EP1482179A1 - Kompressorvorrichtung und Verfahren zum Betrieb derselben - Google Patents

Kompressorvorrichtung und Verfahren zum Betrieb derselben Download PDF

Info

Publication number
EP1482179A1
EP1482179A1 EP04405421A EP04405421A EP1482179A1 EP 1482179 A1 EP1482179 A1 EP 1482179A1 EP 04405421 A EP04405421 A EP 04405421A EP 04405421 A EP04405421 A EP 04405421A EP 1482179 A1 EP1482179 A1 EP 1482179A1
Authority
EP
European Patent Office
Prior art keywords
pressure
compressor
encapsulated
interior
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04405421A
Other languages
English (en)
French (fr)
Other versions
EP1482179B1 (de
Inventor
Roger Suter
George Kleynhans
Peter Ortmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions Schweiz AG
Original Assignee
MAN Turbomaschinen AG Schweiz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Turbomaschinen AG Schweiz filed Critical MAN Turbomaschinen AG Schweiz
Priority to EP04405421A priority Critical patent/EP1482179B1/de
Publication of EP1482179A1 publication Critical patent/EP1482179A1/de
Application granted granted Critical
Publication of EP1482179B1 publication Critical patent/EP1482179B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use

Definitions

  • the invention relates to a compressor device according to the The preamble of claim 1.
  • the invention further relates to a Method for operating a compressor device according to the The preamble of claim 15.
  • Compressor device comprising a centrifugal compressor as well to use this driving electric motor.
  • the Compressor device operated at a higher process pressure, so it is also known, the compressor device within a Pressure housing. in particular a common pressure housing to arrange, with the pressure housing with gas inlet and Gas outlet is provided.
  • a disadvantage of such, at a higher process pressure operated compressor device is the fact that this is for Compressing contaminated gases or gases with corrosive Shares are less suitable because certain components of the Compressor device subject to increased wear.
  • a Compressor device comprising a radial compressor for Compressing a gas and an electric motor for driving the Radial compressor, wherein the centrifugal compressor and the electric motor are arranged in a pressure housing, which with a Gas inlet line and a gas outlet line is provided, as well comprising an encapsulated disposed in the pressure housing Device whose interior fluid conducting with a Pressure reducing device is connected.
  • the Pressure reducing device as a fluid-conducting Connecting line to the room outside the gas-tight Pressure housing designed.
  • the fluid is preferably a gas, however, it could also comprise or substantially comprise a liquid consist of a liquid.
  • the inventive compressor device has an encapsulated device, within which sensitive components such as the stator of the electric motor from the extracted gases, such as acid gases with shares of H 2 S and / or CO 2 , are protected.
  • the encapsulated device includes encapsulation, also referred to as "can", and components disposed therein.
  • the encapsulation is preferably designed gas-tight or approximately gas-tight.
  • encapsulation for example, for the stator, preferably very thin, non-magnetizable sheets or fiber-reinforced plastics are used which have a thickness in the millimeter range, for example, a thickness in the range between 0.1 mm to 5 mm.
  • the encapsulated device In order to ensure safe operation of the compressor device, therefore, the encapsulated device must be protected at least mechanically. This is done by ensuring that the pressure of the process gas is at least equal to, but preferably always higher, than the pressure within the encapsulated device.
  • the interior of the encapsulated device fluidly connected to a pressure reducing device, in particular via a fluid-conducting connecting line with the space outside the gas-tight pressure vessel.
  • this connecting line opens directly into the atmosphere, so that it is ensured that the pressure in the interior of the encapsulated device is equal to the atmospheric pressure or does not rise significantly above atmospheric pressure.
  • said connecting line opens into a controllable valve in order to control the pressure reduction, for example to the atmosphere, via the valve.
  • the pressure in the interior of the encapsulated device and the pressure in the interior of the pressure vessel can be measured, and the valve, for example, be operated such that the pressure in the interior of the encapsulated device is always lower than the pressure of the process gas in Interior of the pressure vessel and, for example, has a constant pressure difference.
  • the pressure in the interior of the encapsulated device it is possible for the pressure in the interior of the encapsulated device to be 100 bar without the risk of explosion of the encapsulated device if the process pressure is reduced.
  • a controlled decompression operation may be performed, for example, by relieving the process pressure at 20 bar / minute, and relieving the pressure in the encapsulated device via the pressure reduction device also at that rate, or at least such that the pressure Pressure within the encapsulated device is constantly lower than the process pressure.
  • An increase in pressure in an encapsulated device can be added the penetration of gas also caused by heating. If, for example, a magnetic radial bearing, which in a encapsulated device is disposed during operation heated, the pressure in the encapsulated device increases. Should any liquid, e.g. Water, in the encapsulated Device, so the internal pressure can be due to heating increase considerably.
  • the inventive Compression device comprising a Pressure reducing device also ensures that in this case no mechanical damage to the encapsulated device occurs.
  • Figure 1 shows a compressor device comprising a radial compressor 35 and an electric motor 31, which are connected to each other via a common rotatable shaft 21 which are rotatably supported by radial magnetic bearings 32, and which are arranged within a common pressure housing 1 with interior 1a.
  • the pressure housing 1 is preferably gas-tight and has a gas inlet line 2 and a gas outlet line 3, through which flows the pumped gas.
  • a process pressure which lies between a gas inlet pressure in the gas inlet line 2 and a gas outlet pressure in the gas outlet line 3, arises in the interior 1a of the pressure housing 1.
  • a portion of the gas compressed by the compressor blades 34 is supplied to the compressor housing 1 for cooling the compressor device via the lines 33, and flows within the pressure housing 1 in the axial direction through the gas gap 22 of the magnetic bearing 32 and the electric motor 31.
  • the magnetic bearing 32 and on the stator 31a substantially the process pressure, which has the conveyed gas.
  • the encapsulated device 4 comprises the inner space 6 and a sealing encapsulation 5.
  • the inner space 6 of the encapsulated device 4 forms a pressure-stable support structure which is formed, for example, by the stator coils 6b itself or by the stator coils 6b being cast, for example, in a pressure-resistant medium. Electric cables 28 are provided via a cable feedthrough 29 for supplying power to the stator coils 6b.
