EP1515000B1 - Blading of a turbomachine with contoured shrouds - Google Patents

Blading of a turbomachine with contoured shrouds Download PDF

Info

Publication number
EP1515000B1
EP1515000B1 EP03103323.6A EP03103323A EP1515000B1 EP 1515000 B1 EP1515000 B1 EP 1515000B1 EP 03103323 A EP03103323 A EP 03103323A EP 1515000 B1 EP1515000 B1 EP 1515000B1
Authority
EP
European Patent Office
Prior art keywords
contouring
recess
shrouds
turbomachine according
elevations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03103323.6A
Other languages
German (de)
French (fr)
Other versions
EP1515000A1 (en
Inventor
Ralf Dr. Greim
Said Dr. Havakechian
Axel Dr. Pfau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Priority to EP03103323.6A priority Critical patent/EP1515000B1/en
Priority to US10/936,582 priority patent/US7320574B2/en
Publication of EP1515000A1 publication Critical patent/EP1515000A1/en
Application granted granted Critical
Publication of EP1515000B1 publication Critical patent/EP1515000B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/183Two-dimensional patterned zigzag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/184Two-dimensional patterned sinusoidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/60Structure; Surface texture
    • F05D2250/61Structure; Surface texture corrugated
    • F05D2250/611Structure; Surface texture corrugated undulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Definitions

  • the invention relates to a turbomachine whose blading has shrouds, and in particular cavities into which the shrouds protrude.
  • the blading is provided with shrouds for vibration containment, which annularly connect all the blade tips of a row of blades. They are used on both buckets and vanes.
  • shrouds for vibration containment which annularly connect all the blade tips of a row of blades. They are used on both buckets and vanes.
  • recesses or cavities are formed in the machine inner housing and in the shaft, in which project the shrouds of the blades or the guide vanes.
  • the leakage flow is further limited by labyrinth seals in the cavities.
  • Such labyrinth seals are for example in FIG. 1 this application is shown. It shows a detail of a turbomachine, in particular a blade 1 and its adjacent vanes 2a, 2b.
  • the blade 1 is provided with a shroud 3, which projects into a recess or cavity 4 of the inner housing 5 of the machine.
  • a corresponding shroud of a vane protrudes into a similar recess in the shaft.
  • a labyrinth seal is arranged in the cavity 4. This seal consists primarily of a plurality of sealing strips 8, which extend from the wall of the inner housing radially inwardly toward the shroud.
  • the shroud 3 is configured with steps in the radial direction, wherein the shroud has a constant shape over its circumference.
  • the leakage flow 6 flows through an inlet region into the cavity 4, between the sealing strip and the shroud and back through an outlet region to the main flow 7 of the turbomachine.
  • Einsowie and exit areas arise mixing operations between Leakage flow and main flow, which inter alia disrupt the main and working flow and cause power losses.
  • US 4,662,820 to Sasada et al. discloses a labyrinth seal with a staggered shroud and multiple sealing strips.
  • the cavity into which the shroud protrudes is formed by inserts 12, 12a or shapes 15, 15b of the inner housing wall.
  • the cavity thus has a changing shape in the axial and / or radial direction, with its shape being constant in the circumferential direction.
  • the inserts serve to reduce the space through which a leakage current can flow, thereby increasing the performance of the machine.
  • EP 1 067 273 discloses a blade of a gas turbine, especially designed for aircraft with an axial and circumferentially wavy extension of a shroud to reduce the pressure field of a backflowing gas flow.
  • the extension is limited to the front of the shroud on the leading edge side of the blade. The measure results in an overall increase in the overall length of the machine.
  • a turbomachine includes blades and vanes each secured in a row of blades to a shaft or inner casing, at least one blade row and at least one row of guide blades each being provided with a shroud.
  • the inner housing and the shaft have cavities into which the shrouds protrude.
  • both the cavities and the cover bands have a contouring or a changing profile in the circumferential direction.
  • the contouring consists of periodically repeating elevations and depressions, which are thus uniformly distributed over the circumference and each of the same extent.
  • the contouring has a wavelength, that is a profile section, which repeats itself in the circumferential direction several times. In the case of the contouring of the cavity, this wavelength is equal to a fraction of the circumferential length of the cavity wall, that is to say the circumferential length either along the inner housing wall or the shaft. In the case of contouring a shroud, the wavelength is equal to a fraction of the circumferential length of this shroud. More specifically, the wavelength corresponds to the circumferential length of the cavity wall or the shroud divided by the simple number of blades or by an integer multiple of the number of blades in the blade row, which is adjacent to the cavity or which is associated with the shroud.
  • a erfingundsgem contouring causes a pressure field, which counteracts stationary and unsteady pressure fields, which would otherwise generate the losses.
  • These are pressure fields created by the presence of the blades together with the absence of vanes between the rows of blades by creating stagnation points at the leading blade edges and blade trailing edges.
  • These pressure fields not only act in the main flow field, but also in the region of the labyrinth in the case of the blade cover strip and in particular in the area of the leakage flow entry in the cavity and the leakage flow exit from the cavity.
  • the mixing processes between the main and leakage flow are reduced and thus also the friction and mixing losses due to the mixing processes are reduced.
  • the elevations or depressions of the respective cavity wall and / or the shroud are positioned such that the maxima of those pressure fields which are produced by the adjacent rows of blades are attenuated and the pressure minima between the rows of blades are compensated by increased pressure ,
  • the cavities are both cavities on the inner housing, in which the shrouds of the blades protrude, as well as cavities on the shaft, in which protrude the shrouds of the vanes.
  • the pressure conditions are comparable in both cases.
  • the wavelengths of the contouring are matched to the pressure fields, which compensate them. More concretely are their wavelengths according to the Number of blades in a row of blades determined.
  • contouring a cavity wall it has a wavelength equal to the circumferential length of the cavity divided by the number of vanes or an integral multiple of the number of vanes in the row of vanes that is closest to contouring upstream or downstream.
  • contouring a shroud it has a wavelength equal to the circumferential length of the cavity divided by the number of blades or an integral multiple of the number of blades in the row of blades that belongs to the shroud.
  • the contouring is located on the axially extending walls of a cavity, wherein the elevations and depressions of the contouring extend in the radial direction, that is, radially inwardly or radially outwardly.
  • the contouring is to be understood as elevations and depressions on the inner housing wall; in the case of a shroud cavity in the region of a vane, it is to be understood as elevations and depressions on the shaft.
  • the contouring extends over the entry area or over the exit area of the cavity or over both areas.
  • the inlet region is the region of the recess in the flow direction up to the first sealing strip
  • the outlet region is the region of the recess from the last sealing strip in the flow direction.
  • a contouring in the inlet region and / or the outlet region is preferred, wherein in other parts of the cavity or in the entire cavity contouring is also feasible.
  • a contouring in the entrance region of the cavity has a wavelength that is matched to the number of blades in the upstream row of blades. Contouring in the exit region of the cavity has a wavelength tuned to the number of blades in the downstream adjacent blade row.
  • the contouring is located on the radially extending walls of a cavity, with the elevations and depressions of the contour extending in the axial direction, that is to say in the direction or opposite direction of the main flow.
  • the wavelengths of these contouring are determined analogously to the first embodiment of the invention. That is, the contour in the entrance region has a wavelength tuned to the number of blades in the upstream adjacent blade row, and a contour in the exit region of the cavity has a Wavelength tuned to the number of blades in the downstream row of blades.
  • the shrouds are additionally contoured, wherein the elevations and depressions extend in the radial direction and upwards.
  • both stationary and rotating parts are provided with an inventive contour.
  • This contouring of the shroud also compensates for those pressure fields generated by the row of blades that the shroud belongs to. Accordingly, the wavelength of such contouring is matched to the number of blades in this blade row.
  • the shroud sidewalls or end walls are additionally contoured, the elevations and depressions extending in the axial direction, that is to say in the direction of the main flow or in the opposite direction.
  • both stationary and rotating parts are provided with a contour according to the invention.
  • the wavelengths of the contours are in turn tuned to the pressure fields they balance and are matched to the number of blades of the row to which the shroud belongs.
  • a contour has any periodically repeating shape that generates a pressure gradient.
  • a preferred shape is a waveform, such as a sinusoidal shape.
  • Other possible shapes are step shapes such as box shapes, triangular shapes, sawtooth or sawtooth-like shapes.
  • the amplitude of the contouring that is, the maximum extent of the elevations and depressions starting from a center line between the extreme points of the contour, is chosen so that the curvature of the contour is sufficiently pronounced to generate correspondingly strong pressure gradients, which are able to compensate the pressure fields.
  • FIG. 2a shows the same section of a turbomachine as in FIG. 1 ,
  • the cavity 4 has contourings 10 and 11 and the cavity walls according to a first embodiment of the invention. You are in this embodiment in the inlet region 12 and exit region 13 of the cavity 4. The view shows a section through the contouring at the height of their surveys.
  • the contouring in the embodiment shown here in the inlet region is equal to the contouring in the outlet region of the cavity.
  • the contouring in the inlet area may differ from those in the exit area. This may for example be the case with inclined channel walls.
  • the contouring 10 and 11 are made of solid parts, which extend from the original inner housing wall radially inwardly towards the shroud 3 out. They can be realized by appropriate shaping of the inner housing as an integral part of the inner housing wall or by post-processing of the cavity by mounting insert rings. The use of insert rings also allows retrofitting an existing machine.
  • the shroud 3 has a contour with elevations 14 and 15 which extend in the radial direction to the contouring 10, 11 out.
  • the contouring 10 in the inlet region 12 compensates in the circumferential direction for the pressure fields of the blade row with blades 2a.
  • the contouring 11 in the exit region 13 compensates for the pressure fields of the blade row with blades 2b.
  • the contouring 14 and 15 in the inlet and outlet areas compensate in the circumferential direction of the pressure fields of the blade row with blades 1 from.
  • FIG. 2b shows a view of the machine along its shaft axis in the direction of the main flow.
  • the blades 2a and the contouring 10 in the inlet region of the cavity in the circumferential direction are shown. They have a waveform with a wavelength L 1 equal to the total circumferential length divided by the number of blades 2a of the upstream blade row or the distance between two adjacent stator blades 2a.
  • the wavelength L 1 may also be equal to the circumferential length divided by an integer multiple of the mentioned number of blades, that is to say only half or a quarter of this size.
  • the contouring 11 in the exit region of the cavity has a wavelength corresponding to the number of blades 2b of the downstream blade row. Therefore, the wavelengths of contouring 10 and 11 may be different.
  • the wavelengths of the shroud contour 14 in the inlet region 12 and the shroud contour 15 in the exit region 13 are determined (analogously to the wavelengths of the contours 10 and 11) in accordance with the number of rotor blades
  • the maxima of the elevations of the contouring 10 with respect to the upstream vanes 2 a are positioned to the Optimize pressure compensation as much as possible. Accordingly, in the exit region 13, the maxima of the elevations of the contouring 11 are positioned with respect to the downstream guide vanes 2 b. (The positioning of the maxima and their amplitude are described below using the example FIG. 3b shown in more detail.)
  • FIGS. 3a and 3b show a second embodiment of the invention.
  • FIG. 3a represents a section of a turbomachine according to the FIGS. 1 and 2a , wherein the same reference numerals are used for the same machine parts.
  • the contouring 20 and 21 are in this example as an insert ring realized with wavy contour, which is attached to the inner housing wall. Alternatively, they can also be an integral part of the cavity.
  • the end faces of the shroud 3 are also provided with a contouring 22 in the inlet region 12 and a contouring 23 in the outlet region 13.
  • a contouring 22 in the inlet region 12 can be realized by integral shaping of the shroud or by mounting a correspondingly shaped and attached to the shroud ring.
  • FIG. 3b shows the waveform of the contours 20-23 of FIG. 3a in the circumferential direction by projection of the cavity 4 on a surface.
  • the wavelength L1 of the contour 20 at the radially extending cavity wall in the inlet region here is equal to the distance between two adjacent blades 2a of the upstream blade row or equal to the total circumference of the cavity divided by the number of blades.
  • the wavelength L2 of the contour 21 in the exit region of the cavity is equal to the distance between two adjacent blades 2b of the downstream row of blades. Accordingly, the wavelength L3 of the contours 22 and 23 at the shroud end faces is equal to the distance between two adjacent blades 1, to which the shroud belongs.
  • the largest survey of the waveforms of all contours are at the height of the blades, to which the contour is tuned.
  • the contours each have an amplitude A which is equal to the extent of a survey or depression, starting from a center line between the survey and depression.
  • the amplitude is in a predetermined ratio to the original cavity height of the inlet region 12.
  • the amplitudes A of the elevations and depressions on the shrouds are also in a predetermined ratio to the original axial distance between shroud and cavity wall.
  • FIG. 4 shows another possible shape of the contour applied to the cavity contouring of FIG. 3a ,
  • the contour here has a rounded sawtooth shape 20 ', 21', 22 ', 23', wherein the position of the maxima of the sawtooth 20 'on the position of the blades 2a of the upstream row of blades, those of the contour 21' on the position of the blades 2b of the downstream row of blades, and those of the contour 22 'and 23' are matched to the position of the blades 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Technisches GebietTechnical area

