EP1511932B1 - Einspritzventil - Google Patents

Einspritzventil Download PDF

Info

Publication number
EP1511932B1
EP1511932B1 EP03745746A EP03745746A EP1511932B1 EP 1511932 B1 EP1511932 B1 EP 1511932B1 EP 03745746 A EP03745746 A EP 03745746A EP 03745746 A EP03745746 A EP 03745746A EP 1511932 B1 EP1511932 B1 EP 1511932B1
Authority
EP
European Patent Office
Prior art keywords
valve
injection valve
drive unit
hydraulic
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03745746A
Other languages
English (en)
French (fr)
Other versions
EP1511932A1 (de
Inventor
Georg Bachmaier
Bernhard Fischer
Bernhard Gottlieb
Andreas Kappel
Hans Meixner
Enrico Ulivieri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1511932A1 publication Critical patent/EP1511932A1/de
Application granted granted Critical
Publication of EP1511932B1 publication Critical patent/EP1511932B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/167Means for compensating clearance or thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow

Definitions

  • the present invention relates to an injection valve according to the preamble of claim 1.
  • Such an injection valve is known from DE 198 54 508, wherein the valve needle is designed to open outwardly and axially pressure-effective surfaces of the valve needle and the housing are designed so that when changing the pressure of the fluid, the same axial length change to the valve needle and the valve housing occur.
  • the drive chamber, in which the drive unit is arranged, and the fluid chamber, in which the valve needle and the return spring are arranged, are reliably sealed against each other by means of a sealing ring and a drain.
  • the compensation of all pressure forces takes place in order to keep the valve needle as a whole free of pressure forces.
  • a high acting in the opening direction compressive force which is advantageously compensated by a second pressure-loaded surface which generates a force acting in the opposite direction of the same amount.
  • HPDI high-pressure direct injection
  • the hydraulic length compensation is realized by a hydraulic chamber filled with oil.
  • this requires a complex hermetic seal of the equipment, such as silicone oil, compared to the pressurized fuel, which is often realized by a metal bellows.
  • the object of the present invention is to provide a powerful injection valve with a simple hydraulic bearing.
  • the hydraulic pressure applied to the hydraulic chamber is designed to be very stiff in order to be able to absorb very high compressive and tensile forces in the short term, as is required in the rapid opening and closing of the valve.
  • the injection valve can close about 5 - 10 times as fast as a provision by a return spring alone according to the prior art.
  • the losses in Ventilnadelhub by the disadvantageous Elongation of the valve needle due to a high force acting by the return spring restoring force avoided.
  • the fuel pressure-related forces can be adjusted specifically to the valve needle.
  • a fuel pressure related closing force could be adjusted. This would ensure that the valve needle closes the valve safely even with a broken return spring.
  • the fuel flows past the drive unit and, for example, to the multilayer actuator and cools the piezoceramics.
  • Another advantage is therefore the improved temperature behavior of the injector.
  • the direct injection into the combustion chamber exposes the injector to high temperatures.
  • modern injection concepts provide for multiple injections. The trend is towards continuous injection rate molding. Concepts with 5 injections per cycle are already discussed. This creates additional waste heat. Therefore, a cooling of the injector is advantageous, even if no temperature problem has occurred in injectors according to the prior art with silicone oil as the operating means of the hydraulic bearing.
  • the hydraulic chamber is to be realized at least so high that it can compensate for any changes in length expected during the service life.
  • the hydraulic chamber is to be made as low as possible.
  • a typical height of the hydraulic chamber of 200 to 500 microns is selected.
  • FIG. 1 An embodiment of the injection valve according to the invention is described below; the single FIGURE shows the injection valve simplified in a schematic longitudinal section.
  • a high-pressure injector or the single-point valve has a valve seat 3 in an injector housing 1.
  • a diameter of the sealing line d 1 is typically 3 - 5 mm in the case of a fuel injection valve.
  • the valve seat 3 is kept closed in the ground state by a valve disc 7 connected to the lower end section of a valve needle 5 (diameter d 2 ).
  • the valve needle 5 is arranged in the valve housing 1.
  • the closed ground state, one formed by the valve seat 3 and the valve plate 7 frontally on the housing 1 injection nozzle 9 is ensured by a tensioned compression spring 11 with a typical spring force (F S ) of about 150 N.
  • the compression spring is clamped between a bottom plate 13 of a drive unit 15 and a portion of the inner wall of the valve housing 1.
