WO2014115706A1 - Seal mechanism and rotating machine provided with seal mechanism - Google Patents

Seal mechanism and rotating machine provided with seal mechanism Download PDF

Info

Publication number
WO2014115706A1
WO2014115706A1 PCT/JP2014/051067 JP2014051067W WO2014115706A1 WO 2014115706 A1 WO2014115706 A1 WO 2014115706A1 JP 2014051067 W JP2014051067 W JP 2014051067W WO 2014115706 A1 WO2014115706 A1 WO 2014115706A1
Authority
WO
WIPO (PCT)
Prior art keywords
swirl
sealing mechanism
ring
shaped member
guide
Prior art date
Application number
PCT/JP2014/051067
Other languages
French (fr)
Japanese (ja)
Inventor
松本 和幸
博 神吉
真成 飯野
哲也 原田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013010084A external-priority patent/JP2014141912A/en
Priority claimed from JP2013012425A external-priority patent/JP2014141955A/en
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2014115706A1 publication Critical patent/WO2014115706A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/126Baffles or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/183Two-dimensional patterned zigzag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/184Two-dimensional patterned sinusoidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/75Shape given by its similarity to a letter, e.g. T-shaped

Definitions

  • the present invention relates to a sealing mechanism such as a steam turbine and a gas turbine, and a rotary machine including the sealing mechanism.
  • a non-contact type sealing mechanism such as a labyrinth seal is used to prevent a working fluid such as steam from leaking through a gap formed between the stationary member and the rotating member. It is used.
  • the labyrinth seal has a seal member such as a seal fin extending toward the moving blade on the inner periphery of the casing that forms the outer shell of the rotating machine, and a step-shaped shroud provided at the tip of the moving blade.
  • the present invention provides a sealing mechanism that can reduce the swirling component of the swirling flow of the leaked steam, which causes self-excited vibration such as low-frequency vibration of the rotating machine, and a rotating machine including the sealing mechanism.
  • the present invention provides a seal mechanism that can reduce the generation of periodic excitation force while reducing the swirling component of the steam of the rotary machine, and a rotary machine including the seal mechanism.
  • the sealing mechanism includes a rotating shaft, a plurality of moving blades extending in the radial direction of the rotating shaft and spaced apart in the circumferential direction, and the moving blades.
  • a casing that surrounds from the outer peripheral side, and a swirl guide portion provided on the upstream side of a gap formed between the tip of the rotor blade and the casing, the swirl guide portion being along the flow direction of the swirl flow
  • a second guide surface curved in the radial direction continuously to the first guide surface.
  • the swirl guide unit can guide the swirl flow in the radial direction by the second guide surface after guiding the swirling flow by the first guide surface so as to maintain the flow direction.
  • the second guide surface of the swirl guide may be curved radially outward.
  • the second guide surface curved toward the radially outer peripheral side guides the swirling flow flowing from the radially inner peripheral side to the radially outer peripheral side, thereby causing the swirling flow to be in a direction opposite to the rotational direction.
  • the swirl component of the swirl flow can be reduced by turning.
  • the second guide surface of the swirl guide may be curved radially inward.
  • the second guide surface curved toward the radially inner peripheral side guides the swirling flow flowing from the radially inner peripheral side to the radially inner peripheral side, thereby further reducing the leaked steam. Can do.
  • the swirl guide portions may be connected to each other by a ring-shaped member having a uniform cross-sectional shape in the circumferential direction. According to the said structure, the vapor
  • the seal mechanism includes a rotating shaft, a plurality of moving blades extending in a radial direction of the rotating shaft and spaced apart in the circumferential direction, and the moving blade.
  • a casing that surrounds from the outer periphery side, and a swirl guide portion provided on the upstream side of a gap formed between the tip of the rotor blade and the casing, and the swirl guide portion has a cross-sectional shape that is uniform in the circumferential direction. It has such a ring-shaped member.
  • the ring-shaped member extending in the circumferential direction increases the wetting area between the swirling flow and the swirl guide that circulates upstream of the gap, and friction is generated between the swirling flow and the swirl guide. Therefore, the swirl component of the swirl flow can be reduced.
  • the ring-shaped member may be a plate member having a main surface orthogonal to the axial direction of the rotating shaft.
  • the swirl guide portion since the swirl guide portion has a shape along the circulation direction of the swirling flow, the occurrence of disturbance on the upstream side of the gap can be suppressed.
  • the ring-shaped member may have a zigzag shape in which the cross-sectional shape extends in the radial direction.
  • the wetting area between the swirl flow and the swirl guide portion is further increased, so that the swirl component can be further reduced.
  • the swirl guide portion includes a support member that connects the surface of the ring-shaped member opposite to the gap and the casing and a plurality of support members along the circumferential direction.
  • the support member may have a guide surface that guides the swirling flow in the radial direction.
  • the component along the circumferential direction of the swirling flow is weakened by the guide surface, so that the swirling component can be reduced.
  • a rotary machine includes the sealing mechanism.
  • the swirl guide portion guides the swirling flow so that the flow direction is maintained by the first guide surface, and then guides the radial direction by the second guide surface. Can do. Thereby, since the component along the circumferential direction of the swirl flow is weakened, the swirl component of the swirl flow can be reduced.
  • the ring-shaped member extending in the circumferential direction increases the wetting area between the swirling flow and the swirl guide portion that circulates upstream of the gap, friction occurs between the swirling flow and the swirl guide portion.
  • the swirling component of the swirling flow can be reduced.
  • FIG. 2 is a diagram showing a schematic configuration of a steam turbine provided with a seal mechanism according to the first embodiment of the present invention when viewed from the axial direction, and is a cross-sectional view taken along line AA of FIG. It is detail drawing of the swirl guide plate of the seal mechanism which concerns on 1st embodiment of this invention.
  • FIG. 2 is a diagram showing a schematic configuration of a steam turbine provided with a seal mechanism according to a second embodiment of the present invention when viewed from the axial direction, and is a cross-sectional view taken along line AA of FIG. It is detail drawing of the swirl guide plate of the seal mechanism which concerns on 2nd embodiment of this invention. It is a principal part expanded sectional view of a steam turbine provided with the sealing mechanism which concerns on 3rd embodiment of this invention, and is an expanded sectional view of I of FIG. It is a figure which shows schematic structure which looked at the steam turbine provided with the sealing mechanism which concerns on 3rd embodiment of this invention from the axial direction, and is AA sectional drawing of FIG.
  • FIG. 5 is a diagram showing a schematic configuration of a steam turbine provided with a seal mechanism according to a fourth embodiment when viewed from the axial direction, and is a cross-sectional view taken along line AA of FIG.
  • It is a principal part expanded sectional view of a steam turbine provided with the sealing mechanism which concerns on 5th embodiment, and is an expanded sectional view of I of FIG.
  • It is sectional drawing which shows the modification of the ring-shaped member of 5th embodiment.
  • It is sectional drawing which shows the modification of the ring-shaped member of 5th embodiment.
  • the steam turbine 1 of the present embodiment is rotatably provided inside a casing 10, a regulating valve 20 that adjusts the amount and pressure of steam S flowing into the casing 10, and the inside of the casing 10.
  • the rotating shaft 30 that transmits power to a machine such as a generator (not shown), the stationary blade 40 held by the casing 10, the moving blade 50 provided on the rotating shaft 30, and the rotating shaft 30 can be rotated about the axis.
  • a bearing portion 60 to be supported by the main body.
  • the steam turbine 1 of the present embodiment is provided with a seal mechanism 2 for preventing working fluid such as steam from leaking from a gap formed between the tip of the moving blade 50 and the casing 10. Yes.
  • Casing 10 has an internal space hermetically sealed and a flow path for steam S.
  • a ring-shaped partition plate outer ring (stationary annular body) 11 through which the rotary shaft 30 is inserted is firmly fixed to the inner wall surface of the casing 10.
  • a plurality of regulating valves 20 are attached to the inside of the casing 10, and each includes a regulating valve chamber 21 into which steam S flows from a boiler (not shown), a valve body 22, and a valve seat 23.
  • the regulating valve 20 is configured such that when the valve body 22 is separated from the valve seat 23, the steam flow path is opened and the steam S flows into the internal space of the casing 10 through the steam chamber 24.
  • the rotating shaft 30 includes a shaft main body 31 and a plurality of disks 32 extending from the outer periphery of the shaft main body 31 in the radial direction of the rotating shaft 30 (hereinafter simply referred to as the radial direction).
  • the rotating shaft 30 is configured to transmit rotational energy to a machine such as a generator (not shown).
  • the bearing unit 60 includes a journal bearing device 61 and a thrust bearing device 62, and supports the rotary shaft 30 in a freely rotatable manner.
  • the stationary blades 40 extend from the casing 10 toward the inner periphery, and constitute a group of annular stationary blades arranged radially so as to surround the periphery of the rotating shaft 30.
  • the stationary blades 40 are respectively held by the partition plate outer ring 11 described above.
  • the inner sides in the radial direction of these stationary blades 40 are connected by a ring-shaped partition plate inner ring 14 through which the rotary shaft 30 is inserted.
  • the annular stator blade group composed of the plurality of stator blades 40 is formed in six in the axial direction of the rotating shaft 30 (hereinafter simply referred to as the axial direction).
  • the annular stationary blade group converts the pressure energy of the steam S into velocity energy and flows it into the moving blade 50 adjacent on the downstream side.
  • the moving blade 50 is firmly attached to the outer peripheral portion of the disk 32 included in the rotating shaft 30.
  • a large number of moving blades 50 are arranged radially on the downstream side of each annular stationary blade group to constitute an annular moving blade group.
  • the annular stator blade group and the annular rotor blade group are configured as a "one stage". That is, the steam turbine 1 is configured in six stages. Among these, the tip part of the moving blade 50 in the last stage is connected with the tip part of the moving blade adjacent to the circumferential direction (henceforth only the circumferential direction) of the rotating shaft 30.
  • the tip of the moving blade 50 in the final stage is called a shroud 51.
  • the shroud 51 includes a step portion 52 (52A to 52C) formed in a step shape with a central portion protruding in the axial direction.
  • a cylindrical annular groove 12 is formed which has a diameter increased from the inner peripheral portion of the partition plate outer ring 11 and has the inner peripheral surface of the casing 10 as the bottom portion 13.
  • a shroud 51 is accommodated in the annular groove 12.
  • the bottom portion 13 is opposed to the step portions 52A, 52B, 52C of the shroud 51 in the radial direction via the gap Gd.
  • the bottom 13 is provided with three seal fins 17 (17A to 17C) extending in the radial direction toward the shroud 51.
  • the seal fins 17 (17A to 17C) extend from the bottom 13 to the inner periphery toward the step portions 52 (52A to 52C), respectively, and extend in the circumferential direction.
  • These seal fins 17 (17A to 17C) form step portions 52 (52A to 52C) and minute gaps m (mA to mC) in the radial direction.
  • the dimensions of these minute gaps m are determined in consideration of the thermal elongation amount of the casing 10 and the rotor blade 50, the centrifugal extension amount of the rotor blade 50, and the like, and the seal fin 17 (17A to 17C) and the rotor blade 50. It is set in a range where and do not touch.
  • the seal mechanism 2 is provided with a plurality of swirl guide plates 170 (swirl guide portions) on the inner periphery of the casing 10 on the downstream side of the stationary blade 40.
