EP1481115B1 - Graphitierte kathodenblöcke - Google Patents

Graphitierte kathodenblöcke Download PDF

Info

Publication number
EP1481115B1
EP1481115B1 EP02796687A EP02796687A EP1481115B1 EP 1481115 B1 EP1481115 B1 EP 1481115B1 EP 02796687 A EP02796687 A EP 02796687A EP 02796687 A EP02796687 A EP 02796687A EP 1481115 B1 EP1481115 B1 EP 1481115B1
Authority
EP
European Patent Office
Prior art keywords
cathode
joined
cathode blocks
parts
blocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02796687A
Other languages
English (en)
French (fr)
Other versions
EP1481115A2 (de
Inventor
Johann Daimer
Frank Hiltmann
Jörg MITTAG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGL Carbon SE
Original Assignee
SGL Carbon SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGL Carbon SE filed Critical SGL Carbon SE
Publication of EP1481115A2 publication Critical patent/EP1481115A2/de
Application granted granted Critical
Publication of EP1481115B1 publication Critical patent/EP1481115B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the invention relates to graphitized cathode blocks, a process for their preparation and their Use in particular for the electrolytic production of aluminum.
  • electrolytic cells which is composed of a plurality of blocks Soil, which acts as a cathode.
  • the electrolyte is a melt, essentially one Solution of alumina in cryolite.
  • the working temperature is for example at approx. 1000 ° C.
  • the electrolytically deposited molten aluminum collects on the Bottom of the cell under a layer of the electrolyte.
  • Around the cells is a metallic one Housing (preferably steel) with a lining of high temperature resistant material.
  • the material of the cathode blocks is because of the required chemical and thermal Resistance prefers carbon partially or partially by thermal treatment can be completely graphitized.
  • For the preparation of such cathode blocks are mixtures of pitches, cokes, anthracite and / or graphite in selected particle sizes or Particle size distributions for the solids are mixed, shaped and fired and optionally (partially) graphitized.
  • the burning (carbonation) is usually at Temperatures of about 1200 ° C, the graphitization usually at temperatures of over 2400 ° C.
  • While graphitized cathodes are preferred because of their higher electrical conductivity they show a greater erosion during operation, according to a medium annual decrease in their thickness of up to 80 mm. This wear is not uniform across the length of the cathode blocks (corresponding to the width of the cell) distributed, but changed the surface of the cathode blocks to a W-shaped profile. By the uneven Ablating the service life of the cathode blocks is limited by the points with the largest removal.
  • One way to equalize the removal over the length of the cathode block and To extend the useful life is to make the cathode blocks so that their electrical resistance varies over the length, so that the current density (and thus the Wear) is uniform over its length or at least the smallest possible deviation over the length of its mean.
  • composite cathodes formed are either made of several carbon blocks with different electrical Conductivity, which are arranged so that a uniform or approximate uniform current distribution results, or from carbon blocks whose electrical Resistances in the direction of the cathodic leads continuously increase.
  • the number The carbon blocks and their electrical resistance depend on cell size and cell type, they have to be recalculated for each case.
  • Cathode blocks from one Variety of single carbon blocks require a lot of effort in the Construction; Also, the joints must each be well sealed to an outflow to avoid the liquid aluminum at the joints.
  • a graphite cathode which consists of a single Block consists, which has a variable over its length electrical conductivity, wherein the conductivity at the ends of the block is lower than in the middle.
  • This uneven Distribution of the electrical conductivity is achieved by the during graphitization End zones are brought to a temperature of 2200 to 2500 ° C, while the middle Zone is exposed to a temperature of 2700 to 3000 ° C.
  • These different Heat treatment can be achieved according to this teaching by two ways: once can the heat dissipation in the graphitizing furnace are limited differently, or it can Heat sinks are introduced in the neighborhood of the end zones, which reduces the heat loss increase.
  • a transverse graphitization is the density of the heat-insulating bed changed so that the heat loss over the length of the cathode is uneven and to set the desired temperatures.
