EP1497841A1 - Kondensatormodul und kondensatorbatterie mit dem kondensatormodul - Google Patents

Kondensatormodul und kondensatorbatterie mit dem kondensatormodul

Info

Publication number
EP1497841A1
EP1497841A1 EP03722272A EP03722272A EP1497841A1 EP 1497841 A1 EP1497841 A1 EP 1497841A1 EP 03722272 A EP03722272 A EP 03722272A EP 03722272 A EP03722272 A EP 03722272A EP 1497841 A1 EP1497841 A1 EP 1497841A1
Authority
EP
European Patent Office
Prior art keywords
capacitor
housings
capacitor module
module according
capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03722272A
Other languages
English (en)
French (fr)
Inventor
Bernd Staib
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP1497841A1 publication Critical patent/EP1497841A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation

Definitions

  • capacitors for example double-layer capacitors
  • the cell voltage is limited to a few volts. Since the operating voltages are much higher in most applications, several capacitors must be connected in series to form a capacitor module.
  • the individual capacitors are connected to further capacitors via busbars by means of screwed connections (see FIG. 1).
  • Conventional capacitor modules of this type have the disadvantage that, due to the numerous screw connections, a considerable amount of installation work has to be carried out, which is very time-consuming and cost-intensive and increases the internal resistance of the capacitor module.
  • the aim of the present invention is to provide a capacitor module which is improved with regard to the disadvantages mentioned above.
  • the invention describes a capacitor module in which a first and a second capacitor are each located in separate, metallically conductive housings which are sealed off from one another.
  • Each of the housings represents one pole of the capacitors, both housings being at least partially positively connected directly to one another via a mutual contact surface. This creates an internal electrical connection.
  • Each capacitor has at least one first connection, electrically insulated from the housing, for external electrical contacting of the module.
  • the advantage of a capacitor module according to the invention is that the two electrically conductive housings, in which the capacitors are housed, touch directly via a contact surface. Since there is a direct electrical connection between the two housings (see FIG. 2), the screw connections which were previously used to make contact between the two capacitors in conventional capacitor modules can be saved (see FIG. 1).
  • capacitor modules according to the invention can be produced more cost-effectively than conventional modules with less assembly effort.
  • capacitor modules according to the invention also have a lower weight and a lower internal resistance than conventional capacitor modules, which has a particularly favorable effect on the use of the capacitor modules according to the invention in automotive applications, for example in automobiles. Due to the close thermal coupling of the two capacitors in the capacitor module according to the invention, the different self-discharge behavior of the two capacitors is at least partially compensated for, so that the complex measures for voltage balancing already mentioned above are eliminated in the capacitor modules according to the invention.
  • the direct contact between the two metallically conductive housings thus enables a particularly simple series connection of capacitors in a capacitor module according to the invention.
  • the capacitor housings are sealed and separated from each other to ensure that the electrolyte is not exposed to excessive voltage.
  • the first connections electrically insulated from the housing generally serve to contact the capacitors located in the housing, for example in the form of capacitor foils.
  • Capacitors generally consist of two electrode layers, between which a porous separator is arranged. Both the separator and the
  • Electrode layers are in contact with an electrolyte solution.
  • the layer arrangements of the electrode layers and the separators can be rolled up to form capacitor windings.
  • the capacitor module has at least one second electrical connection that is electrically conductively connected to the housing. This makes it possible to also electrically contact the capacitor housing, which has a different potential than the capacitor, so that parallel connections of capacitors are also possible in a capacitor module according to the invention.
  • the housings of the capacitors each have a rectangular cross section. This means that the housings are rectangular. But it is also possible that the housing is flattened or rounded at the corners. Rectangular housings can be accommodated in a space-saving way in capacitor modules.
  • the two housings are arranged at least partially in a form-fitting manner in the capacitor module, so that a contact surface is formed between the two housings.
  • the housing each have a 'round cross section.
  • the capacitor housings are cylindrical, for example.
  • the flat bottoms of both housings can be electrically conductively connected to a metal plate. This means that in the case of cylindrical housings, an electrical connection is established not only through the direct contacting of the two housings, but also through an electrical connection conductive plate that is electrically connected to both housings.
  • the bottoms of both housings are arranged at least partially in a form-fitting manner and can therefore form a contact surface with a corresponding coaxial arrangement behind one another.
  • a particularly large contact area is achieved which enables a particularly good electrical connection between the two capacitors.
  • the two housings are welded together. This has the advantage that a particularly good and permanent electrical connection is established between the two housings, which is also mechanically resilient. Furthermore, welding also offers protection against oxidation of the contact surface.
  • the two capacitor housings e.g. to be screwed together or connected to one another by accommodating them in a single, larger housing.
  • At least one capacitor module according to the invention is connected to further capacitor modules and / or capacitors, a capacitor battery results.
