohne Widerstände nach hinten wegströmen.
Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der folgenden Beschreibung eines bevorzugten Ausführungsbeispieles in Verbindung mit den anliegenden Zeichnungen. Von diesen zeigen:
Figur 1 eine Querschnittsansicht eines Formkerns mit dem vorn angeordneten dünneren Bereich und den hinten angeordneten Zuführ- und Abführleitungen und Figur 2 stark vergrößert und abgebrochen die Einzelheit II gemäß dem Kreis II in Figur 1.
Der vorzugsweise titanisierte Formkern hat den in Figur 1 hinten (d.h. unten) dargestellten dickeren Bereich für die Halterung, zum Beispiel in einer Kernplatte, und vorn den dünneren Bereich 10, über welchen der nicht dargestellte Vorformling nach dem Spritzen aufgespannt ist. Die gestrichelt dargestellte Wandung des Formkerns 1 hat die Gestalt (in Figuren 1und 2 oben) einer geschlossenen, hohlen Hülse mit der strichpunktierten Mittelachse 2. Der Formkern 1 hat eine äußere Oberfläche 3 und eine innere Oberfläche 4.
Im Abstand von der inneren Oberfläche 4 des Formkerns 1 ist dieser nahezu ganz mit einem Kühlrohr 5 versehen. Zwischen der inneren Oberfläche 4 des Formkerns 1 und dem Kühlrohr 5 außen wird ein spaltförmiger Ringraum 6 gebildet. Im vorderen Bereich, auf welchem im Betrieb der Vorformling gespritzt wird, ist der Ringraum 6 spaltförmig, d.h. er hat radial eine geringe Ausdehnung von vorzugsweise 1,5 mm bis 3 mm, je nach dem zur Verfügung stehenden Platz. Man erhält dadurch im Idealfall einen 80%-igen Rückstau, d.h. der Abfluß beträgt 80% des Zuflusses. Dagegen ist die radiale Erstreckung des hinteren Ringraumes 6', der sich in dem dickeren Halterungsbereich des Formkerns 1 befindet, nur für den Abfluß entspannten Kühlmittels vorgesehen.
Im unteren Bereich der Figur 1 sieht man die Kühlmittelzuführleitung 7, die sich ebenso in einer Kernplatte befinden kann wie die weiter vorn bzw. in Figur 1 darüber angeordnete Kühlmittelabführleitung 8. Das Kühlrohr 5 ist sowohl hinten offen, wo aus der Kühlmittelzuführleitung 7 Kühlmittel mittig in Richtung der Mittelachse 2 nach oben und vorn strömt, als auch oben vorn, wo sich die Ausströmöffnung 9 am Kühlrohr 5 befindet.
Schon bei älteren Betriebsaufbauten wurde Kühlwasser durch die Kühlmittelzuführleitung 7 zentral in das Kühlrohr 5 nach oben vorn eingeführt, aus der Austrittsöffnung 9 vorn in den Formkern 1 hineingedrückt. Dadurch strömte das Kühlwasser in dem spaltförmigen Ringraum 6 parallel zur Mittelachse 2 des Formkerns 1 von vorn oben aus dem Bereich der Austrittsöffnung 9 nach unten hin- ten in den vergrößerten Ringraum 6', um aus diesem, außerhalb des Kühlrohres 5, über die Kühlmittelabführleitung 8 abgeführt zu werden.
Bei der neuen, hier gezeigten Ausführungsform ist die innere Oberfläche 4 des Formkerns 1 in dem vorderen Oberflächenbereich 10 des Formkerns, auf welchem im Betrieb der in den Zeichnungen
I nicht dargestellte Vorformling gespritzt wird, mit einem Schraubengewinde zur Bildung von Kühlnuten 11 versehen.
In der stark vergrößerten Einzelheit II gemäß Figur 2 erkennt man die zu der Mittelachse 2 unter einem kleinen Winkel angestellten geraden Linien, welche die Kühlnuten 11 wiedergeben. Bei der hier herausgegriffenen bevorzugten Ausführungsform handelt es sich um quer zur Mittelachse 2 verlaufende, sich schraubenförmig erstreckende Kühlnuten 11 mit spitzem Profil. Man kann die Gestalt der Kühlnuten auch mit einem Sägezahngewinde beschreiben mit V-förmigem Profil, dessen beide Wangen im Schnitt gerade Flanken darstellen. Der Schnitt durch die Wandung des Formkerns 1 gemäß Figur 2 zeigt dieses V-förmige Profil mit den geraden Flanken.