Die Erfindung betrifft eine Turbomaschine, deren Beschaufelung Deckbänder aufweist, und insbesondere Kavitäten, in welche die Deckbänder hineinragen.The invention relates to a turbomachine whose blading has shrouds, and in particular cavities into which the shrouds protrude.

Stand der TechnikState of the art

In Turbomaschinen ist die Beschaufelung zwecks Eindämmung von Schwingungen mit Deckbändern versehen, die ringförmig sämtliche Schaufelspitzen einer Schaufelreihe verbinden. Sie werden sowohl bei Laufschaufeln als auch bei Leitschaufeln angewendet. Um eine Leckageströmung, die an den Deckbändern vorbeiströmt möglichst klein zu halten, sind im Maschinen-Innengehäuse sowie in der Welle Aussparungen oder Kavitäten gebildet, in welche die Deckbänder der Laufschaufeln bzw. der Leitschaufeln hineinragen. Die Leckageströmung wird weiter durch Labyrinthdichtungen in den Kavitäten begrenzt. Solche Labyrinthdichtungen sind zum Beispiel in Figur 1 dieser Anmeldung dargestellt ist. Sie zeigt einen Ausschnitt einer Turbomaschine, insbesondere von einer Laufschaufel 1 und ihr benachbarten Leitschaufeln 2a, 2b. Die Laufschaufel 1 ist mit einem Deckband 3 versehen, das in eine Aussparung oder Kavität 4 des Innengehäuses 5 der Maschine hineinragt. Ein entsprechendes Deckband einer Leitschaufel ragt in eine ähnliche Aussparung in der Welle. Zwecks Eindämmung von Leckageströmungen, die mit einem Pfeil 6 angedeutet sind und ausserhalb der Haupt- oder Arbeitsströmung 7 zwischen Deckband 3 der Laufschaufel-1 und Innengehäuse hindurchströmt, ist in der Kavität 4 eine Labyrinthdichtung angeordnet. Diese Dichtung besteht in erster Linie aus mehreren Dichtstreifen 8, die sich von der Wand des Innengehäuses radial einwärts zum Deckband hin erstrecken. Zusätzlich ist beispielsweise das Deckband 3 mit Stufen in radialer Richtung ausgestaltet, wobei das Deckband über seinen Umfang eine konstante Form aufweist. Die Leckageströmung 6 strömt über einen Eintrittsbereich in die Kavität 4, zwischen den Dichtstreifen und dem Deckband hindurch und über einen Austrittsbereich zurück zur Hauptströmung 7 der Turbomaschine. In den Einsowie Austrittsbereichen ergeben sich Mischungsvorgänge zwischen Leckageströmung und Hauptströmung, welche unter anderem die Haupt- und Arbeitsströmung stören und Leistungsverluste verursachen.In turbomachinery, the blading is provided with shrouds for vibration containment, which annularly connect all the blade tips of a row of blades. They are used on both buckets and vanes. In order to keep a leakage flow that flows past the shrouds as small as possible, recesses or cavities are formed in the machine inner housing and in the shaft, in which project the shrouds of the blades or the guide vanes. The leakage flow is further limited by labyrinth seals in the cavities. Such labyrinth seals are for example in FIG. 1 this application is shown. It shows a detail of a turbomachine, in particular a blade 1 and its adjacent vanes 2a, 2b. The blade 1 is provided with a shroud 3, which projects into a recess or cavity 4 of the inner housing 5 of the machine. A corresponding shroud of a vane protrudes into a similar recess in the shaft. For the purpose of containing leakage flows, which are indicated by an arrow 6 and flows outside of the main or working flow 7 between shroud 3 of the moving blade 1 and inner casing, a labyrinth seal is arranged in the cavity 4. This seal consists primarily of a plurality of sealing strips 8, which extend from the wall of the inner housing radially inwardly toward the shroud. In addition, for example, the shroud 3 is configured with steps in the radial direction, wherein the shroud has a constant shape over its circumference. The leakage flow 6 flows through an inlet region into the cavity 4, between the sealing strip and the shroud and back through an outlet region to the main flow 7 of the turbomachine. In the Einsowie and exit areas arise mixing operations between Leakage flow and main flow, which inter alia disrupt the main and working flow and cause power losses.