  • Even with the longitudinal graphitization can by different execution of the heat-insulating bed of heat loss in the Be increased near the ends, or it will be for this purpose heat dissipating body preferably made of graphite introduced in their vicinity, which has a greater heat flow to the outside effect towards the furnace wall.
  • the difference of the heat treatment may be due to local change the current density, with the result of different heat development.
  • Change in the current density can, according to the teaching by different resistances of the conductive bed between two cathodes in an Acheson furnace (cross graphitization) For a longitudinal graphitization process no such solution is given.
  • cathode blocks are graphitized by the longitudinal grafting method, the result is at the joints of the individual cathode blocks with each other or between them arranged electrically conductive connecting elements an electrical transition with a against the resistance inside the individual cathode blocks or the Connecting element increased resistance.
  • This increased resistance leads to increased Heat development and thus to higher temperature, ie an acceleration of the Graphit michsre redesign. Therefore, the electrical resistance in longitudinal graphitization at the Ends of the cathode blocks usually lower than that in the middle of the cathode blocks. This distribution of the resistance or the electrical conductivity over the length of Cathode blocks is just the opposite of the desired course.
  • cathode blocks with the desired course to simple Make way by placing the above-described cathode blocks in the middle cuts apart and reassembles in the opposite direction. This results in a Profile of the electrical resistance in the form of a rounded V at the thighs.
  • the present invention therefore provides graphitized cathode blocks for the production of aluminum by electrolytic reduction of alumina in a bath of molten cryolite, characterized in that the cathode blocks consist of two parts are assembled and along their length a V-shaped profile of their electrical resistance wherein the resistor in the middle of the cathode blocks has a point of discontinuity and steadily increasing towards the ends, such that the resistance at the ends of the Parts in the middle in the ratio of at least 1.05: 1 stands.
  • the cathode blocks are composed of two parts whose electrical Resistance increases steadily over its length, so that the resistance at the ends of the parts to in the middle in the ratio of at least 1.15: 1. This is particularly preferred Ratio 1.3: 1.
  • FIG. 1 shows the course of the specific electrical resistance ⁇ , shown in the interior of the side view of a cathode block 4, calculated as ( R a / l), where R is the electrical resistance of a parallelepiped specimen, a its cross-sectional area, and l its length , over the length of the cathode block.
  • the ends of the block, as obtained in longitudinal graphitization, are designated A.
  • the cathode block is cut apart along the line BB, the end faces at A are denoted as 4-1 , and the parting line along the line BB in the side cut is called 4-2 .
  • the separated cathode block is then assembled as shown in Figs. 2 to 4, that the ends A and the end faces 4-1 are located in the center of the assembled cathode block.
  • Fig. 2 shows an embodiment, wherein between the two ends now located in the middle A with the end faces 4-1 is a layer of ramming mass 5 , which otherwise also to seal the contact surfaces between the individual cathode blocks at the bottom of the tub of the electrolysis cell is used.
  • a further preferred embodiment is shown, in which case the two half-blocks are joined together in each case with the ends A by a layer of an adhesive 6 with the required temperature resistance.
  • Suitable adhesives are cold-curing resins such as BVK6 from SGL Carbon AG.
  • FIG. 4 shows an embodiment in which an adhesive or intermediate layer was dispensed with, and the two half-blocks were joined together only with their ends A.
  • the required surface pressure is applied in this case by the thermal expansion of the half-blocks, which are pressed together after flush installation in the electrolysis cells during heating. It has been found that the pressing force is greater enough to ensure a secure and tight connection of the two half-blocks, if the end surfaces were sufficiently flat prior to the division.
  • the graphitized cathode blocks according to the invention show in the production of Aluminum by electrolytic reduction of alumina in a bath of molten cryolite over the conventional homogeneous distribution of electrical conductivity a more uniform wear over the length of the cathode and therefore a significantly increased service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