  • the individual modules or individual capacitors are connected in series in a capacitor bank.
  • Has a capacitor bank with capacitor modules according to the invention the advantage that, as is the case with the series connection of individual capacitors, half of the screw connections and the problems associated therewith, for example the high assembly costs, can be saved.
  • Figure 1 shows a conventional capacitor module
  • FIG. 2 shows a variant of a capacitor module according to the invention
  • FIGS. 3A and 3B show a variant of a capacitor module according to the invention in cross section and in top view, in which the respective capacitors are contacted axially.
  • FIGS. 4A and 4B show another variant of a capacitor according to the invention in perspective view and in top view, in which the respective capacitors are contacted radially.
  • FIG. 5 shows an advantageous embodiment of a capacitor module according to the invention with tubular capacitor housings.
  • FIG. 6 shows a capacitor bank in which two capacitor modules according to the invention are connected to one another.
  • FIG. 1 shows a conventional capacitor module in which the housings 5A and 5B of the individual capacitors 10A and 10B do not make direct contact.
  • the individual capacitors 10A and 10B can be in the form of capacitor windings, for example. These capacitor windings each contact first electrical connections 2A and 2B, which are each electrically insulated from the ones by means of insulating rings 6A or 6B respective capacitor housings. These first electrical connections contact a first electrode foil in the capacitor windings. The second electrode foil in the respective capacitor windings makes contact with the second electrical connections 4A and 4B, which are electrically conductively connected to the respective capacitor housings. A potential is therefore applied to the capacitor housing.
  • the electrical contact between the two capacitors of the conventional capacitor module takes place via the contact plate 11A and corresponding screw connections between the electrical connections 4A and 2B. As already described above, this conventional type of contacting is very time-consuming, material-intensive and therefore also cost-intensive.
  • FIG. 2 shows a variant of a capacitor module 1 according to the invention, in which the two capacitor housings 5A and 5B have a rectangular cross section.
  • the two housings make contact via their side surfaces, so that a contact surface is formed which allows a direct electrical connection between the two capacitor housings and thus also between the two capacitors 10A and 10B.
  • An electrode film of the respective capacitors which are shown here by way of example as a capacitor winding, contacts the first electrical connections 2A and 2B, which are each electrically insulated from their respective housings by the insulating rings 6A and 6B.
  • the respective second electrode foils of the capacitor windings 10A and 10B contact their respective housings via the contact points 3A and 3B, so that the potential of the second electrode foil is applied to them.
  • FIGS. 1 and 2 makes it clear that the contacting between the two capacitors and the two connections 4a and 2b made by the additional contact plate ILA in FIG. 1 can be omitted in the case of capacitor modules according to the invention.
  • FIG. 3a shows in cross section a variant of a capacitor module according to the invention, in which the rectangular capacitor housing housed capacitor winding can be contacted axially.
  • one electrode foil contacts the respective connections 2A and 2B, while the other electrode foil contacts the housing via the contact points 3A and 3B.
  • FIG. 3B shows the capacitor module shown in cross section in FIG. 3A in a top view.
  • the respective first electrical connections 2A and 2B can be seen, which are each electrically insulated from their respective housings by the insulating disks 6A and 6B.
  • FIG. 4a shows an embodiment of a capacitor module according to the invention in a perspective view, in which the electrode foils of the capacitor windings 10A and 10B are contacted radially.
  • the electrode foils of the capacitor winding contact the first electrical connections 2A or 2B or the respective contact points 7A or 7B with their housings.
  • Such capacitor modules with rectangular capacitor housings and radial contacts allow a particularly space-saving construction of capacitor batteries.
  • FIG. 4B shows a top view of the capacitor module according to the invention shown in FIG. 4A in a perspective view.
  • the respective first electrical connections 2A and 2B and the contact points 7A and 7B for the housing can be seen.
  • FIG. 5 shows a further embodiment of a capacitor module according to the invention with two coaxial cylindrical capacitor housings 5A and 5B. It can be seen that this Variant, the capacitor housing contact each other positively through their respective, flat shaped floors. In the case of tubular condenser housings, the surfaces are referred to as the flat upper or lower sides of the tubes. In the case of tubular capacitor housings, this type of contacting permits a particularly large contact area between the two housings and thus a particularly good electrical connection.
  • FIG. 6 shows a capacitor bank in which two capacitor modules according to the invention are connected in series.
  • the electrical potentials of the respective first electrical connections or the contacting points to the housing are exemplified for a series connection.
  • Such a capacitor bank requires significantly fewer screw connections than conventional capacitor banks.
  • Each of the two housings (5A, 5B) each represents a pole of one of the capacitors (10A, 10B).
  • the two housings are at least partially positively connected to one another via a mutual contact surface between the two housings, an internal electrical connection being produced.
  • the two capacitors (10A, 10B) have different polarities, each of which is inverse to one another, resulting in an internal series connection of the two capacitors (10A, 10B).
  • capacitor module according to the invention are also possible in the embodiments of the capacitors, which instead of the capacitor windings shown here also e.g. can consist of unrolled layer stacks.