US 4,662,820 von Sasada et al. offenbart eine Labyrinthdichtung mit einem stufenweisen ausgestalteten Deckband und mehreren Dichtstreifen. Die Kavität, in die das Deckband hineinragt, ist durch Einsätze 12, 12a oder Formgebungen 15,15b der Innengehäusewand ausgebildet. Die Kavität besitzt dadurch in axialer und/oder radialer Richtung eine sich verändernde Form, wobei ihre Formgebung in Umfangsrichtung konstant ist. Die Einsätze dienen dazu, den Raum zu verkleinern, durch den ein Leckagestrom strömen kann und dabei die Leistung der Maschine zu steigern. US 4,662,820 to Sasada et al. discloses a labyrinth seal with a staggered shroud and multiple sealing strips. The cavity into which the shroud protrudes is formed by inserts 12, 12a or shapes 15, 15b of the inner housing wall. The cavity thus has a changing shape in the axial and / or radial direction, with its shape being constant in the circumferential direction. The inserts serve to reduce the space through which a leakage current can flow, thereby increasing the performance of the machine.

In EP 1 067 273 offenbart eine Laufschaufel einer Gasturbine, speziell für Flugzeuge ausgelegt mit einer axialen und in Umfangsrichtung wellenförmigen Verlängerung eines Deckbandes zwecks Reduzierung des Druckfeldes einer rückströmenden Gasströmung. Die Verlängerung beschränkt sich auf die Stirnseite des Deckbandes an der Vorderkantenseite der Laufschaufel. Die Massnahme hat eine insgesamte Vergrösserung der Baulänge der Maschine zur Folge.In EP 1 067 273 discloses a blade of a gas turbine, especially designed for aircraft with an axial and circumferentially wavy extension of a shroud to reduce the pressure field of a backflowing gas flow. The extension is limited to the front of the shroud on the leading edge side of the blade. The measure results in an overall increase in the overall length of the machine.

Des weiteren offenbaren die DE 2462 465 und die JP 356 69 402 bekannte Lösungen des geschilderten Problems gemäß dem Stand der Technik.Furthermore, the reveal DE 2462 465 and the JP 356 69 402 known solutions of the described problem according to the prior art.

Darstellung der ErfindungPresentation of the invention

Es ist der vorliegenden Erfindung die Aufgabe gestellt, eine Turbomaschine zu schaffen, bei der die Leistungsverluste aufgrund von Mischungsvorgängen zwischen Leckage- und Hauptströmung verringert sind.It is the object of the present invention to provide a turbomachine in which the power losses are reduced due to mixing operations between leakage and main flow.

Eine Turbomaschine weist Laufschaufeln und Leitschaufeln auf, die jeweils in Schaufelreihen an einer Welle bzw. einem Innengehäuse befestigt sind, wobei mindestens eine Laufschaufelreihe sowie mindestens eine Leitschaufelreihe jeweils mit einem Deckband versehen ist. Das Innengehäuse und die Welle weisen Kavitäten auf, in welche die Deckbänder hineinragen. Erfindungsgemäss weisen sowohl die Kavitäten als auch die Deckbänder eine Konturierung oder ein sich veränderndes Profil in der Umfangsrichtung auf.A turbomachine includes blades and vanes each secured in a row of blades to a shaft or inner casing, at least one blade row and at least one row of guide blades each being provided with a shroud. The inner housing and the shaft have cavities into which the shrouds protrude. According to the invention, both the cavities and the cover bands have a contouring or a changing profile in the circumferential direction.

Die Konturierung besteht aus sich periodisch wiederholenden Erhebungen und Vertiefungen, die also über den Umfang gleichmässig verteilt und jeweils von gleichem Ausmass sind. Die Konturierung besitzt dabei eine Wellenlänge, das heisst einen Profilabsschnitt, der sich in Umfangsrichtung mehrfach wiederholt. Diese Wellenlänge ist im Fall der Konturierung der Kavität gleich einem Bruchteil der Umfangslänge der Kavitätswand, das heisst der Umfangslänge entweder entlang der Innengehäusewand oder der Welle. Im Fall der Konturierung eines Deckbandes ist die Wellenlänge gleich einem Bruchteil der Umfangslänge dieses Deckbandes. Genauer entspricht die Wellenlänge jeweils der Umfangslänge der Kavitätswand bzw. des Deckbands dividiert durch die einfache Schaufelanzahl oder durch ein ganzzahliges Vielfaches der Schaufelanzahl in der Schaufelreihe, welche der Kavität benachbart ist bzw. die dem Deckband zugehörig ist.The contouring consists of periodically repeating elevations and depressions, which are thus uniformly distributed over the circumference and each of the same extent. The contouring has a wavelength, that is a profile section, which repeats itself in the circumferential direction several times. In the case of the contouring of the cavity, this wavelength is equal to a fraction of the circumferential length of the cavity wall, that is to say the circumferential length either along the inner housing wall or the shaft. In the case of contouring a shroud, the wavelength is equal to a fraction of the circumferential length of this shroud. More specifically, the wavelength corresponds to the circumferential length of the cavity wall or the shroud divided by the simple number of blades or by an integer multiple of the number of blades in the blade row, which is adjacent to the cavity or which is associated with the shroud.