  • the swirl guide plate 170 is disposed on the upstream side of the gap Gd formed between the tip of the moving blade 50 and the casing 10, and extends toward the inner peripheral side of the casing 10.
  • the swirl guide plate 170 is fixed by welding.
  • the plurality of swirl guide plates 170 are annularly arranged at positions on the side surface of the partition plate outer ring 11 and facing the inlet side of the seal fins 17. The detailed shape of the swirl guide plate 170 will be described later.
  • the steam S flowing into the internal space of the casing 10 sequentially passes through the annular stator blade group and the annular rotor blade group in each stage. While the steam S passes through the stationary blade 40 in each stage of the annular stationary blade group, its circumferential velocity component increases. Most of the steam SM out of the steam S flows between the rotor blades 50, the energy of the steam SM is converted into rotational energy, and rotation is applied to the rotating shaft 30.
  • a part (for example, about several percent) of the steam S out of the steam S flows out from the stationary blade 40 and then flows into the annular groove 12 while maintaining a strong circumferential component.
  • the swirl guide plate 170 has an L shape.
  • the swirl guide plate 170 has a shape like a turning vane that turns the flow direction of the fluid flowing in a certain flow direction.
  • the swirl guide plate 170 includes a first guide surface 171 extending along the steam SL forming the swirl flow, and a second guide that curves to the radially outer peripheral side continuously to the first guide surface 171.
  • the first guide surface 171 and the second guide surface 172 are smoothly connected.
  • the first guide surface 171 is formed so as to be inclined toward the rotation direction R of the rotary shaft 30 from the radially inner periphery side toward the outer periphery side.
  • the second guide surface 172 is formed so as to incline toward the opposite side of the rotation direction R of the rotary shaft 30 from the radially inner peripheral side toward the outer peripheral side.
  • the swirl guide plates 170 are, for example, the same number as the stationary blades 40 and arranged at the same pitch as the stationary blades 40.
  • the pitch of the swirl guide plate 170 does not need to be arranged at the same pitch as the stationary blade 40, and can be arbitrarily set. That is, the number of swirl guide plates 170 in the circumferential direction can be arbitrarily set, and only one place may be installed at a required place.
  • the swirl guide plate 170 guides the swirl flow by the first guide surface 171 so as to maintain the flow direction, and then by the second guide surface 172.
  • the swirl flow can be turned in the direction opposite to the rotation direction R by guiding it to the radially outer peripheral side. Thereby, the swirling component of the swirling flow can be reduced.
  • the steam turbine which is a rotary machine of 2nd embodiment of this invention is demonstrated based on drawing.
  • 2nd embodiment it describes centering around difference with 1st embodiment mentioned above, The description is abbreviate
  • the swirl guide plate 170 ⁇ / b> B of the second embodiment is continuous with the first guide surface 171 ⁇ / b> B extending along the steam SL forming the swirl flow and the first guide surface 171.
  • a second guide surface 172B that curves toward the radially inner peripheral side.
  • the first guide surface 171B and the second guide surface 172B are smoothly connected.
  • the first guide surface 171B is formed to be inclined toward the rotation direction R of the rotary shaft 30 from the radially inner periphery side toward the outer periphery side.
  • the second guide surface 172B is formed so as to incline toward the opposite side to the rotation direction R of the rotary shaft 30 from the radially inner peripheral side toward the outer peripheral side.
  • the swirl guide plates 170B of the second embodiment are connected to each other. Specifically, the first guide surface 171B of the swirl guide plate 170B on the first circumferential side is connected to the second guide surface 172B of the swirl guide plate 170B on the second circumferential side.
  • the swirl guide plate 170B guides the swirl flow by the first guide surface 171B so as to maintain the flow direction thereof, and then guides it to the radially inner peripheral side by the second guide surface 172B. can do. Thereby, since the component along the circumferential direction of the swirl flow is weakened, the swirl component of the swirl flow can be reduced.
  • the second guide surface 172B that curves toward the radially inner peripheral side guides the swirling flow that flows from the radially inner peripheral side to the radially inner peripheral side, whereby the leaked steam can be further reduced. Furthermore, since the swirl guide plates 170B are connected to each other, the leaked steam can be further reduced.
  • the swirl guide plate 170C of the third embodiment is connected to the guide plate body 173 having the same shape as the swirl guide plate of the first embodiment, and the guide plate body 173. And a ring-shaped member 174 extending in the circumferential direction.
  • the ring-shaped member 174 is a ring-shaped plate member having a surface along the radial direction, and is connected to the axial end portion of the guide plate main body 173.
  • the ring-shaped member 174 by providing the ring-shaped member 174, all the steam SL that has flowed into the flow path formed by the swirl guide plate 170C from the radially inner side passes through this flow path. For this reason, the steam SL is reliably turned in the direction of the second guide surface 172, and the circumferential direction component of the steam SL can be effectively reduced.
  • the seal mechanism 2 is provided with a swirl guide portion 270 having a ring-shaped member 271 on the inner periphery of the casing 10 on the downstream side of the stationary blade 40.
  • the swirl guide portion 270 is installed on the upstream side of the gap Gd formed between the tip of the rotor blade 50 and the casing.
  • the ring-shaped member 271 is an annular plate member extending in the circumferential direction in the space upstream of the gap Gd.
  • the ring-shaped member 271 has a uniform cross-sectional shape over the circumferential direction.
  • the ring-shaped member 271 is a disk-shaped member having a main surface orthogonal to the axial direction of the rotating shaft 30.
  • the ring-shaped member 271 is provided at a substantially intermediate position between the first axial surface of the partition plate outer ring 11 and the second axial surface of the shroud 51.
  • the outer peripheral end of the ring-shaped member 271 is separated from the casing 10.
  • the ring-shaped member 271 is supported by a plurality of support members 272 provided along the circumferential direction.
  • the support member 272 has a rod shape, and is provided so as to connect the casing 10 to the surface of the ring-shaped member 271 opposite to the gap Gd.
  • the installation location of the support member 272 is not limited to a location as shown in FIG.
  • the support member 272 may be configured to support the outer peripheral end of the ring-shaped member 271 from the radially outer peripheral side of the casing 10. That is, the ring-shaped member 271 may be supported by the support member 272 provided on the bottom portion 13 of the annular groove 12.
  • the steam S flowing into the internal space of the casing 10 sequentially passes through the annular stator blade group and the annular rotor blade group in each stage.
  • the steam S increases in the circumferential velocity component while passing through the stationary blade 40 in the annular stationary blade group of each stage.
  • Most of the steam SM out of the steam S flows between the rotor blades 50, and the energy of the steam SM is converted into rotational energy, so that the rotation shaft 30 is rotated.
  • the swirl guide portion 270 has the ring-shaped member 271 extending in the circumferential direction, so that the swirl flow SL flowing through the upstream side of the gap Gd Wetting area increases.
  • the ring-shaped member 271 narrows the flow path width on the upstream side of the gap Gd, that is, increases the wet area, thereby increasing the wall friction acting on the steam SL and reducing the swirl component of the steam SL. it can.
  • the ring-shaped member 271 is a plate member whose cross-sectional shape having a main surface orthogonal to the axial direction of the rotary shaft 30 is uniform over the circumferential direction, so that the swirl guide portion 270 has a shape along the circulation direction of the swirling flow. Therefore, the occurrence of disturbance on the upstream side of the gap Gd can be suppressed.
  • the ring-shaped member 271 uses not only a flat plate but also a perforated plate (for example, punching metal) in which a plurality of holes are regularly formed on the surface, and allows a certain amount of steam SL to flow in the axial direction. Also good.
  • the plurality of holes need not be regular, and may be irregularly formed.
  • the ring-shaped member 271 may be provided with a plurality of protrusions.
  • the steam turbine which is a rotary machine of 5th embodiment of this invention is demonstrated based on drawing.
  • the differences from the fourth embodiment described above will be mainly described, and the description of the same parts will be omitted.
  • the ring-shaped member 271B of the swirl guide portion 270B of the fifth embodiment has a zigzag shape whose cross-sectional shape extends in the radial direction.
  • the ring-shaped member 271B is formed in a uniform cross-sectional shape over the circumferential direction as in the fourth embodiment, but the surface 273 is inclined toward the first axial side as it goes toward the outer circumferential side in the radial direction.
  • the surface 274 is inclined continuously toward the second axial side as it goes toward the outer peripheral side in the radial direction. That is, the ring-shaped member 271B of the fifth embodiment has an increased surface area compared to the ring-shaped member 271 of the fourth embodiment.
  • the surface area of the ring-shaped member 271B is increased, the wetted area with the steam SL is further increased, so that the swirl component of the steam SL can be further reduced.
  • the cross-sectional shape of the ring-shaped member 271B is a zigzag shape.
  • the shape is not limited to this as long as the wetted area of the ring-shaped member 271B with the steam SL is increased. Absent.
  • the ring-shaped member 271B may have a sine wave shape.
  • the ring-shaped member 271B may have a rectangular wave shape.
  • the support member 272C that supports the ring-shaped member 271C of the swirl guide portion 270C of the fifth embodiment is formed in a plate shape having a guide surface 275 along the flow direction of the steam SL.
  • the support member 272C is formed so as to be inclined in the rotation direction R of the rotary shaft 30 from the radially inner periphery side toward the outer periphery side.
  • the guide surface 275 can prevent the occurrence of disturbance while reducing the swirling component of the steam SL.
  • the shape of the support member 272C of the fifth embodiment described above is not limited to the shape described above.
  • the cross section of the support member 272C may have a wing shape, and after the steam SL is once guided along the flow direction thereof, the shape may be formed along the radial direction.
  • the configuration described in the above-described embodiment is an example, and can be appropriately changed.
  • the steam turbine was demonstrated to an example as a rotary machine, it is not restricted to a steam turbine.
  • the stator which is a stationary body
  • the rotor which is a rotating body
  • seals between high pressure and low pressure, and a swirl flow is formed upstream of the gap formed between the tip of the moving blade and the casing.
  • the rotary machine may be applied to a rotary machine such as a gas turbine or a compressor.
  • the swirl guide plate 170 (swirl guide part 270) is installed on the upstream side of the moving blade 50 at the final stage is shown, but the present invention is not limited to this.
  • the swirl guide plate 170 (swirl guide portion 270) may be installed on the upstream side of any moving blade 50.
  • the steam S was used as a working fluid was demonstrated, if it is a working fluid which can generate
  • the ring-shaped member 174 of the third embodiment can be applied to the first embodiment. That is, the swirl guide plate 170 of the first embodiment and the swirl guide plate 170B of the second embodiment may be connected to each other by the ring-shaped member 174 of the third embodiment.
  • the swirl guide portion can guide the swirl flow in the radial direction by the second guide surface after guiding the swirling flow so as to maintain the flow direction thereof by the first guide surface. it can.
  • the swirl guide portion can guide the swirl flow in the radial direction by the second guide surface after guiding the swirling flow so as to maintain the flow direction thereof by the first guide surface. it can.
  • the ring-shaped member extending in the circumferential direction increases the wetted area between the swirling flow and the swirl guide that circulates on the upstream side of the gap, and thus between the swirling flow and the swirl guide. Since the friction is generated, the swirl component of the swirling flow can be reduced.