  • the encapsulation 5, which preferably consists of a thin sheet.
  • the sheet extending along the air gap 22 is not magnetizable and has a thickness in the millimeter range.
  • the laterally arranged, radially outwardly extending sheets 5 may also have a greater thickness, for example more than 5 mm and be made more stable.
  • the interior 6 of the encapsulated device 4 is limited by the encapsulation 5 and the pressure housing 1 and gas-tight or substantially gas-tight with respect to the process gas.
  • the interior 6 is connected via a fluid-conducting connecting line 8 with the space outside the pressure housing 1. Should an internal pressure build up in the interior 6, in that the process gas located in the pressure chamber 1a penetrates into the interior 6 through scratches, defective locations or diffusion via the encapsulation 5, then this pressure can be reduced by virtue of the pressure being released via the pressure reduction device 34, designed in this embodiment as a connecting line 8, to the outside to the space outside the pressure housing 1 is passed.
  • encapsulated device 4 In addition to or instead of the electric motor 31, other components such as the magnetic bearings 32 can be arranged in the previously described encapsulated device 4, wherein in Figure 1, neither the electrical supply nor the example embedded in a medium electromagnetic coils of the radial magnetic bearing 32 are shown.
  • These encapsulated devices 4 also have a pressure reducing device 34, here shown as connecting line 8, in order to limit the pressure in the encapsulated device 4.
  • the pressure housing 1 shown schematically in Figure 2 includes different embodiments of pressure reducing devices 37 for limiting the pressure in the interior 6 of the encapsulated device 4.
  • the pressure reducing device 37 includes a controllable, actuatable valve 9 to reduce the pressure in the interior 6 controllably.
  • a simple way to detect penetration of process gas into the interior 6 of the encapsulated device 4 is to arrange a gas sensor 15 in the interior 6, the signal is fed via an electrical line 13 to a control device 14. As soon as the gas sensor 15 detects the process gas, it is to be expected that an increase in pressure took place in the interior 6.
  • the control device 14 could, for example, trigger an alarm signal to manually open the valve 9, or automatically open the valve 9, and release the pressure applied to the connecting line 8 via the line 10.
  • the conduit 10 could also be followed by a vent or flair to release the pressurized gas into the atmosphere.
  • Another way to determine the penetration of process gas into the interior 6 of the encapsulated device 4 is to measure the pressure in the interior 6 with a sensor 11.
  • the process pressure could additionally also be measured with a sensor 12 and / or the ambient pressure could be measured with a sensor 26 and supplied to the regulating device 14.
  • the valve 9 is actuated by the control device 14, for example, such that the pressure in the interior 6 of the encapsulated device 4 is always below the pressure applied in the interior 1a of the pressure housing 1 process pressure, or that the pressure in the interior 6 is deeper than in the interior 1a.
  • Another way to reduce the pressure in the interior 6 of the encapsulated device 4 is to provide a buffer tank 16, which is fluidly connected via the pressure reducing device 37 with the interior 6.
  • the buffer tank 16 could be arranged inside or outside the pressure housing 1.
  • the pressure reducing device 37 could comprise the connecting lines 8 and 10, the valve 9 as well as the line 20 and the buffer container 16, which can be fluidly connected to be fluid.
  • the buffer container 16 also has a flexible and sealed membrane 17, and is connected via a line 19 and an opening 18 with the interior 1a of the pressure housing 1.
  • the valve 9 or the entire pressure reducing device 37 may be disposed within the pressure housing 1, or as shown in Figure 2, be arranged substantially outside the pressure housing 1.
  • the conduit 19 of the buffer tank 16 could also, instead of the connection in the pressure vessel 1, form an outlet into the environment, for example into the atmosphere or into the water surrounding the pressure vessel 1.
  • the pressure vessel 1 and the components arranged therein are particularly suitable for operation under water.
  • Figure 3 shows an encapsulated device 4 which substantially a radial magnetic bearing 32 includes, which in the interior. 6 is arranged and surrounded by the encapsulation 5.
  • the interior 6 is configured over the connecting line 8 as Pressure reducing device 37 and the opening 7 with the Room outside the pressure housing 1 connected.
  • the rotatable Shaft 21 is contactless to form a gas gap 22 held by the radial magnetic bearing 32.
  • FIG. 4 shows the radial magnetic bearing 32 in FIG a cross section along the section line A-A.
  • Figure 5 shows an encapsulated device 4 with a Pressure reducing device 37 comprising two separate Connecting lines 8.
  • a purge gas for example Nitrogen
  • the interior 6 fed, and the second Connection line 8 subtracted again and, for example, to the Dismiss environment.
  • the interior 6 has not shown Fluidleitkanäle, which preferably arranged and are configured such that the interior 6 is flowed through homogeneously. This scouring serves to harmful chemical substances the interior 6 to remove, for example, in the Interior 6 located electrical coils and magnets protect chemical agents.
  • FIG. 6 shows schematically a housing located in the pressure housing 1 Thrust bearing with a disc 36, which is encapsulated between two Devices 4 containing electromagnets is arranged around the rotatable shaft 21 to keep in a predetermined position.
  • the encapsulated device 4 is completely within the pressurized space 1a, i. the process gas exposed, with this encapsulated device 4 over than Connecting lines 8 designed Pressure Reducing Devices 37 Fluid conducting with the room outside the pressure housing 1 is connected.
  • the inventive method for operating a Compression device with a radial compressor 35 for Compressing a gas, an electric motor 31 for driving the Radial compressor 35 and an encapsulated device 4 is performed such that the pressure in the interior 6 of the encapsulated Device 4 is influenced such that this in all Operating conditions of the compression device less than or equal of the applied within the pressure housing 1 process pressure of the Compression device is held.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die Kompressorvorrichtung umfasst einen Radialverdichter (35) zum Komprimieren eines Gases sowie einen Elektromotor (31) zum Antrieb des Radialverdichters (35), wobei der Radialverdichter (35) und der Elektromotor (31) in einem Druckgehäuse (1) angeordnet sind, welches mit einer Gaseinlassleitung (2) sowie eine Gasauslassleitung (3) versehen ist, und umfasst eine im Druckgehäuse (1) angeordnete, gekapselte Vorrichtung (4), deren Innenraum Fluid leitend mit einer Druckminderungsvorrichtung (37) verbunden ist. <IMAGE>