Abstract

Es wird ein Kondensatormodul (1) vorgeschlagen, bei dem sich ein erster (10A) und ein zweiter Kondensator (10B) in jeweils getrennten, voneinander dicht abgeschlossenen metallisch leitfähigen Gehäusen (5A, 5B) befinden. Die beiden Gehäuse sind über eine Kontaktfläche miteinander verbunden, wobei eine interne elektrische Verschaltung zustande kommt. Jedes Gehäuse weist jeweils zumindest einen vom Gehäuse elektrisch isolierten ersten Anschluss (2A, 2B) auf. Aufgrund der direkten elektrischen Verbindung zwischen den beiden Kondensatoren benötigt ein erfindungsgemässes Kondensatormodul weniger Schraubverbindungen und lässt sich somit einfacher und kostengünstiger herstellen.

Description

Kondensatormodul und Kondensatorbatterie mit dem Kondensatormodul
Bei Kondensatoren, beispielsweise Doppelschichtkondensatoren ist die Zellenspannung auf wenige Volt begrenzt. Da bei den meisten Anwendungen die Betriebsspannungen wesentlich höher sind, müssen mehrere Kondensatoren zu einem Kondensatormodul in Reihe geschaltet werden. Bei herkömmlichen Kondensatormodulen werden die einzelnen Kondensatoren über Stromschienen mittels geschraubter Verbindungen mit weiteren Kondensatoren verbunden (siehe Figur 1) . Derartige, herkömmliche Kondensatormodule haben den Nachteil, daß aufgrund der zahlreichen Schraubverbindungen ein erheblicher Montageaufwand zu leisten ist, der sehr zeit- und kostenintensiv ist und den Innenwi- derstand des Kondensatormoduls erhöht.
Ziel der vorliegenden Erfindung ist es, ein Kondensatormodul anzugeben, das bezüglich der oben genannten Nachteile verbessert ist .
Dieses Ziel wird erfindungsgemäß durch ein Kondensatormodul nach Anspruch 1 erreicht . Vorteilhafte Ausgestaltungen des Kondensatormoduls sowie eine Kondensatorbatterie mit dem Kondensatormodul sind Gegenstand von Unteransprüchen.
Die Erfindung beschreibt ein Kondensatormodul, bei dem ein erster und ein zweiter Kondensator sich jeweils in getrennten, von einander dicht abgeschlossenen metallisch leitfähigen Gehäusen befinden. Jedes der Gehäuse stellt jeweils einen Pol der Kondensatoren dar, wobei beide Gehäuse über eine gegenseitige Kontaktfläche zumindest teilweise formschlüssig direkt miteinander verbunden sind. Dabei kommt eine interne elektrische Verschaltung zustande. Jeder Kondensator weist jeweils zumindest einen, vom Gehäuse elektrisch isolierten, ersten Anschluß zur externen, elektrischen Kontaktierung des Moduls auf. Der Vorteil eines erfindungsgemäßen Kondensatormoduls besteht darin, daß die beiden elektrisch leitfähigen Gehäuse, in denen jeweils die Kondensatoren untergebracht sind, sich über eine Kontaktfläche direkt berühren. Da eine direkte elektri- sehe Verbindung zwischen beiden Gehäusen besteht (siehe Figur 2) können diejenigen Schraubverbindungen eingespart werden, die bei herkömmlichen Kondensatormodulen bislang zur Kontaktierung zwischen den beiden Kondensatoren dienten (siehe Figur 1) . Deshalb sind erfindungsgemäße Kondensatormodule bei geringerem Montageaufwand kostengünstiger herzustellen als herkömmliche Module. Darüber hinaus weisen erfindungsgemäße Kondensatormodule auch ein geringeres Gewicht, sowie einen geringeren Innenwiderstand auf, als herkömmliche Kondensatormodule, was sich besonders günstig auf den Einsatz der erfin- dungsgemäßen Kondensatormodule in Automotiv-Anwendungen, beispielsweise in Automobilen auswirkt. Aufgrund der engen thermischen Kopplung der beiden Kondensatoren in dem erfindungsgemäßen Kondensatormodul wird zumindest teilweise auch das unterschiedliche Selbstentladungsverhalten der beiden Konden- satoren ausgeglichen, so daß die bereits oben genannten aufwendigen Maßnahmen zur Spannungssymmetrierung bei erfindungsgemäßen Kondensatormodulen entfallen. Der direkte Kontakt zwischen den beiden metallisch leitfähigen Gehäusen ermöglicht somit eine besonders einfache Reihenschaltung von Kon- densatoren in einem erfindungsgemäßen Kondensatormodul.
Die Kondensatorgehäuse sind voneinander dicht abgeschlossen und getrennt, um zu gewährleisten, daß der Elektrolyt keiner zu hohen elektrischen Spannung ausgesetzt wird.
Die vom Gehäuse elektrisch isolierten ersten Anschlüsse dienen in der Regel dazu, die im Gehäuse befindlichen Kondensatoren, die beispielsweise in Form von Kondensatorfolien vorliegen, zu kontaktieren. Kondensatoren bestehen in der Regel aus zwei Elektrodenschichten, zwischen denen ein poröser Se- parator angeordnet ist. Sowohl der Separator als auch die
Elektrodenschichten stehen in Kontakt mit einer Elektrolytlö- sung. Die Schichtanordnungen aus den Elektrodenschichten und den Separatoren können zu Kondensatorwickeln aufgerollt sein.
In einer weiteren Ausgestaltung der Erfindung weist das Kon- densatormodul zumindest einen, mit dem Gehäuse elektrisch leitend verbundenen, zweiten elektrischen Anschluß auf. Dadurch ist es möglich, auch das Kondensatorgehäuse, das mit einem anderen Potential beaufschlagt ist als der Kondensator, elektrisch zu kontaktieren, so daß bei einem erfindungsgemä- ßen Kondensatormodul auch Parallelschaltungen von Kondensatoren möglich sind.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung weisen die Gehäuse der Kondensatoren jeweils einen rechtecki- gen Querschnitt auf. Dies bedeutet, daß die Gehäuse rechtek- kig sind. Möglich ist es aber auch, daß die Gehäuse an den Ecken abgeflacht oder abgerundet sind. Rechteckige Gehäuse lassen sich besonders platzsparend in Kondensatormodulen unterbringen.