Abstract

Provided is a rotating machine comprising a seal mechanism (2) having the following: a plurality of moving blades extending in the radial direction of a rotation shaft, with intervals therebetween in the circumferential direction; a casing that encloses the moving blades from the outer circumferential side; and a swirl guide part (170) that is provided on the upstream side of a gap formed between the leading edge of the moving blades and the casing. The swirl guide part (170) has a first guide surface (171) that extends along the flow direction of a swirl flow (SL), and a second guide surface (172) that is continuous with the first guide surface (171) and curves in the radial direction.

Description

シール機構及びシール機構を備える回転機械SEALING MECHANISM AND ROTARY MACHINE HAVING SEALING MECHANISM
 本発明は、蒸気タービン、ガスタービンなどのシール機構及びシール機構を備える回転機械に関する。本願は、2013年1月23日に、日本に出願された特願2013-010084号、及び、2013年1月25日に、日本に出願された特願2013-012425号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a sealing mechanism such as a steam turbine and a gas turbine, and a rotary machine including the sealing mechanism. This application claims priority based on Japanese Patent Application No. 2013-010084 filed in Japan on January 23, 2013 and Japanese Patent Application No. 2013-012425 filed in Japan on January 25, 2013. And the contents thereof are incorporated herein.
 蒸気タービン、ガスタービンなどの回転機械においては、静止部材と回転部材との間にできる隙間から蒸気などの作動流体が漏洩するのを防止するために、ラビリンスシールなどの非接触型のシール機構が用いられている。
 具体的には、ラビリンスシールは、回転機械の外郭をなすケーシングの内周に動翼に向かって伸びるシールフィン等のシール部材と、動翼の先端に設けられたステップ状のシュラウドとを有している(例えば、特許文献1参照)。
In a rotating machine such as a steam turbine or a gas turbine, a non-contact type sealing mechanism such as a labyrinth seal is used to prevent a working fluid such as steam from leaking through a gap formed between the stationary member and the rotating member. It is used.
Specifically, the labyrinth seal has a seal member such as a seal fin extending toward the moving blade on the inner periphery of the casing that forms the outer shell of the rotating machine, and a step-shaped shroud provided at the tip of the moving blade. (For example, refer to Patent Document 1).
特開2006-104952号公報JP 2006-104952 A
 近年、回転機械においては、低周波振動などの自励振動が発生する事例がある。
 この自励振動の原因としては、静翼を通過して強い周方向速度成分(スワール成分、旋回成分)をもった流れ(旋回流)が、ラビリンスシールのシールフィンを通過する際、シールフィン間のキャビティ内において、周方向に不均一な圧力分布を形成する事がその一因と考えられている。このような背景から、回転機械のシール機構には、主流からラビリンスシールへと漏れる流れの周方向成分(スワール成分)を低減・減衰させるための構造が望まれている。
In recent years, there are cases in which self-excited vibration such as low-frequency vibration occurs in rotating machines.
The cause of this self-excited vibration is that a flow (swirl flow) having a strong circumferential velocity component (swirl component, swirl component) passing through the stationary blade passes between the seal fins of the labyrinth seal. One of the causes is considered to form an uneven pressure distribution in the circumferential direction in the cavity. From such a background, a structure for reducing and attenuating the circumferential component (swirl component) of the flow leaking from the main flow to the labyrinth seal is desired for the sealing mechanism of the rotary machine.
 このような構造としては、特許文献1に記載の装置の様に、案内羽根の面が周方向(旋回流を受ける方向)に向くように設置する構造が知られている。しかしながら、この構造においては、漏出した蒸気の旋回流が案内羽根で擾乱を発生させ、隣接する翼列を周期的に励振させる可能性がある。 As such a structure, as in the apparatus described in Patent Document 1, a structure is known in which the surface of the guide vane is oriented in the circumferential direction (direction in which the swirl flow is received). However, in this structure, the swirling flow of the leaked steam may cause a disturbance in the guide vanes and periodically excite adjacent cascades.
 本発明は、回転機械の低周波振動などの自励振動の原因となる、漏出した蒸気の旋回流の旋回成分を低減することができるシール機構及びシール機構を備える回転機械を提供する。 The present invention provides a sealing mechanism that can reduce the swirling component of the swirling flow of the leaked steam, which causes self-excited vibration such as low-frequency vibration of the rotating machine, and a rotating machine including the sealing mechanism.
 また、本発明は、回転機械の蒸気の旋回成分を低減しつつ周期的な励振力の発生を低減することができるシール機構及びシール機構を備える回転機械を提供する。 Also, the present invention provides a seal mechanism that can reduce the generation of periodic excitation force while reducing the swirling component of the steam of the rotary machine, and a rotary machine including the seal mechanism.
 本発明の第一の態様によれば、シール機構は、回転軸と、前記回転軸の径方向に延在して、周方向に間隔をあけて複数設けられた動翼と、前記動翼を外周側から囲むケーシングと、前記動翼の先端と前記ケーシングとの間に形成される隙間の上流側に設けられたスワール案内部とを備え、前記スワール案内部が、旋回流の流通方向に沿って延びる第一案内面と、第一案内面に連続して前記径方向に湾曲する第二案内面とを有する。 According to the first aspect of the present invention, the sealing mechanism includes a rotating shaft, a plurality of moving blades extending in the radial direction of the rotating shaft and spaced apart in the circumferential direction, and the moving blades. A casing that surrounds from the outer peripheral side, and a swirl guide portion provided on the upstream side of a gap formed between the tip of the rotor blade and the casing, the swirl guide portion being along the flow direction of the swirl flow And a second guide surface curved in the radial direction continuously to the first guide surface.
 上記構成によれば、スワール案内部が旋回流を第一案内面によって、その流通方向を維持するように案内した後、第二案内面によって径方向に案内することができる。これにより、旋回流の周方向に沿う成分が弱められるため、旋回流の旋回成分を低減することができる。 According to the above configuration, the swirl guide unit can guide the swirl flow in the radial direction by the second guide surface after guiding the swirling flow by the first guide surface so as to maintain the flow direction. Thereby, since the component along the circumferential direction of the swirl flow is weakened, the swirl component of the swirl flow can be reduced.
 上記シール機構において、前記スワール案内部の前記第二案内面は、径方向外周側に湾曲してもよい。 In the sealing mechanism, the second guide surface of the swirl guide may be curved radially outward.
 上記構成によれば、径方向外周側に湾曲する第二案内面が、径方向内周側から流入する旋回流を径方向外周側に案内することによって、旋回流を回転方向とは反対方向に転向させて旋回流の旋回成分を低減することができる。 According to the above configuration, the second guide surface curved toward the radially outer peripheral side guides the swirling flow flowing from the radially inner peripheral side to the radially outer peripheral side, thereby causing the swirling flow to be in a direction opposite to the rotational direction. The swirl component of the swirl flow can be reduced by turning.
 上記シール機構において、前記スワール案内部の前記第二案内面は、径方向内周側に湾曲してもよい。 In the sealing mechanism, the second guide surface of the swirl guide may be curved radially inward.
 上記構成によれば、径方向内周側に湾曲する第二案内面が、径方向内周側から流入する旋回流を径方向内周側に案内することによって、漏出する蒸気をより低減することができる。 According to the above configuration, the second guide surface curved toward the radially inner peripheral side guides the swirling flow flowing from the radially inner peripheral side to the radially inner peripheral side, thereby further reducing the leaked steam. Can do.
 上記シール機構において、前記スワール案内部は、断面形状が周方向にわたって一様なリング状部材によって互いに接続されてもよい。
 上記構成によれば、スワール案内部が漏出する蒸気をさらに低減することができる。
In the sealing mechanism, the swirl guide portions may be connected to each other by a ring-shaped member having a uniform cross-sectional shape in the circumferential direction.
According to the said structure, the vapor | steam which a swirl guide part leaks can further be reduced.
 本発明の第二の態様によれば、シール機構は、回転軸と、前記回転軸の径方向に延在して、周方向に間隔をあけて複数設けられた動翼と、前記動翼を外周側から囲むケーシングと、前記動翼の先端と前記ケーシングとの間に形成される隙間の上流側に設けられたスワール案内部とを備え、前記スワール案内部が、断面形状が周方向にわたって一様なリング状部材を有する。 According to the second aspect of the present invention, the seal mechanism includes a rotating shaft, a plurality of moving blades extending in a radial direction of the rotating shaft and spaced apart in the circumferential direction, and the moving blade. A casing that surrounds from the outer periphery side, and a swirl guide portion provided on the upstream side of a gap formed between the tip of the rotor blade and the casing, and the swirl guide portion has a cross-sectional shape that is uniform in the circumferential direction. It has such a ring-shaped member.
 上記構成によれば、周方向に延在するリング状部材によって、隙間の上流側を流通する旋回流とスワール案内部との濡れ面積が増加し、旋回流とスワール案内部との間で摩擦が発生するため、旋回流の旋回成分を低減することができる。 According to the above configuration, the ring-shaped member extending in the circumferential direction increases the wetting area between the swirling flow and the swirl guide that circulates upstream of the gap, and friction is generated between the swirling flow and the swirl guide. Therefore, the swirl component of the swirl flow can be reduced.
 上記シール機構において、前記リング状部材は、前記回転軸の軸方向に直交する主面を有する板部材であってもよい。 In the sealing mechanism, the ring-shaped member may be a plate member having a main surface orthogonal to the axial direction of the rotating shaft.
 上記構成によれば、スワール案内部が旋回流の流通方向に沿う形状となるため、隙間の上流側における擾乱の発生を抑制することができる。 According to the above configuration, since the swirl guide portion has a shape along the circulation direction of the swirling flow, the occurrence of disturbance on the upstream side of the gap can be suppressed.
 上記シール機構において、前記リング状部材は、前記断面形状が前記径方向に延びるジグザグ形状であってもよい。 In the sealing mechanism, the ring-shaped member may have a zigzag shape in which the cross-sectional shape extends in the radial direction.