Die Erfindung betrifft graphitierte Kathodenblöcke, ein Verfahren zu ihrer Herstellung und ihre Verwendung insbesondere für die elektrolytische Herstellung von Aluminium.
Bei der elektrolytischen Herstellung von Aluminium nach dem Hall-Héroult-Verfahren werden Elektrolysezellen eingesetzt, die einen aus einer Vielzahl von Blöcken zusammengesetzten Boden umfassen, der als Kathode wirkt. Der Elektrolyt ist eine Schmelze, im wesentlichen eine Lösung von Aluminiumoxid in Kryolith. Die Arbeitstemperatur liegt beispielsweise bei ca. 1000 °C. Das elektrolytisch abgeschiedene geschmolzene Aluminium sammelt sich auf dem Boden der Zelle unter einer Schicht des Elektrolyten. Um die Zellen ist ein metallisches Gehäuse (bevorzugt Stahl) mit einer Auskleidung aus hochtemperaturbeständigem Material.
Das Material der Kathodenblöcke ist wegen der erforderlichen chemischen und thermischen Beständigkeit bevorzugt Kohlenstoff, der durch thermische Behandlung teilweise oder vollständig graphitiert sein kann. Zur Herstellung solcher Kathodenblöcke werden Mischungen von Pechen, Koksen, Anthrazit und/oder Graphit in ausgewählten Teilchengrößen bzw. Teilchengrößenverteilungen für die Feststoffe gemischt, geformt und gebrannt und gegebenenfalls (teilweise) graphitiert. Das Brennen (Carbonisierung) erfolgt üblicherweise bei Temperaturen von ca. 1200 °C, die Graphitierung üblicherweise bei Temperaturen von über 2400 °C.
Während graphitierte Kathoden wegen ihrer höheren elektrischen Leitfähigkeit bevorzugt werden, zeigen sie eine stärkere Abnutzung während des Betriebs, entsprechend einer mittleren jährlichen Abnahme ihrer Dicke von bis zu 80 mm. Diese Abnutzung ist nicht gleichmäßig über die Länge der Kathodenblöcke (entsprechend der Breite der Zelle) verteilt, sondern verändert die Oberfläche der Kathodenblöcke zu einem W-förmigen Profil. Durch den ungleichmäßigen Abtrag wird die Nutzungsdauer der Kathodenblöcke begrenzt durch die Stellen mit dem größten Abtrag.
Eine Möglichkeit, den Abtrag über die Länge des Kathodenblocks zu vergleichmäßigen und damit die Nutzungsdauer zu verlängern, besteht darin, die Kathodenblöcke so auszuführen, daß ihr elektrischer Widerstand über die Länge variiert, derart daß die Stromdichte (und damit die Abnutzung) über ihre Länge gleichmäßig ist oder zumindest eine möglichst geringe Abweichung über die Länge von ihrem Mittelwert aufweist.
Eine Lösung ist in DE 20 61 263 beschrieben, wobei zusammengesetzte Kathoden gebildet werden entweder aus mehreren Kohlenstoffblöcken mit unterschiedlicher elektrischer Leitfähigkeit, die so angeordnet werden, daß sich eine gleichmäßige oder annähernd gleichmäßige Stromverteilung ergibt, oder aus Kohlenstoffblöcken, deren elektrische Widerstände in Richtung der kathodischen Ableitungen kontinuierlich zunehmen. Die Anzahl der Kohlenstoffblöcke und deren elektrischer Widerstand richten sich jeweils nach Zellengröße und Zellentyp, sie müssen für jeden Fall neu errechnet werden. Kathodenblöcke aus einer Vielzahl von einzelnen Kohlenstoff-Blöcken erfordern einen hohen Aufwand bei der Konstruktion; auch müssen die Stoßstellen jeweils gut abgedichtet werden, um ein Ausfließen des flüssigen Aluminiums an den Stoßstellen zu vermeiden.
In der WO 00/46426 ist eine Graphitkathode beschrieben worden, die aus einem einzelnen Block besteht, der eine über seine Länge veränderliche elektrische Leitfähigkeit aufweist, wobei die Leitfähigkeit an den Enden des Blocks niedriger ist als in der Mitte. Diese ungleichmäßige Verteilung der elektrischen Leitfähigkeit wird erreicht, indem während der Graphitierung die Endzonen auf eine Temperatur von 2200 bis 2500 °C gebracht werden, während die mittlere Zone einer Temperatur von 2700 bis 3000 °C ausgesetzt wird. Diese unterschiedliche Wärmebehandlung kann gemäß dieser Lehre durch zwei Weisen erreicht werden: einmal kann die Wärmeableitung im Graphitierungsofen unterschiedlich begrenzt werden, oder es können Wärmesenken in der Nachbarschaft der Endzonen eingebracht werden, die den Wärmeverlust erhöhen. Bei einer Quergraphitierung wird dabei die Dichte der wärmeisolierenden Schüttung so verändert, daß der Wärmeverlust über die Länge der Kathoden ungleichmäßig wird und damit die gewünschten Temperaturen eingestellt werden. Auch bei der Längsgraphitierung kann durch unterschiedliche Ausführung der wärmeisolierenden Schüttung der Wärmeverlust in der Nähe der Enden vergrößert werden, oder es werden zu diesem Zweck wärmeableitende Körper bevorzugt aus Graphit in deren Nähe eingebracht, die einen stärkeren Wärmeabfluß nach außen zur Ofenwand hin bewirken.
