EP1483557A1 - Oberflächenwellensensor - Google Patents

Oberflächenwellensensor

Info

Publication number
EP1483557A1
EP1483557A1 EP03717140A EP03717140A EP1483557A1 EP 1483557 A1 EP1483557 A1 EP 1483557A1 EP 03717140 A EP03717140 A EP 03717140A EP 03717140 A EP03717140 A EP 03717140A EP 1483557 A1 EP1483557 A1 EP 1483557A1
Authority
EP
European Patent Office
Prior art keywords
surface wave
wave sensor
sensor
reflectors
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03717140A
Other languages
English (en)
French (fr)
Inventor
Henri Van Der Knokke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHO Holding GmbH and Co KG
Original Assignee
FAG Kugelfischer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FAG Kugelfischer AG filed Critical FAG Kugelfischer AG
Publication of EP1483557A1 publication Critical patent/EP1483557A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/48Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using wave or particle radiation means
    • G01D5/485Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using wave or particle radiation means using magnetostrictive devices

Definitions

  • the invention relates to a wirelessly interrogable surface wave sensor.
  • Top surface wave sensors that can be queried wirelessly are used in many areas today, since these sensors can transmit measurement data wirelessly without their own energy supply.
  • Such sensors have long been used in pressure measurement, acceleration measurement, surface tension measurement and for measuring chemical properties. Since the measurement results of this surface wave sensor are temperature-dependent, it is necessary to carry out a temperature compensation when transmitting the measurement result in order to be able to draw conclusions about the actual measurement values.
  • Such a surface wave sensor is described in EP-0619 906 B1.
  • This document also shows a method for determining the current temperature of the sensor from the radio signals sent back. With the help of this temperature information, the measurement result can be corrected for the temperature influence.
  • the problem with this document is that several SAW sensors are required for the method shown there.
  • the essence of the invention is that an edge region of the chip area that neither compresses nor stretches under mechanical loads is used to generate a temperature difference signal.
  • two reflectors are placed in this calmed edge zone of the SAW sensor at a short distance. Since these two reflectors are always at the same distance from one another regardless of the mechanical load on the sensor, the temperature of the chip can be drawn directly from the difference signal of these two reflectors. With this simple measure, only the time interval between these two signals needs to be evaluated. This time interval is then directly proportional to the current temperature of the SAW sensor.
  • a surface wave sensor 1 is shown in plan view in FIG. This surface wave sensor is applied to the surface of the part to be measured using adhesive.
  • the adhesive 2 elastically transmits the changes in length of the part to be measured to the surface wave sensor.
  • the antenna 3 is shown schematically on the sensor, via which the electromagnetic pulses reach the SAW sensor and are sent back again. These electromagnetic waves are converted by the transducer 4 into mechanical waves that run over the SAW sensor.
  • reflectors 5a, 5b are attached to the surface wave sensor.
  • the area that mechanically expands and compresses during the measurement tasks of this sensor is provided with the reference number 7.
  • the two edge areas 8 of the surface wave sensor are areas that are not stretched or compressed due to the mechanical properties of the adhesive and the carrier material.
  • the reflectors 6a and 6b are arranged in this edge region 8.
  • the distance between the reflectors 6a and 6b remains largely independent of the external load and thus always almost constant.
  • this calmed area 8 corresponds to approximately 3 times the thickness of the substrate of the SAW sensor.
  • One possibility of enlarging the calmed edge area 8 is to specifically omit the adhesive 2 with which the surface wave sensor is applied to the carrier material in the edge area 8. No forces are transmitted in the area without adhesive 10.
  • FIG. 2 shows the measurement result of a surface wave sensor that was glued to a carrier material that was stretched for experimental purposes.
  • the measurement points along the surface wave sensor are plotted on the abscissa of this diagram.
  • the ordinate of this diagram shows the elongation of the surface wave sensor.
  • the two calming edge zones 8, in which the sensor does not stretch under load, are represented by horizontal lines. In between is the area 7, which is proportional to the elongation of the material to be measured.
  • These additional reflectors are arranged in the area of the calmed edge zones 8.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Aerials With Secondary Devices (AREA)
  • Measuring Fluid Pressure (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Oberflächenwellensensor (1) bestehend aus einer Antenne (3) einem Transdu­cer (4) und Reflektoren (5a und 5b), wobei zusätzliche Reflektoren (6a, 6b) auf diesen Oberflächenwellensensor (1) in einer beruhigten Randzone (8) ange­ordnet werden, um Signale zu reflektieren, die zur Auswertung der aktuellen Temperatur genutzt werden.