In Figur 2 sieht man auch die Gestalt der Ausströmöffnung 9 am Kühlrohr 5 vorn. Würde man nur diejenige Kante der Ausströmöffnung 9 betrachten, die senkrecht zur Mittelachse 2 verläuft und in Figur 2 mit 12 bezeichnet ist, dann würde man in Draufsicht in Richtung der Mittelachse 2 einen Teilkreis 12 sehen. Dazwischen befinden sich Ausnehmungen 13 mit schräger Schnittlinie 14. Mit anderen Worten weist die Ausströmöffnung 9 am Kühlrohr 5 vorn vier sich entlang der Schnittlinie 14 in Richtung der Mittelachse 2 (auf diese hin) erstreckende Ausnehmungen 13 auf. Von der Seite erscheinen diese Ausnehmungen 13 V-förmig am vorderen Ende neben der Ausströmöffnung 9. Das hier gezeigte Kühlrohr 5 hat vier am Umfang des Kreises 12 gleichmäßig verteilte Ausnehmun- gen 13, nämlich zwei in Flucht liegende in Blickrichtung auf das Papier der Figur 2 sowie zwei weitere in Richtung senkrecht dazu, weshalb man in Figur 2 links die Wandung 5' des Kühlrohres 5 sieht und darüber die Draufsicht der Schnittlinie 14.
Im Betrieb strömt Kühlwasser durch die Zuführleitung 7 zentral in das Kühlrohr 5 nach oben und vorn und tritt aus der Austrittsöffnung 9 vorn entsprechend dem Pfeil 15 in Figur 2 aus. Sobald das Kühlwasser über die Schnittlinien 14 nach vorn hinausgeströmt ist, wird es durch die gekrümmte innere Oberfläche 4 des Formkerns 1 entlang dem Pfeil 16 (Figur 2) bogenförmig und radial nach außen gelenkt. Das Kühlwasser berührt nun die innere Oberfläche 4 des Formkerns 1 und beginnt diesen durch die intensive Berührung zu kühlen. Das Kühlwasser strömt in dem spaltförmigen Ring- räum 6 von vorn nach hinten parallel zur Mittelachse 2, in den Figuren 1 und 2 also nach unten. Auf seinem Strömungsweg nach hinten gelangt das Kühlwasser an den quer zur Mittelachse 2 verlaufenden Kühlnuten 11 vorbei und erfährt eine Verwirbelung entsprechend den teilkreisförmigen Pfeilen 17. In diesem verwirbelten und turbulenten Zustand strömt das Kühlwasser weiter nach hinten (in den Figuren 1 und 2 nach unten), um danach in den großen Ringraum 6' zum Entspannen und Abströmen durch die Abführleitung 8 zu gelangen.
Bezuqszeichenliste
1 Formkern
2 Mittelachse
3 äußere Oberfläche des Formkerns
4 innere Oberfläche des Formkerns
5 Kühlrohr
5' Wandung des Kühlrohres
6 spaltförmiger Ringraum
6' größerer hinterer Ringraum
7 Kühlmittelzuführleitung
8 Kühlmittelabführleitung
9 Austrittsöffnung
10 vorderer Oberflächenbereich des Formkerns
11 Kühlnuten
12 Kante der Ausströmöffnung
13 Ausnehmungen
14 Schnittlinie
15 Pfeil (Strömungsrichtung des Kühlwassers)
16 Pfeil (Strömungsrichtung des Kühlwassers)
17 Verwirbelungsrichtung des Kühlwassers
Claims
1. Formkern (1) eines Spritzgießwerkzeugs zum Spritzgießen von Vorformlingen aus Kunststoff, wobei der Formkern (1) die Gestalt einer einseitig geschlossenen, hohlen Hülse hat mit einer Mittelachse (2), einer äußeren Oberfläche (3), einer inneren Oberfläche (4) und einem hohlen, in dem Formkern (1) mit Abstand von dessen innerer Oberfläche (4) angeordneten Kühlrohr (5) in Verbindung mit Kuhlmittelzufuhrleitungen (7) und Kuhlmittelabfuhrleitungen (8), dadurch gekennzeichnet, daß sich das Kühlrohr (5) koaxial zum Formkern (1) über dessen nahezu gesamte Länge erstreckt und am abstromseitigen Ende mit einer Ausströmöffnung (9) versehen ist, und daß auf der inneren Oberfläche (4) des Formkerns (1 ) etwa quer zur Mittelachse (2) verlaufende Kühlnuten (11) angebracht sind.
2. Formkern (1) nach Anspruch 1 , dadurch gekennzeichnet, daß die Kühlnuten (11) im Querschnitt ein spitzes und/oder rundes Profil haben.
