EP1515000B1 - Aubage d'une turbomachine avec un carenage contouré - Google Patents

Aubage d'une turbomachine avec un carenage contouré Download PDF

Info

Publication number
EP1515000B1
EP1515000B1 EP03103323.6A EP03103323A EP1515000B1 EP 1515000 B1 EP1515000 B1 EP 1515000B1 EP 03103323 A EP03103323 A EP 03103323A EP 1515000 B1 EP1515000 B1 EP 1515000B1
Authority
EP
European Patent Office
Prior art keywords
contouring
recess
shrouds
turbomachine according
elevations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03103323.6A
Other languages
German (de)
English (en)
Other versions
EP1515000A1 (fr
Inventor
Ralf Dr. Greim
Said Dr. Havakechian
Axel Dr. Pfau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Priority to EP03103323.6A priority Critical patent/EP1515000B1/fr
Priority to US10/936,582 priority patent/US7320574B2/en
Publication of EP1515000A1 publication Critical patent/EP1515000A1/fr
Application granted granted Critical
Publication of EP1515000B1 publication Critical patent/EP1515000B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/183Two-dimensional patterned zigzag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/184Two-dimensional patterned sinusoidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/60Structure; Surface texture
    • F05D2250/61Structure; Surface texture corrugated
    • F05D2250/611Structure; Surface texture corrugated undulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Definitions