 上記構成によれば、旋回流とスワール案内部との濡れ面積がさらに増加するため、旋回成分をより低減することができる。 According to the above configuration, the wetting area between the swirl flow and the swirl guide portion is further increased, so that the swirl component can be further reduced.
 上記シール機構において、前記スワール案内部は、前記リング状部材の両面のうち前記隙間とは反対側の面と前記ケーシングとを接続し、前記周方向に沿って複数設けられた支持部材を有し、前記支持部材は、旋回流を前記径方向に案内する案内面を有してもよい。 In the sealing mechanism, the swirl guide portion includes a support member that connects the surface of the ring-shaped member opposite to the gap and the casing and a plurality of support members along the circumferential direction. The support member may have a guide surface that guides the swirling flow in the radial direction.
 上記構成によれば、案内面によって旋回流の周方向に沿う成分が弱められるため、旋回成分を低減することができる。 According to the above configuration, the component along the circumferential direction of the swirling flow is weakened by the guide surface, so that the swirling component can be reduced.
 本発明の第三の態様によれば、回転機械は、前記シール機構を備える。 According to a third aspect of the present invention, a rotary machine includes the sealing mechanism.
 上述したシール機構及びシール機構を備える回転機械によれば、スワール案内部が旋回流を第一案内面によってその流通方向を維持するように案内した後、第二案内面によって径方向に案内することができる。これにより、旋回流の周方向に沿う成分が弱められるため、旋回流の旋回成分を低減することができる。 According to the above-described sealing mechanism and the rotary machine including the sealing mechanism, the swirl guide portion guides the swirling flow so that the flow direction is maintained by the first guide surface, and then guides the radial direction by the second guide surface. Can do. Thereby, since the component along the circumferential direction of the swirl flow is weakened, the swirl component of the swirl flow can be reduced.
 また、周方向に延在するリング状部材によって、隙間の上流側を流通する旋回流とスワール案内部との濡れ面積が増加し、旋回流とスワール案内部との間で摩擦が発生するため、旋回流の旋回成分を低減することができる。 In addition, because the ring-shaped member extending in the circumferential direction increases the wetting area between the swirling flow and the swirl guide portion that circulates upstream of the gap, friction occurs between the swirling flow and the swirl guide portion. The swirling component of the swirling flow can be reduced.
本発明の第一実施形態に係るシール機構を備える蒸気タービンの概略構成を示す断面図である。It is a sectional view showing a schematic structure of a steam turbine provided with a seal mechanism concerning a first embodiment of the present invention. 本発明の第一実施形態に係るシール機構を備える蒸気タービンの要部拡大断面図であり、図1のIの拡大断面図である。It is a principal part expanded sectional view of a steam turbine provided with the sealing mechanism which concerns on 1st embodiment of this invention, and is an expanded sectional view of I of FIG. 本発明の第一実施形態に係るシール機構を備える蒸気タービンを軸方向からみた概略構成を示す図であり、図1のA-A断面図である。FIG. 2 is a diagram showing a schematic configuration of a steam turbine provided with a seal mechanism according to the first embodiment of the present invention when viewed from the axial direction, and is a cross-sectional view taken along line AA of FIG. 本発明の第一実施形態に係るシール機構のスワール案内板の詳細図である。It is detail drawing of the swirl guide plate of the seal mechanism which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係るシール機構を備える蒸気タービンを軸方向からみた概略構成を示す図であり、図1のA-A断面図である。FIG. 2 is a diagram showing a schematic configuration of a steam turbine provided with a seal mechanism according to a second embodiment of the present invention when viewed from the axial direction, and is a cross-sectional view taken along line AA of FIG. 本発明の第二実施形態に係るシール機構のスワール案内板の詳細図である。It is detail drawing of the swirl guide plate of the seal mechanism which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係るシール機構を備える蒸気タービンの要部拡大断面図であり、図1のIの拡大断面図である。It is a principal part expanded sectional view of a steam turbine provided with the sealing mechanism which concerns on 3rd embodiment of this invention, and is an expanded sectional view of I of FIG. 本発明の第三実施形態に係るシール機構を備える蒸気タービンを軸方向からみた概略構成を示す図であり、図1のA-A断面図である。It is a figure which shows schematic structure which looked at the steam turbine provided with the sealing mechanism which concerns on 3rd embodiment of this invention from the axial direction, and is AA sectional drawing of FIG. 第四実施形態に係るシール機構を備える蒸気タービンの要部拡大断面図であり、図1のIの拡大断面図である。It is a principal part expanded sectional view of a steam turbine provided with the seal mechanism which concerns on 4th embodiment, and is an expanded sectional view of I of FIG. 第四実施形態に係るシール機構を備える蒸気タービンを軸方向からみた概略構成を示す図であり、図1のA-A断面図である。FIG. 5 is a diagram showing a schematic configuration of a steam turbine provided with a seal mechanism according to a fourth embodiment when viewed from the axial direction, and is a cross-sectional view taken along line AA of FIG. 第五実施形態に係るシール機構を備える蒸気タービンの要部拡大断面図であり、図1のIの拡大断面図である。It is a principal part expanded sectional view of a steam turbine provided with the sealing mechanism which concerns on 5th embodiment, and is an expanded sectional view of I of FIG. 第五実施形態のリング状部材の変形例を示す断面図である。It is sectional drawing which shows the modification of the ring-shaped member of 5th embodiment. 第五実施形態のリング状部材の変形例を示す断面図である。It is sectional drawing which shows the modification of the ring-shaped member of 5th embodiment. 第六実施形態に係るシール機構のリング状部材の詳細図である。It is detail drawing of the ring-shaped member of the seal mechanism which concerns on 6th embodiment.
(第一実施形態)
 以下、本発明の第一実施形態の回転機械である蒸気タービンについて図面に基づき説明する。
 図1に示すように、本実施形態の蒸気タービン1は、ケーシング10と、ケーシング10に流入する蒸気Sの量と圧力を調整する調整弁20と、ケーシング10の内方に回転自在に設けられ、動力を図示しない発電機等の機械に伝達する回転軸30と、ケーシング10に保持された静翼40と、回転軸30に設けられた動翼50と、回転軸30を軸回りに回転可能に支持する軸受部60と、を備えて大略構成されている。また、本実施形態の蒸気タービン1には、動翼50の先端とケーシング10との間に形成される隙間から蒸気などの作動流体が漏洩するのを防止するためのシール機構2が設けられている。
(First embodiment)
Hereinafter, a steam turbine which is a rotating machine according to a first embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the steam turbine 1 of the present embodiment is rotatably provided inside a casing 10, a regulating valve 20 that adjusts the amount and pressure of steam S flowing into the casing 10, and the inside of the casing 10. The rotating shaft 30 that transmits power to a machine such as a generator (not shown), the stationary blade 40 held by the casing 10, the moving blade 50 provided on the rotating shaft 30, and the rotating shaft 30 can be rotated about the axis. And a bearing portion 60 to be supported by the main body. Further, the steam turbine 1 of the present embodiment is provided with a seal mechanism 2 for preventing working fluid such as steam from leaking from a gap formed between the tip of the moving blade 50 and the casing 10. Yes.
 ケーシング10は、内部空間が気密に封止されていると共に、蒸気Sの流路とされている。ケーシング10の内壁面には、回転軸30が挿通されるリング状の仕切板外輪(静止環状体)11が強固に固定されている。 Casing 10 has an internal space hermetically sealed and a flow path for steam S. A ring-shaped partition plate outer ring (stationary annular body) 11 through which the rotary shaft 30 is inserted is firmly fixed to the inner wall surface of the casing 10.
 調整弁20は、ケーシング10の内部に複数個取り付けられており、それぞれ図示しないボイラから蒸気Sが流入する調整弁室21と、弁体22と、弁座23とを備えている。調整弁20は、弁体22が弁座23から離れると蒸気流路が開き、蒸気室24を介して蒸気Sがケーシング10の内部空間に流入する構成になっている。 A plurality of regulating valves 20 are attached to the inside of the casing 10, and each includes a regulating valve chamber 21 into which steam S flows from a boiler (not shown), a valve body 22, and a valve seat 23. The regulating valve 20 is configured such that when the valve body 22 is separated from the valve seat 23, the steam flow path is opened and the steam S flows into the internal space of the casing 10 through the steam chamber 24.
 回転軸30は、軸本体31と、軸本体31の外周から回転軸30の径方向(以下、単に径方向と呼ぶ)に延出した複数のディスク32と、を備えている。この回転軸30は、回転エネルギーを図示しない発電機等の機械に伝達するように構成されている。
 軸受部60は、ジャーナル軸受装置61及びスラスト軸受装置62を備えており、回転軸30を回転自在に支持している。
The rotating shaft 30 includes a shaft main body 31 and a plurality of disks 32 extending from the outer periphery of the shaft main body 31 in the radial direction of the rotating shaft 30 (hereinafter simply referred to as the radial direction). The rotating shaft 30 is configured to transmit rotational energy to a machine such as a generator (not shown).
The bearing unit 60 includes a journal bearing device 61 and a thrust bearing device 62, and supports the rotary shaft 30 in a freely rotatable manner.
 静翼40は、ケーシング10から内周へ向かって伸び、回転軸30の周囲を囲むように放射状に多数配置される環状静翼群を構成している。静翼40は、それぞれ上述した仕切板外輪11に保持されている。これら静翼40の径方向における内側は、回転軸30が挿通されたリング状の仕切板内輪14等で連結されている。 The stationary blades 40 extend from the casing 10 toward the inner periphery, and constitute a group of annular stationary blades arranged radially so as to surround the periphery of the rotating shaft 30. The stationary blades 40 are respectively held by the partition plate outer ring 11 described above. The inner sides in the radial direction of these stationary blades 40 are connected by a ring-shaped partition plate inner ring 14 through which the rotary shaft 30 is inserted.
 これら複数の静翼40から構成される環状静翼群は、回転軸30の軸方向(以下、単に軸方向と呼ぶ)に間隔を空けて六つ形成されている。環状静翼群は、蒸気Sの圧力エネルギーを速度エネルギーに変換して、下流側に隣接する動翼50に流入させる。 The annular stator blade group composed of the plurality of stator blades 40 is formed in six in the axial direction of the rotating shaft 30 (hereinafter simply referred to as the axial direction). The annular stationary blade group converts the pressure energy of the steam S into velocity energy and flows it into the moving blade 50 adjacent on the downstream side.