  • the valve needle 5 is rigidly connected to the bottom plate 13, for example via a weld.
  • the fuel supply into an interior of the valve housing 1 is effected by a provided in the injector 1 line bore 17.
  • the drive unit 15 is arranged. This is formed from a piezoelectric multilayer actuator in low-voltage technology (PMA) 19, a tube spring 21, a hydraulic piston 23 and the bottom plate 13.
  • the tube spring 19 is welded to the hydraulic piston 23 and the bottom plate 13, so that the multilayer actuator 19 under a mechanical compression bias stands.
  • Electrical connections 25 of the drive unit 15 are guided upward out of the housing 1, as described below.
  • the hydraulic piston 23 the interior of the valve housing is in a main chamber 27, which receives in particular the PMA 19, and a hydraulic chamber 29 separated.
  • the drive unit 15 is connected to the injector housing 1 by means of a metal bellows 31 having a hydraulic or effective pressure effective diameter d 5 .
  • a metal bellows 31 having a hydraulic or effective pressure effective diameter d 5 .
  • the interior of the valve housing 1 is closed to the environment.
  • the interior is additionally connected in the region of the metal bellows 31 via a transverse line 33 to the conduit bore 17.
  • F D With increasing size of this undesired additional force (F D ), the precise control of the injection process is difficult. Particularly modern concepts with multiple injection are then hardly feasible.
  • F S > 5 • F D Preferably, at least: F S > 5 • F D , in particular F S > 10 • F D.
  • the hydraulic piston 23 is sealingly fitted by a first and a second tight clearance 35, 37 with a larger diameter d 3 and a smaller diameter d 4 in the correspondingly formed injector 1 and forms with the corresponding inner wall portions of the injector 1, the annular hydraulic chamber 29. More Way, the height of the hydraulic chamber h K is set to at least 100 - 500 microns during assembly of the injector.
  • the hydraulic chamber 29 is used, for example, to compensate for thermally induced or caused by aging effects of the PMAs 19 in the injector slow changes in length (eg typical time t> 1 s) of the drive unit 15 and / or the valve needle 5 relative to the injector 1.
  • the hydraulic chamber 29 has due to the compressibility of gasoline a spring action, which leads to an additional loss in the valve lift.
  • the drive unit 15 with the hydraulic piston 23 and the valve needle 5 form a unit which can be displaced almost unhindered with respect to the injector housing when occurring in comparison to the injection slow movements against the seat force (F D + F S ) between the valve seat. 3 and adjusts the valve plate 7.
  • the length of the annular gap is relatively uncritical, with increasing length of the leakage current decreases. Since the leakage increases with the 3rd power of the gap height h, the gap height should be sufficiently small.
  • the function of the injection valve is now as follows: In order to start the injection process, the PMA 19 is charged via the electrical connections 25. Due to the inverse piezoelectric effect of the PMA 19 expands (typical deflection: 30 - 60 microns). In this case, the PMA is supported on the rigid hydraulic chamber 29 in order to lift the valve disk 7 against the spring force F S of the compression spring 11 from the valve seat 3. Now the fuel can escape from the injection nozzle 9. The valve disk 7 is acted upon at its lower, the fuel-remote surface with the pressure of the injection chamber (not shown). As described above, the hydraulic chamber 29 is sufficiently rigid over a typical injection period. To end the injection process, the PMA 19 is discharged again via the electrical connections 25 and the PMA shortens.
  • the hydraulic pressure ( hydraulic tension) and the spring restoring force of the compression spring 11 pull the valve plate 7 in the valve seat 3 and thus close the valve.
  • the injector volume itself serves as a fuel pressure reservoir for the first injection events until the injection pump feeds the necessary fuel pressure into the injector.
  • a magnetostrictive drive can be used to actuate the valve.
  • the device described can in principle also be used for inwardly opening valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Einspritzventil gemäß dem Oberbegriff des Patentanspruches 1.
  • Ein derartiges Einspritzventil ist bekannt aus der DE 198 54 508, wobei die Ventilnadel nach außen öffnend ausgeführt ist und axial druckwirksame Flächen der Ventilnadel und des Gehäuses so ausgeführt sind, dass bei einer Änderung des Drucks des Fluids die gleichen axialen Längenänderung an der Ventilnadel und an dem Ventilgehäuse auftreten. Zudem ist es möglich die Flächen an der Ventilnadel so einzustellen, dass durch den Druck des Fluids keine Kraft auf die Rückstellfeder oder den Ventilsitz verursacht wird. Die Antriebskammer, in der die Antriebseinheit angeordnet ist, und die Fluidkammer, in der die Ventilnadel und die Rückstellfeder angeordnet sind, sind dabei mittels eines Dichtringes und eines Ablaufes gegeneinander zuverlässig abgedichtet.