Description

Die Erfindung betrifft eine Kompressorvorrichtung gemäss dem Oberbegriff von Anspruch 1. Die Erfindung betrifft weiter ein Verfahren zum Betrieb einer Kompressorvorrichtung gemäss dem Oberbegriff von Anspruch 15.
Es ist bekannt zum Fördern und/oder Verdichten von Gasen eine Kompressorvorrichtung umfassend einen Radialverdichter sowie einen diesen antreibenden Elektromotor zu verwenden. Wird die Kompressorvorrichtung bei einem höheren Prozessdruck betrieben, so ist es zudem bekannt, die Kompressorvorrichtung innerhalb eines Druckgehäuses. insbesondere eines gemeinsamen Druckgehäuses anzuordnen, wobei das Druckgehäuse mit Gaseinlass- und Gasauslassleitungen versehen ist.
Nachteilig an einer derartigen, bei einem höheren Prozessdruck betriebenen Kompressorvorrichtung ist die Tatsache, dass diese zum Verdichten von kontaminierten Gasen oder Gasen mit korrosiven Anteilen weniger geeignet sind, weil gewisse Komponenten der Kompressorvorrichtung einer erhöhten Abnützung unterliegen.
Es ist Aufgabe der vorliegenden Erfindung eine Kompressorvorrichtung sowie ein Verfahren zum Betrieb einer Kompressorvorrichtung zu schaffen, die insbesondere zum Fördern von kontaminierten und/oder korrosiven Gasen geeignet ist.
Diese Aufgabe wird gelöst mit einer Kompressorvorrichtung aufweisen die Merkmale von Anspruch 1. Die Unteransprüche 2 bis 14 betreffen weitere, vorteilhafte Ausgestaltungen. Die Aufgabe wird weiter gelöst mit einem Verfahren zum Betrieb einer Kompressorvorrichtung aufweisend die Merkmale von Anspruch 15. Die Unteransprüche 16 und 18 betreffen weitere, vorteilhafte Verfahrensschritte.
Die Aufgabe wird insbesondere gelöst mit einer Kompressorvorrichtung umfassend einen Radialverdichter zum Komprimieren eines Gases sowie einen Elektromotor zum Antrieb des Radialverdichters, wobei der Radialverdichter und der Elektromotor in einem Druckgehäuse angeordnet sind, welches mit einer Gaseinlassleitung sowie eine Gasauslassleitung versehen ist, sowie umfassend eine im Druckgehäuse angeordnete, gekapselte Vorrichtung, deren Innenraum Fluid leitend mit einer Druckminderungsvorrichtung verbunden ist.
In einer einfachen Ausführungsform ist die Druckminderungsvorrichtung als eine Fluid leitende Verbindungsleitung zum Raum ausserhalb des gasdichten Druckgehäuses ausgestaltet. Das Fluid ist vorzugsweise ein Gas, könnte jedoch auch eine Flüssigkeit umfassen oder im wesentlichen aus einer Flüssigkeit bestehen.
Die erfindungsgemässe Kompressorvorrichtung weist eine gekapselte Vorrichtung auf, innerhalb welcher empfindliche Komponenten wie beispielweise der Stator des Elektromotors von den geförderten Gasen, beispielsweise Sauergase mit Anteilen an H2S und/oder CO2, geschützt sind. Die gekapselte Vorrichtung umfass eine Kapselung, im Englischen auch als "can" bezeichnet, sowie darin angeordnete Komponenten. Die Kapselung ist vorzugsweise gasdicht oder annähernd gasdicht ausgestaltet. Als Kapselung werden, beispielweise für den Stator, vorzugsweise sehr dünne, nichtmagnetisierbare Bleche oder faserverstärkte Kunststoffe verwendet, welche eine Dicke im Millimeterbereich, beispielsweise eine Dicke im Bereich zwischen 0,1 mm bis 5 mm aufweisen. Es hat sich überraschenderweise gezeigt, dass sich während dem Betrieb der Kompressorvorrichtung unter einem höheren Prozessdruck, beispielsweise beim Fördern eines Gases im Bereich zwischen 1 und 150 Bar, innerhalb der gekapselten Vorrichtung ein Druck aufbauen kann, da das Prozessgas durch Ritzen, Spalten oder Diffusion in die gekapselte Vorrichtung hineindringt bzw. hineinströmt. Aus diesem schleichenden Druckaufbau in der gekapselten Vorrichtung kann ein äusserst gefährlicher Betriebszustand entstehen, dann nämlich, wenn der Druck des Prozessgases sehr schnell reduziert wird, beispielsweise wenn die Kompressorvorrichtung abgeschaltet werden muss. Dabei könnte es vorkommen, dass der Druck in der gekapselten Vorrichtung den Druck des Prozessgases übersteigt, was zur Folge hätte, dass die Kapselung beschädigt oder zerstört wird, indem sich die beispielsweise äusserst dünnen Bleche verbiegen, was die Kompressorvorrichtung beschädigen oder zerstören könnte. Um einen sicheren Betrieb der Kompressorvorrichtung zu gewährleisten muss daher die gekapselte Vorrichtung zumindest mechanisch geschützt werden. Dies geschieht dadurch, dass sichergestellt wird, dass der Druck des Prozessgases zumindest gleich ist, vorzugsweise jedoch immer höher ist, als der Druck innerhalb der gekapselten Vorrichtung. Hierzu wird der Innenraum der gekapselten Vorrichtung Fluid leitend mit einer Druckminderungsvorrichtung verbunden, insbesondere über eine Fluid leitende Verbindungsleitung mit dem Raum ausserhalb des gasdichten Druckbehälters. In einer einfachen Ausführungsform mündet diese Verbindungsleitung direkt in die Atmosphäre, sodass sichergestellt ist, dass der Druck im Innenraum der gekapselten Vorrichtung gleich dem Atmosphärendruck ist oder nicht wesentlich über Atmosphärendruck ansteigt. In einer weiteren vorteilhaften Ausführungsform mündet die genannte Verbindungsleitung in ein ansteuerbares Ventil, um den Druckabbau, beispielsweise zur Atmosphäre, über das Ventil zu steuern. Mit Hilfe von Sensoren und einer Regelvorrichtung kann der Druck im Innenraum der gekapselten Vorrichtung und der Druck im Innenraum des Druckbehälters gemessen werden, und das Ventil beispielsweise derart betätigt werden, dass der Druck im Innenraum der gekapselten Vorrichtung immer tiefer liegt als der Druck des Prozessgases im Innenraum des Druckbehälters und beispielsweise eine konstante Druckdifferenz aufweist. In diesem Betriebsmodus ist es beispielsweise möglich, dass der Druck im Innenraum der gekapselten Vorrichtung 100 Bar beträgt, ohne dass bei einer Reduktion des Prozessdrucks das Risiko einer Explosion der gekapselten Vorrichtung besteht. Falls beispielsweise die Kompressorvorrichtung abgeschaltet werden muss, kann ein gesteuerter Dekompressionsvorgang durchgeführt werden, indem beispielsweise der Prozessdruck mit 20 Bar / Minute entlastet wird, und der Druck in der gekapselten Vorrichtung über die Druckminderungsvorrichtung ebenfalls mit dieser Rate entlastet wird, oder zumindest derart, dass der Druck innerhalb der gekapselten Vorrichtung ständig geringer ist als der Prozessdruck.