Bei einer weiteren vorteilhaften Variante der Erfindung sind die beiden Gehäuse im Kondensatormodul zumindest teilweise formschlüssig angeordnet so daß eine Kontaktfläche zwischen beiden Gehäusen gebildet wird. Dies hat den Vorteil, daß auf- grund einer großen Kontaktfläche eine besonders gute elektrische Verbindung zwischen beiden Gehäusen im erfindungsgemäßen Kondensatormodul zustande kommt .
In einer weiteren Ausgestaltung weisen die Gehäuse jeweils einen' runden Querschnitt auf. Dies bedeutet, daß die Kondensatorgehäuse beispielsweise zylinderförmig sind. Die flachen Böden beider Gehäuse können bei dieser Variante elektrisch leitend mit einer Metallplatte verbunden sein. Dies bedeutet, daß bei zylinderförmigen Gehäusen eine elektrische Verbindung nicht nur durch die direkte Kontaktierung beider Gehäuse zustande kommt, sondern noch zusätzlich durch eine elektrisch leitfähige Platte, die mit beiden Gehäusen elektrisch leitend verbunden ist.
Weiterhin ist es möglich, daß bei zylinderförmigen Gehäusen die Böden beider Gehäuse zumindest teilweise formschlüssig angeordnet sind und daher bei entsprechender coaxialer Hin- tereinanderanordnung eine Kontaktfläche ausbilden können. Auf diese Art kommt auch bei zylinderförmigen Gehäusen eines erfindungsgemäßen Kondensatormoduls eine besonders große Kon- taktfläche zustande, die eine besonders gute elektrische Verbindung zwischen den beiden Kondensatoren ermöglicht.
Es ist weiterhin möglich, daß alle elektrischen Anschlüsse auf der selben Oberfläche des Kondensatormoduls angeordnet sind. Diese sogenannte radiale Bauweise ermöglicht einen besonders kostengünstigen Aufbau von Kondensatormodulen mit geringem Einbauvolumen, da die Kondensatoren nur von einer Seite kontaktiert werden.
In einer weiteren vorteilhaften Variante eines erfindungsgemäßen Kondensatormoduls sind die beiden Gehäuse miteinander verschweißt. Dies hat den Vorteil, daß eine besonders gute und dauerhafte elektrische Verbindung zwischen beiden Gehäusen zustande kommt, die auch mechanisch belastbar ist. Wei- terhin bietet eine Verschweißung auch Schutz vor einer Oxida- tion der Kontaktflache .
Es ist auch möglich, die beiden Kondensatorgehäuse z.B. zu verschrauben oder durch Unterbringung in einem einzigen, grö- ßeren Gehäuse miteinander zu verbinden.
Wird zumindest ein erfindungsgemäßes Kondensatormodul mit weiteren Kondensatormodulen und/oder Kondensatoren verschaltet, so resultiert eine Kondensatorbatterie. In der Regel werden die Einzelmodule beziehungsweise Einzelkondensatoren in einer Kondensatorbatterie in Reihe geschaltet. Eine Kondensatorbatterie mit erfindungsgemäßen Kondensatormodulen hat den Vorteil, daß, wie auch bei der Reihenschaltung von Einzelkondensatoren der Fall, die Hälfte der Schraubverbindungen und die damit verbundenen Probleme, beispielsweise der hohe Montageaufwand, eingespart werden können.
Im folgenden soll die Erfindung anhand von Ausführungsbei- spielen und ihren Figuren noch näher erläutert werden.
Figur 1 zeigt ein herkömmliches Kondensatormodul
Figur 2 zeigt eine Variante eines erfindungsgemäßen Kondensatormoduls
Die Figuren 3A und 3B zeigen eine Variante eines erfindungs- gemäßen Kondensatormoduls im Querschnitt und in der Aufsicht, bei der die jeweiligen Kondensatoren axial kontaktiert werden.
Die Figuren 4A und 4B zeigen eine andere Variante eines er- findungsgemäßen Kondensators in perspektivischer Ansicht und in Aufsicht, bei der die jeweiligen Kondensatoren radial kontaktiert werden.
Figur 5 zeigt eine vorteilhafte Ausführungsform eines erfin- dungsgemäßen Kondensatormoduls mit röhrenförmigen Kondensatorgehäusen.
Figur 6 zeigt eine Kondensatorbatterie, bei der zwei erfindungsgemäße Kondensatormodule miteinander verschaltet sind.
Figur 1 zeigt ein herkömmliches Kondensatormodul bei dem sich die Gehäuse 5A und 5B der einzelnen Kondensatoren 10A und 10B nicht direkt kontaktieren. Die einzelnen Kondensatoren 10A und 10B können beispielsweise in Form von Kondensatorwickeln vorliegen. Diese Kondensatorwickel kontaktieren jeweils erste elektrische Anschlüsse 2A beziehungsweise 2B, die jeweils mittels Isolierringen 6A oder 6B elektrisch isoliert von den jeweiligen Kondensatorgehäusen sind. Diese ersten elektrischen Anschlüsse kontaktieren eine erste Elektrodenfolie in den Kondensatorwickeln. Die zweite Elektrodenfolie in den jeweiligen Kondensatorwickeln kontaktiert die zweiten elektri- sehen Anschlüsse 4A beziehungsweise 4B die elektrisch leitend mit den jeweiligen Kondensatorgehäusen verbunden sind. Die Kondensatorgehäuse sind also mit einem Potential beaufschlagt. Die elektrische Kontaktierung zwischen den beiden Kondensatoren des herkömmlichen Kondensatormoduls geschieht über das Kontaktblech 11A und entsprechende Schraubverbindungen zwischen den elektrischen Anschlüssen 4A und 2B. Wie bereits oben beschrieben ist diese herkömmliche Art der Kontaktierung sehr zeit-, material- und damit auch kostenintensiv.