 動翼50は、回転軸30が有するディスク32の外周部に強固に取り付けられている。動翼50は、各環状静翼群の下流側において、放射状に多数配置されて環状動翼群を構成している。
 これら環状静翼群と環状動翼群とは、一組を「一段」として構成されている。すなわち、蒸気タービン1は、六段に構成されている。このうち、最終段における動翼50の先端部は、回転軸30の周方向(以下、単に周方向と呼ぶ)に隣接する動翼の先端部同士と連結されている。最終段における動翼50の先端部は、シュラウド51と呼ばれている。
The moving blade 50 is firmly attached to the outer peripheral portion of the disk 32 included in the rotating shaft 30. A large number of moving blades 50 are arranged radially on the downstream side of each annular stationary blade group to constitute an annular moving blade group.
The annular stator blade group and the annular rotor blade group are configured as a "one stage". That is, the steam turbine 1 is configured in six stages. Among these, the tip part of the moving blade 50 in the last stage is connected with the tip part of the moving blade adjacent to the circumferential direction (henceforth only the circumferential direction) of the rotating shaft 30. The tip of the moving blade 50 in the final stage is called a shroud 51.
 図2に示すように、シュラウド51は、軸方向における中央部分が突出してステップ状に形成されたステップ部52(52A~52C)を備えている。 As shown in FIG. 2, the shroud 51 includes a step portion 52 (52A to 52C) formed in a step shape with a central portion protruding in the axial direction.
 仕切板外輪11の軸方向下流側には、仕切板外輪11の内周部から拡径されケーシング10の内周面を底部13とする円筒状の環状溝12が形成されている。環状溝12には、シュラウド51が収容されている。底部13は、シュラウド51のステップ部52A、52B、52Cと隙間Gdを介して径方向に対向している。 On the downstream side in the axial direction of the partition plate outer ring 11, a cylindrical annular groove 12 is formed which has a diameter increased from the inner peripheral portion of the partition plate outer ring 11 and has the inner peripheral surface of the casing 10 as the bottom portion 13. A shroud 51 is accommodated in the annular groove 12. The bottom portion 13 is opposed to the step portions 52A, 52B, 52C of the shroud 51 in the radial direction via the gap Gd.
 底部13には、シュラウド51に向けて径方向に延出する三つのシールフィン17(17A~17C)が設けられている。シールフィン17(17A~17C)は、それぞれステップ部52(52A~52C)に向けて、底部13から内周へ延出しており、周方向に延びている。これらシールフィン17(17A~17C)は、ステップ部52(52A~52C)と微小隙間m(mA~mC)を径方向に形成している。 The bottom 13 is provided with three seal fins 17 (17A to 17C) extending in the radial direction toward the shroud 51. The seal fins 17 (17A to 17C) extend from the bottom 13 to the inner periphery toward the step portions 52 (52A to 52C), respectively, and extend in the circumferential direction. These seal fins 17 (17A to 17C) form step portions 52 (52A to 52C) and minute gaps m (mA to mC) in the radial direction.
 これら微小隙間m(mA~mC)の各寸法は、ケーシング10や動翼50の熱伸び量や動翼50の遠心伸び量等を考慮して、シールフィン17(17A~17C)と動翼50とが接触することがない範囲で設定されている。 The dimensions of these minute gaps m (mA to mC) are determined in consideration of the thermal elongation amount of the casing 10 and the rotor blade 50, the centrifugal extension amount of the rotor blade 50, and the like, and the seal fin 17 (17A to 17C) and the rotor blade 50. It is set in a range where and do not touch.
 図2に示すように、シール機構2には、ケーシング10内周において、静翼40の下流側には、複数のスワール案内板170(スワール案内部)が設けられている。スワール案内板170は、動翼50の先端とケーシング10との間に形成される隙間Gdの上流側に配置され、ケーシング10の内周側に向かって延出している。スワール案内板170は、溶接により固定されている。複数のスワール案内板170は、仕切板外輪11の側面であって、シールフィン17の入口側に対面する位置に環状の配置されている。スワール案内板170の詳細形状については後述する。 As shown in FIG. 2, the seal mechanism 2 is provided with a plurality of swirl guide plates 170 (swirl guide portions) on the inner periphery of the casing 10 on the downstream side of the stationary blade 40. The swirl guide plate 170 is disposed on the upstream side of the gap Gd formed between the tip of the moving blade 50 and the casing 10, and extends toward the inner peripheral side of the casing 10. The swirl guide plate 170 is fixed by welding. The plurality of swirl guide plates 170 are annularly arranged at positions on the side surface of the partition plate outer ring 11 and facing the inlet side of the seal fins 17. The detailed shape of the swirl guide plate 170 will be described later.
 蒸気タービン1の動作について説明する。
 まず、調整弁20(図1参照)を開状態とすると、図示しないボイラから蒸気Sがケーシング10の内部空間に流入する。
The operation of the steam turbine 1 will be described.
First, when the regulating valve 20 (see FIG. 1) is opened, the steam S flows into the internal space of the casing 10 from a boiler (not shown).
 ケーシング10の内部空間に流入した蒸気Sは、各段における環状静翼群と環状動翼群とを順次通過する。
 各段の環状静翼群において蒸気Sは、静翼40を通過しながら、その周方向速度成分が増大する。この蒸気Sのうち大部分の蒸気SMは、動翼50間に流入し、蒸気SMのエネルギーが回転エネルギーに変換されて、回転軸30に回転が付与される。
The steam S flowing into the internal space of the casing 10 sequentially passes through the annular stator blade group and the annular rotor blade group in each stage.
While the steam S passes through the stationary blade 40 in each stage of the annular stationary blade group, its circumferential velocity component increases. Most of the steam SM out of the steam S flows between the rotor blades 50, the energy of the steam SM is converted into rotational energy, and rotation is applied to the rotating shaft 30.
 一方、蒸気Sのうち一部(例えば、約数%)の蒸気SLは、静翼40から流出した後、強い周方向成分を維持した状態で環状溝12に流入する。 On the other hand, a part (for example, about several percent) of the steam S out of the steam S flows out from the stationary blade 40 and then flows into the annular groove 12 while maintaining a strong circumferential component.
 図4に示すように、スワール案内板170は、L字型を形成している。換言すれば、スワール案内板170は、ある流通方向に流れる流体の流通方向を転回させるようなターニングベーンのような形状を形成している。 As shown in FIG. 4, the swirl guide plate 170 has an L shape. In other words, the swirl guide plate 170 has a shape like a turning vane that turns the flow direction of the fluid flowing in a certain flow direction.
 具体的には、スワール案内板170は、旋回流を形成している蒸気SLに沿って延びる第一案内面171と、第一案内面171に連続して径方向外周側に湾曲する第二案内面172と、を有している。第一案内面171と第二案内面172とは、滑らかに接続されている。
 換言すれば、第一案内面171は、径方向内周側から外周側に向かうに従って回転軸30の回転方向Rに向かって傾斜して形成されている。第二案内面172は、径方向内周側から外周側に向かうに従って回転軸30の回転方向Rとは反対側に傾斜して形成されている。
Specifically, the swirl guide plate 170 includes a first guide surface 171 extending along the steam SL forming the swirl flow, and a second guide that curves to the radially outer peripheral side continuously to the first guide surface 171. A surface 172. The first guide surface 171 and the second guide surface 172 are smoothly connected.
In other words, the first guide surface 171 is formed so as to be inclined toward the rotation direction R of the rotary shaft 30 from the radially inner periphery side toward the outer periphery side. The second guide surface 172 is formed so as to incline toward the opposite side of the rotation direction R of the rotary shaft 30 from the radially inner peripheral side toward the outer peripheral side.
 スワール案内板170は、例えば、静翼40と同数とされ、静翼40と同じピッチで配置されている。なお、スワール案内板170のピッチは静翼40と同じピッチに配置する必要はなく、任意に設定可能である。即ち、スワール案内板170の周方向の枚数は任意に設定可能であり、必要な箇所に一箇所のみ設置してもよい。 The swirl guide plates 170 are, for example, the same number as the stationary blades 40 and arranged at the same pitch as the stationary blades 40. In addition, the pitch of the swirl guide plate 170 does not need to be arranged at the same pitch as the stationary blade 40, and can be arbitrarily set. That is, the number of swirl guide plates 170 in the circumferential direction can be arbitrarily set, and only one place may be installed at a required place.
 第一実施形態のシール機構2を備える蒸気タービン1によれば、スワール案内板170が旋回流を第一案内面171によってその流通方向を維持するように案内し、次いで、第二案内面172によって、径方向外周側に案内することによって、旋回流を回転方向Rとは反対方向に転向させることができる。これにより、旋回流の旋回成分を低減することができる。 According to the steam turbine 1 including the seal mechanism 2 of the first embodiment, the swirl guide plate 170 guides the swirl flow by the first guide surface 171 so as to maintain the flow direction, and then by the second guide surface 172. The swirl flow can be turned in the direction opposite to the rotation direction R by guiding it to the radially outer peripheral side. Thereby, the swirling component of the swirling flow can be reduced.
(第二実施形態)
 以下、本発明の第二実施形態の回転機械である蒸気タービンについて図面に基づき説明する。なお、第二実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図5及び図6に示すように、第二実施形態のスワール案内板170Bは、旋回流を形成している蒸気SLに沿って延びる第一案内面171Bと、第一案内面171に連続して径方向内周側に湾曲する第二案内面172Bと、を有している。第一案内面171Bと第二案内面172Bとは、滑らかに接続されている。
(Second embodiment)
Hereinafter, the steam turbine which is a rotary machine of 2nd embodiment of this invention is demonstrated based on drawing. In addition, in 2nd embodiment, it describes centering around difference with 1st embodiment mentioned above, The description is abbreviate | omitted about the same part.
As shown in FIGS. 5 and 6, the swirl guide plate 170 </ b> B of the second embodiment is continuous with the first guide surface 171 </ b> B extending along the steam SL forming the swirl flow and the first guide surface 171. And a second guide surface 172B that curves toward the radially inner peripheral side. The first guide surface 171B and the second guide surface 172B are smoothly connected.
 換言すれば、第一案内面171Bは、径方向内周側から外周側に向かうに従って回転軸30の回転方向Rに向かって傾斜して形成されている。第二案内面172Bは、径方向内周側から外周側に向かうに従って回転軸30の回転方向Rとは反対側に傾斜して形成されている。
 さらに、第二実施形態のスワール案内板170Bは、互いに接続されている。具体的には、周方向第一側のスワール案内板170Bの第一案内面171Bと、周方向第二側のスワール案内板170Bの第二案内面172Bとが接続されている。