Eine Druckerhöhung in einer gekapselten Vorrichtung kann nebst dem Eindringen von Gas auch durch eine Erwärmung entstehen. Wird beispielsweise ein magnetisches Radiallager, das in einer gekapselten Vorrichtung angeordnet ist, während dem Betrieb erwärmt, so steigt der Druck in der gekapselten Vorrichtung an. Sollte sich noch Flüssigkeit, z.B. Wasser, in der gekapselten Vorrichtung befinden, so kann der Innendruck durch die Erwärmung beträchtlich ansteigen. Die erfindungsgemässe Kompressionsvorrichtung umfassend eine Druckminderungsvorrichtung sorgt auch in diesem Falle dafür, dass keine mechanische Beschädigung der gekapselten Vorrichtung auftritt.
Die Erfindung wird nachfolgend anhand mehrerer Ausführungbeispiele im Detail erläutert. Es zeigen schematisiert:
Fig. 1
einen Längsschnitt durch eine Kompressorvorrichtung, welche in einem Druckgehäuse angeordnet ist;
Fig. 2
einen Längsschnitt durch ein weiteres Druckgehäuse mit einer gekapselten Vorrichtung;
Fig. 3
einen Längsschnitt durch ein elektromagnetisches Radiallager;
Fig. 4
einen Querschnitt durch das in Fig. 3 dargestellte Radiallager entlang der Schnittlinie A-A;
Fig. 5
einen Längsschnitt durch eine gekapselte Vorrichtung;
Fig. 6
einen Längsschnitt mit einem Detailaspekt eines Axiallagers.
Figur 1 zeigt eine Kompressorvorrichtung umfassend einen Radialverdichter 35 sowie eine Elektromotor 31, welche über eine gemeinsame rotierbare Welle 21 miteinander verbunden sind, welche durch Radialmagnetlager 32 drehbar gelagert sind, und welche innerhalb eines gemeinsamen Druckgehäuses 1 mit Innenraum 1a angeordnet sind. Das Druckgehäuse 1 ist vorzugsweise gasdicht und weist eine Gaseinlassleitung 2 sowie eine Gasauslassleitung 3 auf, durch welche das geförderte Gas fliesst. Im Innenraum 1a des Druckgehäuses 1 entsteht während dem Betrieb ein Prozessdruck, welcher zwischen einem Gaseinlassdruck in der Gaseinlassleitung 2 und einem Gasauslassdruck in der Gasauslassleitung 3 liegt. Ein Teil des von den Kompressorschaufeln 34 verdichteten Gases wird zur Kühlung der Kompressorvorrichtung über die Leitungen 33 dem Druckgehäuse 1 seitlich zugeleitet, und strömt innerhalb des Druckgehäuses 1 in axialer Richtung durch den Gasspalt 22 des Magnetlagers 32 bzw. des Elektromotors 31. Somit liegt am Magnetlager 32 und am Stator 31a im wesentlichen der Prozessdruck an, welcher das geförderte Gas aufweist. Zum Schutz des Stators 31a bzw. dessen schematisch dargestellten Statorspulen 6b vor einem aggressiven Gas ist dieser in einem Innenraum 6 einer gekapselten Vorrichtung 4 angeordnet. Die gekapselte Vorrichtung 4 umfasst den Innenraum 6 sowie eine dichtende Kapselung 5. Der Innenraum 6 der gekapselten Vorrichtung 4 bildet eine druckstabile Trägerstruktur, welche beispielsweise durch die Statorspulen 6b selbst ausgebildet ist, oder indem die Statorspulen 6b beispielsweise in ein druckfestes Medium eingegossen sind. Elektrokabel 28 sind über eine Kabeldurchführung 29 zur Energieversorgung der Statorspulen 6b vorgesehen. An der Oberfläche der druckstabilen Trägerstruktur liegt die Kapselung 5 auf, welche vorzugsweise aus einem dünnen Blech besteht. Das entlang des Luftspaltes 22 verlaufende Blech ist nicht magnetisierbar und weist eine Dicke im Millimeterbereich auf. Die seitlich angeordneten, radial nach aussen verlaufenden Bleche 5 können auch einen grössere Dicke, z.B. mehr als 5 mm aufweisen und stabiler ausgebildet sein. Der Innenraum 6 der gekapselten Vorrichtung 4 ist durch die Kapselung 5 sowie das Druckgehäuse 1 begrenzt und bezüglich dem Prozessgas gasdicht oder im wesentlichen gasdicht. Der Innenraum 6 ist über eine Fluid leitende Verbindungsleitung 8 mit dem Raum ausserhalb des Druckgehäuses 1 verbunden. Sollte sich im Innenraum 6 ein Innendruck aufbauen, indem das sich im Druckraum 1a befindliche Prozessgas durch Ritzen, schadhafte Stellen oder Diffusion über die Kapselung 5 in den Innenraum 6 eindringt, so kann dieser Druck dadurch abgebaut werden, dass das Gas über die Druckminderungsvorrichtung 34, in dieser Ausführung ausgestaltet als eine Verbindungsleitung 8, nach aussen zum Raum ausserhalb des Druckgehäuses 1 geleitet wird.
Nebst oder an Stelle des Elektromotors 31 können auch andere Komponenten wie die Magnetlager 32 in der bereits erläuterten gekapselten Vorrichtung 4 angeordnet sein, wobei in Figur 1 weder die elektrische Zuleitung noch die beispielsweise in ein Medium eingegossenen elektromagnetischen Spulen der Radialmagnetlager 32 dargestellt sind. Auch diese gekapselten Vorrichtungen 4 weisen eine Druckminderungsvorrichtung 34, hier als Verbindungsleitung 8 dargestellt, auf, um den Druck in der gekapselten Vorrichtung 4 zu begrenzen. Die in Figur 1 dargestellten Verbindungsleitungen 8 münden beispielsweise in die Atmosphäre.