  • Die Kompensation aller Druckkräfte erfolgt, um die Ventilnadel insgesamt frei von Druckkräften zu halten. Beispielsweise wirkt aufgrund der druckbelasteten Fläche des Ventiltellers eines nach außen öffnenden Injektors bei hohem Kraftstoffdruck eine hohe in Öffnungsrichtung wirkende Druckkraft, die vorteilhafter Weise durch eine zweite druckbelastete Fläche kompensiert wird, die eine in Gegenrichtung wirkende Druckkraft gleichen Betrages erzeugt. Bei einer derartigen Kompensation bestehen bezüglich des Ventiltellerdurchmessers und des Nadeldurchmessers dann keinerlei Einschränkungen mehr.
  • Weiterhin ist allgemein bekannt, dass bei einem Hochdruck-Einspritzventil (High Pressure Direct Injection, HPDI) für direkteinspritzende Magermotoren mit einem piezoelektrischen Multilayeraktor als Antriebselement zusätzlich zum Kraftstoff noch ein weiteres Betriebsmittel für das hydraulische Lager im Injektor benötigt wird. Dabei ist bekannt, dass eine selbsttätige Kompensation aller thermischen sowie aller durch Setzeffekte des Piezoelementes hervorgerufenen oder druckbedingten Längenänderungen möglich ist. Dadurch kann bei der Materialwahl auf teuere Legierungen mit geringer thermischer Dehnung (z.B. Invar) verzichtet werden und wesentlich billigerer Stahl mit höherer Festigkeit und einfacherer Bearbeitbarkeit verwendet werden. Antriebsseitig werden alle bewegten Teile unter geringer Kraft auf Anlage gehalten, so dass keine Hubverluste durch Spalte entstehen. Für einen nach außen öffnenden piezoelektrisch angetriebenen Injektor wird der hydraulische Längenausgleich durch eine mit Öl gefüllte Hydraulikkammer realisiert. Dies bedingt jedoch eine aufwendige hermetische Abdichtung des Betriebsmittels, z.B. Silikonöl, gegenüber dem druckbeaufschlagten Kraftstoff, die häufig durch einen Metallbalg realisiert ist.
  • Auch ist aus der WO 00/17507 ein Einspritzventil bekannt, bei dem ein hydraulischer Übersetzer zwischen Ventilnadel und Piezo Aktor mit Kraftstoff über einen Ringspalt gefüllt ist, welcher auch den Längeausgleich sicherstellt.
  • Aufgabe der vorliegenden Erfindung ist es, ein leistungsfähiges Einspritzventil mit einem einfachen hydraulischen Lager bereitzustellen.
  • Erfindungsgemäß ist dies bei einem Einspritzventil mit den Merkmalen des Patentanspruches 1 erreicht. Es ist ein Injektorprinzip realisiert, das ohne zusätzliches Betriebsmittel für das hydraulische Lager auskommt. Um die Befüllung der Hydraulikkammer zu erleichtern, füllt der Kraftstoff über zwei gegenüberliegende Ringspalte die Hydraulikkammer des Ventils, welche den Längenausgleich sicherstellt.
  • Vorteilhafter Weise ist die mit dem Kraftstoffdruck beaufschlagte Hydraulikkammer sehr steif ausgebildet, um kurzfristig sehr hohe Druck- und Zugkräfte aufnehmen zu können, wie dies beim schnellen Öffnen und Schließen des Ventils erforderlich ist. Damit kann das Einspritzventil circa 5 - 10 mal so schnell schließen wie bei einer Rückstellung durch eine Rückstellfeder allein gemäß dem Stand der Technik. Gleichzeitig werden die Verluste im Ventilnadelhub durch die nachteilige Dehnung der Ventilnadel aufgrund einer hohen durch die Rückstellfeder wirkenden Rückstellkraft vermieden.
  • Erfindungsgemäß können die kraftstoffdruckbedingten Kräfte auf die Ventilnadel gezielt eingestellt werden. Beispielsweise könnte eine kraftstoffdruckbedingte Schließkraft eingestellt werden. Dadurch wäre sichergestellt, dass die Ventilnadel selbst bei gebrochener Rückstellfeder das Ventil sicher schließt.
  • Durch eine geeignete Führung der Kraftstoffleitungen strömt der Kraftstoff an der Antriebseinheit und beispielsweise an dem Multilayeraktor vorbei und kühlt die Piezokeramiken. Ein weiterer Vorteil besteht deshalb in dem verbesserten Temperaturverhalten des Injektors. Die Direkteinspritzung in den Brennraum setzt den Injektor hohen Temperaturen aus. Zudem sehen moderne Einspritzkonzepte Mehrfacheinspritzungen vor. Die Entwicklung geht in Richtung kontinuierlicher Einspritzratenformung. Konzepte mit 5 Injektionen pro Zyklus werden bereits diskutiert. Dabei entsteht zusätzliche Abwärme. Deshalb ist eine Kühlung des Injektors von Vorteil, auch wenn bei Injektoren nach dem Stand der Technik mit Silikonöl als Betriebsmittel des hydraulischen Lagers noch kein Temperaturproblem aufgetreten ist.
  • Temperaturausdehnungen, Alterungs- und Setzeffekte bewirken, dass sich die absolute Lage der Piezoeinheit, aber auch die relative Lage zum Ventilgehäuse ändert. Typische Werte betragen bis zu wenigen 10 µm, sind jedoch stets deutlich kleiner als 100 µm. Die Hydraulikkammer ist mindestens so hoch zu realisieren, dass sie sämtliche während der Lebensdauer zu erwartenden Längenänderungen ausgleichen kann. Um ein möglichst steifes Widerlager bilden zu können, ist die Hydraulikkammer andererseits möglichst wenig hoch auszubilden. Bevorzugt wird deshalb eine typischen Höhe der Hydraulikkammer von 200 bis 500 µm gewählt.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung sind den weiteren abhängigen Patentansprüchen zu entnehmen.