  • the invention relates to a turbomachine whose blading has shrouds, and in particular cavities into which the shrouds protrude.
  • the blading is provided with shrouds for vibration containment, which annularly connect all the blade tips of a row of blades. They are used on both buckets and vanes.
  • shrouds for vibration containment which annularly connect all the blade tips of a row of blades. They are used on both buckets and vanes.
  • recesses or cavities are formed in the machine inner housing and in the shaft, in which project the shrouds of the blades or the guide vanes.
  • the leakage flow is further limited by labyrinth seals in the cavities.
  • Such labyrinth seals are for example in FIG. 1 this application is shown. It shows a detail of a turbomachine, in particular a blade 1 and its adjacent vanes 2a, 2b.
  • the blade 1 is provided with a shroud 3, which projects into a recess or cavity 4 of the inner housing 5 of the machine.
  • a corresponding shroud of a vane protrudes into a similar recess in the shaft.
  • a labyrinth seal is arranged in the cavity 4. This seal consists primarily of a plurality of sealing strips 8, which extend from the wall of the inner housing radially inwardly toward the shroud.
  • the shroud 3 is configured with steps in the radial direction, wherein the shroud has a constant shape over its circumference.
  • the leakage flow 6 flows through an inlet region into the cavity 4, between the sealing strip and the shroud and back through an outlet region to the main flow 7 of the turbomachine.
  • Einsowie and exit areas arise mixing operations between Leakage flow and main flow, which inter alia disrupt the main and working flow and cause power losses.
  • US 4,662,820 to Sasada et al. discloses a labyrinth seal with a staggered shroud and multiple sealing strips.
  • the cavity into which the shroud protrudes is formed by inserts 12, 12a or shapes 15, 15b of the inner housing wall.
  • the cavity thus has a changing shape in the axial and / or radial direction, with its shape being constant in the circumferential direction.
  • the inserts serve to reduce the space through which a leakage current can flow, thereby increasing the performance of the machine.
  • EP 1 067 273 discloses a blade of a gas turbine, especially designed for aircraft with an axial and circumferentially wavy extension of a shroud to reduce the pressure field of a backflowing gas flow.
  • the extension is limited to the front of the shroud on the leading edge side of the blade. The measure results in an overall increase in the overall length of the machine.
  • a turbomachine includes blades and vanes each secured in a row of blades to a shaft or inner casing, at least one blade row and at least one row of guide blades each being provided with a shroud.
  • the inner housing and the shaft have cavities into which the shrouds protrude.
  • both the cavities and the cover bands have a contouring or a changing profile in the circumferential direction.
  • the contouring consists of periodically repeating elevations and depressions, which are thus uniformly distributed over the circumference and each of the same extent.
  • the contouring has a wavelength, that is a profile section, which repeats itself in the circumferential direction several times. In the case of the contouring of the cavity, this wavelength is equal to a fraction of the circumferential length of the cavity wall, that is to say the circumferential length either along the inner housing wall or the shaft. In the case of contouring a shroud, the wavelength is equal to a fraction of the circumferential length of this shroud. More specifically, the wavelength corresponds to the circumferential length of the cavity wall or the shroud divided by the simple number of blades or by an integer multiple of the number of blades in the blade row, which is adjacent to the cavity or which is associated with the shroud.
  • a erfingundsgem contouring causes a pressure field, which counteracts stationary and unsteady pressure fields, which would otherwise generate the losses.
  • These are pressure fields created by the presence of the blades together with the absence of vanes between the rows of blades by creating stagnation points at the leading blade edges and blade trailing edges.
  • These pressure fields not only act in the main flow field, but also in the region of the labyrinth in the case of the blade cover strip and in particular in the area of the leakage flow entry in the cavity and the leakage flow exit from the cavity.
  • the mixing processes between the main and leakage flow are reduced and thus also the friction and mixing losses due to the mixing processes are reduced.
  • the elevations or depressions of the respective cavity wall and / or the shroud are positioned such that the maxima of those pressure fields which are produced by the adjacent rows of blades are attenuated and the pressure minima between the rows of blades are compensated by increased pressure ,