Das in Figur 2 schematisch dargestellte Druckgehäuse 1 umfasst unterschiedliche Ausführungsformen von Druckminderungsvorrichtungen 37 zur Begrenzung des Druckes im Innenraum 6 der gekapselten Vorrichtung 4. Die Druckminderungsvorrichtung 37 umfasst ein ansteuerbares, betätigbares Ventil 9, um den Druck im Innenraum 6 ansteuerbar zu reduzieren. Eine einfache Möglichkeit ein Eindringen von Prozessgas in den Innenraum 6 der gekapselten Vorrichtung 4 festzustellen besteht darin, im Innenraum 6 einen Gassensor 15 anzuordnen, dessen Signal über eine elektrische Leitung 13 einer Regelvorrichtung 14 zugeführt ist. Sobald der Gassensor 15 das Prozessgas detektiert, ist zu erwarten, dass im Innenraum 6 ein Druckanstieg erfolgte. Die Regelvorrichtung 14 könnte beispielsweise ein Alarmsignal auslösen um das Ventil 9 manuell zu öffnen, oder das Ventil 9 automatisch öffnen, und den an der Verbindungsleitung 8 anstehenden Druck über die Leitung 10 abzulassen. Der Leitung 10 könnte auch ein Vent oder Flair nachgeordnet sein, um das unter Druck stehende Gas in die Atmosphäre abzugeben.
Eine weitere Möglichkeit ein Eindringen von Prozessgas in den Innenraum 6 der gekapselten Vorrichtung 4 festzustellen besteht darin, im Innenraum 6 den Druck mit einem Sensor 11 zu messen. In einer weiteren Ausführungsform könnte zusätzlich noch mit einem Sensor 12 der Prozessdruck und/oder mit einem Sensor 26 der Umgebungsdruck gemessen und der Regelvorrichtung 14 zugeführt werden. Das Ventil 9 wird von der Regelvorrichtung 14 beispielsweise derart betätigt, dass der Druck im Innenraum 6 der gekapselten Vorrichtung 4 immer unterhalb dem im Innenraum 1a des Druckgehäuses 1 anliegenden Prozessdruck liegt, bzw. dass der Druck im Innenraum 6 tiefer ist als im Innenraum 1a.
Eine weitere Möglichkeit den Druck im Innenraum 6 der gekapselten Vorrichtung 4 zu reduzieren besteht darin, einen Pufferbehälter 16 vorzusehen, welcher über die Druckminderungsvorrichtung 37 Fluid leitend mit dem Innenraum 6 verbindbar ist. Der Pufferbehälter 16 könnte innerhalb oder ausserhalb des Druckgehäuses 1 angeordnet sein. Im Beispiel gemäss Figur 2 könnte die Druckminderungsvorrichtung 37 die Verbindungsleitungen 8 und 10, das Ventil 9 sowie die Leitung 20 und den Pufferbehälter 16 umfassen, welche Fluid leitend verbindbar sind. Der Pufferbehälter 16 weist zudem eine flexible und dichte Membran 17 auf, und ist über eine Leitung 19 und eine Durchbrechung 18 mit dem Innenraum 1a des Druckgehäuses 1 verbunden ist. Mit dieser Druckminderungsvorrichtung 37 kann durch eine entsprechende Ansteuerung des Ventils 9 sichergestellt werden, dass der Druck innerhalb des Innenraumes 6 nicht über den Druck im Innenraum 1a ansteigt sondern maximal den gleichen Wert wie im Innenraum 1a aufweist. Dies ist insbesondere wichtig, wenn der Druck im Innenraum 1a sinkt.
Das Ventil 9 oder auch die gesamte Druckminderungsvorrichtung 37 kann innerhalb des Druckgehäuses 1 angeordnet sein, oder wie in Figur 2 dargestellt, im wesentlichen ausserhalb des Druckgehäuses 1 angeordnet sein.
Die Leitung 19 des Pufferbehälters 16 könnte auch, an Stelle der Verbindung in den Druckbehälter 1, einen Auslass in die Umgebung bilden, beispielsweise in die Atmosphäre oder in das den Druckbehälter 1 umgebende Wasser. Der Druckbehälter 1 sowie die darin angeordneten Komponeten sind insbesondere auch zum Betrieb unter Wasser geeignet.
Figur 3 zeigt eine gekapselte Vorrichtung 4 welche im wesentlichen ein Radialmagnetlager 32 umfasst, welches im Innenraum 6 angeordnet ist und von der Kapselung 5 umgeben ist. Der Innenraum 6 ist über die als Verbindungsleitung 8 ausgestaltete Druckminderungsvorrichtung 37 und die Durchbrechung 7 mit dem Raum ausserhalb des Druckgehäuses 1 verbunden. Die rotierbare Welle 21 ist unter Ausbildung eines Gasspaltes 22 berührungslos vom Radialmagnetlager 32 gehalten.
Figur 4 zeigt das mit Figur 3 beschriebene Radialmagnetlager 32 in einem Querschnitt entlang der Schnittlinie A-A.
Figur 5 zeigt eine gekapselte Vorrichtung 4 mit einer Druckminderungsvorrichtung 37 umfassend zwei getrennten Verbindungsleitungen 8. Mit Hilfe eines Vorratsbehälters 27 wird über die eine Verbindungsleitung 8 ein Spühlgas, zum Beispiel Stickstoff, dem Innenraum 6 zugeleitet, und über die zweite Verbindungsleitung 8 wieder abgezogen und beispielsweise an die Umgebung entlassen. Der Innenraum 6 weist nicht dargestellte Fluidleitkanäle auf, welche vorzugsweise derart angeordnet und ausgestaltet sind, dass der Innenraum 6 homogen durchströmt wird. Dieses Spühlen dient dazu schädliche chemische Substanzen aus dem Innenraum 6 zu entfernen, um beispielsweise die sich im Innenraum 6 befindlichen elektrischen Spulen und Magnete vor chemischen Einwirkungen zu schützen.
Figur 6 zeigt schematisch ein sich im Druckgehäuse 1 befindliches Axiallager mit einer Scheibe 36, welches zwischen zwei gekapselten Vorrichtungen 4 enthaltend Elektromagnete angeordnet ist, um die rotierbare Welle 21 in einer vorgebbaren Position zu halten. Die gekapselte Vorrichtung 4 ist vollständig innerhalb des druckbeaufschlagten Raumes 1a angeordnet, d.h. dem Prozessgas ausgesetzt, wobei auch diese gekapselte Vorrichtung 4 über als Verbindungsleitungen 8 ausgestaltete Druckminderungsvorrichtungen 37 Fluid leitend mit dem Raum ausserhalb des Druckgehäuses 1 verbunden ist.
Die in den Figuren 1 und 3 bis 6 dargestellten Druckminderungsvorrichtungen 37 könnten natürlich auch in den unterschiedlichen, in Figur 2 dargestellten Ausführungsformen ausgebildet sein.
Das erfindungsgemässe Verfahren zum Betrieb einer Kompressionsvorrichtung mit einem Radialverdichter 35 zum Komprimieren eines Gases, einem Elektromotor 31 zum Antrieb des Radialverdichters 35 sowie einer gekapselten Vorrichtung 4 wird derart durchgeführt, dass der Druck im Innenraum 6 der gekapselten Vorrichtung 4 derart beeinflusst wird, dass dieser in allen Betriebszuständen der Kompressionsvorrichtung kleiner oder gleich des innerhalb des Druckgehäuses 1 anliegenden Prozessdruckes der Kompressionsvorrichtung gehalten wird.