In other words, the first guide surface 171B is formed to be inclined toward the rotation direction R of the rotary shaft 30 from the radially inner periphery side toward the outer periphery side. The second guide surface 172B is formed so as to incline toward the opposite side to the rotation direction R of the rotary shaft 30 from the radially inner peripheral side toward the outer peripheral side.
Furthermore, the swirl guide plates 170B of the second embodiment are connected to each other. Specifically, the first guide surface 171B of the swirl guide plate 170B on the first circumferential side is connected to the second guide surface 172B of the swirl guide plate 170B on the second circumferential side.
 上記第二実施形態によれば、スワール案内板170Bが旋回流を第一案内面171Bによって、その流通方向を維持するように案内した後、第二案内面172Bによって、径方向内周側に案内することができる。これにより、旋回流の周方向に沿う成分が弱められるため、旋回流の旋回成分を低減することができる。 According to the second embodiment, the swirl guide plate 170B guides the swirl flow by the first guide surface 171B so as to maintain the flow direction thereof, and then guides it to the radially inner peripheral side by the second guide surface 172B. can do. Thereby, since the component along the circumferential direction of the swirl flow is weakened, the swirl component of the swirl flow can be reduced.
 また、径方向内周側に湾曲する第二案内面172Bが、径方向内周側から流入する旋回流を径方向内周側に案内することによって、漏出する蒸気をより低減することができる。
 さらにスワール案内板170Bが互いに接続されていることによって、漏出する蒸気をさらに低減することができる。
Further, the second guide surface 172B that curves toward the radially inner peripheral side guides the swirling flow that flows from the radially inner peripheral side to the radially inner peripheral side, whereby the leaked steam can be further reduced.
Furthermore, since the swirl guide plates 170B are connected to each other, the leaked steam can be further reduced.
(第三実施形態)
 以下、本発明の第三実施形態の回転機械である蒸気タービンについて図面に基づき説明する。なお、第三実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
(Third embodiment)
Hereinafter, the steam turbine which is a rotary machine of 3rd embodiment of this invention is demonstrated based on drawing. In the third embodiment, the differences from the first embodiment described above will be mainly described, and the description of the same parts will be omitted.
 図7及び図8に示すように、第三実施形態のスワール案内板170Cは、第一実施形態のスワール案内板と同様の形状の案内板本体部173と、この案内板本体部173に接続され、周方向に延在するリング状部材174と、を有している。
 リング状部材174は、径方向に沿う面を有するリング状の板部材であり、案内板本体部173の軸方向端部に接続されている。
As shown in FIGS. 7 and 8, the swirl guide plate 170C of the third embodiment is connected to the guide plate body 173 having the same shape as the swirl guide plate of the first embodiment, and the guide plate body 173. And a ring-shaped member 174 extending in the circumferential direction.
The ring-shaped member 174 is a ring-shaped plate member having a surface along the radial direction, and is connected to the axial end portion of the guide plate main body 173.
 上記第三実施形態によれば、リング状部材174を設けることによって、スワール案内板170Cで形成される流路に径方向内側から流入した蒸気SLは、全てこの流路を通る。このため、蒸気SLは、確実に第二案内面172の方向に転向させられ、効果的に蒸気SLの周方向成分を低減できる。 According to the third embodiment, by providing the ring-shaped member 174, all the steam SL that has flowed into the flow path formed by the swirl guide plate 170C from the radially inner side passes through this flow path. For this reason, the steam SL is reliably turned in the direction of the second guide surface 172, and the circumferential direction component of the steam SL can be effectively reduced.
(第四実施形態)
 以下、本発明の第四実施形態の回転機械である蒸気タービンについて図面に基づき説明する。なお、第四実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図9に示すように、シール機構2には、ケーシング10内周において、静翼40の下流側には、リング状部材271を有するスワール案内部270が設けられている。スワール案内部270は、動翼50の先端とケーシングとの間に形成される隙間Gdの上流側に設置されている。
 リング状部材271は、隙間Gdの上流側の空間において周方向に延在する環状の板部材である。リング状部材271は、周方向にわたって断面形状が一様に形成されている。換言すれば、リング状部材271は、回転軸30の軸方向に直交する主面を有する円盤状の部材である。
 また、リング状部材271は、仕切板外輪11の軸方向第一側の面とシュラウド51の軸方向第二側の面の略中間位置に設けられている。リング状部材271の外周端は、ケーシング10から離間している。
(Fourth embodiment)
Hereinafter, the steam turbine which is a rotary machine of 4th embodiment of this invention is demonstrated based on drawing. In the fourth embodiment, the differences from the first embodiment described above will be mainly described, and the description of the same parts will be omitted.
As shown in FIG. 9, the seal mechanism 2 is provided with a swirl guide portion 270 having a ring-shaped member 271 on the inner periphery of the casing 10 on the downstream side of the stationary blade 40. The swirl guide portion 270 is installed on the upstream side of the gap Gd formed between the tip of the rotor blade 50 and the casing.
The ring-shaped member 271 is an annular plate member extending in the circumferential direction in the space upstream of the gap Gd. The ring-shaped member 271 has a uniform cross-sectional shape over the circumferential direction. In other words, the ring-shaped member 271 is a disk-shaped member having a main surface orthogonal to the axial direction of the rotating shaft 30.
The ring-shaped member 271 is provided at a substantially intermediate position between the first axial surface of the partition plate outer ring 11 and the second axial surface of the shroud 51. The outer peripheral end of the ring-shaped member 271 is separated from the casing 10.
 リング状部材271は、周方向に沿って複数設けられた支持部材272によって支持されている。支持部材272は、棒状を形成し、リング状部材271の両面のうち、隙間Gdとは反対側の面とケーシング10とを接続するように設けられている。
 なお、支持部材272の設置箇所は、図9に示したような箇所には限定されない。例えば、支持部材272は、ケーシング10の径方向外周側からリング状部材271の外周端を支持するような構成としてもよい。即ち、環状溝12の底部13に設けられた支持部材272によって、リング状部材271が支持されてもよい。
The ring-shaped member 271 is supported by a plurality of support members 272 provided along the circumferential direction. The support member 272 has a rod shape, and is provided so as to connect the casing 10 to the surface of the ring-shaped member 271 opposite to the gap Gd.
In addition, the installation location of the support member 272 is not limited to a location as shown in FIG. For example, the support member 272 may be configured to support the outer peripheral end of the ring-shaped member 271 from the radially outer peripheral side of the casing 10. That is, the ring-shaped member 271 may be supported by the support member 272 provided on the bottom portion 13 of the annular groove 12.
 ここで、蒸気タービン1の動作について説明する。
 まず、調整弁20(図1参照)を開状態とすると、図示しないボイラから蒸気Sがケーシング10の内部空間に流入する。
Here, the operation of the steam turbine 1 will be described.
First, when the regulating valve 20 (see FIG. 1) is opened, the steam S flows into the internal space of the casing 10 from a boiler (not shown).
 ケーシング10の内部空間に流入した蒸気Sは、各段における環状静翼群と環状動翼群とを順次通過する。
 各段の環状静翼群において蒸気Sは、静翼40を通過しながらその周方向速度成分が増大する。この蒸気Sのうち大部分の蒸気SMは、動翼50間に流入し、蒸気SMのエネルギーが回転エネルギーに変換されて回転軸30に回転が付与される。
The steam S flowing into the internal space of the casing 10 sequentially passes through the annular stator blade group and the annular rotor blade group in each stage.
The steam S increases in the circumferential velocity component while passing through the stationary blade 40 in the annular stationary blade group of each stage. Most of the steam SM out of the steam S flows between the rotor blades 50, and the energy of the steam SM is converted into rotational energy, so that the rotation shaft 30 is rotated.
 一方、蒸気Sのうち一部(例えば、約数%)の蒸気SLは、静翼40から流出した後、周方向成分が増大した状態で環状溝12に流入する。 On the other hand, a part (for example, about several percent) of the steam S out of the steam S flows out from the stationary blade 40 and then flows into the annular groove 12 with the circumferential component increased.
 第四実施形態のシール機構2を備える蒸気タービン1によれば、スワール案内部270が周方向に延在するリング状部材271を有することによって、隙間Gdの上流側を流通する旋回流SLとの濡れ面積が増加する。この結果、蒸気SLとリング状部材271との間で摩擦が発生するため、旋回流である蒸気SLの旋回成分を低減することができる。
 換言すれば、リング状部材271が隙間Gdの上流側において流路幅を狭める、即ち濡れ面積を増やすことにより、蒸気SLに働く壁面摩擦が増加して、蒸気SLの旋回成分を低減することができる。
According to the steam turbine 1 including the seal mechanism 2 of the fourth embodiment, the swirl guide portion 270 has the ring-shaped member 271 extending in the circumferential direction, so that the swirl flow SL flowing through the upstream side of the gap Gd Wetting area increases. As a result, since friction is generated between the steam SL and the ring-shaped member 271, a swirling component of the steam SL that is a swirling flow can be reduced.
In other words, the ring-shaped member 271 narrows the flow path width on the upstream side of the gap Gd, that is, increases the wet area, thereby increasing the wall friction acting on the steam SL and reducing the swirl component of the steam SL. it can.
 また、リング状部材271が回転軸30の軸方向に直交する主面を有する断面形状が周方向にわたって一様な板部材であることによって、スワール案内部270が旋回流の流通方向に沿う形状となるため、隙間Gdの上流側における擾乱の発生を抑制することができる。 In addition, the ring-shaped member 271 is a plate member whose cross-sectional shape having a main surface orthogonal to the axial direction of the rotary shaft 30 is uniform over the circumferential direction, so that the swirl guide portion 270 has a shape along the circulation direction of the swirling flow. Therefore, the occurrence of disturbance on the upstream side of the gap Gd can be suppressed.