Figur 2 zeigt eine Variante eines erfindungsgemäßen Kondensatormoduls 1, bei der die beiden Kondensatorgehäuse 5A und 5B einen rechteckigen Querschnitt aufweisen. Die beiden Gehäuse kontaktieren sich über ihre Seitenflächen, so daß eine Kontaktfläche gebildet wird, die eine direkte elektrische Ver- bindung zwischen beiden Kondensatorgehäusen und damit auch zwischen den beiden Kondensatoren 10A und 10B erlaubt. Eine Elektrodenfolie der jeweiligen Kondensatoren, die hier beispielhaft als Kondensatorwickel gezeigt sind, kontaktiert dabei jeweils die ersten elektrischen Anschlüsse 2A und 2B, die jeweils durch die Isolierringe 6A und 6B elektrisch von ihren jeweiligen Gehäusen isoliert sind. Die jeweiligen zweiten Elektrodenfolien der Kondensatorwickel 10A und 10B kontaktieren über die Kontaktstellen 3A und 3B ihre jeweiligen Gehäuse, so daß diese mit dem Potential der zweiten Elektrodenfo- lie beaufschlagt sind. Ein Vergleich der Figuren 1 und 2 macht deutlich, daß die in Figur 1 durch das zusätzliche Kontaktblech ILA vorgenommene Kontaktierung zwischen den beiden Kondensatoren und die beiden Anschlüsse 4a und 2b bei erfindungsgemäßen Kondensatormodulen entfallen können.
Figur 3a zeigt im Querschnitt eine Variante eines erfindungsgemäßen Kondensatormoduls, bei dem die in rechteckigen Kon- densatorgehäusen untergebrachten Kondensatorwickel axial kontaktiert werden. Das bedeutet, daß die zwei Elektrodenfolien eines jeden Kondensatorwickels auf sich gegenüberliegenden Stirnseiten des Gehäuses kontaktiert werden. In diesem Fall kontaktiert eine Elektrodenfolie die jeweiligen Anschlüsse 2A und 2B, während die andere Elektrodenfolie das Gehäuse über die Kontaktstellen 3A und 3B kontaktiert.
Figur 3B zeigt das im Figur 3A im Querschnitt gezeigte Kon- densatormodul in der Aufsicht. Zu sehen sind die jeweiligen ersten elektrischen Anschlüsse 2A und 2B, die jeweils durch die Isolierscheiben 6A und 6B von ihren jeweiligen Gehäusen elektrisch isoliert sind.
Figur 4a zeigt eine Ausfuhrungsform eines erfindungsgemäßen Kondensatormoduls in perspektivischer Ansicht, bei der die Elektrodenfolien der Kondensatorwickel 10A und 10B radial kontaktiert werden. Das bedeutet, daß beide Elektrodenfolien in einem Kondensator auf derselben Seite von ihrem elektri- sehen Anschluß beziehungsweise vom Gehäuse kontaktiert werden. Bei dieser Ausfuhrungsform kontaktieren die Elektrodenfolien des Kondensatorwickels jeweils die ersten elektrischen Anschlüsse 2A beziehungsweise 2B oder die jeweiligen Kontak- tierungsstellen 7A beziehungsweise 7B mit ihren Gehäusen. Derartige Kondensatormodule mit rechteckigen Kondensatorgehäusen und radialen Kontaktierungen erlauben einen besonders platzsparenden Aufbau von Kondensatorbatterien.
Figur 4B zeigt eine Aufsicht des in Figur 4A in perspektivi- scher Ansicht gezeigten erfindungsgemäßen Kondensatormoduls. Zu sehen sind die jeweiligen ersten elektrischen Anschlüsse 2A beziehungsweise 2B und die Kontaktierungsstellen 7A und 7B für das Gehäuse .
Figur 5 zeigt eine weitere Ausführungsform eines erfindungs- gemäßen Kondensatormoduls mit zwei coaxialen zylinderförmigen Kondensatorgehäusen 5A und 5B. Zu sehen ist, daß bei dieser Variante die Kondensatorgehäuse sich über ihre jeweiligen, flächig ausgeformten Böden formschlüssig kontaktieren. Als Böden werden bei röhrenförmigen Kondensatorgehäusen die flächig ausgeformten Ober- beziehungsweise Unterseiten der Röh- ren bezeichnet . Diese Art der Kontaktierung erlaubt bei röhrenförmigen Kondensatorgehäusen eine besonders große Kontakt- fläche zwischen beiden Gehäusen und damit eine besonders gute elektrische Verbindung.
Figur 6 zeigt eine Kondensatorbatterie, bei der zwei erfindungsgemäße Kondensatormodule in Reihe geschaltet sind. Die elektrischen Potentiale der jeweiligen ersten elektrischen Anschlüsse beziehungsweise der Kontaktierungsstellen zum Gehäuse sind beispielhaft für eine Reihenschaltung bezeichnet. Eine derartige Kondensatorbatterie benötigt wesentlich weniger Schraubverbindungen als herkömmliche Kondensatorbatterien. Jedes der beiden Gehäuse (5A, 5B) stellt jeweils einen Pol eines der Kondensatoren (10A, 10B) dar. Die beiden Gehäuse sind über eine gegenseitige Kontaktfläche zwischen beiden Gehäusen zumindest teilweise formschlüssig direkt miteinander verbunden, wobei eine interne elektrische Verschaltung zustande kommt. Die beiden Kondensatoren (10A, 10B) weisen dabei relativ zu ihren Gehäusen eine unterschiedliche, jeweils zueinander inverse Polung auf, wobei eine interne Reihen- Schaltung der beiden Kondensatoren (10A, 10B) resultiert.
Weitere Variationen eines erfindungsgemäßen Kondensatormoduls sind weiterhin bei den Ausfuhrungsformen der Kondensatoren möglich, die anstelle der hier gezeigten Kondensatorwickel auch z.B. aus nicht aufgerollten Schichtstapeln bestehen können.