Gemäß einer anderen Methode kann der Unterschied der Wärmebehandlung durch lokale Veränderung der Stromdichte erfolgen, mit der Folge unterschiedlicher Wärmeentwicklung. Diese Veränderung der Stromdichte kann gemäß der Lehre durch unterschiedliche Widerstände der leitenden Schüttung zwischen zwei Kathoden in einem Acheson-Ofen (Quergraphitierung) erfolgen, für ein Längsgraphitierungsverfahren ist kein derartige Lösung angegeben.
Diese bekannten Methoden weisen für die Praxis erhebliche Nachteile auf. Ein Unterschied von 500 °C für die gewünschten Graphitierungstemperaturen in der Mitte und an den Enden der Kathoden ist durch Wärmesenken allein nicht erreichbar. Unterschiedliche Wärmeableitung nach außen in dem erforderlichen Maße bringt einen erheblichen Energieverlust, der die Fertigung wesentlich verteuert. Der höhere Wärmeverlust nach der Seite des Ofens bedeutet auch eine höhere thermische Beanspruchung, die die Konstruktion des Ofens verteuert oder seine Lebensdauer vermindert. Schließlich ist eine Inhomogenität der wärmeisolierenden bzw. der leitenden Schüttung wenig praktikabel, da das Schüttungsmaterial zur Befüllung in mehreren Schritten eingebracht werden müßte und nach dem Abschluß des Ofenzyklus und dem Entfernen der Kathoden wieder entsprechend seiner Wärmeleitung bzw. elektrischen Leitfähigkeit klassiert werden müßte.
Es ist daher die Aufgabe der vorliegenden Erfindung, graphitierte Kathodenblöcke bereitzustellen, die über ihre Länge eine unterschiedliche elektrische Leitfähigkeit aufweisen.
Werden Kathodenblöcke nach dem Verfahren der Längsgtaphitierung graphitiert, so ergibt sich an den Stoßstellen der einzelnen Kathodenblöcke untereinander oder mit zwischen diesen angeordneten elektrisch leitenden Verbindungselementen ein elektrischer Übergang mit einem gegenüber dem Widerstand im Inneren der einzelnen Kathodenblöcke oder des Verbindungselements erhöhtem Widerstand. Dieser erhöhte Widerstand führt zu erhöhter Wärmeentwicklung und damit zu höherer Temperatur, also einer Beschleunigung der Graphitierungsreaktion. Daher ist der elektrische Widerstand bei Längsgraphitierung an den Enden der Kathodenblöcke üblicherweise geringer als der in der Mitte der Kathodenblöcke. Diese Verteilung des Widerstandes bzw. der elektrischen Leitfähigkeit über die Länge des Kathodenblocks ist gerade das Gegenteil des gewünschten Verlaufs.
Es wurde nun gefunden, daß sich Kathodenblöcke mit dem gewünschten Verlauf auf einfache Weise herstellen lassen, indem man die oben beschriebenen Kathodenblöcke in der Mitte auseinanderschneidet und in umgekehrter Richtung wieder zusammenfügt. Dabei ergibt sich ein Profil des elektrischen Widerstandes in Form eines an den Schenkeln gerundeten V.
Gegenstand der vorliegenden Erfindung sind daher graphitierte Kathodenblöcke zur Herstellung von Aluminium durch elektrolytische Reduktion von Aluminiumoxid in einem Bad von geschmolzenem Kryolith, dadurch gekennzeichnet, daß die Kathodenblöcke aus zwei Teilen zusammengesetzt sind und über ihre Länge ein V-förmiges Profil ihres elektrischen Widerstandes aufweisen, wobei der Widerstand in der Mitte der Kathodenblöcke eine Unstetigkeitsstelle aufweist und zu den Enden hin stetig zunimmt, derart daß der Widerstand an den Enden der Teile zu dem in der Mitte im Verhältnis von mindestens 1,05 : 1 steht.
Bevorzugt sind die Kathodenblöcke aus zwei Teilen zusammengesetzt, deren elektrischer Widerstand über ihre Länge stetig ansteigt, derart daß der Widerstand an den Enden der Teile zu dem in der Mitte im Verhältnis von mindestens 1,15 : 1 steht. Besonders bevorzugt beträgt dies Verhältnis 1,3 : 1.