 なお、上述した第四実施形態においては、スワール案内部270のリング状部材271を一枚のみ設ける構成を示したが、これに限ることはない。空間的な余裕に応じてリング状部材271を二枚又は複数、軸方向に離間して設置してもよい。これにより、さらに濡れ面積を増加させて、蒸気SLの旋回成分を低減することができる。 In addition, in 4th embodiment mentioned above, although the structure which provides only one ring-shaped member 271 of the swirl guide part 270 was shown, it does not restrict to this. Two or a plurality of ring-shaped members 271 may be installed apart from each other in the axial direction according to the space margin. Thereby, a wetting area can be increased further and the swirling component of the steam SL can be reduced.
 また、リング状部材271は平板のみならず、面上に複数の孔が規則的に形成された多孔板(例えばパンチングメタル)を用いて、ある程度の蒸気SLの軸方向の流れを許容する構成としてもよい。なお、複数の孔は規則的である必要はなく、不規則に形成されていてもよい。さらに、リング状部材271に複数の突起を設けてもよい。 In addition, the ring-shaped member 271 uses not only a flat plate but also a perforated plate (for example, punching metal) in which a plurality of holes are regularly formed on the surface, and allows a certain amount of steam SL to flow in the axial direction. Also good. The plurality of holes need not be regular, and may be irregularly formed. Further, the ring-shaped member 271 may be provided with a plurality of protrusions.
(第五実施形態)
 以下、本発明の第五実施形態の回転機械である蒸気タービンについて図面に基づき説明する。なお、第五実施形態では、上述した第四実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図11に示すように、第五実施形態のスワール案内部270Bのリング状部材271Bは、断面形状が径方向に延びるジグザグ形状とされている。換言すれば、リング状部材271Bは、第四実施形態と同様に周方向にわたって一様な断面形状に形成されているが、径方向外周側に向かうに従って軸方向第一側に傾斜する面273と、径方向外周側に向かうに従って軸方向第二側に傾斜する面274とを連続させた形状となっている。即ち、第五実施形態のリング状部材271Bは、第四実施形態のリング状部材271と比較して表面積が増加している。
(Fifth embodiment)
Hereinafter, the steam turbine which is a rotary machine of 5th embodiment of this invention is demonstrated based on drawing. In the fifth embodiment, the differences from the fourth embodiment described above will be mainly described, and the description of the same parts will be omitted.
As shown in FIG. 11, the ring-shaped member 271B of the swirl guide portion 270B of the fifth embodiment has a zigzag shape whose cross-sectional shape extends in the radial direction. In other words, the ring-shaped member 271B is formed in a uniform cross-sectional shape over the circumferential direction as in the fourth embodiment, but the surface 273 is inclined toward the first axial side as it goes toward the outer circumferential side in the radial direction. The surface 274 is inclined continuously toward the second axial side as it goes toward the outer peripheral side in the radial direction. That is, the ring-shaped member 271B of the fifth embodiment has an increased surface area compared to the ring-shaped member 271 of the fourth embodiment.
 上記第五実施形態によれば、リング状部材271Bの表面積が増加していることによって、蒸気SLとの濡れ面積がさらに増加するため、蒸気SLの旋回成分をより低減することができる。 According to the fifth embodiment, since the surface area of the ring-shaped member 271B is increased, the wetted area with the steam SL is further increased, so that the swirl component of the steam SL can be further reduced.
 なお、上述した第五実施形態においては、リング状部材271Bの断面形状をジグザグ形状としたが、リング状部材271Bの蒸気SLとの濡れ面積を増加させるような形状であればこれに限ることはない。
 例えば、図12に示すように、リング状部材271Bを正弦波形状にしてもよい。また、図13に示すように、リング状部材271Bを矩形波形状にしてもよい。
In the fifth embodiment described above, the cross-sectional shape of the ring-shaped member 271B is a zigzag shape. However, the shape is not limited to this as long as the wetted area of the ring-shaped member 271B with the steam SL is increased. Absent.
For example, as shown in FIG. 12, the ring-shaped member 271B may have a sine wave shape. Further, as shown in FIG. 13, the ring-shaped member 271B may have a rectangular wave shape.
(第五実施形態)
 以下、本発明の第五実施形態の回転機械である蒸気タービンについて図面に基づき説明する。なお、第五実施形態では、上述した第四実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
(Fifth embodiment)
Hereinafter, the steam turbine which is a rotary machine of 5th embodiment of this invention is demonstrated based on drawing. In the fifth embodiment, the differences from the fourth embodiment described above will be mainly described, and the description of the same parts will be omitted.
 図14に示すように、第五実施形態のスワール案内部270Cのリング状部材271Cを支持する支持部材272Cは、蒸気SLの流通方向に沿う案内面275を有する板形状に形成されている。具体的には、支持部材272Cは、径方向内周側から外周側に向かうに従って回転軸30の回転方向Rに傾斜するように形成されている。 As shown in FIG. 14, the support member 272C that supports the ring-shaped member 271C of the swirl guide portion 270C of the fifth embodiment is formed in a plate shape having a guide surface 275 along the flow direction of the steam SL. Specifically, the support member 272C is formed so as to be inclined in the rotation direction R of the rotary shaft 30 from the radially inner periphery side toward the outer periphery side.
 上記第五実施形態によれば、案内面275によって蒸気SLの旋回成分を低減しつつ擾乱発生を防止することができる。 According to the fifth embodiment, the guide surface 275 can prevent the occurrence of disturbance while reducing the swirling component of the steam SL.
 なお、上述した第五実施形態の支持部材272Cの形状は、上述した形状に限ることはない。支持部材272Cの断面を翼形状とし、一旦蒸気SLをその流通方向に沿わせるように案内した後、径方向に沿わせるような形状としてもよい。 Note that the shape of the support member 272C of the fifth embodiment described above is not limited to the shape described above. The cross section of the support member 272C may have a wing shape, and after the steam SL is once guided along the flow direction thereof, the shape may be formed along the radial direction.
 なお、本発明の技術範囲は、上述した各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、上述した実施形態で挙げた構成等は一例であり、適宜変更が可能である。
 例えば、上述した各実施形態においては、回転機械として蒸気タービンを一例に説明したが、蒸気タービンに限られるものではない。静止体であるステータと回転体であるロータとの間に設けられ高圧と低圧との間をシールし、前記動翼の先端と前記ケーシングとの間に形成される隙間の上流に旋回流が形成されるような回転機械であれば、例えば、ガスタービンや圧縮機などの回転機械に適用してもよい。
The technical scope of the present invention is not limited to the above-described embodiments, and includes those in which various modifications are made to the above-described embodiments without departing from the spirit of the present invention. In other words, the configuration described in the above-described embodiment is an example, and can be appropriately changed.
For example, in each embodiment mentioned above, although the steam turbine was demonstrated to an example as a rotary machine, it is not restricted to a steam turbine. Provided between the stator, which is a stationary body, and the rotor, which is a rotating body, seals between high pressure and low pressure, and a swirl flow is formed upstream of the gap formed between the tip of the moving blade and the casing. For example, the rotary machine may be applied to a rotary machine such as a gas turbine or a compressor.
 また、上述した各実施形態においては、スワール案内板170(スワール案内部270)を最終段の動翼50の上流側に設置する例を示したが、これに限ることはない。スワール案内板170(スワール案内部270)は、いずれの動翼50の上流側に設置してもよい。
 また、上述した各実施形態においては、作動流体として蒸気Sを用いる場合について説明したが、スワールが発生し得る作動流体であれば蒸気Sに限られるものではない。
 また、シュラウド51をステップ状に形成するのに代えて、平坦状に形成してもよい。
Further, in each of the above-described embodiments, the example in which the swirl guide plate 170 (swirl guide part 270) is installed on the upstream side of the moving blade 50 at the final stage is shown, but the present invention is not limited to this. The swirl guide plate 170 (swirl guide portion 270) may be installed on the upstream side of any moving blade 50.
Moreover, in each embodiment mentioned above, although the case where the steam S was used as a working fluid was demonstrated, if it is a working fluid which can generate | occur | produce a swirl, it will not be restricted to the steam S.
Further, instead of forming the shroud 51 in a step shape, it may be formed in a flat shape.
 また、第三実施形態のリング状部材174を、第一実施形態に適用することも可能である。即ち、第一実施形態のスワール案内板170、第二実施形態のスワール案内板170Bを第三実施形態のリング状部材174で互いに接続してもよい。 Also, the ring-shaped member 174 of the third embodiment can be applied to the first embodiment. That is, the swirl guide plate 170 of the first embodiment and the swirl guide plate 170B of the second embodiment may be connected to each other by the ring-shaped member 174 of the third embodiment.
 このシール機構及びシール機構を備える回転機械によれば、スワール案内部が旋回流を第一案内面によってその流通方向を維持するように案内した後、第二案内面によって径方向に案内することができる。これにより、旋回流の周方向に沿う成分が弱められるため、旋回流の旋回成分を低減することができる。また、この回転機械によれば、周方向に延在するリング状部材によって、隙間の上流側を流通する旋回流とスワール案内部との濡れ面積が増加し、旋回流とスワール案内部との間で摩擦が発生するため、旋回流の旋回成分を低減することができる。 According to the sealing mechanism and the rotary machine including the sealing mechanism, the swirl guide portion can guide the swirl flow in the radial direction by the second guide surface after guiding the swirling flow so as to maintain the flow direction thereof by the first guide surface. it can. Thereby, since the component along the circumferential direction of the swirl flow is weakened, the swirl component of the swirl flow can be reduced. Further, according to this rotary machine, the ring-shaped member extending in the circumferential direction increases the wetted area between the swirling flow and the swirl guide that circulates on the upstream side of the gap, and thus between the swirling flow and the swirl guide. Since the friction is generated, the swirl component of the swirling flow can be reduced.
 1 蒸気タービン(回転機械)
 2 シール機構
 10 ケーシング
 11 仕切板外輪
 12 環状溝
 13 底部
 14 仕切板内輪
 17 シールフィン
 20 調整弁
 21 調整弁室
 22 弁体
 23 弁座
 24 蒸気室
 30 回転軸
 31 軸本体
 32 ディスク
 40 静翼
 50 動翼
 51 シュラウド
 52 ステップ部
 60 軸受部
 61 ジャーナル軸受装置
 62 スラスト軸受装置
 170,170B,170C,270,270B,270C スワール案内板(スワール案内部)
 171,171B 第一案内面
 172,172B 第二案内面
 173 案内板本体部
 174,271,271B,271C リング状部材
 272,272C 支持部材
 273,274 傾斜する面
 275 案内面
 SL 蒸気(旋回流)
 