3. Formkern (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kühlnuten (11) schraubenförmig verlaufen.
4. Formkern (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sich die Kühlnuten (11) über denjenigen Oberflächenbereich (10) des Formkerns (1 ) erstrecken, auf welchem der Vorformling gespritzt wird.
5. Formkern (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Ausströmöffnung (9) am Kühlrohr (5) wenigstens eine sich in Richtung der Mittelachse (2) erstreckende Ausnehmung (13) aufweist.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10236522 | 2002-08-09 | ||
DE10236522A DE10236522A1 (de) | 2002-08-09 | 2002-08-09 | Formkern eines Spritzgießwerkzeugs |
PCT/DE2003/001630 WO2004018180A1 (de) | 2002-08-09 | 2003-05-20 | Formkern eines spritzgiesswerkzeugs |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1526958A1 true EP1526958A1 (de) | 2005-05-04 |
Family
ID=30469631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03735314A Withdrawn EP1526958A1 (de) | 2002-08-09 | 2003-05-20 | Formkern eines spritzgiesswerkzeugs |
Country Status (9)
Country | Link |
---|---|
US (1) | US20060121150A1 (de) |
EP (1) | EP1526958A1 (de) |
CN (1) | CN1700975A (de) |
AU (1) | AU2003236805A1 (de) |
BR (1) | BR0313544A (de) |
CA (1) | CA2493235A1 (de) |
DE (3) | DE3735314A1 (de) |
MX (1) | MXPA05001385A (de) |
WO (1) | WO2004018180A1 (de) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202005020533U1 (de) * | 2005-05-12 | 2006-03-16 | Stemke, Gudrun | Kühlsystem für Werkzeuge von Kunststoffverarbeitungsmaschinen |
DE202005008170U1 (de) * | 2005-05-20 | 2005-07-28 | gwk Gesellschaft Wärme Kältetechnik mbH | Werkzeug zur Urformung eines hohlen Formlings aus Kunststoff |
US20070264383A1 (en) * | 2006-05-12 | 2007-11-15 | Husky Injection Molding Systems Ltd. | Mold-cooling device having vortex-inducing cooling-fluid chamber |
RU2487228C1 (ru) * | 2011-12-20 | 2013-07-10 | Общество С Ограниченной Ответственностью "Тмк-Премиум Сервис" | Секция теплоизолированной колонны |
DE102012105675B4 (de) | 2012-06-28 | 2014-06-12 | Ismail Arslandogdu | Spritzgießhilfswerkzeug und Verfahren zum Spritzgießen von Kunststoffhohlkörpern |
GB201214336D0 (en) * | 2012-08-10 | 2012-09-26 | Surface Generation Ltd | Mould tool |
CN102794883B (zh) * | 2012-09-14 | 2015-03-04 | 四川省隆鑫科技包装有限公司 | 一种瓶盖注塑模具及瓶盖注塑方法 |
CN105478713A (zh) * | 2015-12-11 | 2016-04-13 | 天津爱田汽车部件有限公司 | 一种冷却热节点的装置及模具 |
WO2020118414A1 (en) * | 2018-12-11 | 2020-06-18 | Husky Injection Molding Systems Ltd. | Core coolant diverter and cooling tube for preform mold |
FR3124968A1 (fr) * | 2021-07-07 | 2023-01-13 | Jackie André DERUYTER | Dispositif de poinçon et son tube de refroidissement avec inverseur de flux pour moule de préformes PET |
CN113815209B (zh) * | 2021-08-25 | 2024-02-09 | 台州市黄岩西诺模具有限公司 | 用于注塑模具的伞状冷却水路镶件 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1019234B1 (de) * | 1997-04-16 | 2007-08-01 | Husky Injection Molding Systems Ltd. | Verfahren und gerät zur patiellen kristallisierung amorpher kunststoffgegenstände |
US6171541B1 (en) * | 1998-03-31 | 2001-01-09 | Husky Injection Molding Systems Ltd. | Preform post-mold cooling method and apparatus |
CA2255798C (en) * | 1998-12-07 | 2008-06-17 | Jobst Ulrich Gellert | Injection molding cooling core having spiral grooves |
CA2262176C (en) * | 1999-02-17 | 2008-04-22 | Jobst Ulrich Gellert | Injection molding cooled cavity insert |
US6276922B1 (en) * | 1999-08-24 | 2001-08-21 | Husky Injection Molding Systems Ltd. | Core fluid velocity inducer |
-
1987
- 1987-10-19 DE DE19873735314 patent/DE3735314A1/de not_active Withdrawn
-
2002
- 2002-08-09 DE DE10236522A patent/DE10236522A1/de not_active Withdrawn