Eine erfingundsgemässe Konturierung bewirkt ein Druckfeld, das stationären und instationären Druckfeldern entgegenwirkt, welche sonst die Verluste generieren würden. Es handelt sich hier um Druckfelder, die durch die Präsenz der Schaufeln zusammen mit dem Fehlen von Schaufeln zwischen den Schaufelreihen entstehen, indem an den Schaufelvorderkanten und Schaufelhinterkanten Staupunkte erzeugt werden. Diese Druckfelder wirken nicht nur im Hauptströmungsfeld, sondern auch im Bereich des Labyrinths beim Schaufeldeckband und insbesondere im Bereich des Leckageströmungseintritts in der Kavität und des Leckageströmungsaustritts aus der Kavität. Durch die Wechselwirkung dieser Druckfelder entsteht ein Austausch zwischen der Haupt- und Leckageströmung, wobei in den Labyrinthkavitäten in Umfangsrichtung Strömungen in Richtung des Labyrinths sowie Strömungen in Richtung der Hauptströmung bewirkt werden. Diese Strömungen führen zu Mischungsvorgängen, welche Leistungsverluste generieren.
Das neue, durch die Konturierung einer Kavitätswand oder eines Deckbandes bewirkte Druckfeld gleicht in Umfangsrichtung die Druckfelder jener Schaufelreihe aus, die der Kavität stromauf oder stromab am nächsten benachbart ist. Das Druckfeld, das durch die Konturierung eines Deckbands erzeugt wird, gleicht in Umfangsrichtung die Druckfelder jener Schaufelreihe aus, die dem Deckband zugehört. Dadurch werden die Mischvorgänge zwischen der Haupt- und Leckageströmung verringert und somit auch die durch die Mischvorgänge bedingten Reibungs- und Mischungsverluste vermindert..
Um diese Wirkung optimal zu erzielen sind die Erhebungen bzw. die Vertiefungen der jeweiligen Kavitätswand und /oder des Deckbands so positioniert, dass die Maxima jener Druckfelder, die durch die benachbarten Schaufelreihen erzeugt werden, abgeschwächt und die Druckminima zwischen den Schaufelreihen durch erhöhten Druck ausgeglichen werden.
A erfingundsgem contouring causes a pressure field, which counteracts stationary and unsteady pressure fields, which would otherwise generate the losses. These are pressure fields created by the presence of the blades together with the absence of vanes between the rows of blades by creating stagnation points at the leading blade edges and blade trailing edges. These pressure fields not only act in the main flow field, but also in the region of the labyrinth in the case of the blade cover strip and in particular in the area of the leakage flow entry in the cavity and the leakage flow exit from the cavity. The interaction of these pressure fields results in an exchange between the main and leakage flow, wherein in the labyrinth cavities in the circumferential direction flows in the direction of the labyrinth and currents in the direction of the main flow are effected. These flows lead to mixing processes which generate power losses.
The new, caused by the contouring of a cavity wall or a shroud pressure field compensates in the circumferential direction of the pressure fields that blade row, which is adjacent to the cavity upstream or downstream of the next. The pressure field generated by the contouring of a shroud compensates in the circumferential direction for the pressure fields of the row of shovels which belongs to the shroud. As a result, the mixing processes between the main and leakage flow are reduced and thus also the friction and mixing losses due to the mixing processes are reduced.
In order to achieve this effect optimally, the elevations or depressions of the respective cavity wall and / or the shroud are positioned such that the maxima of those pressure fields which are produced by the adjacent rows of blades are attenuated and the pressure minima between the rows of blades are compensated by increased pressure ,

Bei den Kavitäten handelt es sich sowohl um Kavitäten am Innengehäuse, in welche die Deckbänder der Laufschaufeln hineinragen, als auch um Kavitäten an der Welle, in welche die Deckbänder der Leitschaufeln hineinragen. Die Druckverhältnisse sind in beiden Fällen vergleichbar.The cavities are both cavities on the inner housing, in which the shrouds of the blades protrude, as well as cavities on the shaft, in which protrude the shrouds of the vanes. The pressure conditions are comparable in both cases.

Die Wellenlängen der Konturierungen sind auf die Druckfelder abgestimmt, welche sie ausgleichen. Konkreter sind ihre Wellenlängen entsprechend der Anzahl Schaufeln in einer Schaufel reihe bestimmt. Im Fall einer Konturierung einer Kavitätswand besitzt diese eine Wellenlänge gleich der Umfangslänge der Kavität dividiert durch die Anzahl Schaufeln oder durch ein ganzzahliges Vielfaches der Anzahl Schaufeln in der Schaufelreihe, die der Konturierung stromauf oder stromab am nächsten ist. Im Fall einer Konturierung eines Deckbands besitzt sie eine Wellenlänge gleich der Umfangslänge der Kavität dividiert durch die Anzahl Schaufeln oder durch ein ganzzahliges Vielfaches der Anzahl Schaufeln in der Schaufelreihe, die dem Deckband zugehört.The wavelengths of the contouring are matched to the pressure fields, which compensate them. More concretely are their wavelengths according to the Number of blades in a row of blades determined. In the case of contouring a cavity wall, it has a wavelength equal to the circumferential length of the cavity divided by the number of vanes or an integral multiple of the number of vanes in the row of vanes that is closest to contouring upstream or downstream. In the case of contouring a shroud, it has a wavelength equal to the circumferential length of the cavity divided by the number of blades or an integral multiple of the number of blades in the row of blades that belongs to the shroud.

In einer ersten bevorzugten Ausführung der Erfindung befindet sich die Konturierung an den axial verlaufenden Wänden einer Kavität, wobei sich die Erhebungen und Vertiefungen der Konturierung in radialer Richtung erstrecken, das heisst radial einwärts oder radial auswärts. Im Fall einer Deckbandkavität im Bereich einer Laufschaufel ist die Konturierung als Erhebungen und Vertiefungen an der Innengehäusewand zu verstehen; im Fall einer Deckbandkavität im Bereich einer Leitschaufel ist sie als Erhebungen und Vertiefungen an der Welle zu verstehen. Die Konturierung erstreckt sich über den Eintrittsbereich oder über den Austrittsbereich der Kavität oder auch über beide Bereiche. Der Eintrittsbereich ist der Bereich der Aussparung in Strömungsrichtung bis zum ersten Dichtungsstreifen, der Austrittsbereich ist der Bereich der Aussparung ab dem letzten Dichtstreifen in Strömungsrichtung. Eine Konturierung im Eintrittsbereich und/oder dem Austrittsbereich ist bevorzugt, wobei in anderen Teilen der Kavität oder in der gesamten Kavität eine Konturierung auch realisierbar ist. Eine Konturierung im Eintrittsbereich der Kavität besitzt eine Wellenlänge, die auf die Anzahl der Schaufeln in der stromauf benachbart liegenden Schaufelreihe abgestimmt ist. Eine Konturierung im Austrittsbereich der Kavität besitzt eine Wellenlänge, die auf die Anzahl der Schaufeln in der stromab benachbart liegenden Schaufelreihe abgestimmt ist.In a first preferred embodiment of the invention, the contouring is located on the axially extending walls of a cavity, wherein the elevations and depressions of the contouring extend in the radial direction, that is, radially inwardly or radially outwardly. In the case of a shroud cavity in the area of a blade, the contouring is to be understood as elevations and depressions on the inner housing wall; in the case of a shroud cavity in the region of a vane, it is to be understood as elevations and depressions on the shaft. The contouring extends over the entry area or over the exit area of the cavity or over both areas. The inlet region is the region of the recess in the flow direction up to the first sealing strip, the outlet region is the region of the recess from the last sealing strip in the flow direction. A contouring in the inlet region and / or the outlet region is preferred, wherein in other parts of the cavity or in the entire cavity contouring is also feasible. A contouring in the entrance region of the cavity has a wavelength that is matched to the number of blades in the upstream row of blades. Contouring in the exit region of the cavity has a wavelength tuned to the number of blades in the downstream adjacent blade row.

In einer zweiten bevorzugten Ausführung der Erfindung befindet sich die Konturierung an den radial verlaufenden Wände einer Kavität, wobei sich die Erhebungen und Vertiefungen der Kontur in axialer Richtung erstrecken, das heisst in Richtung oder Gegenrichtung der Hauptströmung. Die Wellenlängen dieser Konturierungen sind analog der ersten Ausführung der Erfindung bestimmt. Das heisst, die Kontur im Eintrittsbereich besitzt eine Wellenlänge, die auf die Anzahl der Schaufeln in der stromauf benachbart liegenden Schaufelreihe abgestimmt ist, und eine Kontur im Austrittsbereich der Kavität besitzt eine Wellenlänge, die auf die Anzahl der Schaufeln in der stromab benachbart liegenden Schaufelreihe abgestimmt ist.In a second preferred embodiment of the invention, the contouring is located on the radially extending walls of a cavity, with the elevations and depressions of the contour extending in the axial direction, that is to say in the direction or opposite direction of the main flow. The wavelengths of these contouring are determined analogously to the first embodiment of the invention. That is, the contour in the entrance region has a wavelength tuned to the number of blades in the upstream adjacent blade row, and a contour in the exit region of the cavity has a Wavelength tuned to the number of blades in the downstream row of blades.

In der ersten oder zweiten Ausführung sind zusätzlich die Deckbänder konturiert, wobei sich die Erhebungen und Vertiefungen in radialer Richtung ein- und aufwärts erstrecken. Hier sind sowohl stationäre als auch rotierende Teile mit einer erfindungsgemässen Kontur versehen. Diese Konturierung des Deckbands bewirkt einen Ausgleich zusätzlich auch jener Druckfelder, die durch die Schaufelreihe erzeugt werden, der das Deckband zugehört. Entsprechend ist die Wellenlänge einer solchen Konturierung auf die Anzahl Schaufeln in dieser Schaufelreihe abgestimmt.In the first or second embodiment, the shrouds are additionally contoured, wherein the elevations and depressions extend in the radial direction and upwards. Here, both stationary and rotating parts are provided with an inventive contour. This contouring of the shroud also compensates for those pressure fields generated by the row of blades that the shroud belongs to. Accordingly, the wavelength of such contouring is matched to the number of blades in this blade row.