  • Nachfolgend ist ein Ausführungsbeispiel des erfindungsgemäßen Einspritzventils beschrieben; die einzige Fig. zeigt das Einspritzventil vereinfacht in einer schematisierten Längsschnittdarstellung.
  • Ein Hochdruckinjektor bzw. das Einspitzventil weist in einem Injektorgehäuse 1 einen Ventilsitz 3 auf. Ein Durchmesser der Dichtlinie d1 beträgt bei einem Kraftstoff-Einspritzventil typischerweise 3 - 5 mm. Der Ventilsitz 3 wird im Grundzustand durch einen am unteren Endabschnitt einer Ventilnadel 5 (Durchmesser d2) verbundenen Ventilteller 7 geschlossen gehalten. Die Ventilnadel 5 ist dabei in dem Ventilgehäuse 1 angeordnet. Der geschlossene Grundzustand, einer durch den Ventilsitz 3 und den Ventilteller 7 stirnseitig am Gehäuse 1 gebildeten Einspritzdüse 9 wird durch eine gespannte Druckfeder 11 mit einer typischen Federkraft (FS) von etwa 150 N gewährleistet. Die Druckfeder ist zwischen einer Bodenplatte 13 einer Antriebseinheit 15 und einem Abschnitt der Innenwand des Ventilgehäuses 1 eingespannt. Die Ventilnadel 5 ist mit der Bodenplatte 13 z.B. über eine Schweißnaht starr verbunden. Die Kraftstoffzuführung in einen Innenraum des Ventilgehäuses 1 erfolgt durch eine im Injektorgehäuse 1 vorgesehene Leitungsbohrung 17. Im oberen Teil des Injektorgehäuses 1 ist die Antriebseinheit 15 angeordnet. Diese ist aus einem piezoelektrischen Multilayeraktor in Niedervolttechnik (PMA) 19, einer Rohrfeder 21, einem Hydraulikkolben 23 und der Bodenplatte 13 gebildet. Die Rohrfeder 19 ist mit dem Hydraulikkolben 23 und der Bodenplatte 13 verschweißt, so dass der Multilayeraktor 19 unter einer mechanischen Druckvorspannung steht. Elektrische Anschlüsse 25 der Antriebseinheit 15 sind nach oben, wie nachfolgend beschrieben, aus dem Gehäuse 1 geführt. Durch den Hydraulikkolben 23 ist der Innenraum des Ventilgehäuses in eine Hauptkammer 27, die insbesondere den PMA 19 aufnimmt, und eine Hydraulikkammer 29 getrennt. Oberhalb der Hydraulikkammer 29 ist die Antriebseinheit 15 mittels eines Metallbalges 31 mit einem hydraulischen bzw. effektiv druckwirksamen Durchmesser d5 mit dem Injektorgehäuse 1 verbunden. Damit ist der Innenraum des Ventilgehäuses 1 gegenüber der Umgebung geschlossen. Der Innenraum ist im Bereich des Metallbalges 31 zusätzlich über eine Querleitung 33 mit der Leitungsbohrung 17 verbunden.
  • Im Grundzustand bei angelegtem Kraftstoffdruck pK von typischerweise 100-300 bar wirken auf die Bodenplatte 13 und den Hydraulikkolben 23 zwar sehr große resultierende Druckkräfte (FD = pK•π•(d1 2-d5 2)/4, woraus sich etwa eine Druckkraft von FD = 1000-5000 N ergeben kann. Diese hebt sich in der Druckbilanz jedoch weg, wenn d1 = d5 gewählt wird. Der Druckausgleich muss dabei nicht mathematisch exakt erfolgen, sondern lediglich ausreichend genau, wie nachfolgend beschrieben ist. Bei typischen Abmessungen des Einspritzventils hat eine Änderung des Kraftstoffdruckes von 100 auf 300 bar bei einer Abweichung der druckbeaufschlagten Flächen um 1 mm2 vom idealen Kompensationszustand bereits eine Zusatzkraft (FD) von etwa 20 N zur Folge, um die sich die Schließkraft im Ventilsitz 3 ändert. Diese Kraft kann gegen die Federkraft (FS) der Druckfeder 11 wirken und im schlimmsten Fall das Ventil unbeabsichtigt öffnen. Andererseits kann diese Zusatzkraft (FD) auch die Federkraft (FS) verstärken und dadurch das Öffnen des Ventils erschweren. Mit zunehmender Größe dieser unerwünschten Zusatzkraft (FD) wird die genaue Steuerung des Einspritzvorganges erschwert. Besonders moderne Konzepte mit Mehrfacheinspritzung sind dann kaum mehr realisierbar. Bevorzugt gilt zumindest: FS> 5•FD, insbesondere FS> 10•FD.
  • Der Hydraulikkolben 23 ist dichtend durch eine erste und eine zweite enge Spielpassung 35, 37 mit einem größeren Durchmesser d3 und einem kleineren Durchmesser d4 in das entsprechend ausgebildete Injektorgehäuse 1 eingepasst und bildet mit den entsprechenden Innenwandabschnitten des Injektorgehäuses 1 die ringförmige Hydraulikkammer 29. Typischer Weise wird bei der Montage des Injektors die Höhe der Hydraulikkammer hK auf zumindest 100 - 500 µm eingestellt. Die Hydraulikkammer 29 dient z.B. zur Kompensation z.B. thermisch bedingter oder der durch Alterungseffekte des PMAs 19 im Injektor hervorgerufenen langsamen Längenänderungen (z.B. typische Zeitdauern t > 1 s) der Antriebseinheit 15 und/oder der Ventilnadel 5 gegenüber dem Injektorgehäuse 1. Wenn diese langsamen Längenänderungen auftreten, kann zum Längenausgleich über die engen Dichtspalte der Spielpassungen 35, 37 des Hydraulikkolbens 23 ein ungehinderter Fluidaustausch zwischen der Hydraulikkammer 29 und dem umgebenden kraftstoffgefüllten Innenraum des Injektors bzw. der Hauptkammer 27 und der Querleitung 33 stattfinden. Diese langsamen Änderungen werden somit durch eine Änderung der Höhe der Hydraulikkammer 29 kompensiert.