Claims

Patentansprüche
1. Kondensatormodul (1) mit den Merkmalen: ein erster (10A) und ein zweiter Kondensator (10B) befin- den sich jeweils in getrennten, voneinander dicht abgeschlossenen metallisch leitfähigen Gehäusen (5A, 5B) , jedes der beiden Gehäuse (5A, 5B) stellt jeweils einen Pol eines der Kondensatoren (10A, 10B) dar, die beiden Gehäuse (5A, 5B) sind über eine gegenseitige Kontaktfläche zwischen beiden Gehäusen zumindest teilweise formschlüssig direkt miteinander verbunden, wobei eine interne elektrische Verschaltung zustande kommt, jeder Kondensator (10A, 10B) weist jeweils zumindest einen, vom Gehäuse elektrisch isolierten, ersten Anschluß (2A, 2B) zur externen, elektrischen Kontaktierung des Moduls auf .
2. Kondensatormodul nach dem vorhergehenden Anspruch, bei dem die beiden Kondensatoren (10A, 10B) relativ zu ih- ren Gehäusen eine unterschiedliche, jeweils zueinander in- verse Polung aufweisen, wobei eine interne Reihenschaltung der beiden Kondensatoren (10A, 10B) resultiert.
3. Kondensatormodul nach Anspruch 1 , - bei dem das Kondensatormodul (1) zumindest einen mit dem
Gehäuse (5A, 5B) verbundenen, zweiten elektrischen Anschluß (3A oder 3B) aufweist.
4. Kondensatormodul nach einem der vorhergehenden Ansprüche, - bei dem die Gehäuse (5A, 5B) jeweils einen rechteckigen
Querschnitt aufweisen.
5. Kondensatormodul nach einem der Ansprüche 1 oder 2 ,
- bei dem die Gehäuse (5A, 5B) jeweils einen runden Quer- schnitt aufweisen, bei dem die Böden beider Gehäuse elektrisch leitend mit einer Metallplatte verbunden sind, wobei eine zusätzliche elektrische Verbindung zustande kommt.
6. Kondensatormodul nach einem der Ansprüche 1 oder 2 , bei dem die Gehäuse (5A, 5B) jeweils einen runden Querschnitt aufweisen, bei dem die Böden beider Gehäuse zumindest teilweise formschlüssig angeordnet sind und als gegenseitige Kontaktflä- ehe ausgebildet sind.
7. Kondensatormodul nach einem der vorhergehenden Ansprüche, bei dem alle elektrischen Anschlüsse auf derselben Oberfläche angeordnet sind.
8. Kondensatormodul nach einem der vorhergehenden Ansprüche, bei dem die beiden Gehäuse miteinander verschweißt sind.
9. Kondensatorbatterie, - bei der ein Kondensatormodul nach einem der vorherigen Ansprüche mit einem weiteren Kondensatormodul und/oder einem Kondensator verschaltet ist.
EP03722272A 2002-04-24 2003-04-11 Kondensatormodul und kondensatorbatterie mit dem kondensatormodul Withdrawn EP1497841A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10218295 2002-04-24
DE10218295A DE10218295A1 (de) 2002-04-24 2002-04-24 Kondensatormodul und Kondensatorbatterie mit dem Kondensatormodul
PCT/DE2003/001209 WO2003092023A1 (de) 2002-04-24 2003-04-11 Kondensatormodul und kondensatorbatterie mit dem kondensatormodul