In der ersten oder zweiten Ausführung der Erfindung sind zusätzlich die Deckbandseitenwände oder - stirnwände konturiert, wobei die Erhebungen und Vertiefungen sich in axialer Richtung erstrecken, das heisst in Richtung der Hauptströmung oder in der Gegenrichtung. Wiederum sind sowohl stationäre als auch rotierende Teile mit einer erfindungsgemässen Kontur versehen. Die Wellenlängen der Konturierungen sind wiederum auf die Druckfelder abgestimmt, welche sie ausgleichen, und sind auf die Anzahl Schaufeln jener Reihe abgestimmt, der das Deckband zugehört.In the first or second embodiment of the invention, the shroud sidewalls or end walls are additionally contoured, the elevations and depressions extending in the axial direction, that is to say in the direction of the main flow or in the opposite direction. Again, both stationary and rotating parts are provided with a contour according to the invention. The wavelengths of the contours are in turn tuned to the pressure fields they balance and are matched to the number of blades of the row to which the shroud belongs.

Die Kombinationen der erwähnten vier Konturierungen erhöhen den Effekt des Druckausgleichs weiter.The combinations of the mentioned four contouring further increase the effect of pressure equalization.

Eine Konturierung besitzt eine beliebige, sich periodisch wiederholende Form, die einen Druckgradienten generiert. Eine bevorzugte Form ist eine Wellenform, wie zum Beispiel einer Sinusform. Weitere mögliche Formen sind Stufenformen wie Kastenformen, Dreiecksformen, Sägezahn oder sägezahn-ähnliche Formen.A contour has any periodically repeating shape that generates a pressure gradient. A preferred shape is a waveform, such as a sinusoidal shape. Other possible shapes are step shapes such as box shapes, triangular shapes, sawtooth or sawtooth-like shapes.

Die Amplitude der Konturierung, das heisst das maximale Ausmass der Erhebungen und Vertiefungen ausgehend von einer Mittellinie zwischen den Extrempunkten der Kontur, ist so gewählt, dass die Krümmung der Kontur genügend ausgeprägt ist, um entsprechend starke Druckgradienten zu erzeugen, welche die Druckfelder auszugleichen vermögen.The amplitude of the contouring, that is, the maximum extent of the elevations and depressions starting from a center line between the extreme points of the contour, is chosen so that the curvature of the contour is sufficiently pronounced to generate correspondingly strong pressure gradients, which are able to compensate the pressure fields.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Es zeigen

  • Figur 1 einen Längsschnitt durch eine Turbomaschine entlang ihrer Welle gemäss dem Stand der Technik, insbesondere einer Kavität für das Deckband einer Laufschaufel,
  • Figur 2a einen Längsschnitt einer Turbomaschine entlang ihrer Welle, insbesondere einer Kavität für das Deckband einer Laufschaufel gemäss einer ersten Ausführung der Erfindung mit einer Konturierung in Umfangrichtung der Kavitätswände sowie des Deckbands mit Erhebungen in radialer Richtung,
  • Figur 2b eine axiale Querschnittsansicht der Kavität von Figur 2a, welche eine wellenförmige Kontur mit Erhebungen und Vertiefungen in radialer Richtung darstellt sowie auch die Positionierung der Erhebungen bezüglich der Schaufelposition
  • Figur 3a einen Längsschnitt einer Turbomaschine entlang ihrer Welle, insbesondere einer Kavität für das Deckband einer Laufschaufel gemäss einer zweiten Ausführung der Erfindung mit einer Konturierung der Kavitätswände und des Deckbands in Umfangsrichtung mit Erhebungen in axialer Richtung,
  • Figur 3b eine Ansicht der Deckbandkavität von Figur 3a von oben und auf eine Fläche projiziert mit Erhebungen und Vertiefungen in axialer Richtung,
  • Figur 4 eine Ansicht einer Deckbandkavität von oben und auf eine Fläche projiziert mit Erhebungen und Vertiefungen in axialer Richtung und mit einem abgerundeten Sägezahnprofil.
Show it
  • FIG. 1 a longitudinal section through a turbomachine along its shaft according to the prior art, in particular a cavity for the shroud of a blade,
  • FIG. 2a a longitudinal section of a turbomachine along its shaft, in particular a cavity for the shroud of a blade according to a first embodiment of the invention with a contouring in the circumferential direction of the cavity walls and the shroud with elevations in the radial direction,
  • FIG. 2b an axial cross-sectional view of the cavity of FIG. 2a which represents a wave-shaped contour with elevations and depressions in the radial direction as well as the positioning of the elevations with respect to the blade position
  • FIG. 3a a longitudinal section of a turbomachine along its shaft, in particular a cavity for the shroud of a blade according to a second embodiment of the invention with a contouring of the cavity walls and the shroud in the circumferential direction with elevations in the axial direction,
  • FIG. 3b a view of the shroud cavity of FIG. 3a from above and onto a surface projected with elevations and depressions in the axial direction,
  • FIG. 4 a view of a Deckbandkavität from above and on a surface projected with elevations and depressions in the axial direction and with a rounded sawtooth profile.

Ausführung der ErfindungEmbodiment of the invention

Figur 2a zeigt den gleichen Ausschnitt einer Turbomaschine wie in Figur 1. Erfiridungsgemäss weist hier die Kavität 4 Konturierungen 10 und 11 and den Kavitätswänden gemäss einer ersten Ausführung der Erfindung auf. Sie befinden sich in diesem Ausführungsbeispiel im Eintrittsbereich 12 und Austrittsbereich 13 der Kavität 4. Die Ansicht zeigt einen Schnitt durch die Konturierung auf der Höhe ihrer Erhebungen. Die Konturierung ist in der hier gezeigten Ausführung im Eintrittsbereich gleich der Konturierung im Austrittsbereich der Kavität. In weiteren Ausführungen können sich die Konturierungen im Eintrittsbereich von denen im Austrittsbereich unterscheiden. Dies kann zum Beispiel bei geneigten Kanalwänden der Fall sein. FIG. 2a shows the same section of a turbomachine as in FIG. 1 , According to the invention, the cavity 4 has contourings 10 and 11 and the cavity walls according to a first embodiment of the invention. You are in this embodiment in the inlet region 12 and exit region 13 of the cavity 4. The view shows a section through the contouring at the height of their surveys. The contouring in the embodiment shown here in the inlet region is equal to the contouring in the outlet region of the cavity. In further embodiments, the contouring in the inlet area may differ from those in the exit area. This may for example be the case with inclined channel walls.

Die Konturierungen 10 und 11 bestehen aus soliden Teilen, die sich von der ursprünglichen Innengehäusewand radial einwärts zum Deckband 3 hin erstrecken. Sie sind durch entsprechende Formgebung des Innengehäuses als integraler Teil der Innengehäusewand oder durch Nachbearbeitung der Kavität durch Montage von Einsatzringen realisierbar. Die Verwendung von Einsatzringen ermöglicht auch eine Nachrüstung einer bestehenden Maschine.The contouring 10 and 11 are made of solid parts, which extend from the original inner housing wall radially inwardly towards the shroud 3 out. They can be realized by appropriate shaping of the inner housing as an integral part of the inner housing wall or by post-processing of the cavity by mounting insert rings. The use of insert rings also allows retrofitting an existing machine.