Claims (18)

  1. Kompressorvorrichtung umfassend einen Radialverdichter (35) zum Komprimieren eines Gases sowie einen Elektromotor (31) zum Antrieb des Radialverdichters (35), wobei der Radialverdichter (35) und der Elektromotor (31) in einem Druckgehäuse (1) angeordnet sind, welches mit einer Gaseinlassleitung (2) sowie eine Gasauslassleitung (3) versehen ist, sowie umfassend eine im Druckgehäuse (1) angeordnete, gekapselte Vorrichtung (4), deren Innenraum (6) Fluid leitend mit einer Druckminderungsvorrichtung (37) verbunden ist.
  2. Kompressorvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Druckminderungsvorrichtung (37) zumindest aus einer Verbindungsleitung (8) zum Raum ausserhalb des Druckgehäuses (1) besteht.
  3. Kompressorvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Druckminderungsvorrichtung (37) eine in die Atmosphäre mündende, Fluid leitende Verbindung aufweist.
  4. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Druckminderungsvorrichtung (37) einen Pufferbehälter (16) umfasst, welcher Fluid leitend mit dem Innenraum (6) verbindbar ist.
  5. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Druckminderungsvorrichtung (37) ein betätigbares Ventil (9) umfasst, um den Druck im Innenraum (6) ansteuerbar zu reduzieren.
  6. Kompressorvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Druckminderungsvorrichtung (37) einen Sensor (11,13) zum Erfassen des Druckes in der gekapselten Vorrichtung (4) sowie eine Regelungsvorrichtung (14) umfasst, wobei die Regelvorrichtung (14) einen Sensorwert erfasst, diesen mit einem Sollwert vergleicht, und das Ventil (9) falls erforderlich betätigt und/oder einen Alarm auslöst.
  7. Kompressorvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass zudem ein Sensor (12) zum Messen eines Prozessdruckes angeordnet ist, und/oder dass ein Sensor (26) zum Messen eines Umgebungsdruckes angeordnet ist, und dass der Sensor (12,26) mit der Regelungsvorrichtung (14) verbunden ist.
  8. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekapselte Vorrichtung (4) eine druckstabile Trägerstruktur aufweist, auf welcher eine Kapselung (5) aufliegt.
  9. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der gekapselten Vorrichtung (4) ein Stator (31a) des Elektromotors (31) oder ein Stator eines Magnetlagers (32) angeordnet ist.
  10. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekapselte Vorrichtung (4) teilweise durch die Innenwand des Druckgehäuses (1) begrenzt ist.
  11. Kompressorvorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die gekapselte Vorrichtung (4) vollständig innerhalb eines druckbeaufschlagten Raumes (1a) angeordnet ist.
  12. Kompressorvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Pufferbehälter (16) ausserhalb des Druckgehäuses (1) angeordnet ist.
  13. Kompressorvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Pufferbehälter (16) mit dem Innenraum (1a) des Druckgehäuses (1) Fluid leitend verbunden ist.
  14. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Druckminderungsvorrichtung (37) zumindest zwei getrennte Verbindungsleitungen (8) aufweist, welche zum Raum ausserhalb des gasdichten Druckgehäuses (1) münden, um ein Spühlgas durch die gekapselte Vorrichtung (4) zu leiten.
  15. Verfahren zum Betrieb einer Kompressionsvorrichtung welche einen Radialverdichter (35) zum Komprimieren eines Gases sowie einen Elektromotor (31) zum Antrieb des Radialverdichters (35) umfasst, wobei der Radialverdichter (35) und der Elektromotor (31) in einem Druckgehäuse (1) angeordnet sind, wobei das Druckgehäuse (1) mit einer Gaseinlassleitung (2) sowie eine Gasauslassleitung (3) versehen ist, und wobei innerhalb des Druckgehäuses (1) eine gekapselte Vorrichtung (4) mit einem Innenraum (6) angeordnet ist, wobei der Druck im Innenraum (6) der gekapselten Vorrichtung (4) derart beeinflusst wird, dass dieser in allen Betriebszuständen der Kompressionsvorrichtung kleiner oder gleich des innerhalb des Druckgehäuses (1) anliegenden Prozessdruckes der Kompressionsvorrichtung gehalten wird.
  16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass der Druck in der gekapselten Vorrichtung (4) auf einem kleineren Wert als der anliegende Prozessdruck gehalten wird.
  17. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass der Druck im Innenraum der gekapselten Vorrichtung (4) sowie der Prozessdruck gemessen wird, und der Druck im Innenraum der gekapselten Vorrichtung (4) durch ein entsprechendes Ansteuern eines Ventils (9) in einer vorgebbaren Beziehung zum Prozessdruck geregelt wird.
  18. Verfahren nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass der gekapselten Vorrichtung (4) ein Spühlgas zugeführt wird, um deren Innenraum von chemischen Verunreinigungen zu reinigen.
EP04405421A 2003-07-05 2004-07-05 Kompressorvorrichtung und Verfahren zum Betrieb derselben Active EP1482179B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04405421A EP1482179B1 (de) 2003-07-05 2004-07-05 Kompressorvorrichtung und Verfahren zum Betrieb derselben