Description

Oberflächenwellensensor
Gebiet der Erfindung
Die Erfindung betrifft einen drahtlos abfragbaren Oberflächenwellensensor.
Hintergrund der Erfindung
Drahtlos abfragbare Obenflächenwellensensoren (OFW-Sensor) werden heute in vielen Bereichen eingesetzt, da diese Sensoren ohne eigene Energieversorgung Messdaten drahtlos übermitteln können. So sind solche Sensoren schon seit langem bei der Druckmessung, Beschleunigungsmessung, Oberflächenspannungsmessung sowie zur Messung chemischer Eigenschaften eingesetzt. Da die Messergebnisse dieses Oberflächenwellensensors temperaturabhängig sind, ist es notwendig beim Übermitteln des Messergebnisses eine Temperaturkompensation durchzuführen, um auf die tatsächlichen Messwerte schließen zu können. In der EP-0619 906 B1 ist ein solcher Oberflächenwellensensor beschrieben. Dieser Schrift ist ebenfalls ein Verfahren zu entnehmen, wie aus den zurückgesendeten Funksignalen die aktuelle Temperatur des Sensors ermittelt werden kann. Mit Hilfe dieser Temperaturinformation kann das Messergebnis um den Temperatureinfluss berichtigt werden. Das Problem dieser Schrift besteht darin, dass für das dort gezeigte Verfahren mehrere OFW-Sensoren benötigt werden.
Aufgabe der Erfindung
Es ist also Aufgabe der Erfindung einen Oberflächenwellensensor aufzuzeigen, bei dem mit einfachsten Verfahren die Temperaturermittlung bzw. Kompensation durchgeführt werden kann. Beschreibung der Erfindung
Durch die Merkmale im kennzeichnenden Teil des Anspruches 1 wird die Aufgabe gelöst.
Der Kern der Erfindung besteht darin, dass ein Randbereich der Chipfläche, der sich bei mechanischen Belastungen weder staucht noch streckt, dazu genutzt wird, um ein Temperaturdifferenzsignal zu erzeugen. Zu diesem Zweck werden in diese beruhigte Randzone des OFW-Sensors in kurzem Abstand zwei Reflektoren eingebracht. Da diese beiden Reflektoren unabhängig von der mechanischen Belastung des Sensors immer zueinander den gleichen Abstand haben, kann aus dem Differenzsignal dieser beiden Reflektoren direkt auf die Temperatur des Chips geschlossen werden. Durch diese einfache Maßnahme muss nur der zeitliche Abstand dieser beiden Signale zueinander ausgewertet werden. Dieser zeitliche Abstand ist dann direkt proportional zur aktuellen Temperatur des OFW-Sensors.
Ausführliche Beschreibung der Zeichnung
In der Figur 1 wird ein Oberflächenwellensensor 1 in der Draufsicht gezeigt. Dieser Oberflächenwellensensor wird über Klebstoff auf die Oberfläche des zu messenden Teiles aufgebracht. Der Klebstoff 2 überträgt die Längenveränderungen des zu messenden Teiles elastisch auf den Oberflächenwellensensor. Auf dem Sensor ist schematisch die Anntenne 3 über die die elektromagnetischen Impulse zu dem OFW-Sensor gelangen und wieder zurückgesendet werden, dargestellt. Diese elektromagnetischen Wellen werden von dem Transducer 4 in mechanische Wellen umgesetzt, die über den OFW-Sensor laufen. In Abhängigkeit der zu messenden Aufgabe werden Reflektoren 5a, 5b auf dem Oberflächenwellensensor angebracht. Der Bereich, der sich bei den Messaufgaben dieses Sensors mechanisch dehnt und staucht, ist mit dem Bezugskennzeichen 7 versehen. Die beiden Randbereiche 8 des Oberflächen- wellensensors sind Bereiche, die aufgrund der mechanischen Eigenschaften des Klebstoffes und des Trägermaterials nicht gedehnt oder gestaucht werden. In diesem Randbereich 8 sind die Reflektoren 6a und 6b angeordnet. Der Abstand der Reflektoren 6a und 6b bleibt weitgehendst unabhängig von der äußeren Belastung und somit immer fast konstant. Bei praktischen Versuchen stellte es sich heraus, dass dieser beruhigte Bereich 8 etwa 3 mal der Dicke des Trägermaterials des OFW-Sensors entspricht. Eine Möglichkeit den beruhigten Randbereich 8 zu vergrößern besteht darin, den Klebstoff 2, mit dem der Oberflächenwellensensor auf dem Trägermaterial aufgebracht ist im Randbereich 8 gezielt weg zu lassen. Im Bereich ohne Klebstoff 10 werden keine Kräfte übertragen.
In der Figur 2 ist das Messergebnis eines Oberflächenwellensensors dargestellt, der auf ein Trägermaterial geklebt wurde, das zu Versuchszwecken gestreckt wurde. In der Abszisse dieses Diagramms sind die Messpunkte entlang des Oberflächenwellensensors aufgetragen. In der Ordinate dieses Diagramms ist die Dehnung des Oberflächenwellensensors dargestellt. Die beiden beruhig- ten Randzonen 8, in denen sich der Sensor bei Belastung nicht streckt, sind durch horizontale Striche dargestellt. Dazwischen liegt der Bereich 7, der sich proportional zur Dehnung des zu messenden Materials verhält. In dem Bereich der beruhigten Randzonen 8 werden diese zusätzlichen Reflektoren angeordnet.
Bezugszeichenliste
1. Oberflächenwellensensor
Klebstoff
Antenne
Transducer
5. 5a, 5 b Reflektoren für Messaufgabe
6. 6a, 6b Reflektoren für Temperaturkompensation
7. sich dehnender Bereich des OFW-Sensors
8. beruhigte Randzone des OFW-Sensors
Dicke des Trägermaterials des OFW-Sensors
10. Bereich ohne Klebstoff (optional)