Gemäss einer ersten Ausführung der Erfindung besitzt zusätzlich das Deckband 3 eine Kontur mit Erhebungen 14 und 15, die sich in radialer Richtung zu den Konturierungen 10, 11 hin erstrecken.
Die Konturierung 10 im Eintrittsbereich 12 gleicht in Umfangsrichtung die Druckfelder der Schaufelreihe mit Schaufeln 2a aus. Entsprechend gleicht die Konturierung 11 im Austrittsbereich 13 die Druckfelder der Schaufelreihe mit Schaufeln 2b aus. Die Konturierungen 14 und 15 in den Ein- bzw. Austrittsbereichen gleichen in Umfangsrichtung die Druckfelder der Schaufelreihe mit Schaufeln 1 aus.
According to a first embodiment of the invention, in addition, the shroud 3 has a contour with elevations 14 and 15 which extend in the radial direction to the contouring 10, 11 out.
The contouring 10 in the inlet region 12 compensates in the circumferential direction for the pressure fields of the blade row with blades 2a. Correspondingly, the contouring 11 in the exit region 13 compensates for the pressure fields of the blade row with blades 2b. The contouring 14 and 15 in the inlet and outlet areas compensate in the circumferential direction of the pressure fields of the blade row with blades 1 from.

Figur 2b zeigt eine Ansicht der Maschine entlang ihrer Wellenachse in Richtung der Hauptströmung. Es sind die Schaufeln 2a sowie die Konturierungen 10 im Eintrittsbereich der Kavität in Umfangsrichtung dargestellt. Sie weisen eine Wellenform auf mit einer Wellenlänge L1, die gleich der gesamten Umfangslänge dividiert durch die Anzahl Schaufeln 2a der stromauf liegenden Schaufelreihe oder der Distanz zwischen zwei benachbarten Leitschaufeln 2a. Die Wellenlänge L1 kann beispielsweise auch gleich der Umfangslänge dividiert durch ein ganzzahliges Vielfaches der erwähnten Schaufelanzahl sein, also nur halb oder ein viertel so gross sein.
Die Konturierung 11 im Austrittsbereich der Kavität besitzt eine Wellenlänge entsprechend der Anzahl Schaufeln 2b der stromab liegenden Schaufelreihe. Deshalb sind die Wellenlängen der Konturierung 10 und 11 gegebenenfalls unterschiedlich.
Die Wellenlängen der Deckbandkontur 14 im Eintrittsbereich 12 und der Deckbandkontur 15 im Austrittsbereich 13, sind (in analoger Weise zu den Wellenlängen der Konturen 10 und 11) entsprechend der Anzahl der Laufschaufeln 1 bestimmt.
FIG. 2b shows a view of the machine along its shaft axis in the direction of the main flow. The blades 2a and the contouring 10 in the inlet region of the cavity in the circumferential direction are shown. They have a waveform with a wavelength L 1 equal to the total circumferential length divided by the number of blades 2a of the upstream blade row or the distance between two adjacent stator blades 2a. For example, the wavelength L 1 may also be equal to the circumferential length divided by an integer multiple of the mentioned number of blades, that is to say only half or a quarter of this size.
The contouring 11 in the exit region of the cavity has a wavelength corresponding to the number of blades 2b of the downstream blade row. Therefore, the wavelengths of contouring 10 and 11 may be different.
The wavelengths of the shroud contour 14 in the inlet region 12 and the shroud contour 15 in the exit region 13 are determined (analogously to the wavelengths of the contours 10 and 11) in accordance with the number of rotor blades 1.

Im Eintrittsbereich 12 sind die Maxima der Erhebungen der Konturierung 10 in Bezug auf die stromauf liegenden Leitschaufeln 2a positioniert, um den Druckausgleich möglichst zu optimieren. Entsprechend sind im Austrittsbereich 13 die Maxima der Erhebungen der Konturierung 11 in Bezug auf die stromab liegenden Leitschaufeln 2b positioniert. (Die Positionierung der Maxima und deren Amplitude sind nachfolgend am Beispiel gemäss Figur 3b näher dargestellt.)In the inlet region 12, the maxima of the elevations of the contouring 10 with respect to the upstream vanes 2 a are positioned to the Optimize pressure compensation as much as possible. Accordingly, in the exit region 13, the maxima of the elevations of the contouring 11 are positioned with respect to the downstream guide vanes 2 b. (The positioning of the maxima and their amplitude are described below using the example FIG. 3b shown in more detail.)

Die Figuren 3a und 3b zeigen eine zweite Ausführungsform der Erfindung. Figur 3a stellt einen Ausschnitt einer Turbomaschine gemäss den Figuren 1 und 2a dar, wobei gleiche Bezugszeichen für gleiche Maschinenteile eingesetzt sind. Gemäss der zweiten Ausführung der Erfindung befindet sich eine Konturierung an der radial verlaufenden Wand der Kavität 4 in der Form von Erhebungen und Vertiefungen 20 im Eintrittsbereich 12 und von Erhebungen und Vertiefungen 21 im Austrittsbereich 13. Die Konturierungen 20 und 21 sind in diesem Beispiel als Einsatzring mit wellenförmiger Kontur realisiert, der an der Innengehäusewand befestigt ist. Alternativ können sie auch ein integraler Bestandteil der Kavität sein.The FIGS. 3a and 3b show a second embodiment of the invention. FIG. 3a represents a section of a turbomachine according to the FIGS. 1 and 2a , wherein the same reference numerals are used for the same machine parts. According to the second embodiment of the invention there is a contouring on the radially extending wall of the cavity 4 in the form of elevations and depressions 20 in the inlet region 12 and elevations and depressions 21 in the outlet region 13. The contouring 20 and 21 are in this example as an insert ring realized with wavy contour, which is attached to the inner housing wall. Alternatively, they can also be an integral part of the cavity.

Gemäss dieser zweiten Ausführung der Erfindung sind auch die Stirnseiten des Deckbands 3 mit einer Konturierung 22 im Eintrittsbereich 12 und einer Konturierung 23 im Austrittsbereich 13 versehen. Auch hier sind diese durch integrale Formgebung des Deckbands oder durch Montage eines entsprechend geformten und am Deckband befestigten Ringes realisierbar.
Figur 3b zeigt die Wellenform der Konturierungen 20-23 von Figur 3a in Umfangsrichtung durch Projektion der Kavität 4 auf eine Fläche. Die Wellenlänge L1 der Kontur 20 an der radial verlaufenden Kavitätswand im Eintrittsbereich ist hier gleich dem Abstand zwischen zwei benachbarten Schaufeln 2a der stromauf liegenden Schaufelreihe oder gleich dem Gesamtumfang der Kavität dividiert durch die Anzahl Schaufeln. Die Wellenlänge L2 der Kontur 21 im Austrittsbereich der Kavität ist gleich dem Abstand zwischen zwei benachbarten Schaufeln 2b der stromab liegenden Schaufelreihe. Entsprechend ist auch die Wellenlänge L3 der Konturen 22 und 23 an den Deckbandstirnseiten gleich dem Abstand zwischen zwei benachbarten Schaufeln 1, denen das Deckband zugehört. Die grössten Erhebung der Wellenformen aller Konturen liegen dabei auf der Höhe der Schaufeln, auf die die Kontur abgestimmt ist.
According to this second embodiment of the invention, the end faces of the shroud 3 are also provided with a contouring 22 in the inlet region 12 and a contouring 23 in the outlet region 13. Again, these can be realized by integral shaping of the shroud or by mounting a correspondingly shaped and attached to the shroud ring.
FIG. 3b shows the waveform of the contours 20-23 of FIG. 3a in the circumferential direction by projection of the cavity 4 on a surface. The wavelength L1 of the contour 20 at the radially extending cavity wall in the inlet region here is equal to the distance between two adjacent blades 2a of the upstream blade row or equal to the total circumference of the cavity divided by the number of blades. The wavelength L2 of the contour 21 in the exit region of the cavity is equal to the distance between two adjacent blades 2b of the downstream row of blades. Accordingly, the wavelength L3 of the contours 22 and 23 at the shroud end faces is equal to the distance between two adjacent blades 1, to which the shroud belongs. The largest survey of the waveforms of all contours are at the height of the blades, to which the contour is tuned.