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03405502 2003-07-05
EP03405502 2003-07-05
EP04405421A EP1482179B1 (de) 2003-07-05 2004-07-05 Kompressorvorrichtung und Verfahren zum Betrieb derselben

Publications (2)

Publication Number Publication Date
EP1482179A1 true EP1482179A1 (de) 2004-12-01
EP1482179B1 EP1482179B1 (de) 2006-12-13

Family

ID=33133025

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04405421A Active EP1482179B1 (de) 2003-07-05 2004-07-05 Kompressorvorrichtung und Verfahren zum Betrieb derselben

Country Status (1)

Country Link
EP (1) EP1482179B1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110281A1 (de) * 2006-03-24 2007-10-04 Siemens Aktiengesellschaft Verdichtereinheit
DE102006049326A1 (de) * 2006-10-19 2008-04-30 Siemens Ag Gekapselte elektrische Maschine mit flüssigkeitsgekühltem Stator
WO2009068407A1 (de) * 2007-11-30 2009-06-04 Siemens Aktiengesellschaft Verfahren zum betrieb einer verdichtervorrichtung und zugehörige verdichtervorrichtung
CN101956712A (zh) * 2009-07-10 2011-01-26 诺沃皮尼奥内有限公司 用于工业设备的过程流体的高压压缩单元及相关操作方法
WO2012166325A1 (en) * 2011-05-31 2012-12-06 Carrier Corporation Compressor windage mitigation
WO2015014522A1 (de) * 2013-07-30 2015-02-05 Siemens Aktiengesellschaft Unterwasser-kompressor zum verdichten eines gases unter wasser und verwendung des unterwasser-kompressors

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508101B2 (en) 2006-02-24 2009-03-24 General Electric Company Methods and apparatus for using an electrical machine to transport fluids through a pipeline
EP2113671A1 (de) 2008-04-28 2009-11-04 Siemens Aktiengesellschaft Anordnung mit einem elektrischen Motor und einer Pumpe
DE102008038787A1 (de) 2008-08-13 2010-02-18 Siemens Aktiengesellschaft Fluidenergiemaschine
EP2290241A1 (de) 2009-07-13 2011-03-02 Siemens Aktiengesellschaft Turbokompressoreinheit mit einem Kühlsystem
BE1019030A5 (nl) 2009-08-03 2012-01-10 Atlas Copco Airpower Nv Turbocompressorsysteem.
FR2969722B1 (fr) 2010-12-22 2013-01-04 Thermodyn Groupe motocompresseur a accouplement torsible place dans un arbre creux du compresseur