  • the cavities are both cavities on the inner housing, in which the shrouds of the blades protrude, as well as cavities on the shaft, in which protrude the shrouds of the vanes.
  • the pressure conditions are comparable in both cases.
  • the wavelengths of the contouring are matched to the pressure fields, which compensate them. More concretely are their wavelengths according to the Number of blades in a row of blades determined.
  • contouring a cavity wall it has a wavelength equal to the circumferential length of the cavity divided by the number of vanes or an integral multiple of the number of vanes in the row of vanes that is closest to contouring upstream or downstream.
  • contouring a shroud it has a wavelength equal to the circumferential length of the cavity divided by the number of blades or an integral multiple of the number of blades in the row of blades that belongs to the shroud.
  • the contouring is located on the axially extending walls of a cavity, wherein the elevations and depressions of the contouring extend in the radial direction, that is, radially inwardly or radially outwardly.
  • the contouring is to be understood as elevations and depressions on the inner housing wall; in the case of a shroud cavity in the region of a vane, it is to be understood as elevations and depressions on the shaft.
  • the contouring extends over the entry area or over the exit area of the cavity or over both areas.
  • the inlet region is the region of the recess in the flow direction up to the first sealing strip
  • the outlet region is the region of the recess from the last sealing strip in the flow direction.
  • a contouring in the inlet region and / or the outlet region is preferred, wherein in other parts of the cavity or in the entire cavity contouring is also feasible.
  • a contouring in the entrance region of the cavity has a wavelength that is matched to the number of blades in the upstream row of blades. Contouring in the exit region of the cavity has a wavelength tuned to the number of blades in the downstream adjacent blade row.
  • the contouring is located on the radially extending walls of a cavity, with the elevations and depressions of the contour extending in the axial direction, that is to say in the direction or opposite direction of the main flow.
  • the wavelengths of these contouring are determined analogously to the first embodiment of the invention. That is, the contour in the entrance region has a wavelength tuned to the number of blades in the upstream adjacent blade row, and a contour in the exit region of the cavity has a Wavelength tuned to the number of blades in the downstream row of blades.
  • the shrouds are additionally contoured, wherein the elevations and depressions extend in the radial direction and upwards.
  • both stationary and rotating parts are provided with an inventive contour.
  • This contouring of the shroud also compensates for those pressure fields generated by the row of blades that the shroud belongs to. Accordingly, the wavelength of such contouring is matched to the number of blades in this blade row.
  • the shroud sidewalls or end walls are additionally contoured, the elevations and depressions extending in the axial direction, that is to say in the direction of the main flow or in the opposite direction.
  • both stationary and rotating parts are provided with a contour according to the invention.
  • the wavelengths of the contours are in turn tuned to the pressure fields they balance and are matched to the number of blades of the row to which the shroud belongs.
  • a contour has any periodically repeating shape that generates a pressure gradient.
  • a preferred shape is a waveform, such as a sinusoidal shape.
  • Other possible shapes are step shapes such as box shapes, triangular shapes, sawtooth or sawtooth-like shapes.
  • the amplitude of the contouring that is, the maximum extent of the elevations and depressions starting from a center line between the extreme points of the contour, is chosen so that the curvature of the contour is sufficiently pronounced to generate correspondingly strong pressure gradients, which are able to compensate the pressure fields.
  • FIG. 2a shows the same section of a turbomachine as in FIG. 1 ,
  • the cavity 4 has contourings 10 and 11 and the cavity walls according to a first embodiment of the invention. You are in this embodiment in the inlet region 12 and exit region 13 of the cavity 4. The view shows a section through the contouring at the height of their surveys.
  • the contouring in the embodiment shown here in the inlet region is equal to the contouring in the outlet region of the cavity.
  • the contouring in the inlet area may differ from those in the exit area. This may for example be the case with inclined channel walls.