Die Konturierungen besitzen jeweils eine Amplitude A, die gleich dem Ausmass einer Erhebung oder Vertiefung ist ausgehend von einer Mittellinie zwischen Erhebung und Vertiefung. Die Amplitude steht in einem vorbestimmten Verhältnis zur ursprünglichen Kavitätshöhe des Eintrittsbereiches 12. Die Amplituden A der Erhebungen und Vertiefungen an den Deckbändern sind auch in einem vorbestimmten Verhältnis zum ursprünglichen Axialabstands zwischen Deckband und Kavitätswand.The contours each have an amplitude A which is equal to the extent of a survey or depression, starting from a center line between the survey and depression. The amplitude is in a predetermined ratio to the original cavity height of the inlet region 12. The amplitudes A of the elevations and depressions on the shrouds are also in a predetermined ratio to the original axial distance between shroud and cavity wall.

Figur 4 zeigt eine weitere mögliche Form der Kontur angewandt auf die Kavitätskonturierung von Figur 3a. Anstelle einer Wellenform besitzt die Kontur hier eine gerundete Sägezahnform 20', 21', 22', 23', wobei die Position der Maxima der Sägezahnform 20' auf die Position der Schaufeln 2a der stromauf benachbarten Schaufelreihe, jene der Kontur 21' auf die Position der Schaufeln 2b der stromab benachbarten Schaufelreihe, und jene der Kontur 22' und 23' auf die Position der Schaufeln 1 abgestimmt sind. FIG. 4 shows another possible shape of the contour applied to the cavity contouring of FIG. 3a , Instead of a waveform, the contour here has a rounded sawtooth shape 20 ', 21', 22 ', 23', wherein the position of the maxima of the sawtooth 20 'on the position of the blades 2a of the upstream row of blades, those of the contour 21' on the position of the blades 2b of the downstream row of blades, and those of the contour 22 'and 23' are matched to the position of the blades 1.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Laufschaufelblade
2a2a
Leitschaufelvane
2b2 B
Leitschaufelvane
33
Deckbandshroud
44
Kavitätcavity
55
Innengehäuseinner housing
66
Strömungsrichtung LeckagestromFlow direction leakage current
77
Strömungsrichtung ArbeitsstromFlow direction working current
88th
Dichtstreifensealing strips
1010
Konturierung der Kavität in UmfangsrichtungContouring of the cavity in the circumferential direction
1111
Konturierung der Kavität in UmfangsrichtungContouring of the cavity in the circumferential direction
1212
Eintrittsbereichentry area
1313
Austrittsbereichexit area
1414
Konturierung des DeckbandsContouring of the shroud
1515
Konturierung des DeckbandsContouring of the shroud
20-2320-23
Bauteile für KonturierungContouring components
20'-23'20'-23 '
Bauteile für KonturierungContouring components
L1, L2, L3L1, L2, L3
Wellenlängewavelength
AA
Amplitudeamplitude

Claims (13)

  1. Turbomachine with guide vanes (2a, 2b) arranged in rows and fastened to an inner casing and rotor blades (1) arranged in rows and fastened to a shaft, at least part of the guide vane rows and at least part of the rotor blade rows being provided with shrouds (3) and recesses (4) being arranged on the inner casing (5), into which recesses the shrouds (3) of the rotor blades protrude, and recesses being arranged on the shaft, into which recesses the shrouds of the guide vanes protrude, characterized in that at least one recess (4) and at least one associated shroud (3) has contouring (10, 11, 14, 15, 20-23, 20'-23') which varies in the peripheral direction.
  2. Turbomachine according to Claim 1, characterized in that the contouring (10, 11, 14, 15, 20-23, 23'-23') has periodic elevations and depressions which are uniformly distributed over the periphery of the recess (4).
  3. Turbomachine according to Claim 1 or 2, characterized in that the varying contouring (10, 11, 20, 21, 20', 21') in the recess (4) has, between sequential elevations, an undulation length (L1, L2) which is equal to the peripheral length of the recess (4) divided by the number of guide vanes (2a, 2b) in the blading row or divided by a whole number multiple of the number of guide vanes (2a, 2b) in the blading row which is immediately adjacent to the contouring.
  4. Turbomachine according to Claim 1 or 2, characterized in that the varying contouring (14, 15, 22, 23, 22', 23') on the shrouds (3) has an undulation length (L3) between sequential elevations which is equal to the peripheral length of the shroud (3) divided by the number of blades (1) in the blading row or divided by a whole number multiple of the number of blades (1) in the blading row which is associated with the shroud.
  5. Turbomachine according to one of the preceding claims, characterized in that the varying contouring has a periodically repeating wave shape, step shape, block shape, triangular shape or saw-tooth shape.
  6. Turbomachine according to one of the preceding claims, characterized in that the recess (4) has an inlet region (12), into which a leakage flows, and an outlet region (13), through which the leakage flows out of the recess (4), and the contouring (10, 11) extends over the periphery of the axially extending side walls of the inlet region (12) of the recess (4) and/or over the periphery of the axially extending side walls of the outlet region (13) of the recess (4), and the elevations and depressions extend in the radial direction.
  7. Turbomachine according to one of the preceding claims, characterized in that the recess (4) has an inlet region (12), into which a leakage flows, and an outlet region (13), through which the leakage flows out of the recess (4), and the contouring (20, 21, 20', 21') extends over the periphery of the radially extending side wall of the inlet region (12) of the recess (4) and/or over the periphery of the radially extending side wall of the outlet region (13), and the elevations and depressions extend in the axial direction.
  8. Turbomachine according to one of the preceding claims, characterized in that the contouring extends over the periphery of the end surfaces (22, 23, 22', 23') of the shrouds (3), and the elevations and depressions extend in the axial direction.
  9. Turbomachine according to one of the preceding claims, characterized in that the contouring extends over the periphery of the shrouds (3) in the inlet region (12) and/or in the outlet region (13) of the recess (4), and the elevations and depressions extend in the radial direction.
  10. Turbomachine according to one of the preceding claims, characterized in that the contouring on the walls of the recess (4) in the inlet region (12) of the recess (4) is different to the contouring on the walls of the recess (4) in the outlet region (13) of the recess (4).
  11. Turbomachine according to one of the preceding claims, characterized in that the contouring on the walls of the recess (4) in the inlet region (12) of the recess (4) is the same as the contouring on the walls of the recess (4) in the outlet region (13) of the recess (4).
  12. Turbomachine according to one of the preceding claims, characterized in that the contouring (10, 11, 20-23, 20', 23') is formed by insert rings, which are fastened to the walls of the recess (4) or to the shrouds (3).
  13. Turbomachine according to one of the preceding claims, characterized in that the contouring (10, 11, 20-23, 20'-23') is formed by integral shaping of the side walls of the recess (4) or of the shrouds (3).
EP03103323.6A 2003-09-09 2003-09-09 Blading of a turbomachine with contoured shrouds Expired - Lifetime EP1515000B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03103323.6A EP1515000B1 (en) 2003-09-09 2003-09-09 Blading of a turbomachine with contoured shrouds
US10/936,582 US7320574B2 (en) 2003-09-09 2004-09-09 Turbomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03103323.6A EP1515000B1 (en) 2003-09-09 2003-09-09 Blading of a turbomachine with contoured shrouds

Publications (2)

Publication Number Publication Date
EP1515000A1 EP1515000A1 (en) 2005-03-16
EP1515000B1 true EP1515000B1 (en) 2016-03-09

Family

ID=34130324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03103323.6A Expired - Lifetime EP1515000B1 (en) 2003-09-09 2003-09-09 Blading of a turbomachine with contoured shrouds

Country Status (2)

Country Link
US (1) US7320574B2 (en)
EP (1) EP1515000B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655723B2 (en) 2019-01-31 2023-05-23 Mitsubishi Heavy Industries, Ltd. Rotating machine