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698917A (en) * 1995-09-25 1997-12-16 Glacier Rpb Inc. Electromagnetic bearing with a stationary armature canning arrangement
US6464469B1 (en) * 1999-07-16 2002-10-15 Man Turbomaschinen Ag Ghh Borsig Cooling system for electromagnetic bearings of a turbocompressor
WO2002099286A1 (en) * 2001-06-05 2002-12-12 Siemens Demag Delaval Turbomachinery B.V. Compressor unit comprising a centrifugal compressor and an electric motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698917A (en) * 1995-09-25 1997-12-16 Glacier Rpb Inc. Electromagnetic bearing with a stationary armature canning arrangement
US6464469B1 (en) * 1999-07-16 2002-10-15 Man Turbomaschinen Ag Ghh Borsig Cooling system for electromagnetic bearings of a turbocompressor
WO2002099286A1 (en) * 2001-06-05 2002-12-12 Siemens Demag Delaval Turbomachinery B.V. Compressor unit comprising a centrifugal compressor and an electric motor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101410624B (zh) * 2006-03-24 2011-03-02 西门子公司 压缩机单元
WO2007110281A1 (de) * 2006-03-24 2007-10-04 Siemens Aktiengesellschaft Verdichtereinheit
DE102006049326A1 (de) * 2006-10-19 2008-04-30 Siemens Ag Gekapselte elektrische Maschine mit flüssigkeitsgekühltem Stator
WO2009068407A1 (de) * 2007-11-30 2009-06-04 Siemens Aktiengesellschaft Verfahren zum betrieb einer verdichtervorrichtung und zugehörige verdichtervorrichtung
CN101878347A (zh) * 2007-11-30 2010-11-03 西门子公司 用于运行压缩机装置的方法以及配属的压缩机装置
US8529217B2 (en) 2007-11-30 2013-09-10 Siemens Aktiengesellschaft Method for operating a compressor device and associated compressor device
CN101878347B (zh) * 2007-11-30 2016-08-03 西门子公司 用于运行压缩机装置的方法以及配属的压缩机装置
CN101956712B (zh) * 2009-07-10 2015-06-17 诺沃皮尼奥内有限公司 用于工业设备的过程流体的高压压缩单元及相关操作方法
CN101956712A (zh) * 2009-07-10 2011-01-26 诺沃皮尼奥内有限公司 用于工业设备的过程流体的高压压缩单元及相关操作方法
WO2012166325A1 (en) * 2011-05-31 2012-12-06 Carrier Corporation Compressor windage mitigation
CN103562553A (zh) * 2011-05-31 2014-02-05 开利公司 压缩机风阻减轻
US10612551B2 (en) 2011-05-31 2020-04-07 Carrier Corporation Compressor motor windage loss mitigation
WO2015014522A1 (de) * 2013-07-30 2015-02-05 Siemens Aktiengesellschaft Unterwasser-kompressor zum verdichten eines gases unter wasser und verwendung des unterwasser-kompressors

Also Published As

Publication number Publication date
EP1482179B1 (de) 2006-12-13

Similar Documents

Publication Publication Date Title
EP1482179B1 (de) Kompressorvorrichtung und Verfahren zum Betrieb derselben
US7244111B2 (en) Compressor apparatus and method for the operation of the same
EP0268013B2 (de) Pumpe mit Spaltrohr
DE1811100A1 (de) Vorrichtung zum Schmieren eines Lagers zur Verwendung in einer gekapselten Motorpumpe oder einem gekapselten Motorruehrwerk
EP1074746A2 (de) Turboverdichter
DE112008004249T5 (de) Hochdrucktank
DE1803293C3 (de)
EP3363600B1 (de) Vorrichtung zum aufnehmen einer kleberauftragseinheit sowie verfahren
EP1087144B1 (de) Tandem-Gleitringdichtung an Pumpen für cryogene Medien
EP0644092B1 (de) Steuereinrichtung
DE202019100988U1 (de) Druckbehältersystem
EP2604399A2 (de) Vorrichtung zur Verarbeitung von Lebensmittelprodukten
EP1634029A1 (de) Rotationswärmeaustauscher und verfahren zur abdichtung eines solchen
DE3545713A1 (de) Spaltrohrpumpe zum foerdern hochprozentiger saeuren, insbesondere 98%iger salpetersaeure
EP2820247B1 (de) Dichtungsanordnung, eine fördereinrichtung mit einer dichtungsanordnung sowie ein verfahren zum betrieb der dichtungsanordnung
EP0990798A1 (de) Turboverdichter
DE102004024480A1 (de) Verfahren und Vorrichtung zum Evakuieren einer Kammer
EP1097330B1 (de) Verfahren und vorrichtung zur überwachung eines kontrollfluides im balginnenraum einer ventilvorrichtung
DE1270905B (de) Wellendichtung
DE3308555C1 (de) Vorrichtung zur automatischen Messung der Leckrate eines Behälters
DE10214025B4 (de) Verfahren und Vorrichtung zum Herstellen eines abgedichteten Schließelements, insbesondere eines elektronischen Schlüssels für Kraftfahrzeuge
DE3814276C2 (de)
EP2625429B1 (de) Pumpe und verfahren zur förderung und entgasung einer flüssigkeit mittels einer düse im pumpeneinlass
DE102022114408B3 (de) Anlage und Verfahren zur Versorgung einer Schmierstelle mit Schmieröl
DE3719041C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17Q First examination report despatched

Effective date: 20050124

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBO AG SCHWEIZ

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004002264

Country of ref document: DE

Date of ref document: 20070125

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070313

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070324

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070514

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20061213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070719

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

BERE Be: lapsed

Owner name: MAN TURBO A.G. SCHWEIZ

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070710

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070705

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070731

Year of fee payment: 4