  • the contouring 10 and 11 are made of solid parts, which extend from the original inner housing wall radially inwardly towards the shroud 3 out. They can be realized by appropriate shaping of the inner housing as an integral part of the inner housing wall or by post-processing of the cavity by mounting insert rings. The use of insert rings also allows retrofitting an existing machine.
  • the shroud 3 has a contour with elevations 14 and 15 which extend in the radial direction to the contouring 10, 11 out.
  • the contouring 10 in the inlet region 12 compensates in the circumferential direction for the pressure fields of the blade row with blades 2a.
  • the contouring 11 in the exit region 13 compensates for the pressure fields of the blade row with blades 2b.
  • the contouring 14 and 15 in the inlet and outlet areas compensate in the circumferential direction of the pressure fields of the blade row with blades 1 from.
  • FIG. 2b shows a view of the machine along its shaft axis in the direction of the main flow.
  • the blades 2a and the contouring 10 in the inlet region of the cavity in the circumferential direction are shown. They have a waveform with a wavelength L 1 equal to the total circumferential length divided by the number of blades 2a of the upstream blade row or the distance between two adjacent stator blades 2a.
  • the wavelength L 1 may also be equal to the circumferential length divided by an integer multiple of the mentioned number of blades, that is to say only half or a quarter of this size.
  • the contouring 11 in the exit region of the cavity has a wavelength corresponding to the number of blades 2b of the downstream blade row. Therefore, the wavelengths of contouring 10 and 11 may be different.
  • the wavelengths of the shroud contour 14 in the inlet region 12 and the shroud contour 15 in the exit region 13 are determined (analogously to the wavelengths of the contours 10 and 11) in accordance with the number of rotor blades
  • the maxima of the elevations of the contouring 10 with respect to the upstream vanes 2 a are positioned to the Optimize pressure compensation as much as possible. Accordingly, in the exit region 13, the maxima of the elevations of the contouring 11 are positioned with respect to the downstream guide vanes 2 b. (The positioning of the maxima and their amplitude are described below using the example FIG. 3b shown in more detail.)
  • FIGS. 3a and 3b show a second embodiment of the invention.
  • FIG. 3a represents a section of a turbomachine according to the FIGS. 1 and 2a , wherein the same reference numerals are used for the same machine parts.
  • the contouring 20 and 21 are in this example as an insert ring realized with wavy contour, which is attached to the inner housing wall. Alternatively, they can also be an integral part of the cavity.
  • the end faces of the shroud 3 are also provided with a contouring 22 in the inlet region 12 and a contouring 23 in the outlet region 13.
  • a contouring 22 in the inlet region 12 can be realized by integral shaping of the shroud or by mounting a correspondingly shaped and attached to the shroud ring.
  • FIG. 3b shows the waveform of the contours 20-23 of FIG. 3a in the circumferential direction by projection of the cavity 4 on a surface.
  • the wavelength L1 of the contour 20 at the radially extending cavity wall in the inlet region here is equal to the distance between two adjacent blades 2a of the upstream blade row or equal to the total circumference of the cavity divided by the number of blades.
  • the wavelength L2 of the contour 21 in the exit region of the cavity is equal to the distance between two adjacent blades 2b of the downstream row of blades. Accordingly, the wavelength L3 of the contours 22 and 23 at the shroud end faces is equal to the distance between two adjacent blades 1, to which the shroud belongs.
  • the largest survey of the waveforms of all contours are at the height of the blades, to which the contour is tuned.
  • the contours each have an amplitude A which is equal to the extent of a survey or depression, starting from a center line between the survey and depression.
  • the amplitude is in a predetermined ratio to the original cavity height of the inlet region 12.
  • the amplitudes A of the elevations and depressions on the shrouds are also in a predetermined ratio to the original axial distance between shroud and cavity wall.
  • FIG. 4 shows another possible shape of the contour applied to the cavity contouring of FIG. 3a ,
  • the contour here has a rounded sawtooth shape 20 ', 21', 22 ', 23', wherein the position of the maxima of the sawtooth 20 'on the position of the blades 2a of the upstream row of blades, those of the contour 21' on the position of the blades 2b of the downstream row of blades, and those of the contour 22 'and 23' are matched to the position of the blades 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (13)