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101155809B1 (en) * 2005-03-26 2012-06-12 한라공조주식회사 Complex of fan and shroud
EP1731711A1 (en) * 2005-06-10 2006-12-13 Siemens Aktiengesellschaft Transition from combustion chamber to turbine, heat shield, and turbine vane in a gas turbine
JP5283855B2 (en) * 2007-03-29 2013-09-04 株式会社Ihi Turbomachine wall and turbomachine
DE502008002497D1 (en) * 2007-08-06 2011-03-10 Alstom Technology Ltd SPIDER COOLING BETWEEN FIRE CHAMBER WALL AND TURBINE WALL OF A GAS TURBINE SYSTEM
EP2031184A1 (en) * 2007-08-31 2009-03-04 Siemens Aktiengesellschaft Flow straightener for a turbo engine
EP2055902A1 (en) * 2007-10-31 2009-05-06 Siemens Aktiengesellschaft Turbine for a thermal power plant comprising a rotor bucket and a guide bucket
US8162600B2 (en) * 2007-12-13 2012-04-24 Baker Hughes Incorporated System, method and apparatus for two-phase homogenizing stage for centrifugal pump assembly
US8317465B2 (en) * 2009-07-02 2012-11-27 General Electric Company Systems and apparatus relating to turbine engines and seals for turbine engines
US9039375B2 (en) * 2009-09-01 2015-05-26 General Electric Company Non-axisymmetric airfoil platform shaping
JP5517530B2 (en) * 2009-09-03 2014-06-11 三菱重工業株式会社 Turbine
DE102009042857A1 (en) * 2009-09-24 2011-03-31 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine with shroud labyrinth seal
JP2011080452A (en) * 2009-10-09 2011-04-21 Mitsubishi Heavy Ind Ltd Turbine
US8356975B2 (en) * 2010-03-23 2013-01-22 United Technologies Corporation Gas turbine engine with non-axisymmetric surface contoured vane platform
US9976433B2 (en) * 2010-04-02 2018-05-22 United Technologies Corporation Gas turbine engine with non-axisymmetric surface contoured rotor blade platform
IT1399992B1 (en) * 2010-05-11 2013-05-09 Denso Thermal Systems Spa FAN ASSEMBLY FOR VEHICLES
DE102011008812A1 (en) * 2011-01-19 2012-07-19 Mtu Aero Engines Gmbh intermediate housing
US8678740B2 (en) * 2011-02-07 2014-03-25 United Technologies Corporation Turbomachine flow path having circumferentially varying outer periphery
ES2894281T3 (en) * 2011-12-20 2022-02-14 Mtu Aero Engines Gmbh Turbomachinery and turbomachinery stage
EP2607625B1 (en) * 2011-12-20 2021-09-08 MTU Aero Engines AG Turbomachine and stage of turbomachine
US10036266B2 (en) 2012-01-17 2018-07-31 United Technologies Corporation Method and apparatus for turbo-machine noise suppression
JP5643245B2 (en) * 2012-02-27 2014-12-17 三菱日立パワーシステムズ株式会社 Turbo machine
US9382807B2 (en) * 2012-05-08 2016-07-05 United Technologies Corporation Non-axisymmetric rim cavity features to improve sealing efficiencies
US9528376B2 (en) * 2012-09-13 2016-12-27 General Electric Company Compressor fairing segment
US8926283B2 (en) 2012-11-29 2015-01-06 Siemens Aktiengesellschaft Turbine blade angel wing with pumping features
WO2014115706A1 (en) * 2013-01-23 2014-07-31 三菱重工業株式会社 Seal mechanism and rotating machine provided with seal mechanism
WO2014127954A1 (en) * 2013-02-20 2014-08-28 Siemens Aktiengesellschaft Riffled seal for a turbomachine, turbomachine and method of manufacturing a riffled seal for a turbomachine
EP2770165A1 (en) * 2013-02-20 2014-08-27 Siemens Aktiengesellschaft Riffled seal, turbomachine with riffled seal and method of manufacturing thereof
EP2982832B1 (en) * 2013-04-03 2018-12-26 Mitsubishi Heavy Industries, Ltd. Rotating machine
US20160208823A1 (en) * 2015-01-19 2016-07-21 Hamilton Sundstrand Corporation Shrouded fan rotor
US20170211407A1 (en) * 2016-01-21 2017-07-27 General Electric Company Flow alignment devices to improve diffuser performance
FR3052804B1 (en) * 2016-06-16 2018-05-25 Safran Aircraft Engines VOLUNTARILY UNSUBSCRIBED WHEEL
KR102000281B1 (en) * 2017-10-11 2019-07-15 두산중공업 주식회사 Compressor and gas turbine comprising the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2278041A (en) * 1939-10-23 1942-03-31 Allis Chalmers Mfg Co Turbine blade shroud
US3893782A (en) * 1974-03-20 1975-07-08 Westinghouse Electric Corp Turbine blade damping
DE2462465B2 (en) * 1974-03-21 1979-07-12 Maschinenfabrik Augsburg-Nuernberg Ag, 8500 Nuernberg Device for dynamic stabilization of the rotor of a high-speed compressor
US3989406A (en) * 1974-11-26 1976-11-02 Bolt Beranek And Newman, Inc. Method of and apparatus for preventing leading edge shocks and shock-related noise in transonic and supersonic rotor blades and the like
CH598787A5 (en) 1976-11-23 1978-05-12 Inpaver Ag
JPS5669402A (en) * 1979-11-09 1981-06-10 Hitachi Ltd Structure of blade train with shroud
JPS6123804A (en) * 1984-07-10 1986-02-01 Hitachi Ltd Turbine stage structure
US6375416B1 (en) * 1993-07-15 2002-04-23 Kevin J. Farrell Technique for reducing acoustic radiation in turbomachinery
DE59710621D1 (en) * 1997-09-19 2003-09-25 Alstom Switzerland Ltd Gap sealing device
GB9915648D0 (en) * 1999-07-06 1999-09-01 Rolls Royce Plc Improvement in or relating to turbine blades
DE19963377A1 (en) * 1999-12-28 2001-07-12 Abb Alstom Power Ch Ag Turbine blade with actively cooled cover band element
US7066713B2 (en) * 2004-01-31 2006-06-27 United Technologies Corporation Rotor blade for a rotary machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655723B2 (en) 2019-01-31 2023-05-23 Mitsubishi Heavy Industries, Ltd. Rotating machine

Also Published As

Publication number Publication date
EP1515000A1 (en) 2005-03-16
US7320574B2 (en) 2008-01-22
US20050100439A1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
EP1515000B1 (en) Blading of a turbomachine with contoured shrouds
EP2179143B1 (en) Gap cooling between combustion chamber wall and turbine wall of a gas turbine installation
DE69400065T2 (en) Vane cooling
EP0972128B1 (en) Surface structure for the wall of a flow channel or a turbine blade
DE19650656C1 (en) Turbo machine with transonic compressor stage
DE112009002600T5 (en) Cantilever turbine nozzle
DE102012013160A1 (en) labyrinth seals
DE102016125091A1 (en) Turbine blades with tip shroud
EP2003292A2 (en) Blade shroud with overhang
DE102004026503A1 (en) Intermediate nozzle seal for steam turbines
EP2728122B1 (en) Blade Outer Air Seal fixing for a turbomachine
DE3006099A1 (en) GASKET ARRANGEMENT BETWEEN CIRCULATING, BUT RADIAL, MOVING PARTS OF THE MACHINE
CH698121B1 (en) Grouped reaction nozzle shrouds with integrated seals.
DE102014012764A1 (en) Radial compressor stage
EP2789802A1 (en) Blade row for a turbomachine and corresponding manufacturing method
EP3078804A1 (en) Shroud assembly of a row of stator or rotor blades and corresponding turbine
DE102014205226A1 (en) Blade row group
EP1747349A1 (en) Blade for turbomachinery comprising a shroud and a weight-optimised sealing strip
EP0992656B1 (en) Turbomachine to compress or expand a compressible medium
EP1056931B1 (en) Sealing device and use of a sealing device
EP3412875A2 (en) Running-in structure for a turbomachine and method for producing a running-in structure
EP2607625B1 (en) Turbomachine and stage of turbomachine
EP2607626B1 (en) Turbomachine and stage of a turbomachine
DE4100554A1 (en) DEVICE FOR GASKET SEALING BETWEEN NEXT SEGMENTS OF TURBINE GUIDE BLADES AND SHEET RINGS
EP3388626A1 (en) Contouring of a blade row platform

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050912

AKX Designation fees paid

Designated state(s): DE

17Q First examination report despatched

Effective date: 20060721

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50315419

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315419

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50315419

Country of ref document: DE

Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50315419

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50315419

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50315419

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 50315419

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315419

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220818

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50315419

Country of ref document: DE