1 Steam turbine (rotary machine)
DESCRIPTION OF SYMBOLS 2 Seal mechanism 10 Casing 11 Partition plate outer ring 12 Annular groove 13 Bottom 14 Partition plate inner ring 17 Seal fin 20 Adjustment valve 21 Adjustment valve chamber 22 Valve body 23 Valve seat 24 Steam chamber 30 Rotating shaft 31 Axis main body 32 Disc 40 Stator blade 50 Movement Blade 51 Shroud 52 Step unit 60 Bearing unit 61 Journal bearing device 62 Thrust bearing device 170, 170B, 170C, 270, 270B, 270C Swirl guide plate (swirl guide unit)
171, 171 B First guide surface 172, 172 B Second guide surface 173 Guide plate body 174, 271, 271 B, 271 C Ring-shaped member 272, 272 C Support member 273, 274 Inclined surface 275 Guide surface SL Steam (swirl flow)

Claims (9)

  1.  回転軸と、
     前記回転軸の径方向に延在して、周方向に間隔をあけて複数設けられた動翼と、
     前記動翼を外周側から囲むケーシングと、
     前記動翼の先端と前記ケーシングとの間に形成される隙間の上流側に設けられたスワール案内部と、を備え、
     前記スワール案内部が、旋回流の流通方向に沿って延びる第一案内面と、第一案内面に連続して前記径方向に湾曲する第二案内面と、を有するシール機構。
    A rotation axis;
    A plurality of rotor blades extending in the radial direction of the rotating shaft and provided with a plurality of intervals in the circumferential direction;
    A casing surrounding the rotor blade from the outer peripheral side;
    A swirl guide provided on the upstream side of a gap formed between the tip of the rotor blade and the casing,
    The sealing mechanism in which the swirl guide portion includes a first guide surface extending along a circulation direction of the swirl flow, and a second guide surface curved in the radial direction continuously to the first guide surface.
  2.  請求項1に記載のシール機構であって、
     前記スワール案内部の前記第二案内面は、径方向外周側に湾曲しているシール機構。
    The sealing mechanism according to claim 1,
    The seal mechanism in which the second guide surface of the swirl guide portion is curved radially outward.
  3.  請求項1に記載のシール機構であって、
     前記スワール案内部の前記第二案内面は、径方向内周側に湾曲しているシール機構。
    The sealing mechanism according to claim 1,
    The sealing mechanism in which the second guide surface of the swirl guide portion is curved radially inward.
  4.  請求項3に記載のシール機構であって、
     前記スワール案内部は、断面形状が周方向にわたって一様なリング状部材によって互いに接続されているシール機構。
    The sealing mechanism according to claim 3,
    The swirl guide portions are seal mechanisms that are connected to each other by a ring-shaped member having a uniform cross-sectional shape in the circumferential direction.
  5.  回転軸と、
     前記回転軸の径方向に延在して、周方向に間隔をあけて複数設けられた動翼と、
     前記動翼を外周側から囲むケーシングと、
     前記動翼の先端と前記ケーシングとの間に形成される隙間の上流側に設けられたスワール案内部と、を備え、
     前記スワール案内部が、断面形状が周方向にわたって一様なリング状部材を有するシール機構。
    A rotation axis;
    A plurality of rotor blades extending in the radial direction of the rotating shaft and provided with a plurality of intervals in the circumferential direction;
    A casing surrounding the rotor blade from the outer peripheral side;
    A swirl guide provided on the upstream side of a gap formed between the tip of the rotor blade and the casing,
    The sealing mechanism in which the swirl guide portion has a ring-shaped member having a uniform cross-sectional shape in the circumferential direction.
  6.  請求項5に記載のシール機構であって、
     前記リング状部材は、前記回転軸の軸方向に直交する主面を有する板部材であるシール機構。
    The sealing mechanism according to claim 5,
    The ring-shaped member is a sealing mechanism that is a plate member having a main surface orthogonal to the axial direction of the rotating shaft.
  7.  請求項5に記載のシール機構であって、
     前記リング状部材は、前記断面形状が前記径方向に延びるジグザグ形状に形成されているシール機構。
    The sealing mechanism according to claim 5,
    The ring-shaped member is a sealing mechanism in which the cross-sectional shape is formed in a zigzag shape extending in the radial direction.
  8.  請求項5から請求項7のいずれか一項に記載のシール機構であって、
     前記スワール案内部は、前記リング状部材の両面のうち前記隙間とは反対側の面と前記ケーシングとを接続し、前記周方向に沿って複数設けられた支持部材を有し、
     前記支持部材は、旋回流を前記径方向に案内する案内面を有するシール機構。
    The seal mechanism according to any one of claims 5 to 7,
    The swirl guide unit has a support member that is connected to a surface of the ring-shaped member opposite to the gap and the casing, and a plurality of support members are provided along the circumferential direction.
    The support member is a seal mechanism having a guide surface for guiding a swirling flow in the radial direction.
  9.  請求項1~8のいずれか一項に記載のシール機構を備える回転機械。 A rotary machine comprising the sealing mechanism according to any one of claims 1 to 8.
PCT/JP2014/051067 2013-01-23 2014-01-21 Seal mechanism and rotating machine provided with seal mechanism WO2014115706A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013010084A JP2014141912A (en) 2013-01-23 2013-01-23 Rotary machine
JP2013-010084 2013-01-23
JP2013-012425 2013-01-25
JP2013012425A JP2014141955A (en) 2013-01-25 2013-01-25 Rotary machine

Publications (1)

Publication Number Publication Date
WO2014115706A1 true WO2014115706A1 (en) 2014-07-31

Family

ID=51227497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051067 WO2014115706A1 (en) 2013-01-23 2014-01-21 Seal mechanism and rotating machine provided with seal mechanism

Country Status (1)

Country Link
WO (1) WO2014115706A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949245A (en) * 2017-03-07 2017-07-14 西安交通大学 It is a kind of from spin-ended convergence type rotary seal structure
CN111051650A (en) * 2018-01-31 2020-04-21 三菱重工业株式会社 Axial flow rotary machine
CN113631797A (en) * 2019-01-31 2021-11-09 三菱动力株式会社 Rotary machine
US11187097B2 (en) 2016-02-19 2021-11-30 Mitsubishi Power, Ltd. Rotary machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181801U (en) * 1985-04-30 1986-11-13
US20050100439A1 (en) * 2003-09-09 2005-05-12 Alstom Technology Ltd Turbomachine
JP2006104952A (en) * 2004-09-30 2006-04-20 Toshiba Corp Swirling flow preventive device of fluid machine
WO2012043254A1 (en) * 2010-09-28 2012-04-05 三菱重工業株式会社 Turbine
JP2012137006A (en) * 2010-12-27 2012-07-19 Mitsubishi Heavy Ind Ltd Turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181801U (en) * 1985-04-30 1986-11-13
US20050100439A1 (en) * 2003-09-09 2005-05-12 Alstom Technology Ltd Turbomachine
JP2006104952A (en) * 2004-09-30 2006-04-20 Toshiba Corp Swirling flow preventive device of fluid machine
WO2012043254A1 (en) * 2010-09-28 2012-04-05 三菱重工業株式会社 Turbine
JP2012137006A (en) * 2010-12-27 2012-07-19 Mitsubishi Heavy Ind Ltd Turbine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187097B2 (en) 2016-02-19 2021-11-30 Mitsubishi Power, Ltd. Rotary machine
CN106949245A (en) * 2017-03-07 2017-07-14 西安交通大学 It is a kind of from spin-ended convergence type rotary seal structure
CN106949245B (en) * 2017-03-07 2018-04-17 西安交通大学 It is a kind of from spin-ended convergence type rotary seal structure
CN111051650A (en) * 2018-01-31 2020-04-21 三菱重工业株式会社 Axial flow rotary machine
EP3748130A4 (en) * 2018-01-31 2021-03-31 Mitsubishi Heavy Industries, Ltd. Axial flow rotary machine
CN111051650B (en) * 2018-01-31 2022-04-26 三菱重工业株式会社 Axial flow rotary machine
CN113631797A (en) * 2019-01-31 2021-11-09 三菱动力株式会社 Rotary machine
CN113631797B (en) * 2019-01-31 2023-01-20 三菱重工业株式会社 Rotary machine

Similar Documents

Publication Publication Date Title
US10385714B2 (en) Seal structure and rotary machine
JP6266197B2 (en) Turbine engine seal
JP5227114B2 (en) Labyrinth compression seal and turbine incorporating it
JP5567077B2 (en) Rotating machine
US8727713B2 (en) Rotor oscillation preventing structure and steam turbine using the same
JP2008057416A (en) Axial flow turbine
JP2007071203A (en) Method and apparatus for assembling rotary machine
JP2015140916A (en) Seal structure and rotary machine
EP3190267B1 (en) Structure for multi-stage sealing of turbine
WO2014115706A1 (en) Seal mechanism and rotating machine provided with seal mechanism
JP2014141912A (en) Rotary machine
JP5517530B2 (en) Turbine
JP5518022B2 (en) Turbine
CN108699915B (en) Seal structure and turbo machine
JP2011106474A (en) Axial flow turbine stage and axial flow turbine
WO2016194677A1 (en) Sealing device and rotating machine
JP2010106778A (en) Seal structure for steam turbine and steam turbine
JP2015129512A (en) Steam turbine and methods of assembling the same
JP2014141955A (en) Rotary machine
WO2021039811A1 (en) Swirl breaker assembly and rotating machine
JP2018105221A (en) Diffuser, turbine and gas turbine
JP2010275957A (en) Turbine
JP6662661B2 (en) Seal structure and turbo machinery
JP6209787B2 (en) Seal structure and rotating machine
JP2005127198A (en) Turbine and sealing structure of stationary blade root section and moving blade root section

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743723

Country of ref document: EP

Kind code of ref document: A1