  1. Turbomachine avec des aubes directrices (2a, 2b) agencées en lignes et fixées à une enceinte intérieure et des aubes mobiles (1) agencées en lignes et fixées à un arbre, dans laquelle au moins une partie des lignes d'aubes directrices et au moins une partie des lignes d'aubes mobiles sont munies d'anneaux de renforcement (3), et des découpes (4) sont disposées sur l'enceinte intérieure (5), dans lesquelles les anneaux de renforcement (3) des aubes mobiles s'engagent et des découpes sont disposées sur l'arbre, dans lesquelles les anneaux de renforcement des aubes directrices s'engagent, caractérisée en ce qu'au moins une découpe (4) et au moins un anneau de renforcement correspondant à celle-ci (3) présentent un profilage (10, 11, 14, 15, 20-23, 20'-23') qui varie en direction périphérique.
  2. Turbomachine selon la revendication 1, caractérisée en ce que le profilage (10, 11, 14, 15, 20-23, 20'-23') présente des surélévations et des creux périodiques, qui sont uniformément répartis sur la périphérie de la découpe (4).
  3. Turbomachine selon la revendication 1 ou 2, caractérisée en ce que le profilage variable (10, 11, 20, 21, 20', 21') dans la découpe (4) présente une longueur d'onde (L1, L2) entre des surélévations successives, qui est égale à la longueur périphérique de la découpe (4) divisée par le nombre des aubes (2a, 2b) dans la ligne d'aubes ou divisée par un multiple entier du nombre d'aubes (2a, 2b) dans la ligne d'aubes, qui est la plus proche du profilage.
  4. Turbomachine selon la revendication 1 ou 2, caractérisée en ce que le profilage variable (14, 15, 22, 23, 22', 23') sur les anneaux de renforcement (3) présente une longueur d'onde (L3) entre des surélévations successives, qui est égale à la longueur périphérique de l'anneau de renforcement (3) divisée par le nombre des aubes (1) dans la ligne d'aubes ou divisée par un multiple entier du nombre d'aubes (1) dans la ligne d'aubes, à laquelle l'anneau de renforcement correspond.
  5. Turbomachine selon l'une quelconque des revendications précédentes, caractérisée en ce que le profilage variable présente une forme ondulée, une forme en degrés, une forme en caissons, une forme en triangles ou une forme en dents de scie, qui se répète périodiquement.
  6. Turbomachine selon l'une quelconque des revendications précédentes, caractérisée en ce que la découpe (4) présente une zone d'entrée (12), dans laquelle un écoulement de fuite pénètre, et une zone de sortie (13), par laquelle l'écoulement de fuite s'écoule hors de la découpe (4), et le profilage (10, 11) s'étend sur la périphérie des parois latérales orientées axialement de la zone d'entrée (12) de la découpe (4) et/ou sur la périphérie des parois latérales orientées axialement de la zone de sortie (13) de la découpe (4), et les surélévations et les creux s'étendent en direction radiale.
  7. Turbomachine selon l'une quelconque des revendications précédentes, caractérisée en ce que la découpe (4) présente une zone d'entrée (12), dans laquelle un écoulement de fuite pénètre, et une zone de sortie (13), par laquelle l'écoulement de fuite s'écoule hors de la découpe (4), et le profilage (20, 21, 20', 21') s'étend sur la périphérie de la paroi latérale orientée radialement de la zone d'entrée (12) de la découpe (4) et/ou sur la périphérie de la paroi latérale orientée radialement de la zone de sortie (13), et les surélévations et les creux s'étendent en direction axiale.
  8. Turbomachine selon l'une quelconque des revendications précédentes, caractérisée en ce que le profilage s'étend sur la périphérie des faces frontales (22, 23, 22', 23') des anneaux de renforcement (3), et les surélévations et les creux s'étendent en direction axiale.
  9. Turbomachine selon l'une quelconque des revendications précédentes, caractérisée en ce que le profilage s'étend sur la périphérie des anneaux de renforcement (3) dans la zone d'entrée (12) et/ou dans la zone de sortie (13) de la découpe (4), et les surélévations et les creux s'étendent en direction radiale.
  10. Turbomachine selon l'une quelconque des revendications précédentes, caractérisée en ce que le profilage sur les parois de la découpe (4) dans la zone d'entrée (12) de la découpe (4) est différent du profilage sur les parois de la découpe (4) dans la zone de sortie (13) de la découpe (4).
  11. Turbomachine selon l'une quelconque des revendications précédentes, caractérisée en ce que le profilage sur les parois de la découpe (4) dans la zone d'entrée (12) de la découpe (4) est identique au profilage sur les parois de la découpe (4) dans la zone de sortie (13) de la découpe (4).
  12. Turbomachine selon l'une quelconque des revendications précédentes, caractérisée en ce que le profilage (10, 11, 20-23, 20', 23') est formé par des bagues rapportées, qui sont fixées sur les parois de la découpe (4) ou sur les anneaux de renforcement (3).
  13. Turbomachine selon l'une quelconque des revendications précédentes, caractérisée en ce que le profilage (10, 11, 20-23, 20'-23') est formé par un formage intégral des parois latérales de la découpe (4) ou des anneaux de renforcement (3).
EP03103323.6A 2003-09-09 2003-09-09 Aubage d'une turbomachine avec un carenage contouré Expired - Lifetime EP1515000B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03103323.6A EP1515000B1 (fr) 2003-09-09 2003-09-09 Aubage d'une turbomachine avec un carenage contouré
US10/936,582 US7320574B2 (en) 2003-09-09 2004-09-09 Turbomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03103323.6A EP1515000B1 (fr) 2003-09-09 2003-09-09 Aubage d'une turbomachine avec un carenage contouré