Claims

Ansprüche
1. Oberflächenwellensensor (1 ) bestehend aus einer Antenne (3) einem Transducer (4) und Reflektoren (5a und 5b), dadurch gekennzeichnet, dass zusätzliche Reflektoren (6a, 6b) auf diesen Oberflächenwellensensor (1) in einer beruhigten Randzone (8) angeordnet werden, um Signale zu reflektieren, die zur Auswertung der aktuellen Temperatur genutzt werden.
2. Oberflächenwellensensor nach Anspruch 1 , dadurch gekennzeichnet, dass die beruhigte Randzone (8) etwa 3 mal der Dicke des Trägermaterials (9) entspricht.
3. Oberflächenwellensensor nach Anspruch 1 , dadurch gekennzeichnet, dass dieser mittels eines Klebstoffes (2) auf dem zu messenden Trägermaterial befestigt wird.
4. Oberflächenwellensensor nach Anspruch 1 , dadurch gekennzeichnet, dass durch die Klebefläche (2) bzw. Bereiche ohne Klebstoff (10) die beruhigte Randzone (8) vergrößert wird.
EP03717140A 2002-03-14 2003-03-12 Oberflächenwellensensor Withdrawn EP1483557A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10211198A DE10211198A1 (de) 2002-03-14 2002-03-14 Oberflächenwellensensor
DE10211198 2002-03-14
PCT/DE2003/000777 WO2003078950A1 (de) 2002-03-14 2003-03-12 Oberflächenwellensensor

Publications (1)

Publication Number Publication Date
EP1483557A1 true EP1483557A1 (de) 2004-12-08

Family

ID=27771279

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03717140A Withdrawn EP1483557A1 (de) 2002-03-14 2003-03-12 Oberflächenwellensensor