Publications (1)

Publication Number Publication Date
EP1497841A1 true EP1497841A1 (de) 2005-01-19

Family

ID=29224724

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03722272A Withdrawn EP1497841A1 (de) 2002-04-24 2003-04-11 Kondensatormodul und kondensatorbatterie mit dem kondensatormodul

Country Status (7)

Country Link
US (1) US20050168911A1 (de)
EP (1) EP1497841A1 (de)
JP (1) JP2005524227A (de)
KR (1) KR20040101555A (de)
CN (1) CN1650376A (de)
DE (1) DE10218295A1 (de)
WO (1) WO2003092023A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1560237A1 (de) * 2004-01-28 2005-08-03 Wilson Greatbatch Technologies, Inc. Kondensatorenverbindersdesign
WO2006005277A1 (de) * 2004-07-09 2006-01-19 Epcos Ag Kondensator und kondensatormodul
DE202004018936U1 (de) * 2004-07-09 2005-03-03 Epcos Ag Kondensator und Kondensatormodul
DE102004035810A1 (de) * 2004-07-23 2006-02-16 Epcos Ag Kondensatormodul
DE102004039231A1 (de) * 2004-08-12 2006-02-23 Epcos Ag Kondensatormodul
DE102004047762B4 (de) * 2004-09-30 2007-07-12 Epcos Ag Kondensatormodul
DE102004054082B4 (de) * 2004-11-09 2008-02-28 Epcos Ag Gehäuse für einen Kondensator, elektrischer Kondensator und Kondensatormodul
DE102005018172A1 (de) * 2005-04-19 2006-10-26 Conti Temic Microelectronic Gmbh Leistungskondensator
ES2425084T3 (es) 2005-05-02 2013-10-11 Epcos Ag Condensador de potencia
EP2264726B1 (de) * 2005-05-02 2014-09-10 Epcos Ag Kondensator
DE102005032092B4 (de) * 2005-07-08 2009-05-14 Epcos Ag Kondensatormodul
FR2915626B1 (fr) 2007-04-24 2010-10-29 Batscap Sa Module pour ensemble de stockage d'energie electrique
FR2916306B1 (fr) 2007-05-15 2009-07-17 Batscap Sa Module pour ensembles de stockage d'energie electrique permettant la detection du vieillissement desdits ensembles.
CN101202162B (zh) * 2007-11-13 2010-05-19 上海新时达电气股份有限公司 直流母排的固定连接结构
DE102008046324A1 (de) 2008-08-29 2010-04-01 Stribel Production Gmbh Spannungsversorgung
DE102008062657A1 (de) * 2008-12-04 2010-06-10 Stribel Production Gmbh Energiespeichereinrichtung
EP2456040A1 (de) 2010-11-19 2012-05-23 Flextronic Int.Kft Schaltung zum Speichern elektrischer Energie
DE102011012631B4 (de) * 2011-02-15 2020-11-12 Sew-Eurodrive Gmbh & Co Kg Energiespeicher
FR3015548B1 (fr) * 2013-12-20 2016-01-08 Ene29 S Ar L Outil de stimulation de puits comportant des elements capacitifs electriquement en parallele
FR3020397A1 (fr) * 2014-04-25 2015-10-30 Ene29 S Ar L Sonde de generation d'ondes sismiques
KR102139759B1 (ko) * 2015-01-20 2020-07-31 삼성전기주식회사 적층 세라믹 전자 부품
DE102015215597B4 (de) 2015-08-14 2021-05-20 Audi Ag Energiespeicheranordnung, insbesondere für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zur Herstellung einer Energiespeicheraufnahme für eine Energiespeicheranordnung
DE102016000931A1 (de) * 2016-01-28 2017-08-03 Electronicon Kondensatoren Gmbh Niederinduktiver elektrischer Außenanschluss für in einem Gehäuse angeordnete Wickel elektrischer Leistungskondensatoren
EP3457418A1 (de) * 2017-09-18 2019-03-20 Siemens Mobility GmbH Niederinduktiver kondensator und kondensatorbank
DE112018007437T5 (de) * 2018-04-06 2021-06-02 Tdk Electronics Ag Elektrolytkondensator mit verbessertem Verbindungsteil
JP7338181B2 (ja) * 2019-03-15 2023-09-05 Tdk株式会社 電子部品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1081226A (fr) * 1953-04-27 1954-12-16 Rech S Et D Applic Physicochim Dispositif pour le montage d'une chaîne sensiblement verticale de condensateurs électriques
DE1680393U (de) * 1953-10-02 1954-07-22 Sueddeutsche App Fabrik Gmbh Gehaeuse fuer kondensatoren, insbesondere elektrolytkondensatoren.
CA1050361A (en) * 1974-08-22 1979-03-13 Sprague Electric Company Method for preparing the container of an electrolytic capacitor
DE3518236C2 (de) * 1985-05-21 1995-06-01 Siemens Ag Vorrichtung zum Haltern einer Mehrzahl von Kondensatoren
JPS632246A (ja) * 1986-06-23 1988-01-07 Elna Co Ltd ボタン形セル収納装置
JPH0950938A (ja) * 1995-08-04 1997-02-18 Elna Co Ltd 電気二重層コンデンサ
DE19814700A1 (de) * 1998-04-01 1999-10-07 Vishay Electronic Gmbh Leistungskondensator
US6249422B1 (en) * 2000-02-01 2001-06-19 Real Power Cap Company Capacitor module for car audio system
EP1231618A1 (de) * 2001-02-09 2002-08-14 National Energy Technology Co., Ltd Herstellungsverfahren von einem modularen Ultrakondensator-Energiespeicheranordnung
JP3845370B2 (ja) * 2002-11-29 2006-11-15 本田技研工業株式会社 蓄電素子モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03092023A1 *