Die Erfindung wird durch die Zeichnungen näher erläutert. Dabei zeigen
Fig. 1
den Verlauf des spezifischen elektrischen Widerstandes ρ über die Länge des Kathodenblocks, wie er sich bei der Längsgraphitierung mit hohem Übergangswiderstand zwischen den einzelnen Kathodenblöcken ergibt, in die Seitenansicht eines Kathodenblocks eingezeichnet,
Fig. 2
eine Seitenansicht eines in der Mitte auseinandergetrennten und umgekehrt zusammengesetzten Kathodenblocks, wobei in der Mitte eine Verbindungsschicht aus Stampfmasse eingebracht ist,
Fig. 3
eine Seitenansicht eines in der Mitte auseinandergetrenmen und umgekehrt zusammengesetzten Kathodenblocks, wobei in der Mitte eine Klebefuge die beiden Teile verbindet, und
Fig. 4
eine Seitenansicht eines in der Mitte auseinandergetrennten und umgekehrt zusammengesetzten Kathodenblocks, wobei die beiden Teile lediglich bündig aneinandergesetzt sind.
Im einzelnen zeigt die Fig. 1 den im Inneren der Seitenansicht eines Kathodenblocks 4 dargestellten Verlauf des spezifischen elektrischen Widerstandes ρ, berechnet als ( R a /ℓ), wobei R der elektrische Widerstand eines quaderförmigen Probekörpers ist, a dessen Querschnittsfläche, und ℓ seine Länge, über die Länge des Kathodenblocks. Die Enden des Blocks, wie er bei der Längsgraphitierung anfallt, sind mit A bezeichnet. Der Kathodenblock wird längs der Linie BB auseinandergeschnitten, dabei sind die Endflächen bei A als 4-1 bezeichnet, und die Trennfläche längs der Linie BB im Seitenschnitt heißt 4-2. Der getrennte Kathodenblock wird nun so zusammengefügt wie in den Fig. 2 bis 4 dargestellt, daß die Enden A bzw. die Endflächen 4-1 sich in der Mitte des zusammengesetzten Kathodenblocks befinden.
Die Fig. 2 zeigt eine Ausführungsform, wobei sich zwischen den beiden nunmehr in der Mitte befindlichen Enden A mit den Endflächen 4-1eine Lage der Stampfmasse 5 befindet, die ansonsten auch zur Abdichtung der Kontaktflächen zwischen den einzelnen Kathodenblöcken am Boden der Wanne der Elektrolysezelle verwendet wird. Geeignet sind hierzu Stampfmassen auf Basis von Anthrazit und Graphit mit einer Dichte von ca. 1700 kg/m3, wie BST 17/1 der SGL Carbon AG.
Die vorher innen liegenden Flächen 4-2 sind nun zu Außenflächen geworden. Der Verlauf des spezifischen elektrischen Widerstandes ρ ist nun derart, daß in der Mitte des Kathodenblocks der niedrigste Wert liegt, und der spezifische elektrische Widerstand nun symmetrisch zum Mittelpunkt zu den Enden hin ansteigt. In umgekehrter Weise ist dann der Verlauf der elektrischen Leitfähigkeit, nämlich von einem Gipfel in der Mitte des Kathodenblocks aus zu den Enden hin absteigend.
In der Fig. 3 ist eine weitere bevorzugte Ausführungsform dargestellt, wobei in diesem Fall die beiden Halbblöcke jeweils mit den Enden A durch eine Schicht eines Klebstoffs 6 mit der erforderlichen Temperaturbeständigkeit zusammengefügt sind.
Geeignete Klebstoffe sind kalthärtende Harze wie beispielsweise BVK6 der SGL Carbon AG.
Die Fig. 4 schließlich zeigt eine Ausführungsform, bei der auf eine Klebung oder Zwischenschicht verzichtet wurde, und die beiden Halbblöcke lediglich mit ihren Enden A aneinandergefügt wurden. Die erforderliche Flächenpressung wird in diesem Fall durch die thermische Ausdehnung der Halbblöcke aufgebracht, die nach bündigem Einbau in die Elektrolysezellen beim Aufheizen aufeinandergepreßt werden. Es hat sich gezeigt, daß die Preßkraft größ genug ist, um eine sichere und dichte Verbindung beider Halbblöcke sicherzustellen, wenn die Endflächen vor der Teilung ausreichend eben waren.
Die erfindungsgemäßen graphitierten Kathodenblöcke zeigen bei der Herstellung von Aluminium durch elektrolytische Reduktion von Aluminiumoxid in einem Bad von geschmolzenem Kryolith gegenüber den herkömmlichen mit homogener Verteilung der elektrischen Leitfähigkeit eine gleichmäßigere Abnutzung über die Länge der Kathode und daher eine deutlich erhöhte Standzeit.