Country Status (6)

Country Link
US (1) US7109632B2 (de)
EP (1) EP1483557A1 (de)
JP (1) JP2005520147A (de)
CN (1) CN100383553C (de)
DE (1) DE10211198A1 (de)
WO (1) WO2003078950A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7000461B2 (en) * 2004-03-23 2006-02-21 Honeywell International Inc. Patch wireless test fixture
US7136683B2 (en) * 2004-03-23 2006-11-14 Honeywell International Inc. Surface acoustic wave sensor and radio frequency identification interrogator fixture
US7243547B2 (en) * 2004-10-13 2007-07-17 Honeywell International Inc. MEMS SAW sensor
FR2925696B1 (fr) * 2007-12-21 2011-05-06 Senseor Capteur passif a ondes de surface comportant une antenne integree et applications medicales utilisant ce type de capteur passif
US7730772B2 (en) 2007-12-28 2010-06-08 Honeywell International Inc. Surface acoustic wave sensor and package
US7726184B2 (en) 2007-12-28 2010-06-01 Honeywell International Inc. Surface acoustic wave sensor and package
JP5101356B2 (ja) * 2008-03-17 2012-12-19 日産自動車株式会社 圧力センサおよびこれを備えた圧力測定装置
US8384524B2 (en) * 2008-11-26 2013-02-26 Honeywell International Inc. Passive surface acoustic wave sensing system
US8317392B2 (en) * 2008-12-23 2012-11-27 Honeywell International Inc. Surface acoustic wave based micro-sensor apparatus and method for simultaneously monitoring multiple conditions
US8479581B2 (en) 2011-05-03 2013-07-09 General Electric Company Device and method for measuring pressure on wind turbine components
US9702772B2 (en) 2014-03-26 2017-07-11 Mnemonics, Inc. Surface acoustic wave (SAW) based strain sensor
CN104567963A (zh) * 2015-01-16 2015-04-29 王东方 针对复杂被测体的声表面波无线传感器解决方法
WO2019201408A1 (de) 2018-04-19 2019-10-24 Diehl Ako Stiftung & Co. Kg Elektronisches haushaltsgerät
WO2019201409A1 (de) 2018-04-19 2019-10-24 Diehl Ako Stiftung & Co. Kg Drucktasten-bedienvorrichtung

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1982421A (en) 1933-02-08 1934-11-27 Cleveland Twist Drill Co Nitrided article of manufacture
JPS6182131A (ja) * 1984-09-28 1986-04-25 Shimadzu Corp 表面弾性波圧力センサ
DE3851982T2 (de) 1987-06-11 1995-03-09 Aichi Steel Works Ltd Stahl mit hoher Abnutzungsbeständigkeit.
ATE135836T1 (de) * 1992-01-03 1996-04-15 Siemens Ag Passiver oberflächenwellen-sensor, der drahtlos abfragbar ist
JP3404899B2 (ja) 1994-07-19 2003-05-12 日本精工株式会社 転がり軸受
DE19514342C1 (de) * 1995-04-18 1996-02-22 Siemens Ag Stromwandler, geeignet zur Stromstärkemessung an/in auf Hochspannung liegenden elektrischen Einrichtungen
WO1996033423A1 (de) * 1995-04-18 1996-10-24 Siemens Aktiengesellschaft Funkabfragbarer sensor in oberflächenwellentechnik
US6208062B1 (en) * 1997-08-18 2001-03-27 X-Cyte, Inc. Surface acoustic wave transponder configuration
JPH1171642A (ja) 1997-08-29 1999-03-16 Daido Steel Co Ltd 摺動部材
WO1999034168A1 (de) 1997-12-23 1999-07-08 Siemens Aktiengesellschaft Messanordnung und verfahren zur erfassung einer messgrösse unter zuhilfenahme von prozessenergie
DE19805584C2 (de) 1998-02-12 2000-04-13 Daimler Chrysler Ag System und Verfahren zur Materialüberprüfung von Werkstoffen, sowie Werkstoff und Verfahren zu seiner Herstellung
DE10018621A1 (de) 2000-04-14 2001-10-31 Siemens Ag Fernmess-Vorrichtung und -Verfahren
FR2821905B1 (fr) 2001-03-06 2003-05-23 Snfa Roulement a rouleaux cylindriques en acier de nitruration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03078950A1 *