  • Die Dichtspalte zwischen dem Hydraulikkolben 23 und dem Ventilgehäuse 1 müssen jedoch zugleich so eng bemessen sein, dass innerhalb von typischen Einspritzzeiten (0 ms < t < 5 ms) kein nennenswerter Fluidaustausch zwischen der Hydraulikkammer 29 und dem umgebenden kraftstoffgefüllten Innenraum des Injektors insbesondere der Hauptkammer 27 auftreten kann. Die Höhe der Hydraulikkammer hK sollte sich leckagebedingt maximal um circa 1 - 2 µm ändern können. Um das Ventil öffnen und über einen Zeitraum 0 ms < t < 5 ms im Betrieb offen halten und anschließend wieder schließen zu können, ist in Abhängigkeit von der Größe der Federkraft FS typischer Weise eine mittlere Kraft von etwa 100 - 200 N erforderlich. Bei einer typischen druckwirksamen Fläche AK = π•(d3 2-d4 2)/4 von circa 240 mm2 (Annahme: d3 = 18 mm, d4 = 4 mm) ändert sich der mittlere Druck in der Hydraulikkammer gegenüber dem Kraftstoffdruck um Δp = 200 N/AK < 10 bar. Der Fluidstrom durch die maximal exzentrisch liegenden Dichtspalte berechnet sich gemäß Q L = 2 , 5 π ( d 3 + d 4 ) h 3 Δp / 12 η l
    Figure imgb0001
    mit:
  • Viskosität von Benzin:
    η = 0,4 mPa•s;
    Spalthöhe:
    h = 2 µm;
    Länge der Dichtflächen:
    1 = 10 mm
    Einspritzzeit:
    tE = 5 ms ergibt sich
    QL = 28,8 mm3/s; ΔV = QL•5•10-3 s = 0,144 mm3;
    Mit Δx = ΔV/AK ergibt sich
    Δx = 0,6 µm als Hubverlust aufgrund der Leckageströmung während der Einspritzzeit unter den oben getroffenen Annahmen.
  • Die Hydraulikkammer 29 besitzt aufgrund der Kompressibilität von Benzin eine Federwirkung, die zu einem zusätzlichen Verlust im Ventilhub führt. Die minimale Federrate der Hydraulikkammer 29 cK berechnet sich gemäß
    cK = AK/ (χ•hK) mit
    χ = 10-9 m2/N und
    hK = 500 µm zu cK = 500 N/µm und damit ergibt sich:
    Δx = ΔF/cK = 200 N/ 500 N/µm = 0,4 µm als Hubverlust des Ventils aufgrund der Kompressibilität von Benzin.
  • Dadurch ist gezeigt, dass der maximal auftretende Hubverlust, der durch die Hydraulikkammer 29 verursacht ist, bei geeigneter Dimensionierung hinreichend klein bleibt. Insgesamt bilden die Antriebseinheit 15 mit dem Hydraulikkolben 23 und der Ventilnadel 5 eine Einheit, die als Ganzes bei im Vergleich zum Einspritzvorgang auftretenden langsamen Bewegungen nahezu ungehindert gegenüber dem Injektorgehäuse verschoben werden kann bis sich die Sitzkraft (FD + FS) zwischen dem Ventilsitz 3 und dem Ventilteller 7 einstellt. Die Länge der Ringspalte ist dabei relativ unkritisch, wobei mit zunehmender Länge der Leckagestrom abnimmt. Da die Leckage mit der 3. Potenz der Spalthöhe h zunimmt, sollte die Spalthöhe ausreichend klein gewählt werden. Zusammenfassend gilt also, dass langsam verlaufende Längenänderungen insbesondere des PMAs 19 durch die Hydraulikkammer 29 kompensiert werden, so dass über alle Betriebszustände und thermischen Lasten hinweg reproduzierbare zeitliche Verläufe des Ventilnadelhubes und damit der Einspritzmengen gesteuert werden können. Bei dem Ventil gemäß der Fig. ist die Führung des Kraftstoffes im Injektorgehäuse so realisiert, dass die Funktionen der Kühlung des PMAs 19 und des Längenausgleiches mittels der Hydraulikkammer 29 mittels eines einzigen Fluids erfüllt werden kann.
  • Die Funktion des Einspritzventils ist nun wie folgt: Um den Einspritzvorgang zu beginnen, wird der PMA 19 über die elektrischen Anschlüsse 25 aufgeladen. Aufgrund des inversen piezoelektrischen Effektes dehnt sich der PMA 19 dabei aus (typische Auslenkung: 30 - 60 µm). Dabei stützt sich der PMA an der steifen Hydraulikkammer 29 ab, um den Ventilteller 7 entgegen der Federkraft FS der Druckfeder 11 vom Ventilsitz 3 abzuheben. Nun kann der Kraftstoff aus der Einspritzdüse 9 austreten. Der Ventilteller 7 ist an seiner unteren, dem Kraftstoff abgewandten Fläche mit dem Druck des Einspritzraumes (nicht gezeigt) beaufschlagt. Wie oben beschrieben, ist die Hydraulikkammer 29 dabei über eine typische Einspritzdauer hinweg ausreichend steif ausgebildet. Um den Einspritzvorgang zu beenden, wird der PMA 19 wieder über die elektrischen Anschlüsse 25 entladen und der PMA verkürzt sich. Die hydraulische Druckspannung (= hydraulische Zugkraft) sowie die Federrückstellkraft der Druckfeder 11 ziehen den Ventilteller 7 in den Ventilsitz 3 und schließen damit das Ventil. In der Endstellung bei geschlossenem Ventil bleibt die Hydraulikkammer 29 mit einer Mindesthöhe erhalten. Der größte Beitrag zur Rückstellkraft kommt dabei von der hydraulischen Druckvorspannung. Die Hydraulikkammer 29 ist aufgrund ihrer hohen Steifigkeit und des hohen Kraftstoffdruckes (pK = 100 - 300 bar) in der Lage, kurzfristig auch hohe Zugkräfte (Fz = pK•π •(d3 2-d4 2)/4 von Fz = 1000-5000 N) ohne nennenswerte Änderung der Hydraulikkammerhöhe hK aufzunehmen.
  • Durch den Einbau eines Rückschlagventils im Hochdruckanschluss des Injektors kann der Hochdruck im Injektor über längere Zeit aufrechterhalten werden, während die Kraftstoffpumpe abgeschaltet ist (nicht gezeigt). Beim erneuten Starten des Motors dient das Injektorvolumen selbst als Kraftstoff-Druckreservoir für die ersten Einspritzvorgänge, bis die Einspritzpumpe den nötigen Kraftstoffdruck in den Injektor einspeist.
  • Alternativ kann als Antrieb auch beispielsweise ein magnetostriktiver Antrieb verwendet werden, um das Ventil zu betätigen. Mit einer geeignet aufgebauten Hubumkehr ist die beschriebene Vorrichtung grundsätzlich auch für nach innen öffnende Ventile einsetzbar.