Also Published As

Publication number Publication date
CN1650376A (zh) 2005-08-03
DE10218295A1 (de) 2003-11-13
WO2003092023A1 (de) 2003-11-06
KR20040101555A (ko) 2004-12-02
JP2005524227A (ja) 2005-08-11
US20050168911A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
EP1497841A1 (de) Kondensatormodul und kondensatorbatterie mit dem kondensatormodul
DE10003261B4 (de) Aluminium-Elektrolyt-Kondensator
EP2954613B1 (de) Filterbauelement
EP2659532B1 (de) Batteriemodul mit verringerter gesamtinduktivität
DE102011118580B4 (de) Kondensator-Bauteil sowie Verfahren zur Herstellung des Kondensator-Bauteils
EP0994494B1 (de) Kondensator für niederinduktive Zwischenkreisaufbauten
DE102013021639A1 (de) Hochvoltbatterie
DE102017215419A1 (de) Kondensatoreinheit und Baugruppe für eine Leistungselektronik
EP3232454B1 (de) Busbar mit einer mehrzahl von filmkondensatoren
DE10339156B3 (de) Schaltungsanordnung mit mehreren Kapazitäten
DE102015216771A1 (de) Kondensator, insbesondere Zwischenkreiskondensator für ein Mehrphasensystem
WO2014040677A2 (de) Einzelzelle für eine batterie
EP3642858B1 (de) Zwischenkreiskondensator
DE102005007582A1 (de) Kondensator mit einem niedrigen Ersatzserienwiderstand und Kondensatoranordung
EP1693865B1 (de) Hochspannungskondensator
DE102022205142A1 (de) Überspannungsschutz
EP2956976B1 (de) Zellverbinder zum elektrisch leitfähigen kontaktieren einer mehrzahl von batteriezellterminals, verfahren zum herstellen eines solchen zellverbinders und batteriemodul mit wenigstens einem solchen zellverbinder
DE102011085368A1 (de) Akkupack mit Sicherung
DE102013203204B4 (de) Batterie umfassend ein erstes und ein zweites Batteriemodul
DE102018219218A1 (de) Kondensatoranordnung
WO2014090547A1 (de) Elektrischer kondensator
DE102021131034A1 (de) Verfahren und Batteriezellgehäuse für einen Spannungsabgriff zur Zellüberwachung
DE102022112739A1 (de) Batteriezelle
DE102004039231A1 (de) Kondensatormodul
DE102015213428A1 (de) Elektrische Leitereinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20051229