Publications (2)

Publication Number Publication Date
EP1515000A1 EP1515000A1 (fr) 2005-03-16
EP1515000B1 true EP1515000B1 (fr) 2016-03-09

Family

ID=34130324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03103323.6A Expired - Lifetime EP1515000B1 (fr) 2003-09-09 2003-09-09 Aubage d'une turbomachine avec un carenage contouré

Country Status (2)

Country Link
US (1) US7320574B2 (fr)
EP (1) EP1515000B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655723B2 (en) 2019-01-31 2023-05-23 Mitsubishi Heavy Industries, Ltd. Rotating machine

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101155809B1 (ko) * 2005-03-26 2012-06-12 한라공조주식회사 팬 및 쉬라우드 조립체
EP1731711A1 (fr) * 2005-06-10 2006-12-13 Siemens Aktiengesellschaft Transition de la chambre de combustion à la turbine, écran thermique et aube du distributeur de turbine
JP5283855B2 (ja) * 2007-03-29 2013-09-04 株式会社Ihi ターボ機械の壁、及びターボ機械
EP2179143B1 (fr) * 2007-08-06 2011-01-26 ALSTOM Technology Ltd Refroidissement de fente entre une paroi de chambre de combustion et une paroi de turbine d'une installation de turbine à gaz
EP2031184A1 (fr) * 2007-08-31 2009-03-04 Siemens Aktiengesellschaft Dispositif de rupture de tourbillon pour turbomachine
EP2055902A1 (fr) * 2007-10-31 2009-05-06 Siemens Aktiengesellschaft Turbine de centrale thermique comprenant une aube mobile et un aube statorique
US8162600B2 (en) * 2007-12-13 2012-04-24 Baker Hughes Incorporated System, method and apparatus for two-phase homogenizing stage for centrifugal pump assembly
US8317465B2 (en) * 2009-07-02 2012-11-27 General Electric Company Systems and apparatus relating to turbine engines and seals for turbine engines
US9039375B2 (en) * 2009-09-01 2015-05-26 General Electric Company Non-axisymmetric airfoil platform shaping
JP5517530B2 (ja) * 2009-09-03 2014-06-11 三菱重工業株式会社 タービン
DE102009042857A1 (de) * 2009-09-24 2011-03-31 Rolls-Royce Deutschland Ltd & Co Kg Gasturbine mit Deckband-Labyrinthdichtung
JP2011080452A (ja) * 2009-10-09 2011-04-21 Mitsubishi Heavy Ind Ltd タービン
US8356975B2 (en) * 2010-03-23 2013-01-22 United Technologies Corporation Gas turbine engine with non-axisymmetric surface contoured vane platform
US9976433B2 (en) 2010-04-02 2018-05-22 United Technologies Corporation Gas turbine engine with non-axisymmetric surface contoured rotor blade platform
IT1399992B1 (it) * 2010-05-11 2013-05-09 Denso Thermal Systems Spa Gruppo ventilatore per veicoli
DE102011008812A1 (de) * 2011-01-19 2012-07-19 Mtu Aero Engines Gmbh Zwischengehäuse
US8678740B2 (en) * 2011-02-07 2014-03-25 United Technologies Corporation Turbomachine flow path having circumferentially varying outer periphery
EP2607626B1 (fr) * 2011-12-20 2021-09-08 MTU Aero Engines AG Turbomachine et étage de turbomachine
ES2891562T3 (es) * 2011-12-20 2022-01-28 MTU Aero Engines AG Turbomaquinaria y etapa de turbomaquinaria
US10036266B2 (en) 2012-01-17 2018-07-31 United Technologies Corporation Method and apparatus for turbo-machine noise suppression
JP5643245B2 (ja) * 2012-02-27 2014-12-17 三菱日立パワーシステムズ株式会社 ターボ機械
US9382807B2 (en) * 2012-05-08 2016-07-05 United Technologies Corporation Non-axisymmetric rim cavity features to improve sealing efficiencies
US9528376B2 (en) * 2012-09-13 2016-12-27 General Electric Company Compressor fairing segment
US8926283B2 (en) 2012-11-29 2015-01-06 Siemens Aktiengesellschaft Turbine blade angel wing with pumping features
WO2014115706A1 (fr) * 2013-01-23 2014-07-31 三菱重工業株式会社 Mécanisme d'étanchéité et machine tournante pourvue d'un mécanisme d'étanchéité
US9920644B2 (en) 2013-02-20 2018-03-20 Siemens Aktiengesellschaft Riffled seal for a turbomachine, turbomachine and method of manufacturing a riffled seal for a turbomachine
EP2770165A1 (fr) * 2013-02-20 2014-08-27 Siemens Aktiengesellschaft Joint doté de rayure, turbomachine équipée d'un tel joint et son procédé de fabrication
KR101660204B1 (ko) * 2013-04-03 2016-09-26 미츠비시 쥬고교 가부시키가이샤 회전 기계
US20160208823A1 (en) * 2015-01-19 2016-07-21 Hamilton Sundstrand Corporation Shrouded fan rotor
US20170211407A1 (en) * 2016-01-21 2017-07-27 General Electric Company Flow alignment devices to improve diffuser performance
FR3052804B1 (fr) * 2016-06-16 2018-05-25 Safran Aircraft Engines Roue aubagee volontairement desaccordee
KR102000281B1 (ko) * 2017-10-11 2019-07-15 두산중공업 주식회사 압축기 및 이를 포함하는 가스 터빈