Claims (12)

  1. Einspritzventil für Kraftstoff mit einem Ventilgehäuse (1), in dem eine Antriebseinheit (15) die Bewegung einer durch eine Feder (11) vorgespannte Ventilnadel (5) steuert, wobei ein hydraulisches Lager für die Antriebseinheit (15) mit einer Hydraulikkammer (29) vorgesehen ist und eine im Ventilgehäuse ausgebildete Hauptkammer (27), die mit dem Kraftstoff als Betriebsstoff des hydraulischen Lagers gefüllt ist und in der die Ventilnadel angeordnet ist, dadurch gekennzeichnet, dass
    das hydraulische Lager eine Hydraulikkammer (29) aufweist, die beidseitig durch enge Ringspalte (35, 37) sowohl mit der Hauptkammer (27) als auch gegenüberliegend mit einem Teil des Innenraumes des Ventilgehäuses (1) gedrosselt in Verbindung steht und das dieser Teil des Innenraumes über eine Querleitung (33) mit einer in die Hauptkammer (27) mündenden Kraftstoffzufuhrleitung (17) verbunden ist.
  2. Einspritzventil nach Anspruch 1,
    dadurch gekennzeichnet, dass
    zur Kühlung der Antriebseinheit (15) der Kraftstoff dient.
  3. Einspritzventil nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Antriebseinheit (15) in der Hauptkammer (27) angeordnet ist.
  4. Einspritzventil nach Anspruch 1, 2 oder 3,
    dadurch gekennzeichnet, dass
    die axialwirksamen Druckflächen der Ventilnadel (5) derart dimensioniert sind, dass sich die resultierenden Druckkräfte (pD) im wesentlichen aufheben, wodurch die resultierende axial wirkende Kraft (FD) auf die Ventilnadel (5) im Vergleich zur Kraft (FS) der Feder (11) gering gehalten ist.
  5. Einspritzventil nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    in einem Hochdruckanschluss des Einspritzventils ein Rückschlagventil eingebaut ist.
  6. Einspritzventil nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Ventilnadel (5) mit der Antriebseinheit (15) fest verbunden ist.
  7. Einspritzventil nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Antriebseinheit (15) einen Hydraulikkolben (23) aufweist, der zusammen mit einem Innenwandabschnitt des Ventilgehäuses (1) die Hydraulikkammer (29) bildet.
  8. Einspritzventil nach Anspruch 7,
    dadurch gekennzeichnet, dass
    eine Höhe (hK) der Hydraulikkammer (29) etwa 200 bis 500 µm beträgt.
  9. Einspritzventil nach Anspruch 7 oder 8,
    dadurch gekennzeichnet, dass
    die Antriebseinheit (15) mit dem Hydraulikkolben (23) und der Ventilnadel (5) eine feste Einheit bildet, die bei im Vergleich zu beim Einspritzvorgang auftretenden langsameren Bewegungen nahezu ungehindert gegenüber dem Injektorgehäuse (1) unter Berücksichtigung der Federkräfte verschoben werden kann.
  10. Einspritzventil nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Antriebseinheit (15) mit einem Hydraulikkolben (23) verbunden ist, der den Innenraum des Gehäuses (1) in die Hydraulikkammer (29) und die Hauptkammer (27) teilt.
  11. Einspritzventil nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    elektrische Zuleitungen (25) der Antriebseinheit (15) aus einer Öffnung des Gehäuses (1) geführt sind, und dass zwischen der Antriebeinheit (15) und dem Gehäuse (1) ein flexibles Abdichtungsmittel (31) vorgesehen ist.
  12. Einspritzventil nach Anspruch 11,
    dadurch gekennzeichnet, dass
    der vollständige Innenraum des Ventilgehäuses (1) zwischen dem Abdichtungsmittel (31) und einem gegenüberliegend angeordneten Ventilsitz (3) mit dem Kraftstoff gefüllt ist.
EP03745746A 2002-04-04 2003-04-01 Einspritzventil Expired - Lifetime EP1511932B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10214931 2002-04-04
DE10214931 2002-04-04
PCT/DE2003/001062 WO2003085253A1 (de) 2002-04-04 2003-04-01 Einspritzventil