Also Published As

Publication number Publication date
CN1685205A (zh) 2005-10-19
US20050062364A1 (en) 2005-03-24
JP2005520147A (ja) 2005-07-07
US7109632B2 (en) 2006-09-19
CN100383553C (zh) 2008-04-23
WO2003078950A1 (de) 2003-09-25
DE10211198A1 (de) 2003-09-25

Similar Documents

Publication Publication Date Title
EP1483557A1 (de) Oberflächenwellensensor
EP0619906B1 (de) Passiver oberflächenwellen-sensor, der drahtlos abfragbar ist
EP0936447B1 (de) Polymer-Werkstoff und Herstellungsverfahren, sowie System und Verfahren zur Materialüberprüfung von Polymer-Werkstoffen und Bauteilen
DE10024474A1 (de) Verfahren und Vorrichtung zur drahtlosen Positions- und/oder Lagebestimmung wenigstens eines Objektes
DE10124394A1 (de) Verfahren und Vorrichtung zum Liefern einer dynamischen Ultraschall-Messung der Parameter von Wälzelementlagern
DE2649049A1 (de) Verfahren zum messen des abstandes zwischen relativ zueinander bewegten teilen, insbesondere im untertagebergbau, und vorrichtung zur durchfuehrung des verfahrens
DE3482499D1 (de) Akustisches bohrlochmessgeraet zur kompressions- und scherwellenmessung.
DE19619311C2 (de) Abfragegerät für passive Resonatoren als frequenzanaloge Sensoren mit Funkregelung
DE102013109279A1 (de) Radarleistungsüberwachungsvorrichtung, Pulskompressionsradargerät und Radarleistungsfähigkeitsmessverfahren
DE1648738B1 (de) Vorrichtung zur zerstoerungsfreien messung der steifigkeit von nichtmetallischen biegsamen flaechenhaften gebilden
DE4232254A1 (de) Ultraschallprüfverfahren
DE4224035A1 (de) Ultraschallprüfverfahren
DE102005009851A1 (de) Verfahren und Einrichtung zum Messen einer Kraft oder eines Druckes
DE10055099C2 (de) Verfahren zur zerstörungsfreien, automatisierten Festigkeitsbestimmung an Prüfkörpern sowie Prüfvorrichtung zur zerstörungsfreien Festigkeitsbestimmung
DE19625816C1 (de) Verfahren zur Kraftmessung an Spanngliedern und Vorrichtung zur Durchführung des Verfahrens
DE3203815A1 (de) Verfahren und anordnung zur ermittlung der spannung eines seiles
DE102005001068A1 (de) Verfahren und Vorrichtung zur Ermittlung der vertikalen Druckverteilung eines Körpers in dessen Kontaktfläche zur Oberfläche einer Sensorplatte
DE2632323B2 (de) Vorrichtung zur Ultraschallprüfung von plattenförmigen Körpern, insbesondere Blechband, nach dem Impuls-Echo-Verfahren mit Lambwellen
DE3417826C2 (de)
DE19535542A1 (de) Identifizierungs- und/oder Sensorsystem
DE3018092A1 (de) Einrichtung zur ueberpruefung von ultraschallpruefgeraeten
DE2040642C3 (de) Vorrichtung zur Entfernungsmessung bei Ultraschallprüfung
DE1648738C (de) Vorrichtung zur zerstörungsfreien Messung der Steifigkeit von nichtmetallischen biegsamen flächenhaften Gebilden
DE102021001965A1 (de) Verfahren und Messgerät zur Materialprüfung eines kartenförmigen Datenträgers
Auersch et al. Dynamic testing of track damage before and after construction, after damage and after repair

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040826

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20100504

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100915

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523