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2278041A (en) * 1939-10-23 1942-03-31 Allis Chalmers Mfg Co Turbine blade shroud
US3893782A (en) * 1974-03-20 1975-07-08 Westinghouse Electric Corp Turbine blade damping
DE2462465B2 (de) * 1974-03-21 1979-07-12 Maschinenfabrik Augsburg-Nuernberg Ag, 8500 Nuernberg Einrichtung zum dynamischen Stabilisieren des Läufers eines hochtourigen Verdichters
US3989406A (en) * 1974-11-26 1976-11-02 Bolt Beranek And Newman, Inc. Method of and apparatus for preventing leading edge shocks and shock-related noise in transonic and supersonic rotor blades and the like
CH598787A5 (fr) 1976-11-23 1978-05-12 Inpaver Ag
JPS5669402A (en) * 1979-11-09 1981-06-10 Hitachi Ltd Structure of blade train with shroud
JPS6123804A (ja) * 1984-07-10 1986-02-01 Hitachi Ltd タ−ビン段落構造
US6375416B1 (en) * 1993-07-15 2002-04-23 Kevin J. Farrell Technique for reducing acoustic radiation in turbomachinery
DE59710621D1 (de) * 1997-09-19 2003-09-25 Alstom Switzerland Ltd Vorrichtung zur Spaltdichtung
GB9915648D0 (en) * 1999-07-06 1999-09-01 Rolls Royce Plc Improvement in or relating to turbine blades
DE19963377A1 (de) * 1999-12-28 2001-07-12 Abb Alstom Power Ch Ag Turbinenschaufel mit aktiv gekühltem Deckbandelement
US7066713B2 (en) * 2004-01-31 2006-06-27 United Technologies Corporation Rotor blade for a rotary machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655723B2 (en) 2019-01-31 2023-05-23 Mitsubishi Heavy Industries, Ltd. Rotating machine

Also Published As

Publication number Publication date
EP1515000A1 (fr) 2005-03-16
US20050100439A1 (en) 2005-05-12
US7320574B2 (en) 2008-01-22

Similar Documents

Publication Publication Date Title
EP1515000B1 (fr) Aubage d'une turbomachine avec un carenage contouré
EP2179143B1 (fr) Refroidissement de fente entre une paroi de chambre de combustion et une paroi de turbine d'une installation de turbine à gaz
EP0972128B1 (fr) Structure superficielle pour la paroi d'un canal d'ecoulement ou d'une aube de turbine
DE19650656C1 (de) Turbomaschine mit transsonischer Verdichterstufe
EP0799973B1 (fr) Contour de paroi pour une turbomachine axiale
DE112009002600T5 (de) Mit Zinnen versehener Turbinenleitapparat
DE102012013160A1 (de) Labyrinthdichtungen
DE102016125091A1 (de) Turbinenlaufschaufeln mit Spitzendeckband
EP2003292A2 (fr) Bande de recouvrement d'aube dotée d'un rebord
DE102004026503A1 (de) Düsenzwischenstufendichtung für Dampfturbinen
EP2728122B1 (fr) Fixation de support d'étanchéité pour turbomachine
DE3006099A1 (de) Dichtungsanordnung zwischen gemeinsam umlaufenden, jedoch radial gegeneinander beweglichen maschinenteilen
CH698121B1 (de) Gruppierte Reaktionsdüsen-Deckbänder mit integrierten Dichtungen.
DE102014012764A1 (de) Radialverdichterstufe
EP2789802A1 (fr) Étage d'aubes pour une turbomachine et procédé associé de fabrication
EP3078804A1 (fr) Agencement virole pour une rangée d'aubes de rotor ou stator et turbine associée
DE102014205226A1 (de) Schaufelreihengruppe
EP0992656B1 (fr) Turbomachine pour comprimer ou détendre un fluide comprimable
EP1056931B1 (fr) Dispositif d'etancheite, et utilisation d'un dispositif d'etancheite
EP2607625B1 (fr) Turbomachine et étage de turbomachine
EP1653049A1 (fr) Couronne d'aubes directrices pour turbines à gaz et procédé pour sa modification
EP2607626B1 (fr) Turbomachine et étage de turbomachine
DE4100554A1 (de) Vorrichtung zur spaltabdichtung zwischen benachbarten segmenten von turbinenleitschaufelkraenzen und mantelringen
EP3388626A1 (fr) Contournage d'une plate-forme de grille d'aube
EP2730745B1 (fr) Agencement d'aubes pour une turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050912

AKX Designation fees paid

Designated state(s): DE

17Q First examination report despatched

Effective date: 20060721

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50315419

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315419

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50315419

Country of ref document: DE

Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50315419

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50315419

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50315419

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 50315419

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315419

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220818

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50315419

Country of ref document: DE