Claims (9)

  1. Graphitierte Kathodenblöcke zur Herstellung von Aluminium durch elektrolytische Reduktion von Aluminiumoxid in einem Bad von geschmolzenem Kryolith, dadurch gekennzeichnet, daß die Kathodenblöcke aus zwei Teilen zusammengesetzt sind und über ihre Länge ein V-förmiges Profil ihres spezifischen elektrischen Widerstandes aufweisen, wobei der Widerstand in der Mitte der Kathodenblöcke eine Unstetigkeitsstelle aufweist und zu den Enden hin stetig zunimmt, derart daß der Widerstand an den Enden der Teile zu dem in der Mitte im Verhältnis von mindestens 1,05 : 1 steht.
  2. Graphitierte Kathodenblöcke nach Anspruch 1, dadurch gekennzeichnet, daß die Kathodenblöcke aus zwei Teilen zusammengesetzt sind, wobei die Kontaktflächen der Teile durch mechanische Pressung verbunden sind.
  3. Graphitierte Kathodenblöcke nach Anspruch 1, dadurch gekennzeichnet, daß die Kathodenblöcke aus zwei Teilen zusammengesetzt sind, wobei die Kontaktflächen der Teile durch eine Stampfmasse verbunden sind.
  4. Graphitierte Kathodenblöcke nach Anspruch 1, dadurch gekennzeichnet, daß die Kathodenblöcke aus zwei Teilen zusammengesetzt sind, wobei die Kontaktflächen der Teile verklebt sind.
  5. Verfahren zur Herstellung von graphitierten Kathodenblöcke gemäß Anspruch 1, dadurch gekennzeichnet, daß ein graphitierter Kathodenblock, dessen elektrische Leitfähigkeit über die Länge dem Profil eines flachen U entspricht, mittig getrennt und mit den ursprünglichen Außenseiten nach innen gerichtet wieder zusammengesetzt wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der zusammengesetzte Kathodenblock durch mechanische Pressung in der Elektrolysezelle verbunden wird
  7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der zusammengesetzte Kathodenblock durch die thermische Ausdehnung in der Elektrolysezelle verbunden wird.
  8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der zusammengesetzte Kathodenblock durch Stampfmasse in der Mitte verbunden wird.
  9. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der zusammengesetzte Kathodenblock in der Mitte verklebt wird.
EP02796687A 2001-12-28 2002-12-19 Graphitierte kathodenblöcke Expired - Fee Related EP1481115B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2001164008 DE10164008C1 (de) 2001-12-28 2001-12-28 Graphitierte Kathodenblöcke
DE10164008 2001-12-28
PCT/EP2002/014548 WO2003056068A2 (de) 2001-12-28 2002-12-19 Graphitierte kathodenblöcke