Publications (2)

Publication Number Publication Date
EP1511932A1 EP1511932A1 (de) 2005-03-09
EP1511932B1 true EP1511932B1 (de) 2006-11-29

Family

ID=28684751

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03745746A Expired - Lifetime EP1511932B1 (de) 2002-04-04 2003-04-01 Einspritzventil

Country Status (5)

Country Link
US (1) US7886993B2 (de)
EP (1) EP1511932B1 (de)
JP (1) JP4273003B2 (de)
DE (1) DE50305852D1 (de)
WO (1) WO2003085253A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103764995A (zh) * 2011-09-09 2014-04-30 大陆汽车有限公司 阀组件和喷射阀

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085828A2 (de) 2003-03-27 2004-10-07 Siemens Aktiengesellschaft Direkt-einspritzventil in einem zylinderkopf
DE102004001679B4 (de) * 2004-01-12 2009-01-08 Continental Automotive Gmbh Piezoaktor mit Mitteln zur Kompensation der thermischen Längenänderung und Kraftstoff-Einspritzventil mit Piezoaktor
DE102004021920A1 (de) * 2004-05-04 2005-12-01 Robert Bosch Gmbh Brennstoffeinspritzventil
DE502006007633D1 (de) * 2006-05-09 2010-09-23 Continental Automotive Gmbh Kraftstoffeinspritzsystem und ein Verfahren zum Herstellen dieses Einspritzsystems
US7952261B2 (en) 2007-06-29 2011-05-31 Bayer Materialscience Ag Electroactive polymer transducers for sensory feedback applications
US20090250021A1 (en) * 2007-10-02 2009-10-08 Artificial Muscle, Inc. Fluid control systems employing compliant electroactive materials
US8561598B2 (en) * 2008-01-07 2013-10-22 Mcalister Technologies, Llc Method and system of thermochemical regeneration to provide oxygenated fuel, for example, with fuel-cooled fuel injectors
US8387599B2 (en) * 2008-01-07 2013-03-05 Mcalister Technologies, Llc Methods and systems for reducing the formation of oxides of nitrogen during combustion in engines
US8635985B2 (en) 2008-01-07 2014-01-28 Mcalister Technologies, Llc Integrated fuel injectors and igniters and associated methods of use and manufacture
US8413634B2 (en) 2008-01-07 2013-04-09 Mcalister Technologies, Llc Integrated fuel injector igniters with conductive cable assemblies
US7628137B1 (en) 2008-01-07 2009-12-08 Mcalister Roy E Multifuel storage, metering and ignition system
US8074625B2 (en) 2008-01-07 2011-12-13 Mcalister Technologies, Llc Fuel injector actuator assemblies and associated methods of use and manufacture
US8365700B2 (en) * 2008-01-07 2013-02-05 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
DE102008020931A1 (de) * 2008-04-25 2009-11-19 Continental Automotive Gmbh Verfahren zur Ansteuerung eines Piezoaktors in einem Kraftstoffinjektor
US7950596B2 (en) * 2008-06-27 2011-05-31 Caterpillar Inc. Distributed stiffness biasing spring for actuator system and fuel injector using same
US8402951B2 (en) * 2009-03-10 2013-03-26 Transonic Combustion, Inc. Reverse operating nonlinear spring
EP2239793A1 (de) 2009-04-11 2010-10-13 Bayer MaterialScience AG Elektrisch schaltbarer Polymerfilmaufbau und dessen Verwendung
EP2470775B1 (de) 2009-08-27 2015-04-29 McAlister Technologies, LLC Formung einer brennstoffladung in einer verbrennungskammer mit mehreren treibern und/oder ionisierungssteuerung
CA2783185C (en) * 2009-12-07 2014-09-23 Mcalister Technologies, Llc Adaptive control system for fuel injectors and igniters
US20110297753A1 (en) 2010-12-06 2011-12-08 Mcalister Roy E Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture
WO2011100701A2 (en) 2010-02-13 2011-08-18 Mcalister Roy E Fuel injector assemblies having acoustical force modifiers and associated methods of use and manufacture
WO2011100717A2 (en) 2010-02-13 2011-08-18 Mcalister Roy E Methods and systems for adaptively cooling combustion chambers in engines
EP2366888A1 (de) * 2010-03-17 2011-09-21 Continental Automotive GmbH Ventilgruppe für ein Einspritzventil, Einspritzventil und Verfahren zum Zusammenbauen einer Ventilgruppe eines Einspritzventils
US9261060B2 (en) * 2010-04-01 2016-02-16 GM Global Technology Operations LLC Fuel injector with variable area poppet nozzle
CN101920850B (zh) * 2010-09-19 2012-02-29 无锡市华星电力环保修造有限公司 带逆止作用的气化喷嘴
US8528519B2 (en) 2010-10-27 2013-09-10 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8091528B2 (en) 2010-12-06 2012-01-10 Mcalister Technologies, Llc Integrated fuel injector igniters having force generating assemblies for injecting and igniting fuel and associated methods of use and manufacture
US8608127B2 (en) * 2011-01-24 2013-12-17 Fluke Corporation Piezoelectric proportional control valve
US8820275B2 (en) 2011-02-14 2014-09-02 Mcalister Technologies, Llc Torque multiplier engines
TWI542269B (zh) 2011-03-01 2016-07-11 拜耳材料科學股份有限公司 用於生產可變形聚合物裝置和薄膜的自動化生產方法
TW201250288A (en) 2011-03-22 2012-12-16 Bayer Materialscience Ag Electroactive polymer actuator lenticular system
WO2013025626A1 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Acoustically actuated flow valve assembly including a plurality of reed valves
US8683988B2 (en) 2011-08-12 2014-04-01 Mcalister Technologies, Llc Systems and methods for improved engine cooling and energy generation
WO2013142552A1 (en) 2012-03-21 2013-09-26 Bayer Materialscience Ag Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
WO2013192143A1 (en) 2012-06-18 2013-12-27 Bayer Intellectual Property Gmbh Stretch frame for stretching process
US9590193B2 (en) 2012-10-24 2017-03-07 Parker-Hannifin Corporation Polymer diode
US9115325B2 (en) 2012-11-12 2015-08-25 Mcalister Technologies, Llc Systems and methods for utilizing alcohol fuels
US10385807B2 (en) * 2013-03-15 2019-08-20 Clean Train Propulsion Efficiency and emissions improvements for natural gas conversions of EMD 2-cycle medium speed engines
DE102013219225A1 (de) * 2013-09-25 2015-03-26 Continental Automotive Gmbh Piezo-Injektor zur Kraftstoff-Direkteinspritzung
EP2863048B1 (de) * 2013-10-21 2017-12-06 C.R.F. Società Consortile Per Azioni Kraftstoff-Elektro-Einspritzelement für ein Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE102014200756A1 (de) * 2014-01-17 2015-07-23 Robert Bosch Gmbh Gasinjektor zum Direkteinblasen von gasförmigem Kraftstoff in einen Brennraum
DE102014116295A1 (de) * 2014-11-07 2016-05-12 Bürkert Werke GmbH Sitzventil
CN115997747B (zh) * 2023-02-17 2024-05-31 新疆维吾尔自治区农业农村厅哈密植物检疫工作站 一种枣树病虫害防治的精量施药装置