-
2003
- 2003-05-20 EP EP03735314A patent/EP1526958A1/de not_active Withdrawn
- 2003-05-20 AU AU2003236805A patent/AU2003236805A1/en not_active Abandoned
- 2003-05-20 BR BR0313544-6A patent/BR0313544A/pt not_active Application Discontinuation
- 2003-05-20 CN CNA03818804XA patent/CN1700975A/zh active Pending
- 2003-05-20 MX MXPA05001385A patent/MXPA05001385A/es unknown
- 2003-05-20 US US10/524,312 patent/US20060121150A1/en not_active Abandoned
- 2003-05-20 CA CA002493235A patent/CA2493235A1/en not_active Abandoned
- 2003-05-20 WO PCT/DE2003/001630 patent/WO2004018180A1/de not_active Application Discontinuation
- 2003-05-20 DE DE20321175U patent/DE20321175U1/de not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO2004018180A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE3735314A1 (de) | 1989-04-27 |
DE20321175U1 (de) | 2006-03-09 |
WO2004018180A1 (de) | 2004-03-04 |
AU2003236805A1 (en) | 2004-03-11 |
BR0313544A (pt) | 2005-06-21 |
DE10236522A1 (de) | 2004-02-19 |
MXPA05001385A (es) | 2005-06-03 |
US20060121150A1 (en) | 2006-06-08 |
CN1700975A (zh) | 2005-11-23 |
CA2493235A1 (en) | 2004-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2739236C2 (de) | Füllkörper | |
DE69927753T2 (de) | Kunststoffbehälter mit Rückflussaussgiesser, Verfahren und Vorrichtung zu seiner Herstellung | |
EP0486636B1 (de) | Speicherkopf für eine blasformmaschine | |
DE1704718A1 (de) | Verfahren und Vorrichtung zur Herstellung von Kunststoffrohren mit ring- oder schraubenlinienfoermig gerillter Aussenwand | |
DE3737588C3 (de) | Verfahren zum Herstellen eines innen glatten, außen gerippten Rohres aus extrudierbarem Kunststoff sowie Vorrichtung zur Durchführung des Verfahrens | |
EP1526958A1 (de) | Formkern eines spritzgiesswerkzeugs | |
EP2556781B1 (de) | Sprüharmanordnung einer Geschirrspülmaschine | |
WO2007087913A2 (de) | Verbesserte halsbackenkühlung | |
DE3886197T2 (de) | Kunststoffbehälter mit Tropfenrückfluss. | |
DE2740579A1 (de) | Schlauchkopf zum herstellen eines hohlstranges aus thermoplastischem kunststoff | |
DE102006028174A1 (de) | Formnestkavität mit mäanderförmigem Kühlkanal | |
DE69914154T2 (de) | Pumpspender und Herstellungsmethode | |
DE10024625B4 (de) | Formnest für die Kunststoffverarbeitung | |
DE4305624C2 (de) | Extrudierform für Blasformmaschinen | |
DE2200740A1 (de) | Kern fuer rohrboegen aus kunststoff | |
DE19941160A1 (de) | Zylinder für einen Schneckenextruder mit Kanälen für ein Temperiermedium | |
DE102012012070A1 (de) | Düsenplatte für eine Granuliervorrichtung und Granuliervorrichtung mit einer Düsenplatte | |
AT506577A4 (de) | Statische mischvorrichtung | |
EP2768653B1 (de) | Extrusionskopf zur herstellung von hohlkörpern | |
DE3728325C2 (de) | Gekühlter Kern für eine Spritzgießform | |
DE4119582C2 (de) | Spritzgießwerkzeug zur Herstellung von Formkörpern, insbesondere von Radialwälzlagerkäfigen, aus Kunststoff | |
EP0520948A1 (de) | Förderschnecke, Förderschneckenlängsteilstück, Verfahren zur Herstellung einer Förderschnecke sowie eines Förderschneckenlängsteilstückes und Gussform zum Giessen eines Förderschneckenlängsteilstücks | |
DE4126938A1 (de) | Rolle und verfahren zu ihrer herstellung | |
DE1479536A1 (de) | Verfahren zum Herstellen von Hohlkoerpern aus thermoplastischem Kunststoff im Blasverfahren | |
DE102007024744A1 (de) | Spritzgießwerkzeug zur Herstellung von Vorformlingen für die Herstellung von Flaschen aus Kunststoff mit Gewindehals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050120 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17Q | First examination report despatched |
Effective date: 20050607 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20051217 |