Publications (2)

Publication Number Publication Date
EP1481115A2 EP1481115A2 (de) 2004-12-01
EP1481115B1 true EP1481115B1 (de) 2005-12-07

Family

ID=7710902

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02796687A Expired - Fee Related EP1481115B1 (de) 2001-12-28 2002-12-19 Graphitierte kathodenblöcke

Country Status (8)

Country Link
EP (1) EP1481115B1 (de)
AR (1) AR037912A1 (de)
AU (1) AU2002361174A1 (de)
BR (1) BR0215323A (de)
CA (1) CA2470753A1 (de)
DE (2) DE10164008C1 (de)
PL (1) PL201672B1 (de)
WO (1) WO2003056068A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076302A1 (de) 2011-05-23 2013-01-03 Sgl Carbon Se Elektrolysezelle und Kathode mit unregelmäßiger Oberflächenprofilierung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2728109A (en) * 1952-06-06 1955-12-27 Savoie Electrodes Refract Method of making cathodic electrodes for electrolysis furnaces
US4194959A (en) * 1977-11-23 1980-03-25 Alcan Research And Development Limited Electrolytic reduction cells
NO157462C (no) * 1985-10-24 1988-03-23 Hydro Aluminium As Laminert karbonkatode for celler til smelte-elektrolytisk fremstilling av aluminium.
US4795540A (en) * 1987-05-19 1989-01-03 Comalco Aluminum, Ltd. Slotted cathode collector bar for electrolyte reduction cell
FR2789091B1 (fr) * 1999-02-02 2001-03-09 Carbone Savoie Cathode graphite pour l'electrolyse de l'aluminium
EP1233083A1 (de) * 2001-02-14 2002-08-21 Alcan Technology & Management AG Kohleboden einer Elektrolysezelle zur Gewinnung von Aluminium

Also Published As

Publication number Publication date
EP1481115A2 (de) 2004-12-01
DE10164008C1 (de) 2003-04-30
BR0215323A (pt) 2004-10-19
PL369969A1 (en) 2005-05-02
CA2470753A1 (en) 2003-07-10
AU2002361174A1 (en) 2003-07-15
DE50205232D1 (de) 2006-01-12
AR037912A1 (es) 2004-12-22
WO2003056068A2 (de) 2003-07-10
WO2003056068A3 (de) 2004-09-30
PL201672B1 (pl) 2009-04-30

Similar Documents

Publication Publication Date Title
DE10261745B3 (de) Kathodensystem zur elektrolytischen Aluminiumgewinnung
DE69532052T2 (de) Mit versenkten Nuten drainierte horizontale Kathodenoberfläche für die Aluminium Elektrogewinnung
WO2012107412A2 (de) Kathodenanordnung und kathodenblock mit einer eine führungsvertiefung aufweisenden nut
DE3601014C2 (de) Verfahren und Vorrichtung zur kontinuierlichen Stranggrafitierung von Kohlenstoff-Formkörpern
DE60010861T2 (de) Graphit-kathode für die elektrolyse von aluminium
DE1187809B (de) Elektrolysezelle zur schmelzflusselektrolytischen Herstellung von Aluminium
EP1481115B1 (de) Graphitierte kathodenblöcke
DE1075321B (de) Kon tinuierliche Elektroden fur Schmelzfluß elektrolysen
EP2989235B9 (de) Kathodenblock mit einer nut mit variierender tiefe und einer fixiereinrichtung
DE10164013C1 (de) Verfahren zum Graphitieren von Kathodenblöcken
EP1461477B1 (de) Verfahren zum graphitieren von kathodenblöcken
DE10164011C1 (de) Verfahren zum Graphitieren von Kathodenblöcken
DE10164009B4 (de) Verfahren zur Herstellung von Kathodenblöcken
EP1461298B1 (de) Verfahren zur kontinuierlichen graphitierung
DE898817C (de) Ofen fuer direkte Schmelzflusselektrolyse von Aluminium
EP0073735B1 (de) Elektrolysewanne zur Herstellung von Aluminium mittels Schmelzflusselektrolyse und Verfahren zum Einsetzen der Eisenbarren
DE2833381A1 (de) Elektrolysezelle zum gewinnen von aluminium
EP1463692B1 (de) Verfahren zur herstellung von kathodenblöcken
DE1187807B (de) Vorgebrannte Kohleanoden fuer die Herstellung von Metallen, insbesondere von Aluminium, durch Schmelzflusselektrolyse
WO2012107403A1 (de) Kathodenanordnung mit einem oberflächenprofilierten kathodenblock mit nut variabler tiefe
DE3638937A1 (de) Kathode fuer eine schmelzflusselektrolysezelle
CH663624A5 (en) Cathode element of a cathode vessel for producing aluminium
AT223827B (de) Verfahren zum Zuführen des elektrischen Stromes zu einer selbstbackenden, kontinuierlichen Anode für Aluminiumelektrolyseöfen
DE2529215A1 (de) Kathode fuer elektrolysezellen zur aluminiumherstellung durch schmelzflusselektrolyse von aluminiumsalzen
CH366674A (de) Verfahren zum Zuführen des elektrischen Stromes zu einer Anode eines Aluminiumelektrolyseofens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20050330

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50205232

Country of ref document: DE

Date of ref document: 20060112

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060227

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081110

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081231

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081120

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091219

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091219