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2614888A (en) * 1948-10-15 1952-10-21 American Locomotive Co Fuel injector
JPS601369A (ja) * 1983-06-16 1985-01-07 Nippon Soken Inc 燃料噴射弁
US4784102A (en) * 1984-12-25 1988-11-15 Nippon Soken, Inc. Fuel injector and fuel injection system
DE3533085A1 (de) * 1985-09-17 1987-03-26 Bosch Gmbh Robert Zumessventil zur dosierung von fluessigkeiten oder gasen
JPS62157274A (ja) * 1985-12-28 1987-07-13 Aisan Ind Co Ltd 燃料噴射弁
US4803393A (en) * 1986-07-31 1989-02-07 Toyota Jidosha Kabushiki Kaisha Piezoelectric actuator
DE59010904D1 (de) 1990-09-25 2000-05-31 Siemens Ag Anordnung für einen in Hubrichtung wirkenden adaptiven, mechanischen Toleranzausgleich für den Wegtransformator eines piezoelektrischen Aktors
JP3029958B2 (ja) 1993-01-18 2000-04-10 シャープ株式会社 半導体記憶装置
DE4306073C1 (de) 1993-02-26 1994-06-01 Siemens Ag Zumeßvorrichtung für Fluide
DE4306072C2 (de) 1993-02-26 1994-12-08 Siemens Ag Vorrichtung zum Öffnen und Verschließen einer in einem Gehäuse vorhandenen Durchtrittsöffnung
US6010592A (en) * 1994-06-23 2000-01-04 Kimberly-Clark Corporation Method and apparatus for increasing the flow rate of a liquid through an orifice
ZA969680B (en) * 1995-12-21 1997-06-12 Kimberly Clark Co Ultrasonic liquid fuel injection on apparatus and method
JP3680461B2 (ja) 1996-12-03 2005-08-10 日産自動車株式会社 噴射弁
DE19716226C2 (de) * 1997-04-18 1999-04-22 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
JPH11141430A (ja) 1997-11-05 1999-05-25 Yamaha Motor Co Ltd 燃料噴射装置およびその駆動方法
EP0937891B1 (de) * 1998-02-19 2003-10-01 Delphi Technologies, Inc. Kraftstoffeinspritzventil
US5875764A (en) * 1998-05-13 1999-03-02 Siemens Aktiengesellschaft Apparatus and method for valve control
DE19839125C1 (de) * 1998-08-27 2000-04-20 Siemens Ag Vorrichtung und Verfahren zur Dosierung von Fluid
DE19843570A1 (de) * 1998-09-23 2000-03-30 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19854508C1 (de) 1998-11-25 2000-05-11 Siemens Ag Dosiervorrichtung
EP1046809B1 (de) * 1999-04-20 2005-08-10 Siemens Aktiengesellschaft Fluiddosiervorrichtung
DE19925102B4 (de) 1999-06-01 2013-12-12 Robert Bosch Gmbh Brennstoffeinspritzventil
DE19932760A1 (de) * 1999-07-14 2001-01-18 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19939133A1 (de) * 1999-08-18 2001-02-22 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19946833C2 (de) * 1999-09-30 2002-02-21 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
US6575138B2 (en) * 1999-10-15 2003-06-10 Westport Research Inc. Directly actuated injection valve
GB9925410D0 (en) * 1999-10-28 1999-12-29 Lucus Ind Plc Actuator arrangement
US6260776B1 (en) * 2000-01-12 2001-07-17 Woodward Governor Company Universal gaseous fuel injector cartridge
US6360963B2 (en) * 2000-01-12 2002-03-26 Woodward Governor Company Gaseous fuel injector having high heat tolerance
US6279842B1 (en) * 2000-02-29 2001-08-28 Rodi Power Systems, Inc. Magnetostrictively actuated fuel injector
DE10024268B4 (de) * 2000-05-17 2012-11-29 Robert Bosch Gmbh Vorrichtung zur Benzindirekteinspritzung in einer Kolbenbrennkraftmaschine
US6568602B1 (en) * 2000-05-23 2003-05-27 Caterpillar Inc Variable check stop for micrometering in a fuel injector
US6400066B1 (en) * 2000-06-30 2002-06-04 Siemens Automotive Corporation Electronic compensator for a piezoelectric actuator
DE10039424A1 (de) * 2000-08-11 2002-02-28 Siemens Ag Dosierventil mit einem hydraulischen Übertragungselement
EP1325225B1 (de) * 2000-10-11 2007-08-08 Siemens VDO Automotive Corporation Ausgleichsvorrichtung für ein einspritzventil
DE10140799A1 (de) * 2001-08-20 2003-03-06 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10146747A1 (de) * 2001-09-22 2003-04-10 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10162250A1 (de) * 2001-12-18 2003-07-03 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10203659A1 (de) * 2002-01-30 2003-07-31 Bosch Gmbh Robert Brennstoffeinspritzventil
US6739575B2 (en) * 2002-06-06 2004-05-25 Caterpillar Inc Piezoelectric valve system
DE102004021920A1 (de) * 2004-05-04 2005-12-01 Robert Bosch Gmbh Brennstoffeinspritzventil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103764995A (zh) * 2011-09-09 2014-04-30 大陆汽车有限公司 阀组件和喷射阀
US9574532B2 (en) 2011-09-09 2017-02-21 Continental Automotive Gmbh Valve assembly and injection valve

Also Published As

Publication number Publication date
WO2003085253A1 (de) 2003-10-16
JP2005528546A (ja) 2005-09-22
EP1511932A1 (de) 2005-03-09
JP4273003B2 (ja) 2009-06-03
DE50305852D1 (de) 2007-01-11
US20050017096A1 (en) 2005-01-27
US7886993B2 (en) 2011-02-15

Similar Documents

Publication Publication Date Title
EP1511932B1 (de) Einspritzventil
DE60121352T2 (de) Ausgleichvorrichtung mit einer flexiblen membran für ein kraftstoffeinspritzventil und verfahren dafür
EP1497553B1 (de) Dosiervorrichtung für fluide, insbesondere kraftfahrzeug-einspritzventil
EP2052148B1 (de) Kraftstoffinjektor mit direkter nadelsteuerung und servoventil-unterstützung
EP1079099B1 (de) Einspritzventil
DE112010001987T5 (de) Piezoelektrische direkt wirkende Kraftstoff-E inspritzdüse mit Hydraulikverbindung
EP1079158A2 (de) Dosiervorrichtung und Verfahren zur Dosierung
DE19962177A1 (de) Hydraulische Vorrichtung zum Übertragen einer Aktorbewegung
DE102005009147A1 (de) Kraftstoffinjektor für Verbrennungskraftmaschinen
EP1593841B1 (de) Brennstoffeinspritzventil
EP1307651B1 (de) Dosierventil mit einem hydraulischen übertragungselement
DE10158789A1 (de) Brennstoffeinspritzventil
EP1421271B1 (de) Brennstoffeinspritzventil
DE19807903C2 (de) Vorrichtung und Verfahren zur Kraftübertragung
EP1378657B1 (de) Brennstoffeinspritzventil
DE102004001505B4 (de) Dosierventil mit Längenkompensationseinheit
DE10213858A1 (de) Brennstoffeinspritzventil
WO2004081372A1 (de) Brennstoffeinspritzventil
EP1431568A2 (de) Brennstoffeinspritzventil
EP1664525B1 (de) Dosiervorrichtung
EP1488096B1 (de) Brennstoffeinspritzventil
DE102005025141B3 (de) Ventil
EP1519034B1 (de) Brennstoffeinspritzventil
DE10333693B3 (de) Kraftstoffeinspritzvorrichtung
DE10232194B4 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050623

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061129

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50305852

Country of ref document: DE

Date of ref document: 20070111

Kind code of ref document: P

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20061129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130620

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130430

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305852

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305852

Country of ref document: DE

Effective date: 20141101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430